1
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
2
|
Du K, Grocott L, Anichini G, O’Neill K, Syed N. Amino Acid Deprivation in Glioblastoma: The Role in Survival and the Tumour Microenvironment-A Narrative Review. Biomedicines 2024; 12:2481. [PMID: 39595047 PMCID: PMC11592029 DOI: 10.3390/biomedicines12112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Glioblastoma is the most common and aggressive primary brain tumour, characterised by its invasive nature and complex metabolic profile. Emerging research highlights the role of amino acids (AAs) in glioblastoma metabolism, influencing tumour growth and the surrounding microenvironment. METHODS This narrative review synthesises recent pre-clinical studies focusing on the metabolic functions of AAs in glioblastoma. Key areas include the effects of AA deprivation on tumour growth, adaptive mechanisms, and the tumour microenvironment. RESULTS The effects related to arginine, glutamine, methionine, and cysteine deprivation have been more extensively reported. Arginine deprivation in arginine-auxotrophic glioblastomas induces apoptosis and affects cell adhesion, while glutamine deprivation disrupts metabolic pathways and enhances autophagy. Methionine and cysteine deprivation impact lipid metabolism and ferroptosis. Tumour adaptive mechanisms present challenges, and potential compensatory responses have been identified. The response of the microenvironment to AA deprivation, including immune modulation, is critical to determining therapeutic outcomes. CONCLUSIONS Targeting AA metabolism offers a promising approach for glioblastoma treatment, with potential targeted drugs showing clinical promise. However, the complexity of tumour adaptive mechanisms and their impact on the microenvironment necessitates further research to optimise combination therapies and improve therapeutic efficacy.
Collapse
Affiliation(s)
- Keven Du
- Imperial College School of Medicine, Imperial College London, London SW7 2AZ, UK; (K.D.); (L.G.)
| | - Leila Grocott
- Imperial College School of Medicine, Imperial College London, London SW7 2AZ, UK; (K.D.); (L.G.)
| | - Giulio Anichini
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (K.O.); (N.S.)
| | - Kevin O’Neill
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (K.O.); (N.S.)
| | - Nelofer Syed
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (K.O.); (N.S.)
| |
Collapse
|
3
|
Kim O, Sergi Z, Yu G, Yamamoto K, Quezado M, Abdullaev Z, Crooks DR, Kishimoto S, Li Q, Lu P, Blackman B, Andresson T, Wu X, Tran B, Wei JS, Zhang W, Zhang M, Song H, Khan J, Krishna MC, Brender JR, Wu J. A patient-derived cell model for malignant transformation in IDH-mutant glioma. Acta Neuropathol Commun 2024; 12:148. [PMID: 39256867 PMCID: PMC11385154 DOI: 10.1186/s40478-024-01860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
Malignant transformation (MT) is commonly seen in IDH-mutant gliomas. There has been a growing research interest in revealing its underlying mechanisms and intervening prior to MT at the early stages of the transforming process. Here we established a unique pair of matched 3D cell models: 403L, derived from a low-grade glioma (LGG), and 403H, derived from a high-grade glioma (HGG), by utilizing IDH-mutant astrocytoma samples from the same patient when the tumor was diagnosed as WHO grade 2 (tumor mutational burden (TMB) of 3.96/Mb) and later as grade 4 (TMB of 70.07/Mb), respectively. Both cell models were authenticated to a patient's sample retaining endogenous expression of IDH1 R132H. DNA methylation profiles of the parental tumors referred to LGG and HGG IDH-mutant glioma clusters. The immunopositivity of SOX2, NESTIN, GFAP, OLIG2, and beta 3-Tubulin suggested the multilineage potential of both models. 403H was more prompt to cell invasion and developed infiltrative HGG in vivo. The differentially expressed genes (DEGs) from the RNA sequencing analysis revealed the tumor invasion and aggressiveness related genes exclusively upregulated in the 403H model. Pathway analysis showcased an enrichment of genes associated with epithelial-mesenchymal transition (EMT) and Notch signaling pathways in 403H and 403L, respectively. Mass spectrometry-based targeted metabolomics and hyperpolarized (HP) 1-13C pyruvate in-cell NMR analyses demonstrated significant alterations in the TCA cycle and fatty acid metabolism. Citrate, glutamine, and 2-HG levels were significantly higher in 403H. To our knowledge, this is the first report describing the development of a matched pair of 