1
|
Owens K, Rahman A, Bozic I. Spatiotemporal dynamics of tumor - CAR T-cell interaction following local administration in solid cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610392. [PMID: 39257746 PMCID: PMC11384001 DOI: 10.1101/2024.08.29.610392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The success of chimeric antigen receptor (CAR) T-cell therapy in treating hematologic malignancies has generated widespread interest in translating this technology to solid cancers. However, issues like tumor infiltration, the immunosuppressive tumor microenvironment, and tumor heterogeneity limit its efficacy in the solid tumor setting. Recent experimental and clinical studies propose local administration directly into the tumor or at the tumor site to increase CAR T-cell infiltration and improve treatment outcomes. Characteristics of the types of solid tumors that may be the most receptive to this treatment approach remain unclear. In this work, we develop a spatiotemporal model for CAR T-cell treatment of solid tumors, and use numerical simulations to compare the effect of introducing CAR T cells via intratumoral injection versus intracavitary administration in diverse cancer types. We demonstrate that the model can recapitulate tumor and CAR T-cell data from imaging studies of local administration of CAR T cells in mouse models. Our results suggest that locally administered CAR T cells will be most successful against slowly proliferating, highly diffusive tumors, which have the lowest average tumor cell density. These findings affirm the clinical observation that CAR T cells will not perform equally across different types of solid tumors, and suggest that measuring tumor density may be helpful when considering the feasibility of CAR T-cell therapy and planning dosages for a particular patient. We additionally find that local delivery of CAR T cells can result in deep tumor responses, provided that the initial CAR T-cell dose does not contain a significant fraction of exhausted cells.
Collapse
Affiliation(s)
- Katherine Owens
- Department of Applied Mathematics, University of Washington, Seattle WA
- Fred Hutchinson Cancer Center, Seattle WA
| | - Aminur Rahman
- Fred Hutchinson Cancer Center, Seattle WA
- Artificial Intelligence Institute in Dynamic Systems, University of Washington, Seattle WA
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle WA
- Fred Hutchinson Cancer Center, Seattle WA
| |
Collapse
|
2
|
Ronca R, Supuran CT. Carbonic anhydrase IX: An atypical target for innovative therapies in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189120. [PMID: 38801961 DOI: 10.1016/j.bbcan.2024.189120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Carbonic anhydrases (CAs), are metallo-enzymes implicated in several pathophysiological processes where tissue pH regulation is required. CA IX is a tumor-associated CA isoform induced by hypoxia and involved in the adaptation of tumor cells to acidosis. Indeed, several tumor-driving pathways can induce CA IX expression, and this in turn has been associated to cancer cells invasion and metastatic features as well as to induction of stem-like features, drug resistance and recurrence. After its functional and structural characterization CA IX targeting approaches have been developed to inhibit its activity in neoplastic tissues, and to date this field has seen an incredible acceleration in terms of therapeutic options and biological readouts. Small molecules inhibitors, hybrid/dual targeting drugs, targeting antibodies and adoptive (CAR-T based) cell therapy have been developed at preclinical level, whereas a sulfonamide CA IX inhibitor and an antibody entered Phase Ib/II clinical trials for the treatment and imaging of different solid tumors. Here recent advances on CA IX biology and pharmacology in cancer, and its therapeutic targeting will be discussed.
Collapse
Affiliation(s)
- Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy.
| |
Collapse
|
3
|
Yuan G, Ye M, Zhang Y, Zeng X. Challenges and strategies in relation to effective CAR-T cell immunotherapy for solid tumors. Med Oncol 2024; 41:126. [PMID: 38652178 DOI: 10.1007/s12032-024-02310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Chimeric Antigen Receptor T cell (CAR-T) therapy has revolutionized cancer treatment, but its application to solid tumors is limited. CAR-T cells have poor incapability of entering, surviving, proliferating, and finally exerting function in the tumor microenvironment. This review summarizes the main strategies related to enhancing the infiltration, efficacy, antigen recognition, and production of CAR-T in solid tumors. Additional applications of CAR-γδ T and macrophages are also discussed. We believe CAR-T will be a milestone in treating solid tumors once these problems are solved.
Collapse
Affiliation(s)
- Guangxun Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Mengke Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Wang Y, Buck A, Piel B, Zerefa L, Murugan N, Coherd CD, Miklosi AG, Johal H, Bastos RN, Huang K, Ficial M, Laimon YN, Signoretti S, Zhong Z, Hoang SM, Kastrunes GM, Grimaud M, Fayed A, Yuan HC, Nguyen QD, Thai T, Ivanova EV, Paweletz CP, Wu MR, Choueiri TK, Wee JO, Freeman GJ, Barbie DA, Marasco WA. Affinity fine-tuning anti-CAIX CAR-T cells mitigate on-target off-tumor side effects. Mol Cancer 2024; 23:56. [PMID: 38491381 PMCID: PMC10943873 DOI: 10.1186/s12943-024-01952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/31/2024] [Indexed: 03/18/2024] Open
Abstract
One of the major hurdles that has hindered the success of chimeric antigen receptor (CAR) T cell therapies against solid tumors is on-target off-tumor (OTOT) toxicity due to sharing of the same epitopes on normal tissues. To elevate the safety profile of CAR-T cells, an affinity/avidity fine-tuned CAR was designed enabling CAR-T cell activation only in the presence of a highly expressed tumor associated antigen (TAA) but not when recognizing the same antigen at a physiological level on healthy cells. Using direct stochastic optical reconstruction microscopy (dSTORM) which provides single-molecule resolution, and flow cytometry, we identified high carbonic anhydrase IX (CAIX) density on clear cell renal cell carcinoma (ccRCC) patient samples and low-density expression on healthy bile duct tissues. A Tet-On doxycycline-inducible CAIX expressing cell line was established to mimic various CAIX densities, providing coverage from CAIX-high skrc-59 tumor cells to CAIX-low MMNK-1 cholangiocytes. Assessing the killing of CAR-T cells, we demonstrated that low-affinity/high-avidity fine-tuned G9 CAR-T has a wider therapeutic window compared to high-affinity/high-avidity G250 that was used in the first anti-CAIX CAR-T clinical trial but displayed serious OTOT effects. To assess the therapeutic effect of G9 on patient samples, we generated ccRCC patient derived organotypic tumor spheroid (PDOTS) ex vivo cultures and demonstrated that G9 CAR-T cells exhibited superior efficacy, migration and cytokine release in these miniature tumors. Moreover, in an RCC orthotopic mouse model, G9 CAR-T cells showed enhanced tumor control compared to G250. In summary, G9 has successfully mitigated OTOT side effects and in doing so has made CAIX a druggable immunotherapeutic target.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Alicia Buck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Brandon Piel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Luann Zerefa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Nithyassree Murugan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Christian D Coherd
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | | | | | - Kun Huang
- Molecular Imaging Core, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Miriam Ficial
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Yasmin Nabil Laimon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | | | - Gabriella M Kastrunes
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Marion Grimaud
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Atef Fayed
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Hsien-Chi Yuan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Elena V Ivanova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Belfer Center of Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Cloud P Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Belfer Center of Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ming-Ru Wu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Toni K Choueiri
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jon O Wee
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Gordon J Freeman
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - David A Barbie
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Belfer Center of Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Tripathy DK, Panda LP, Biswal S, Barhwal K. Insights into the glioblastoma tumor microenvironment: current and emerging therapeutic approaches. Front Pharmacol 2024; 15:1355242. [PMID: 38523646 PMCID: PMC10957596 DOI: 10.3389/fphar.2024.1355242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Glioblastoma (GB) is an intrusive and recurrent primary brain tumor with low survivability. The heterogeneity of the tumor microenvironment plays a crucial role in the stemness and proliferation of GB. The tumor microenvironment induces tumor heterogeneity of cancer cells by facilitating clonal evolution and promoting multidrug resistance, leading to cancer cell progression and metastasis. It also plays an important role in angiogenesis to nourish the hypoxic tumor environment. There is a strong interaction of neoplastic cells with their surrounding microenvironment that comprise several immune and non-immune cellular components. The tumor microenvironment is a complex network of immune components like microglia, macrophages, T cells, B cells, natural killer (NK) cells, dendritic cells and myeloid-derived suppressor cells, and non-immune components such as extracellular matrix, endothelial cells, astrocytes and neurons. The prognosis of GB is thus challenging, making it a difficult target for therapeutic interventions. The current therapeutic approaches target these regulators of tumor micro-environment through both generalized and personalized approaches. The review provides a summary of important milestones in GB research, factors regulating tumor microenvironment and promoting angiogenesis and potential therapeutic agents widely used for the treatment of GB patients.
Collapse
Affiliation(s)
- Dev Kumar Tripathy
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Lakshmi Priya Panda
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Kalpana Barhwal
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| |
Collapse
|
6
|
Kim H, Kim S, Lim H, Chung AJ. Expanding CAR-T cell immunotherapy horizons through microfluidics. LAB ON A CHIP 2024; 24:1088-1120. [PMID: 38174732 DOI: 10.1039/d3lc00622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized cancer treatment, particularly in hematological malignancies. However, their application to solid tumors is limited, and they face challenges in safety, scalability, and cost. To enhance current CAR-T cell therapies, the integration of microfluidic technologies, harnessing their inherent advantages, such as reduced sample consumption, simplicity in operation, cost-effectiveness, automation, and high scalability, has emerged as a powerful solution. This review provides a comprehensive overview of the step-by-step manufacturing process of CAR-T cells, identifies existing difficulties at each production stage, and discusses the successful implementation of microfluidics and related technologies in addressing these challenges. Furthermore, this review investigates the potential of microfluidics-based methodologies in advancing cell-based therapy across various applications, including solid tumors, next-generation CAR constructs, T-cell receptors, and the development of allogeneic "off-the-shelf" CAR products.
Collapse
Affiliation(s)
- Hyelee Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Suyeon Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Hyunjung Lim
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
7
|
Wang M, Fu Q. Nanomaterials for Disease Treatment by Modulating the Pyroptosis Pathway. Adv Healthc Mater 2024; 13:e2301266. [PMID: 37354133 DOI: 10.1002/adhm.202301266] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Indexed: 06/26/2023]
Abstract
Pyroptosis differs significantly from apoptosis and cell necrosis as an alternative mode of programmed cell death. Its occurrence is mediated by the gasdermin protein, leading to characteristic outcomes including cell swelling, membrane perforation, and release of cell contents. Research underscores the role of pyroptosis in the etiology and progression of many diseases, making it a focus of research intervention as scientists explore ways to regulate pyroptosis pathways in disease management. Despite numerous reviews detailing the relationship between pyroptosis and disease mechanisms, few delve into recent advancements in nanomaterials as a mechanism for modulating the pyroptosis pathway to mitigate disease effects. Therefore, there is an urgent need to fill this gap and elucidate the path for the use of this promising technology in the field of disease treatment. This review article delves into recent developments in nanomaterials for disease management through pyroptosis modulation, details the mechanisms by which drugs interact with pyroptosis pathways, and highlights the promise that nanomaterial research holds in driving forward disease treatment.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| |
Collapse
|
8
|
Sun C, Luo T, Liu Z, Ge J, Shao L, Liu X, Li B, Zhang S, Qiu Q, Wei W, Wang S, Bian XW, Tian J. Tumor Mutation Burden-Related Histopathologic Features for Predicting Overall Survival in Gliomas Using Graph Deep Learning. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2111-2121. [PMID: 37741452 DOI: 10.1016/j.ajpath.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/25/2023]
Abstract
Tumor mutation burden (TMB) is a potential biomarker for evaluating the prognosis and response to immune checkpoint inhibitors, but its costly and time-consuming method of measurement limits its widespread application. This study aimed to identify the TMB-related histopathologic features from hematoxylin and eosin slides and explore their prognostic value in gliomas. TMB-related features were detected using a graph convolutional neural network from whole-slide images of patients from The Cancer Genome Atlas data set (619 patients), and the correlation between features and TMB was evaluated in an external validation set (237 patients). TMB-related features were used for predicting overall survival (OS) of patients to investigate whether these features have potential for prognostic prediction. Moreover, biological pathways underlying the prognostic value of the features were further explored. Histopathologic features derived from whole-slide images were significantly associated with patient TMB (P = 0.007 in the external validation set). TMB-related features showed excellent performance for OS prediction, and patients with lower-grade gliomas could be further stratified into different risk groups according to the features (P = 0.00013; hazard ratio, 4.004). Pathways involved in the cell cycle and execution of immune response were enriched in patients with higher OS risk. The TMB-related features could be used to estimate TMB and aid in prognostic risk stratification of patients with glioma with dysregulated biological pathways.
Collapse
Affiliation(s)
- Caixia Sun
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing; Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Tao Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing
| | - Zhenyu Liu
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing
| | - Jia Ge
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing
| | - Lizhi Shao
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Liu
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Bao Li
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Song Zhang
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Qi Qiu
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Wei Wei
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Shuo Wang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing; Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing.
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing; Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.
| |
Collapse
|
9
|
Tang OY, Binder ZA, O'Rourke DM, Bagley SJ. Optimizing CAR-T Therapy for Glioblastoma. Mol Diagn Ther 2023; 27:643-660. [PMID: 37700186 DOI: 10.1007/s40291-023-00671-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Chimeric antigen receptor T-cell therapies have transformed the management of hematologic malignancies but have not yet demonstrated consistent efficacy in solid tumors. Glioblastoma is the most common primary malignant brain tumor in adults and remains a major unmet medical need. Attempts at harnessing the potential of chimeric antigen receptor T-cell therapy for glioblastoma have resulted in glimpses of promise but have been met with substantial challenges. In this focused review, we discuss current and future strategies being developed to optimize chimeric antigen receptor T cells for efficacy in patients with glioblastoma, including the identification and characterization of new target antigens, reversal of T-cell dysfunction with novel chimeric antigen receptor constructs, regulatable platforms, and gene knockout strategies, and the use of combination therapies to overcome the immune-hostile microenvironment.
Collapse
Affiliation(s)
- Oliver Y Tang
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen J Bagley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Giles B, Nakhjavani M, Wiesa A, Knight T, Shigdar S, Samarasinghe RM. Unravelling the Glioblastoma Tumour Microenvironment: Can Aptamer Targeted Delivery Become Successful in Treating Brain Cancers? Cancers (Basel) 2023; 15:4376. [PMID: 37686652 PMCID: PMC10487158 DOI: 10.3390/cancers15174376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The key challenges to treating glioblastoma multiforme (GBM) are the heterogeneous and complex nature of the GBM tumour microenvironment (TME) and difficulty of drug delivery across the blood-brain barrier (BBB). The TME is composed of various neuronal and immune cells, as well as non-cellular components, including metabolic products, cellular interactions, and chemical compositions, all of which play a critical role in GBM development and therapeutic resistance. In this review, we aim to unravel the complexity of the GBM TME, evaluate current therapeutics targeting this microenvironment, and lastly identify potential targets and therapeutic delivery vehicles for the treatment of GBM. Specifically, we explore the potential of aptamer-targeted delivery as a successful approach to treating brain cancers. Aptamers have emerged as promising therapeutic drug delivery vehicles with the potential to cross the BBB and deliver payloads to GBM and brain metastases. By targeting specific ligands within the TME, aptamers could potentially improve treatment outcomes and overcome the challenges associated with larger therapies such as antibodies.
Collapse
Affiliation(s)
- Breanna Giles
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Maryam Nakhjavani
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Andrew Wiesa
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Tareeque Knight
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
| | - Sarah Shigdar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
11
|
Mulgaonkar A, Udayakumar D, Yang Y, Harris S, Öz OK, Ramakrishnan Geethakumari P, Sun X. Current and potential roles of immuno-PET/-SPECT in CAR T-cell therapy. Front Med (Lausanne) 2023; 10:1199146. [PMID: 37441689 PMCID: PMC10333708 DOI: 10.3389/fmed.2023.1199146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have evolved as breakthrough treatment options for the management of hematological malignancies and are also being developed as therapeutics for solid tumors. However, despite the impressive patient responses from CD19-directed CAR T-cell therapies, ~ 40%-60% of these patients' cancers eventually relapse, with variable prognosis. Such relapses may occur due to a combination of molecular resistance mechanisms, including antigen loss or mutations, T-cell exhaustion, and progression of the immunosuppressive tumor microenvironment. This class of therapeutics is also associated with certain unique toxicities, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other "on-target, off-tumor" toxicities, as well as anaphylactic effects. Furthermore, manufacturing limitations and challenges associated with solid tumor infiltration have delayed extensive applications. The molecular imaging modalities of immunological positron emission tomography and single-photon emission computed tomography (immuno-PET/-SPECT) offer a target-specific and highly sensitive, quantitative, non-invasive platform for longitudinal detection of dynamic variations in target antigen expression in the body. Leveraging these imaging strategies as guidance tools for use with CAR T-cell therapies may enable the timely identification of resistance mechanisms and/or toxic events when they occur, permitting effective therapeutic interventions. In addition, the utilization of these approaches in tracking the CAR T-cell pharmacokinetics during product development and optimization may help to assess their efficacy and accordingly to predict treatment outcomes. In this review, we focus on current challenges and potential opportunities in the application of immuno-PET/-SPECT imaging strategies to address the challenges encountered with CAR T-cell therapies.
Collapse
Affiliation(s)
- Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Durga Udayakumar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yaxing Yang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Praveen Ramakrishnan Geethakumari
- Section of Hematologic Malignancies/Transplant and Cell Therapy, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
12
|
Li W, Pan X, Chen L, Cui H, Mo S, Pan Y, Shen Y, Shi M, Wu J, Luo F, Liu J, Li N. Cell metabolism-based optimization strategy of CAR-T cell function in cancer therapy. Front Immunol 2023; 14:1186383. [PMID: 37342333 PMCID: PMC10278966 DOI: 10.3389/fimmu.2023.1186383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023] Open
Abstract
Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR)-modified T cells has revolutionized the field of immune-oncology, showing remarkable efficacy against hematological malignancies. However, its success in solid tumors is limited by factors such as easy recurrence and poor efficacy. The effector function and persistence of CAR-T cells are critical to the success of therapy and are modulated by metabolic and nutrient-sensing mechanisms. Moreover, the immunosuppressive tumor microenvironment (TME), characterized by acidity, hypoxia, nutrient depletion, and metabolite accumulation caused by the high metabolic demands of tumor cells, can lead to T cell "exhaustion" and compromise the efficacy of CAR-T cells. In this review, we outline the metabolic characteristics of T cells at different stages of differentiation and summarize how these metabolic programs may be disrupted in the TME. We also discuss potential metabolic approaches to improve the efficacy and persistence of CAR-T cells, providing a new strategy for the clinical application of CAR-T cell therapy.
Collapse
Affiliation(s)
- Wenshuai Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanxuan Pan
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lirong Chen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoshu Cui
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yida Pan
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuru Shen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Menglin Shi
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
13
|
Wang C, Li Y, Gu L, Chen R, Zhu H, Zhang X, Zhang Y, Feng S, Qiu S, Jian Z, Xiong X. Gene Targets of CAR-T Cell Therapy for Glioblastoma. Cancers (Basel) 2023; 15:cancers15082351. [PMID: 37190280 DOI: 10.3390/cancers15082351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with a poor prognosis following conventional therapeutic interventions. Moreover, the blood-brain barrier (BBB) severely impedes the permeation of chemotherapy drugs, thereby reducing their efficacy. Consequently, it is essential to develop novel GBM treatment methods. A novel kind of pericyte immunotherapy known as chimeric antigen receptor T (CAR-T) cell treatment uses CAR-T cells to target and destroy tumor cells without the aid of the antigen with great specificity and in a manner that is not major histocompatibility complex (MHC)-restricted. It has emerged as one of the most promising therapy techniques with positive clinical outcomes in hematological cancers, particularly leukemia. Due to its efficacy in hematologic cancers, CAR-T cell therapy could potentially treat solid tumors, including GBM. On the other hand, CAR-T cell treatment has not been as therapeutically effective in treating GBM as it has in treating other hematologic malignancies. CAR-T cell treatments for GBM have several challenges. This paper reviewed the use of CAR-T cell therapy in hematologic tumors and the selection of targets, difficulties, and challenges in GBM.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 310009, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 310009, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ran Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shi Feng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sheng Qiu
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 310009, China
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou 313003, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 310009, China
| |
Collapse
|
14
|
Wang HQ, Fu R, Man QW, Yang G, Liu B, Bu LL. Advances in CAR-T Cell Therapy in Head and Neck Squamous Cell Carcinoma. J Clin Med 2023; 12:jcm12062173. [PMID: 36983174 PMCID: PMC10052000 DOI: 10.3390/jcm12062173] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Surgery with the assistance of conventional radiotherapy, chemotherapy and immunotherapy is the basis for head and neck squamous cell carcinoma (HNSCC) treatment. However, with these treatment modalities, the recurrence and metastasis of tumors remain at a high level. Increasingly, the evidence indicates an excellent anti-tumor effect of chimeric antigen receptor T (CAR-T) cells in hematological malignancy treatment, and this novel immunotherapy has attracted researchers’ attention in HNSCC treatment. Although several clinical trials have been conducted, the weak anti-tumor effect and the side effects of CAR-T cell therapy against HNSCC are barriers to clinical translation. The limited choices of targeting proteins, the barriers of CAR-T cell infiltration into targeted tumors and short survival time in vivo should be solved. In this review, we introduce barriers of CAR-T cell therapy in HNSCC. The limitations and current promising strategies to overcome barriers in solid tumors, as well as the applications for HNSCC treatment, are covered. The perspectives of CAR-T cell therapy in future HNSCC treatment are also discussed.
Collapse
Affiliation(s)
- Han-Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Ruxing Fu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 92093, USA
| | - Qi-Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Correspondence: (B.L.); (L.-L.B.)
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Correspondence: (B.L.); (L.-L.B.)
| |
Collapse
|
15
|
Tang J, Sheng J, Zhang Q, Ji Y, Wang X, Zhang J, Wu J, Song J, Bai X, Liang T. Runx3-overexpression cooperates with ex vivo AKT inhibition to generate receptor-engineered T cells with better persistence, tumor-residency, and antitumor ability. J Immunother Cancer 2023; 11:jitc-2022-006119. [PMID: 36849200 PMCID: PMC9972435 DOI: 10.1136/jitc-2022-006119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Solid tumors pose unique roadblocks to treatment with chimeric antigen receptor (CAR) T cells, including limited T-cell persistence, inefficient tumor infiltration, and an immunosuppressive tumor microenvironment. To date, attempts to overcome these roadblocks have been unsatisfactory. Herein, we reported a strategy of combining Runx3 (encoding RUNX family transcription factor 3)-overexpression with ex vivo protein kinase B (AKT) inhibition to generate CAR-T cells with both central memory and tissue-resident memory characteristics to overcome these roadblocks. METHODS We generated second-generation murine CAR-T cells expressing a CAR against human carbonic anhydrase 9 together with Runx3-overexpression and expanded them in the presence of AKTi-1/2, a selective and reversible inhibitor of AKT1/AKT2. We explored the influence of AKT inhibition (AKTi), Runx3-overexpression, and their combination on CAR-T cell phenotypes using flow cytometry, transcriptome profiling, and mass cytometry. The persistence, tumor-infiltration, and antitumor efficacy of CAR-T cells were evaluated in subcutaneous pancreatic ductal adenocarcinoma (PDAC) tumor models. RESULTS AKTi generated a CD62L+central memory-like CAR-T cell population with enhanced persistence, but promotable cytotoxic potential. Runx3-overexpression cooperated with AKTi to generate CAR-T cells with both central memory and tissue-resident memory characteristics. Runx3-overexpression enhanced the potential of CD4+CAR T cells and cooperated with AKTi to inhibit the terminal differentiation of CD8+CAR T cells induced by tonic signaling. While AKTi promoted CAR-T cell central memory phenotype with prominently enhanced expansion ability, Runx3-overexpression promoted the CAR-T cell tissue-resident memory phenotype and further enhanced persistence, effector function, and tumor-residency. These novel AKTi-generated Runx3-overexpressing CAR-T cells exhibited robust antitumor activity and responded well to programmed cell death 1 blockade in subcutaneous PDAC tumor models. CONCLUSIONS Runx3-overexpression cooperated with ex vivo AKTi to generate CAR-T cells with both tissue-resident and central memory characteristics, which equipped CAR-T cells with better persistence, cytotoxic potential, and tumor-residency ability to overcome roadblocks in the treatment of solid tumors.
Collapse
Affiliation(s)
- Jianghui Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianpeng Sheng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongtao Ji
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xun Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junlei Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiangchao Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinyuan Song
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China .,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Huang Z, Dewanjee S, Chakraborty P, Jha NK, Dey A, Gangopadhyay M, Chen XY, Wang J, Jha SK. CAR T cells: engineered immune cells to treat brain cancers and beyond. Mol Cancer 2023; 22:22. [PMID: 36721153 PMCID: PMC9890802 DOI: 10.1186/s12943-022-01712-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
Malignant brain tumors rank among the most challenging type of malignancies to manage. The current treatment protocol commonly entails surgery followed by radiotherapy and/or chemotherapy, however, the median patient survival rate is poor. Recent developments in immunotherapy for a variety of tumor types spark optimism that immunological strategies may help patients with brain cancer. Chimeric antigen receptor (CAR) T cells exploit the tumor-targeting specificity of antibodies or receptor ligands to direct the cytolytic capacity of T cells. Several molecules have been discovered as potential targets for immunotherapy-based targeting, including but not limited to EGFRvIII, IL13Rα2, and HER2. The outstanding clinical responses to CAR T cell-based treatments in patients with hematological malignancies have generated interest in using this approach to treat solid tumors. Research results to date support the astounding clinical response rates of CD19-targeted CAR T cells, early clinical experiences in brain tumors demonstrating safety and evidence for disease-modifying activity, and the promise for further advances to ultimately assist patients clinically. However, several variable factors seem to slow down the progress rate regarding treating brain cancers utilizing CAR T cells. The current study offers a thorough analysis of CAR T cells' promise in treating brain cancer, including design and delivery considerations, current strides in clinical and preclinical research, issues encountered, and potential solutions.
Collapse
Affiliation(s)
- Zoufang Huang
- grid.452437.3Department of Hematology, Ganzhou Key Laboratory of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Saikat Dewanjee
- grid.216499.10000 0001 0722 3459Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Pratik Chakraborty
- grid.216499.10000 0001 0722 3459Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Niraj Kumar Jha
- grid.412552.50000 0004 1764 278XDepartment of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
| | - Abhijit Dey
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700032 India
| | - Moumita Gangopadhyay
- grid.502979.00000 0004 6087 8632Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat, Kolkata, West Bengal 700126 India
| | - Xuan-Yu Chen
- grid.264091.80000 0001 1954 7928Institute for Biotechnology, St. John’s University, Queens, New York, 11439 USA
| | - Jian Wang
- Department of Radiotherapy, the Affiliated Jiangyin People’s Hospital of Nantong University, Jiangyin, 214400 China
| | - Saurabh Kumar Jha
- grid.412552.50000 0004 1764 278XDepartment of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India ,grid.448792.40000 0004 4678 9721Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413 India ,grid.449906.60000 0004 4659 5193Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007 India
| |
Collapse
|
17
|
Li Y, Huang H, Wu S, Zhou Y, Huang T, Jiang J. The Role of RNA m 6A Modification in Cancer Glycolytic Reprogramming. Curr Gene Ther 2023; 23:51-59. [PMID: 36043793 DOI: 10.2174/1566523222666220830150446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023]
Abstract
As one of the main characteristics of neoplasia, metabolic reprogramming provides nutrition and energy to enhance cell proliferation and maintain environment homeostasis. Glycolysis is one of the most important components of cancer metabolism and the Warburg effect contributes to the competitive advantages of cancer cells in the threatened microenvironment. Studies show strong links between N6-methyladenosine (m6A) modification and metabolic recombination of cancer cells. As the most abundant modification in eukaryotic RNA, m6A methylation plays important roles in regulating RNA processing, including splicing, stability, transportation, translation and degradation. The aberration of m6A modification can be observed in a variety of diseases such as diabetes, neurological diseases and cancers. This review describes the mechanisms of m6A on cancer glycolysis and their applications in cancer therapy and prognosis evaluation, aiming to emphasize the importance of targeting m6A in modulating cancer metabolism.
Collapse
Affiliation(s)
- Yuanqi Li
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Hao Huang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Shaoxian Wu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - You Zhou
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Tao Huang
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingting Jiang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| |
Collapse
|
18
|
Daei Sorkhabi A, Mohamed Khosroshahi L, Sarkesh A, Mardi A, Aghebati-Maleki A, Aghebati-Maleki L, Baradaran B. The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Front Immunol 2023; 14:1113882. [PMID: 37020537 PMCID: PMC10067596 DOI: 10.3389/fimmu.2023.1113882] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
The successful outcomes of chimeric antigen receptor (CAR) T-cell therapy in treating hematologic cancers have increased the previously unprecedented excitement to use this innovative approach in treating various forms of human cancers. Although researchers have put a lot of work into maximizing the effectiveness of these cells in the context of solid tumors, few studies have discussed challenges and potential strategies to overcome them. Restricted trafficking and infiltration into the tumor site, hypoxic and immunosuppressive tumor microenvironment (TME), antigen escape and heterogeneity, CAR T-cell exhaustion, and severe life-threatening toxicities are a few of the major obstacles facing CAR T-cells. CAR designs will need to go beyond the traditional architectures in order to get over these limitations and broaden their applicability to a larger range of malignancies. To enhance the safety, effectiveness, and applicability of this treatment modality, researchers are addressing the present challenges with a wide variety of engineering strategies as well as integrating several therapeutic tactics. In this study, we reviewed the antigens that CAR T-cells have been clinically trained to recognize, as well as counterstrategies to overcome the limitations of CAR T-cell therapy, such as recent advances in CAR T-cell engineering and the use of several therapies in combination to optimize their clinical efficacy in solid tumors.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Leili Aghebati-Maleki, ; Behzad Baradaran,
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Leili Aghebati-Maleki, ; Behzad Baradaran,
| |
Collapse
|
19
|
Darvishi M, Tosan F, Nakhaei P, Manjili DA, Kharkouei SA, Alizadeh A, Ilkhani S, Khalafi F, Zadeh FA, Shafagh SG. Recent progress in cancer immunotherapy: Overview of current status and challenges. Pathol Res Pract 2023; 241:154241. [PMID: 36543080 DOI: 10.1016/j.prp.2022.154241] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Cancer treatment is presently one of the most important challenges in medical science. Surgery, chemotherapy, radiotherapy, or combining these methods is used to eliminate the tumor. Hormone therapy, bone marrow transplantation, stem cell therapy as well as immunotherapy are other well-known therapeutic modalities. Immunotherapy, as the most important complementary method, uses the immune system for treating cancer followed by surgery, chemotherapy, and radiotherapy. This method is systematically used to prevent malignancies development mainly via potentiating antitumor immune cells activation and conversely compromising their exhaustion with the lowest negative effects on healthy cells. Active immunotherapy can be employed for cancer immunotherapy by directly using the ingredients of the immune system and activating immune responses. On the other hand, inactive immunotherapy is utilized by indirect induction and using immune cell-based products consisting of monoclonal antibodies. It has strongly been proved that combination therapy with immunotherapies and other therapeutic means, such as anti-angiogenic agents, could be a rational plan to treat cancer. Herein, we have focused on recent findings concerning the therapeutic merits of cancer therapy using immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT) and cancer vaccine alone or in combination with other approaches. Also, we offer a glimpse into the current challenges in this context.
Collapse
Affiliation(s)
- Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medicinal Sciences, Tehran, Iran.
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.
| | - Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Danial Amiri Manjili
- Department of Infectious Disease, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | | - Ali Alizadeh
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farima Khalafi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
20
|
Huan T, Li H, Tang B. Radiotherapy plus CAR-T cell therapy to date: A note for cautions optimism? Front Immunol 2022; 13:1033512. [PMID: 36466874 PMCID: PMC9714575 DOI: 10.3389/fimmu.2022.1033512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 08/26/2023] Open
Abstract
Radiotherapy (RT) is a traditional therapeutic regime that focuses on ionizing radiation, however, RT maintains largely palliative due to radioresistance. Factors such as hypoxia, the radiosensitivity of immune cells, and cancer stem cells (CSCs) all come into play in influencing the significant impact of radioresistance in the irradiated tumor microenvironment (TME). Due to the substantial advances in the treatment of malignant tumors, a promising approach is the genetically modified T cells with chimeric antigen receptors (CARs) to eliminate solid tumors. Moreover, CAR-T cells targeting CSC-related markers would eliminate radioresistant solid tumors. But solid tumors that support an immune deserted TME, are described as immunosuppressive and typically fail to respond to CAR-T cell therapy. And RT could overcome these immunosuppressive features; thus, growing evidence supports the combination of RT with CAR-T cell therapy. In this review, we provide a deep insight into the radioresistance mechanisms, advances, and barriers of CAR-T cells in response to solid tumors within TME. Therefore, we focus on how the combination strategy can be used to eliminate these barriers. Finally, we show the challenges of this therapeutic partnership.
Collapse
Affiliation(s)
- Tian Huan
- Department of Rehabilitation Medicine, Jinhu County People’s Hospital, Huaian, Jiangsu, China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hongbo Li
- Department of Rehabilitation Medicine, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Bin Tang
- Department of Rehabilitation Medicine, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| |
Collapse
|
21
|
Chen L, Xie T, Wei B, Di DL. Current progress in CAR-T cell therapy for tumor treatment. Oncol Lett 2022; 24:358. [PMID: 36168313 PMCID: PMC9478623 DOI: 10.3892/ol.2022.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells are a type of tumor immunotherapy that is a breakthrough technology in the clinical treatment of tumors. The basic principle of this method is to extract the patient's T cells and equip them with targeting recognition receptors of tumor cells and return them to the patient's body to recognize and kill tumor cells specifically. Most CAR-T cell therapies treat hematological diseases such as leukemia or lymphoma and achieved encouraging results. The safety and effectiveness of CAR-T cell technology in solid tumor treatment require to be improved, although it has demonstrated promising efficacy in treating hematological malignancies. It is worth noting that certain patients may experience fatal adverse reactions after receiving CAR-T cell therapy. At present, the difficulty of this therapy mainly lies in how to reduce adverse reactions and target escape effects during the course of treatment. The improvement of CAR-T cell therapy mainly focuses on improving CAR-T structure, finding suitable tumor targets and combining them with immune checkpoint inhibitors to the enhance efficacy and safety of treatment. The problems in the rapid development of CAR-T cell therapy provide both obstacles and opportunities. The present review elaborates on the clinical application of CAR-T cell technology to provide a reference for clinical practice and research on tumor treatment.
Collapse
Affiliation(s)
- Lei Chen
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Ting Xie
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Bing Wei
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Da-Lin Di
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
22
|
Gimple RC, Yang K, Halbert ME, Agnihotri S, Rich JN. Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. Nat Rev Cancer 2022; 22:497-514. [PMID: 35710946 DOI: 10.1038/s41568-022-00486-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Malignant brain tumours are complex ecosystems containing neoplastic and stromal components that generate adaptive and evolutionarily driven aberrant tissues in the central nervous system. Brain cancers are cultivated by a dynamic population of stem-like cells that enforce intratumoural heterogeneity and respond to intrinsic microenvironment or therapeutically guided insults through proliferation, plasticity and restructuring of neoplastic and stromal components. Far from a rigid hierarchy, heterogeneous neoplastic populations transition between cellular states with differential self-renewal capacities, endowing them with powerful resilience. Here we review the biological machinery used by brain tumour stem cells to commandeer tissues in the intracranial space, evade immune responses and resist chemoradiotherapy. Through recent advances in single-cell sequencing, improved models to investigate the role of the tumour microenvironment and a deeper understanding of the fundamental role of the immune system in cancer biology, we are now better equipped to explore mechanisms by which these processes can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Ryan C Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew E Halbert
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Zhang P, Zhang Y, Ji N. Challenges in the Treatment of Glioblastoma by Chimeric Antigen Receptor T-Cell Immunotherapy and Possible Solutions. Front Immunol 2022; 13:927132. [PMID: 35874698 PMCID: PMC9300859 DOI: 10.3389/fimmu.2022.927132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM), one of the most lethal brain cancers in adults, accounts for 48.6% of all malignant primary CNS tumors diagnosed each year. The 5-year survival rate of GBM patients remains less than 10% even after they receive the standard-of-care treatment, including maximal safe resection, adjuvant radiation, and chemotherapy with temozolomide. Therefore, new therapeutic modalities are urgently needed for this deadly cancer. The last decade has witnessed great advances in chimeric antigen receptor T (CAR-T) cell immunotherapy for the treatment of hematological malignancies. Up to now, the US FDA has approved six CAR-T cell products in treating hematopoietic cancers including B-cell acute lymphoblastic leukemia, lymphoma, and multiple myeloma. Meanwhile, the number of clinical trials on CAR-T cell has increased significantly, with more than 80% from China and the United States. With its achievements in liquid cancers, the clinical efficacy of CAR-T cell therapy has also been explored in a variety of solid malignancies that include GBMs. However, attempts to expand CAR-T cell immunotherapy in GBMs have not yet presented promising results in hematopoietic malignancies. Like other solid tumors, CAR-T cell therapies against GBM still face several challenges, such as tumor heterogeneity, tumor immunosuppressive microenvironment, and CAR-T cell persistence. Hence, developing strategies to overcome these challenges will be necessary to accelerate the transition of CAR-T cell immunotherapy against GBMs from bench to bedside.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
- *Correspondence: Nan Ji,
| |
Collapse
|
24
|
Chinn HK, Gardell JL, Matsumoto LR, Labadie KP, Mihailovic TN, Lieberman NAP, Davis A, Pillarisetty VG, Crane CA. Hypoxia-inducible lentiviral gene expression in engineered human macrophages. J Immunother Cancer 2022; 10:jitc-2021-003770. [PMID: 35728871 PMCID: PMC9214393 DOI: 10.1136/jitc-2021-003770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Human immune cells, including monocyte-derived macrophages, can be engineered to deliver proinflammatory cytokines, bispecific antibodies, and chimeric antigen receptors to support immune responses in different disease settings. When gene expression is regulated by constitutively active promoters, lentiviral payload gene expression is unregulated, and can result in potentially toxic quantities of proteins. Regulated delivery of lentivirally encoded proteins may allow localized or conditional therapeutic protein expression to support safe delivery of adoptively transferred, genetically modified cells with reduced capacity for systemic toxicities. Methods In this study, we engineered human macrophages to express genes regulated by hypoxia responsive elements included in the lentiviral promoter region to drive conditional lentiviral gene expression only under hypoxic conditions. We tested transduced macrophages cultured in hypoxic conditions for the transient induced expression of reporter genes and the secreted cytokine, interleukin-12. Expression of hypoxia-regulated genes was investigated both transcriptionally and translationally, and in the presence of human tumor cells in a slice culture system. Finally, hypoxia-regulated gene expression was evaluated in a subcutaneous humanized-mouse cancer model. Results Engineered macrophages were shown to conditionally and tranisently express lentivirally encoded gene protein products, including IL-12 in hypoxic conditions in vitro. On return to normoxic conditions, lentiviral payload expression returned to basal levels. Reporter genes under the control of hypoxia response elements were upregulated under hypoxic conditions in the presence of human colorectal carcinoma cells and in the hypoxic xenograft model of glioblastoma, suggesting utility for systemic engineered cell delivery capable of localized gene delivery in cancer. Conclusions Macrophages engineered to express hypoxia-regulated payloads have the potential to be administered systemically and conditionally express proteins in tissues with hypoxic conditions. In contrast to immune cells that function or survive poorly in hypoxic conditions, macrophages maintain a proinflammatory phenotype that may support continued gene and protein expression when regulated by conditional hypoxia responsive elements and naturally traffic to hypoxic microenvironments, making them ideal vehicles for therapeutic payloads to hypoxic tissues, such as solid tumors. With the ability to fine-tune delivery of potent proteins in response to endogenous microenvironments, macrophage-based cellular therapies may therefore be designed for different disease settings.
Collapse
Affiliation(s)
- Harrison K Chinn
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Jennifer L Gardell
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Mozart Therapeutics, Seattle, Washington, USA
| | - Lisa R Matsumoto
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Kevin P Labadie
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Tara N Mihailovic
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Nicole A P Lieberman
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Amira Davis
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | | |
Collapse
|
25
|
Zhang J, Siller-Farfán JA. Current and future perspectives of chimeric antigen receptors against glioblastoma. IMMUNOTHERAPY ADVANCES 2022; 2:ltac014. [PMID: 36284838 PMCID: PMC9585667 DOI: 10.1093/immadv/ltac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant form of cancer in the central nervous system; even with treatment, it has a 5-year survival rate of 7.2%. The adoptive cell transfer (ACT) of T cells expressing chimeric antigen receptors (CARs) has shown a remarkable success against hematological malignancies, namely leukemia and multiple myeloma. However, CAR T cell therapy against solid tumors, and more specifically GBM, is still riddled with challenges preventing its widespread adoption. Here, we first establish the obstacles in ACT against GBM, including on-target/off-tumor toxicity, antigen modulation, tumor heterogeneity, and the immunosuppressive tumor microenvironment. We then present recent preclinical and clinical studies targeting well-characterized GBM antigens, which include the interleukin-13 receptor α2 and the epidermal growth factor receptor. Afterward, we turn our attention to alternative targets in GBM, including less-explored antigens such as B7-H3 (CD276), carbonic anhydrase IX, and the GD2 ganglioside. We also discuss additional target ligands, namely CD70, and natural killer group 2 member D ligands. Finally, we present the possibilities afforded by novel CAR architectures. In particular, we examine the use of armored CARs to improve the survival and proliferation of CAR T cells. We conclude by discussing the advantages of tandem and synNotch CARs when targeting multiple GBM antigens.
Collapse
Affiliation(s)
- Josephine Zhang
- Department of Biology, Johns Hopkins University, 3400 N Charles St , Baltimore 21218, United States
- St Anne’s College, University of Oxford, Woodstock Rd , Oxford OX2 6HS, United Kingdom
| | - Jesús A Siller-Farfán
- Sir William Dunn School of Pathology, University of Oxford, S Parks Rd , Oxford OX1 3DP, United Kingdom
| |
Collapse
|
26
|
Lin YJ, Mashouf LA, Lim M. CAR T Cell Therapy in Primary Brain Tumors: Current Investigations and the Future. Front Immunol 2022; 13:817296. [PMID: 35265074 PMCID: PMC8899093 DOI: 10.3389/fimmu.2022.817296] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor T cells (CAR T cells) are engineered cells expressing a chimeric antigen receptor (CAR) against a specific tumor antigen (TA) that allows for the identification and elimination of cancer cells. The remarkable clinical effect seen with CAR T cell therapies against hematological malignancies have attracted interest in developing such therapies for solid tumors, including brain tumors. Glioblastoma (GBM) is the most common primary brain tumor in adults and is associated with poor prognosis due to its highly aggressive nature. Pediatric brain cancers are similarly aggressive and thus are a major cause of pediatric cancer-related death. CAR T cell therapy represents a promising avenue for therapy against these malignancies. Several specific TAs, such as EGFR/EGFRvIII, IL13Rα2, B7-H3, and HER2, have been targeted in preclinical studies and clinical trials. Unfortunately, CAR T cells against brain tumors have showed limited efficacy due to TA heterogeneity, difficulty trafficking from blood to tumor sites, and the immunosuppressive tumor microenvironment. Here, we review current CAR T cell approaches in treating cancers, with particular focus on brain cancers. We also describe a novel technique of focused ultrasound controlling the activation of engineered CAR T cells to achieve the safer cell therapies. Finally, we summarize the development of combinational strategies to improve the efficacy and overcome historical limitations of CAR T cell therapy.
Collapse
Affiliation(s)
- Ya-Jui Lin
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States.,Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Leila A Mashouf
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States.,Harvard Medical School, Boston, MA, United States
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
27
|
Marofi F, Achmad H, Bokov D, Abdelbasset WK, Alsadoon Z, Chupradit S, Suksatan W, Shariatzadeh S, Hasanpoor Z, Yazdanifar M, Shomali N, Khiavi FM. Hurdles to breakthrough in CAR T cell therapy of solid tumors. Stem Cell Res Ther 2022; 13:140. [PMID: 35365241 PMCID: PMC8974159 DOI: 10.1186/s13287-022-02819-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Autologous T cells genetically engineered to express chimeric antigen receptor (CAR) have shown promising outcomes and emerged as a new curative option for hematological malignancy, especially malignant neoplasm of B cells. Notably, when T cells are transduced with CAR constructs, composed of the antigen recognition domain of monoclonal antibodies, they retain their cytotoxic properties in a major histocompatibility complex (MHC)-independent manner. Despite its beneficial effect, the current CAR T cell therapy approach faces myriad challenges in solid tumors, including immunosuppressive tumor microenvironment (TME), tumor antigen heterogeneity, stromal impediment, and tumor accessibility, as well as tribulations such as on-target/off-tumor toxicity and cytokine release syndrome (CRS). Herein, we highlight the complications that hamper the effectiveness of CAR T cells in solid tumors and the strategies that have been recommended to overcome these hurdles and improve infused T cell performance.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Zeid Alsadoon
- Dentistry Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hasanpoor
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
28
|
de Campos NSP, Souza BS, da Silva GCP, Porto VA, Chalbatani GM, Lagreca G, Janji B, Suarez ER. Carbonic Anhydrase IX: A Renewed Target for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14061392. [PMID: 35326544 PMCID: PMC8946730 DOI: 10.3390/cancers14061392] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Carbonic anhydrase IX (CAIX) has been explored for a long time as a therapeutic target in the fight against clear cell renal cell carcinoma and several hypoxic tumors, usually offering modest results followed by adverse effects. However, recent studies using different antibodies and adoptive cell therapies against CAIX have generated exciting prospects for the immunotherapy of these tumors. This complete review will approach the past and future of anti-CAIX immunotherapies. Abstract The carbonic anhydrase isoform IX (CAIX) enzyme is constitutively overexpressed in the vast majority of clear cell renal cell carcinoma (ccRCC) and can also be induced in hypoxic microenvironments, a major hallmark of most solid tumors. CAIX expression is restricted to a few sites in healthy tissues, positioning this molecule as a strategic target for cancer immunotherapy. In this review, we summarized preclinical and clinical data of immunotherapeutic strategies based on monoclonal antibodies (mAbs), fusion proteins, chimeric antigen receptor (CAR) T, and NK cells targeting CAIX against different types of solid malignant tumors, alone or in combination with radionuclides, cytokines, cytotoxic agents, tyrosine kinase inhibitors, or immune checkpoint blockade. Most clinical studies targeting CAIX for immunotherapy were performed using G250 mAb-based antibodies or CAR T cells, developed primarily for bioimaging purposes, with a limited clinical response for ccRCC. Other anti-CAIX mAbs, CAR T, and NK cells developed with therapeutic intent presented herein offered outstanding preclinical results, justifying further exploration in the clinical setting.
Collapse
Affiliation(s)
- Najla Santos Pacheco de Campos
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil; (N.S.P.C.); (B.S.S.); (G.C.P.S.); (V.A.P.); (G.L.)
| | - Bruna Santos Souza
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil; (N.S.P.C.); (B.S.S.); (G.C.P.S.); (V.A.P.); (G.L.)
| | - Giselle Correia Próspero da Silva
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil; (N.S.P.C.); (B.S.S.); (G.C.P.S.); (V.A.P.); (G.L.)
| | - Victoria Alves Porto
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil; (N.S.P.C.); (B.S.S.); (G.C.P.S.); (V.A.P.); (G.L.)
| | - Ghanbar Mahmoodi Chalbatani
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health, 1445 Luxembourg, Luxembourg;
| | - Gabriela Lagreca
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil; (N.S.P.C.); (B.S.S.); (G.C.P.S.); (V.A.P.); (G.L.)
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health, 1445 Luxembourg, Luxembourg;
- Correspondence: (B.J.); (E.R.S.)
| | - Eloah Rabello Suarez
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil; (N.S.P.C.); (B.S.S.); (G.C.P.S.); (V.A.P.); (G.L.)
- Correspondence: (B.J.); (E.R.S.)
| |
Collapse
|
29
|
Bryant JP, Lu VM, Govindarajan V, Perez-Roman RJ, Levi AD. Immunotherapeutic treatments for spinal and peripheral nerve tumors: a primer. Neurosurg Focus 2022; 52:E8. [PMID: 35104797 DOI: 10.3171/2021.11.focus21590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Spinal and peripheral nerve tumors are a heterogeneous group of neoplasms that can be associated with significant morbidity and mortality despite the current standard of care. Immunotherapy is an emerging therapeutic option to improve the prognoses of these tumors. Therefore, the authors sought to present an updated and unifying review on the use of immunotherapy in treating tumors of the spinal cord and peripheral nerves, including a discussion on mechanism of action, drug delivery, current treatment techniques, and preclinical and clinical studies. METHODS Current data in the literature regarding immunotherapy were collated and summarized. Targeted tumors included primary and secondary spinal tumors, as well as peripheral nerve tumors. RESULTS Four primary modalities of immunotherapy (CAR T cell, monoclonal antibody, viral, and cytokine) have been reported to target spine and peripheral nerve tumors. Of the primary spinal tumors, spinal cord astrocytomas had the most preclinical evidence supporting immunotherapy success with CAR T-cell therapy targeting the H3K27M mutation, whereas spinal schwannomas and ependymomas had the most evidence reported for monoclonal antibody therapy preclinically. Of the secondary spinal tumors, primary CNS lymphomas demonstrated some clinical response to immunotherapy, whereas multiple myeloma and bone tumor experiences with immunotherapy were largely limited to concept only. Within peripheral nerve tumors, the use of immunotherapy to treat neurofibromas in the setting of syndromes has been suggested in theory, and possible immunotherapeutic targets have been identified in malignant peripheral nerve tumors. To date, there have been 2 clinical trials involving spine tumors and 2 clinical trials involving peripheral nerve tumors that have reported results, all of which are promising but require validation. CONCLUSIONS Immunotherapy to treat spinal and peripheral nerve tumors has become an emerging area of research and interest. A large amount of preclinical data supporting the translation of this therapy into practice, aimed at ameliorating the poor prognoses of specific tumors, have been reported. Future clinical studies for translation will focus on the optimal therapy type and administration route to best target these tumors, which often preclude total surgical resection given their proximity to the neural and vascular elements of the spine.
Collapse
|
30
|
Mahmoud AB, Ajina R, Aref S, Darwish M, Alsayb M, Taher M, AlSharif SA, Hashem AM, Alkayyal AA. Advances in immunotherapy for glioblastoma multiforme. Front Immunol 2022; 13:944452. [PMID: 36311781 PMCID: PMC9597698 DOI: 10.3389/fimmu.2022.944452] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor of the central nervous system and has a very poor prognosis. The current standard of care for patients with GBM involves surgical resection, radiotherapy, and chemotherapy. Unfortunately, conventional therapies have not resulted in significant improvements in the survival outcomes of patients with GBM; therefore, the overall mortality rate remains high. Immunotherapy is a type of cancer treatment that helps the immune system to fight cancer and has shown success in different types of aggressive cancers. Recently, healthcare providers have been actively investigating various immunotherapeutic approaches to treat GBM. We reviewed the most promising immunotherapy candidates for glioblastoma that have achieved encouraging results in clinical trials, focusing on immune checkpoint inhibitors, oncolytic viruses, nonreplicating viral vectors, and chimeric antigen receptor (CAR) immunotherapies.
Collapse
Affiliation(s)
- Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
- King Abdullah International Medical Research Centre, King Saud University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- *Correspondence: Ahmad Bakur Mahmoud, ; Almohanad A. Alkayyal,
| | - Reham Ajina
- King Abdullah International Medical Research Centre, King Saud University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sarah Aref
- King Abdullah International Medical Research Centre, King Saud University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Manar Darwish
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - May Alsayb
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Mustafa Taher
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Shaker A. AlSharif
- King Fahad Hospital, Ministry of Health, Almadinah Almunwarah, Saudi Arabia
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center; King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- *Correspondence: Ahmad Bakur Mahmoud, ; Almohanad A. Alkayyal,
| |
Collapse
|
31
|
Importance of T, NK, CAR T and CAR NK Cell Metabolic Fitness for Effective Anti-Cancer Therapy: A Continuous Learning Process Allowing the Optimization of T, NK and CAR-Based Anti-Cancer Therapies. Cancers (Basel) 2021; 14:cancers14010183. [PMID: 35008348 PMCID: PMC8782435 DOI: 10.3390/cancers14010183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer treatments are evolving at a very rapid pace. Some of the most novel anti-cancer medicines under development rely on the modification of immune cells in order to transform them into potent tumor-killing cells. However, the tumor microenvironment (TME) is competing for nutrients with these harnessed immune cells and therefore paralyzes their metabolic effective and active anti-cancer activities. Here we describe strategies to overcome these hurdles imposed on immune cell activity, which lead to therapeutic approaches to enhance metabolic fitness of the patient’s immune system with the objective to improve their anti-cancer capacity. Abstract Chimeric antigen receptor (CAR) T and CAR NK cell therapies opened new avenues for cancer treatment. Although original successes of CAR T and CAR NK cells for the treatment of hematological malignancies were extraordinary, several obstacles have since been revealed, in particular their use for the treatment of solid cancers. The tumor microenvironment (TME) is competing for nutrients with T and NK cells and their CAR-expressing counterparts, paralyzing their metabolic effective and active states. Consequently, this can lead to alterations in their anti-tumoral capacity and persistence in vivo. High glucose uptake and the depletion of key amino acids by the TME can deprive T and NK cells of energy and building blocks, which turns them into a state of anergy, where they are unable to exert cytotoxic activity against cancer cells. This is especially true in the context of an immune-suppressive TME. In order to re-invigorate the T, NK, CAR T and CAR NK cell-mediated antitumor response, the field is now attempting to understand how metabolic pathways might change T and NK responses and functions, as well as those from their CAR-expressing partners. This revealed ways to metabolically rewire these cells by using metabolic enhancers or optimizing pre-infusion in vitro cultures of these cells. Importantly, next-generation CAR T and CAR NK products might include in the future the necessary metabolic requirements by improving their design, manufacturing process and other parameters. This will allow the overcoming of current limitations due to their interaction with the suppressive TME. In a clinical setting, this might improve their anti-cancer effector activity in synergy with immunotherapies. In this review, we discuss how the tumor cells and TME interfere with T and NK cell metabolic requirements. This may potentially lead to therapeutic approaches that enhance the metabolic fitness of CAR T and CAR NK cells, with the objective to improve their anti-cancer capacity.
Collapse
|
32
|
Khorasani ABS, Sanaei MJ, Pourbagheri-Sigaroodi A, Ghaffari SH, Bashash D. CAR T cell therapy in solid tumors; with an extensive focus on obstacles and strategies to overcome the challenges. Int Immunopharmacol 2021; 101:108260. [PMID: 34678690 DOI: 10.1016/j.intimp.2021.108260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/19/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
The application of the CAR T cell therapy in hematologic malignancies holds prosperous results that intensified the unprecedented enthusiasm to employ this fascinating strategy in other types of human malignancies. Although the researchers invested a great deal of effort to exploit the utmost efficacy of these cells in the context of solid tumors, few articles reviewed obstacles and opportunities. The current review aims to provide comprehensive literature of recent advances of CAR T cell therapy in a wide range of solid tumors; and also, to discuss the original data obtained from international research laboratories on this topic. Despite promising results, several radical obstacles are on the way of this approach. This review discusses the most important drawbacks and also responds to questions on how the intrinsic features of solid tumors in addition to the tumor microenvironment-related challenges and the immune-relating adverse effects can curb satisfactory outcomes of CAR T cells. The last section allocates a special focus on innovative and contemporary policies which have already been adopted to surmount these challenges. Finally, we comment on the future research aspects in which the efficacy, as well as the safety of CAR T cell therapy, might be improved.
Collapse
Affiliation(s)
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Newport EL, Pedrosa AR, Njegic A, Hodivala-Dilke KM, Muñoz-Félix JM. Improved Immunotherapy Efficacy by Vascular Modulation. Cancers (Basel) 2021; 13:5207. [PMID: 34680355 PMCID: PMC8533721 DOI: 10.3390/cancers13205207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Several strategies have been developed to modulate the tumour vasculature for cancer therapy including anti-angiogenesis and vascular normalisation. Vasculature modulation results in changes to the tumour microenvironment including oxygenation and immune cell infiltration, therefore lending itself to combination with cancer therapy. The development of immunotherapies has led to significant improvements in cancer treatment. Particularly promising are immune checkpoint blockade and CAR T cell therapies, which use antibodies against negative regulators of T cell activation and T cells reprogrammed to better target tumour antigens, respectively. However, while immunotherapy is successful in some patients, including those with advanced or metastatic cancers, only a subset of patients respond. Therefore, better predictors of patient response and methods to overcome resistance warrant investigation. Poor, or periphery-limited, T cell infiltration in the tumour is associated with poor responses to immunotherapy. Given that (1) lymphocyte recruitment requires leucocyte-endothelial cell adhesion and (2) the vasculature controls tumour oxygenation and plays a pivotal role in T cell infiltration and activation, vessel targeting strategies including anti-angiogenesis and vascular normalisation in combination with immunotherapy are providing possible new strategies to enhance therapy. Here, we review the progress of vessel modulation in enhancing immunotherapy efficacy.
Collapse
Affiliation(s)
- Emma L. Newport
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.L.N.); (A.R.P.); (A.N.); (K.M.H.-D.)
| | - Ana Rita Pedrosa
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.L.N.); (A.R.P.); (A.N.); (K.M.H.-D.)
| | - Alexandra Njegic
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.L.N.); (A.R.P.); (A.N.); (K.M.H.-D.)
| | - Kairbaan M. Hodivala-Dilke
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.L.N.); (A.R.P.); (A.N.); (K.M.H.-D.)
| | - José M. Muñoz-Félix
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.L.N.); (A.R.P.); (A.N.); (K.M.H.-D.)
- Department of Biochemistry and Molecular Biology, Institute of Biomedical Research of Salamanca (IBSAL), Universidad de Salamanca Spain, 37007 Salamanca, Spain
| |
Collapse
|
34
|
Chokshi CR, Brakel BA, Tatari N, Savage N, Salim SK, Venugopal C, Singh SK. Advances in Immunotherapy for Adult Glioblastoma. Cancers (Basel) 2021; 13:cancers13143400. [PMID: 34298615 PMCID: PMC8305609 DOI: 10.3390/cancers13143400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Therapy failure and disease recurrence are hallmarks of glioblastoma (GBM), the most common and lethal tumor in adults that originates in the brain. Despite aggressive standards of care, tumor recurrence is inevitable with no standardized second-line therapy. Recent clinical studies evaluating therapies that augment the anti-tumor immune response (i.e., immunotherapies) have yielded promising results in subsets of GBM patients. Here, we summarize clinical studies in the past decade that evaluate vaccines, immune checkpoint inhibitors and chimeric antigen receptor (CAR) T cells for treatment of GBM. Although immunotherapies have yet to return widespread efficacy for the majority of GBM patients, critical insights from completed and ongoing clinical trials are informing development of the next generation of therapies, with the goal to alleviate disease burden and extend patient survival. Abstract Despite aggressive multimodal therapy, glioblastoma (GBM) remains the most common malignant primary brain tumor in adults. With the advent of therapies that revitalize the anti-tumor immune response, several immunotherapeutic modalities have been developed for treatment of GBM. In this review, we summarize recent clinical and preclinical efforts to evaluate vaccination strategies, immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells. Although these modalities have shown long-term tumor regression in subsets of treated patients, the underlying biology that may predict efficacy and inform therapy development is being actively investigated. Common to all therapeutic modalities are fundamental mechanisms of therapy evasion by tumor cells, including immense intratumoral heterogeneity, suppression of the tumor immune microenvironment and low mutational burden. These insights have led efforts to design rational combinatorial therapies that can reignite the anti-tumor immune response, effectively and specifically target tumor cells and reliably decrease tumor burden for GBM patients.
Collapse
Affiliation(s)
- Chirayu R. Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
| | - Benjamin A. Brakel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
| | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
| | - Sabra K. Salim
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
| | - Chitra Venugopal
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada;
| | - Sheila K. Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada;
- Correspondence:
| |
Collapse
|
35
|
Maggs L, Cattaneo G, Dal AE, Moghaddam AS, Ferrone S. CAR T Cell-Based Immunotherapy for the Treatment of Glioblastoma. Front Neurosci 2021; 15:662064. [PMID: 34113233 PMCID: PMC8185049 DOI: 10.3389/fnins.2021.662064] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in adults. Current treatment options typically consist of surgery followed by chemotherapy or more frequently radiotherapy, however, median patient survival remains at just over 1 year. Therefore, the need for novel curative therapies for GBM is vital. Characterization of GBM cells has contributed to identify several molecules as targets for immunotherapy-based treatments such as EGFR/EGFRvIII, IL13Rα2, B7-H3, and CSPG4. Cytotoxic T lymphocytes collected from a patient can be genetically modified to express a chimeric antigen receptor (CAR) specific for an identified tumor antigen (TA). These CAR T cells can then be re-administered to the patient to identify and eliminate cancer cells. The impressive clinical responses to TA-specific CAR T cell-based therapies in patients with hematological malignancies have generated a lot of interest in the application of this strategy with solid tumors including GBM. Several clinical trials are evaluating TA-specific CAR T cells to treat GBM. Unfortunately, the efficacy of CAR T cells against solid tumors has been limited due to several factors. These include the immunosuppressive tumor microenvironment, inadequate trafficking and infiltration of CAR T cells and their lack of persistence and activity. In particular, GBM has specific limitations to overcome including acquired resistance to therapy, limited diffusion across the blood brain barrier and risks of central nervous system toxicity. Here we review current CAR T cell-based approaches for the treatment of GBM and summarize the mechanisms being explored in pre-clinical, as well as clinical studies to improve their anti-tumor activity.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
36
|
The Acidic Brain-Glycolytic Switch in the Microenvironment of Malignant Glioma. Int J Mol Sci 2021; 22:ijms22115518. [PMID: 34073734 PMCID: PMC8197239 DOI: 10.3390/ijms22115518] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma represents a fatal disease with a poor prognosis and development of resistance mechanisms against conventional therapeutic approaches. The distinct tumor zones of this heterogeneous neoplasm develop their own microenvironment, in which subpopulations of cancer cells communicate. Adaptation to hypoxia in the center of the expanding tumor mass leads to the glycolytic and angiogenic switch, accompanied by upregulation of different glycolytic enzymes, transporters, and other metabolites. These processes render the tumor microenvironment more acidic, remodel the extracellular matrix, and create energy gradients for the metabolic communication between different cancer cells in distinct tumor zones. Escape mechanisms from hypoxia-induced cell death and energy deprivation are the result. The functional consequences are more aggressive and malignant behavior with enhanced proliferation and survival, migration and invasiveness, and the induction of angiogenesis. In this review, we go from the biochemical principles of aerobic and anaerobic glycolysis over the glycolytic switch, regulated by the key transcription factor hypoxia-inducible factor (HIF)-1α, to other important metabolic players like the monocarboxylate transporters (MCTs)1 and 4. We discuss the metabolic symbiosis model via lactate shuttling in the acidic tumor microenvironment and highlight the functional consequences of the glycolytic switch on glioma malignancy. Furthermore, we illustrate regulation by micro ribonucleic acids (miRNAs) and the connection between isocitrate dehydrogenase (IDH) mutation status and glycolytic metabolism. Finally, we give an outlook about the diagnostic and therapeutic implications of the glycolytic switch and the relation to tumor immunity in malignant glioma.
Collapse
|
37
|
Zhou W, Zhang B, Fan K, Yin X, Liu J, Gou S. An Original Aspirin-Containing Carbonic Anhydrase 9 Inhibitor Overcomes Hypoxia-Induced Drug Resistance to Enhance the Efficacy of Myocardial Protection. Cardiovasc Drugs Ther 2021; 36:605-618. [PMID: 33844134 DOI: 10.1007/s10557-021-07182-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Hypoxic microenvironment plays a vital role in myocardial ischemia injury, generally leading to the resistance of chemotherapeutic drugs. This induces an intriguing study on mechanism exploration and prodrug design to overcome the hypoxia-induced drug resistance. METHODS In this study, we hypothesized that the overexpression of carbonic anhydrase 9 (CAIX) in myocardial cells is closely related to the drug resistance. Herein, bioinformatics analysis, gene knockdown, and overexpression assay certificated the correlation between CAIX overexpression and hypoxia. An original aspirin-containing CAIX inhibitor AcAs has been developed. RESULTS Based on the downregulation of CAIX level, both in vitro and in vivo, AcAs can overcome the acquired resistance and more effectively attenuate myocardial ischemia and hypoxia injury than that of aspirin. CAIX inhibitor is believed to recover the extracellular pH value so as to ensure the stable effect of aspirin. CONCLUSION Results indicate great potential of CAIX inhibitor for further application in myocardial hypoxia injury therapy.
Collapse
Affiliation(s)
- Wen Zhou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China
| | - Bin Zhang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China
| | - Keyu Fan
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China
| | - Xiaojian Yin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jinfeng Liu
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China. .,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
Kast RE. Adding high-dose celecoxib to increase effectiveness of standard glioblastoma chemoirradiation. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 79:481-488. [PMID: 33689795 DOI: 10.1016/j.pharma.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Over one hundred clinical trials since 2005 have failed to significantly improve the prognosis of glioblastoma. Since 2005, the standard of care has been maximal resection followed by 60Gy irradiation over six weeks with daily temozolomide. With this, a median survival of 2 years can be expected. This short paper reviewed how the pharmacodynamic attributes of an EMA/FDA approved, cheap, generic drug to treat pain, celecoxib, intersect with pathophysiological elements driving glioblastoma growth, such that growth drive inhibition can be expected from celecoxib. The two main attributes of celecoxib are carbonic anhydrase inhibition and cyclooxygenase-2 inhibition. Both attributes individually have been in active study as adjuncts during current cancer treatment, including that of glioblastoma. That research is briefly reviewed here. This paper concludes from the collected data, that starting celecoxib, 600 to 800mg twice daily before surgery and continuing it through the chemoirradiation phase of treatment would be a low-risk intervention with sound rationale.
Collapse
Affiliation(s)
- R E Kast
- IIAIGC study centre, 05401 Burlington, VT, USA.
| |
Collapse
|
39
|
Comprehensive analysis of lncRNA and mRNA based on expression microarray profiling reveals different characteristics of osteoarthritis between Tibetan and Han patients. J Orthop Surg Res 2021; 16:133. [PMID: 33579305 PMCID: PMC7879695 DOI: 10.1186/s13018-021-02213-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Osteoarthritis (OA) is thought to be the most prevalent chronic joint disease, especially in Tibet of China. Here, we aimed to explore the integrative lncRNA and mRNA landscape between the OA patients of Tibet and Han. Methods The lncRNA and mRNA expression microarray profiling was performed by SurePrint G3 Human Gene Expression 8x60K v2 Microarray in articular cartilage samples from OA patients of Han nationality and Tibetans, followed by GO, KEGG, and trans-regulation and cis-regulation analysis of lncRNA and mRNA. Results We found a total of 117 lncRNAs and 297 mRNAs differently expressed in the cartilage tissues of Tibetans (n = 5) comparing with those of Chinese Han (n = 3), in which 49 lncRNAs and 158 mRNAs were upregulated, and 68 lncRNAs and 139 mRNAs were downregulated. GO and KEGG analysis showed that several unreported biological processes and signaling pathways were particularly identified. LncRNA-mRNA co-expression analysis revealed a remarkable lncRNA-mRNA relationship, in which OTOA may play a critical role in the different mechanisms of the OA progression between Tibetans and Chinese Han. Conclusion This study identified different lncRNA/mRNA expression profiling between OA patients of Tibetans and Han, which were involved in many characteristic biological processes and signaling pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02213-y.
Collapse
|
40
|
Yao J, Wang C, Raymond C, Bergstrom B, Chen X, Das K, Dinh H, Kim ZS, Le AN, Lim MWJ, Pham JAN, Prusan JD, Rao SS, Nathanson DA, Ellingson BM. A physical phantom for amine chemical exchange saturation transfer (CEST) MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:569-580. [PMID: 33484366 DOI: 10.1007/s10334-020-00902-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To develop a robust amine chemical exchange saturation transfer (CEST) physical phantom, validate the temporal stability, and create a supporting software for automatic image processing and quality assurance. MATERIALS AND METHODS The phantom was designed as an assembled laser-cut acrylic rack and 18 vials of phantom solutions, prepared with different pHs, glycine concentrations, and gadolinium concentrations. We evaluated glycine concentrations using ultraviolet absorbance for 70 days and measured the pH, relaxation rates, and CEST contrast for 94 days after preparation. We used Spearman's correlation to determine if glycine degraded over time. Linear regression and Bland-Altman analysis were performed between baseline and follow-up measurements of pH and MRI properties. RESULTS No degradation of glycine was observed (p > 0.05). The pH and MRI measurements stayed stable for 3 months and showed high consistency across time points (R2 = 1.00 for pH, R1, R2, and CEST contrast), which was further validated by the Bland-Altman plots. Examples of automatically generated reports are provided. DISCUSSION We designed a physical phantom for amine CEST-MRI, which is easy to assemble and transfer, holds 18 different solutions, and has excellent short-term chemical and MRI stability. We believe this robust phantom will facilitate the development of novel sequences and cross-scanners validations.
Collapse
Affiliation(s)
- Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Departments of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Departments of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Departments of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
| | - Blake Bergstrom
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xing Chen
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kaveri Das
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering Innovation and Design, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Huy Dinh
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zoe S Kim
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Angela N Le
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew W J Lim
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane A N Pham
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph D Prusan
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sriram S Rao
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA.
- Departments of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
41
|
Boyd NH, Tran AN, Bernstock JD, Etminan T, Jones AB, Gillespie GY, Friedman GK, Hjelmeland AB. Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics 2021; 11:665-683. [PMID: 33391498 PMCID: PMC7738846 DOI: 10.7150/thno.41692] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor microenvironments are the result of cellular alterations in cancer that support unrestricted growth and proliferation and result in further modifications in cell behavior, which are critical for tumor progression. Angiogenesis and therapeutic resistance are known to be modulated by hypoxia and other tumor microenvironments, such as acidic stress, both of which are core features of the glioblastoma microenvironment. Hypoxia has also been shown to promote a stem-like state in both non-neoplastic and tumor cells. In glial tumors, glioma stem cells (GSCs) are central in tumor growth, angiogenesis, and therapeutic resistance, and further investigation of the interplay between tumor microenvironments and GSCs is critical to the search for better treatment options for glioblastoma. Accordingly, we summarize the impact of hypoxia and acidic stress on GSC signaling and biologic phenotypes, and potential methods to inhibit these pathways.
Collapse
|
42
|
Li L, Zhu X, Qian Y, Yuan X, Ding Y, Hu D, He X, Wu Y. Chimeric Antigen Receptor T-Cell Therapy in Glioblastoma: Current and Future. Front Immunol 2020; 11:594271. [PMID: 33224149 PMCID: PMC7669545 DOI: 10.3389/fimmu.2020.594271] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive glioma with an extremely poor prognosis after conventional treatment. Recent advances in immunotherapy offer hope for these patients with incurable GBM. Our present review aimed to provide an overview of immunotherapy for GBM, especially chimeric antigen receptor T-cell (CAR T) therapy. CAR T-cell immunotherapy, which involves the engineering of T cells to kill tumors by targeting cell surface-specific antigens, has been successful in eliminating B-cell leukemia by targeting CD19. IL-13Rα2, EGFRvIII, and HER2-targeted CAR T cells have shown significant clinical efficacy and safety in phase 1 or 2 clinical trials conducted in patients with GBM; these findings support the need for further studies to examine if this therapy can ultimately benefit this patient group. However, local physical barriers, high tumor heterogeneity, and antigen escape make the use of CAR T therapy, as a treatment for GBM, challenging. The potential directions for improving the efficacy of CAR T in GBM are to combine the existing traditional therapies and the construction of multi-target CAR T cells.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Brain Neoplasms/etiology
- Brain Neoplasms/therapy
- Combined Modality Therapy/methods
- Genetic Engineering
- Glioblastoma/etiology
- Glioblastoma/therapy
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiqun Zhu
- Department of Surgical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Qian
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangling Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Ding
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin He
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan Wu
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
TP5, a Peptide Inhibitor of Aberrant and Hyperactive CDK5/p25: A Novel Therapeutic Approach against Glioblastoma. Cancers (Basel) 2020; 12:cancers12071935. [PMID: 32708903 PMCID: PMC7409269 DOI: 10.3390/cancers12071935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022] Open
Abstract
We examined the efficacy of selective inhibition of cyclin-dependent kinase 5 (CDK5) in glioblastoma by TP5. We analyzed its impact in vitro on CDK5 expression and activity, cell survival, apoptosis and cell cycle. DNA damage was analyzed using the expression of γH2A.X and phosphorylated ATM. Its tolerance and efficacy were assessed on in vivo xenograft mouse models. We showed that TP5 decreased the activity but not the expression of CDK5 and p35. TP5 alone impaired cell viability and colony formation of glioblastoma cell lines and induced apoptosis. TP5 increased DNA damage by inhibiting the phosphorylation of ATM, leading to G1 arrest. Whereas CDK5 activity is increased by DNA-damaging agents such as temozolomide and irradiation, TP5 was synergistic with either temozolomide or irradiation due to an accumulation of DNA damage. Concomitant use of TP5 and either temozolomide or irradiation reduced the phosphorylation of ATM, increased DNA damage, and inhibited the G2/M arrest induced by temozolomide or irradiation. TP5 alone suppressed the tumor growth of orthotopic glioblastoma mouse model. The treatment was well tolerated. Finally, alone or in association with irradiation or temozolomide, TP5 prolonged mouse survival. TP5 alone or in association with temozolomide and radiotherapy is a promising therapeutic option for glioblastoma.
Collapse
|
44
|
Human IDH mutant 1p/19q co-deleted gliomas have low tumor acidity as evidenced by molecular MRI and PET: a retrospective study. Sci Rep 2020; 10:11922. [PMID: 32681084 PMCID: PMC7367867 DOI: 10.1038/s41598-020-68733-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/01/2020] [Indexed: 01/19/2023] Open
Abstract
Co-deletion of 1p/19q is a hallmark of oligodendroglioma and predicts better survival. However, little is understood about its metabolic characteristics. In this study, we aimed to explore the extracellular acidity of WHO grade II and III gliomas associated with 1p/19q co-deletion. We included 76 glioma patients who received amine chemical exchange saturation transfer (CEST) imaging at 3 T. Magnetic transfer ratio asymmetry (MTRasym) at 3.0 ppm was used as the pH-sensitive CEST biomarker, with higher MTRasym indicating lower pH. To control for the confounder factors, T2 relaxometry and l-6-18F-fluoro-3,4-dihydroxyphenylalnine (18F-FDOPA) PET data were collected in a subset of patients. We found a significantly lower MTRasym in 1p/19q co-deleted gliomas (co-deleted, 1.17% ± 0.32%; non-co-deleted, 1.72% ± 0.41%, P = 1.13 × 10−7), while FDOPA (P = 0.92) and T2 (P = 0.61) were not significantly affected. Receiver operating characteristic analysis confirmed that MTRasym could discriminate co-deletion status with an area under the curve of 0.85. In analysis of covariance, 1p/19q co-deletion status was the only significant contributor to the variability in MTRasym when controlling for age and FDOPA (P = 2.91 × 10−3) or T2 (P = 8.03 × 10−6). In conclusion, 1p/19q co-deleted gliomas were less acidic, which may be related to better prognosis. Amine CEST-MRI may serve as a non-invasive biomarker for identifying 1p/19q co-deletion status.
Collapse
|
45
|
The Expression of Carbonic Anhydrases II, IX and XII in Brain Tumors. Cancers (Basel) 2020; 12:cancers12071723. [PMID: 32610540 PMCID: PMC7408524 DOI: 10.3390/cancers12071723] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Carbonic anhydrases (CAs) are zinc-containing metalloenzymes that participate in the regulation of pH homeostasis in addition to many other important physiological functions. Importantly, CAs have been associated with neoplastic processes and cancer. Brain tumors represent a heterogeneous group of diseases with a frequently dismal prognosis, and new treatment options are urgently needed. In this review article, we summarize the previously published literature about CAs in brain tumors, especially on CA II and hypoxia-inducible CA IX and CA XII. We review here their role in tumorigenesis and potential value in predicting prognosis of brain tumors, including astrocytomas, oligodendrogliomas, ependymomas, medulloblastomas, meningiomas, and craniopharyngiomas. We also introduce both already completed and ongoing studies focusing on CA inhibition as a potential anti-cancer strategy.
Collapse
|
46
|
Bader JE, Voss K, Rathmell JC. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol Cell 2020; 78:1019-1033. [PMID: 32559423 PMCID: PMC7339967 DOI: 10.1016/j.molcel.2020.05.034] [Citation(s) in RCA: 478] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
The growing field of immune metabolism has revealed promising indications for metabolic targets to modulate anti-cancer immunity. Combination therapies involving metabolic inhibitors with immune checkpoint blockade (ICB), chemotherapy, radiation, and/or diet now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment (TME). Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. These changes also reveal opportunities to reshape the TME by targeting metabolic pathways to favor immunity. Here we explore current strategies that shift immune cell metabolism to pro-inflammatory states in the TME and highlight a need to better replicate physiologic conditions to select targets, clarify mechanisms, and optimize metabolic inhibitors. Unifying our understanding of these pathways and interactions within the heterogenous TME will be instrumental to advance this promising field and enhance immunotherapy.
Collapse
Affiliation(s)
- Jackie E Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
47
|
Rodriguez-Garcia A, Palazon A, Noguera-Ortega E, Powell DJ, Guedan S. CAR-T Cells Hit the Tumor Microenvironment: Strategies to Overcome Tumor Escape. Front Immunol 2020; 11:1109. [PMID: 32625204 PMCID: PMC7311654 DOI: 10.3389/fimmu.2020.01109] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have demonstrated remarkable efficacy for the treatment of hematological malignancies. However, in patients with solid tumors, objective responses to CAR-T cell therapy remain sporadic and transient. A major obstacle for CAR-T cells is the intrinsic ability of tumors to evade immune responses. Advanced solid tumors are largely composed of desmoplastic stroma and immunosuppressive modulators, and characterized by aberrant cell proliferation and vascularization, resulting in hypoxia and altered nutrient availability. To mount a curative response after infusion, CAR-T cells must infiltrate the tumor, recognize their cognate antigen and perform their effector function in this hostile tumor microenvironment, to then differentiate and persist as memory T cells that confer long-term protection. Fortunately, recent advances in synthetic biology provide a wide set of tools to genetically modify CAR-T cells to overcome some of these obstacles. In this review, we provide a comprehensive overview of the key tumor intrinsic mechanisms that prevent an effective CAR-T cell antitumor response and we discuss the most promising strategies to prevent tumor escape to CAR-T cell therapy.
Collapse
Affiliation(s)
- Alba Rodriguez-Garcia
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Laboratory, Ikerbasque Basque Foundation for Science, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Estela Noguera-Ortega
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J. Powell
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sonia Guedan
- Department of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| |
Collapse
|
48
|
Pellegrino C, Favalli N, Sandholzer M, Volta L, Bassi G, Millul J, Cazzamalli S, Matasci M, Villa A, Myburgh R, Manz MG, Neri D. Impact of Ligand Size and Conjugation Chemistry on the Performance of Universal Chimeric Antigen Receptor T-Cells for Tumor Killing. Bioconjug Chem 2020; 31:1775-1783. [DOI: 10.1021/acs.bioconjchem.0c00258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zurich, Switzerland
| | - Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zurich, Switzerland
| | - Michael Sandholzer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zurich, Switzerland
| | - Laura Volta
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zurich, Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zurich, Switzerland
| | - Jacopo Millul
- Philochem AG, Libernstrasse 3, 8112 Otelfingen, Switzerland
| | | | - Mattia Matasci
- Philochem AG, Libernstrasse 3, 8112 Otelfingen, Switzerland
| | | | - Renier Myburgh
- Department of Medical Oncology and Hematology, Comprehensive Cancer Center Zurich (CCCZ), University Hospital Zurich and University of Zürich, 8091 Zürich, Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, Comprehensive Cancer Center Zurich (CCCZ), University Hospital Zurich and University of Zürich, 8091 Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zurich, Switzerland
| |
Collapse
|
49
|
Salinas RD, Durgin JS, O'Rourke DM. Potential of Glioblastoma-Targeted Chimeric Antigen Receptor (CAR) T-Cell Therapy. CNS Drugs 2020; 34:127-145. [PMID: 31916100 DOI: 10.1007/s40263-019-00687-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the established efficacy of chimeric antigen receptor (CAR) T-cell therapy in hematologic malignancies, translating CAR T therapy to solid tumors has remained investigational. Glioblastoma, the most aggressive and lethal form of primary brain tumor, has recently been among the malignancies being trialed clinically with CAR T cells. Glioblastoma in particular holds several unique features that have hindered clinical translation, including its vast intertumoral and intratumoral heterogeneity, associated immunosuppressive environment, and lack of clear experimental models to predict response and analyze resistant phenotypes. Here, we review the history of CAR T therapy development, its current progress in treating glioblastoma, as well as the current challenges and future directions in establishing CAR T therapy as a viable alternative to the current standard of care. Tremendous efforts are currently ongoing to identify novel CAR targets and target combinations for glioblastoma, to modify T cells to enhance their efficacy and to enable them to resist tumor-mediated immunosuppression, and to utilize adjunct therapies such as lymphodepletion, checkpoint inhibition, and bi-specific engagers to improve CAR T persistence. Furthermore, new preclinical models of CAR T therapy are being developed that better reflect the clinical features seen in human trials. Current clinical trials that rapidly incorporate key preclinical findings to patient translation are emerging.
Collapse
Affiliation(s)
- Ryan D Salinas
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph S Durgin
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Glioblastoma Translational Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
50
|
Cui J, Wang H, Medina R, Zhang Q, Xu C, Indig IH, Zhou J, Song Q, Dmitriev P, Sun MY, Guo L, Wang Y, Rosenblum JS, Kovach JS, Gilbert MR, Zhuang Z. Inhibition of PP2A with LB-100 Enhances Efficacy of CAR-T Cell Therapy Against Glioblastoma. Cancers (Basel) 2020; 12:cancers12010139. [PMID: 31935881 PMCID: PMC7017120 DOI: 10.3390/cancers12010139] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T cells represent a promising modality for treating glioblastoma. Recently, we demonstrated that CAR-T cells targeting carbonic anhydrase IX (CAIX), a protein involved in HIF-1a hypoxic signaling, is a promising CAR-T cell target in an intracranial murine glioblastoma model. Anti-CAIX CAR-T cell therapy is limited by its suboptimal activation within the tumor microenvironment. LB-100, a small molecular inhibitor of protein phosphatase 2A (PP2A), has been shown to enhance T cell anti-tumor activity through activation of the mTOR signaling pathway. Herein, we investigated if a treatment strategy consisting of a combination of LB-100 and anti-CAIX CAR-T cell therapy produced a synergistic anti-tumor effect. Our studies demonstrate that LB-100 enhanced anti-CAIX CAR-T cell treatment efficacy in vitro and in vivo. Our findings demonstrate the role of LB-100 in augmenting the cytotoxic activity of anti-CAIX CAR-T cells and underscore the synergistic therapeutic potential of applying combination LB-100 and CAR-T Cell therapy to other solid tumors.
Collapse
Affiliation(s)
- Jing Cui
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rogelio Medina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Qi Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen Xu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Iris H. Indig
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jingcheng Zhou
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qi Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pauline Dmitriev
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitchell Y. Sun
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liemei Guo
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jared S. Rosenblum
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John S. Kovach
- Lixte Biotechnology Holdings, Inc., East Setauket, NY 11733, USA
| | - Mark R. Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-240-760-7055
| |
Collapse
|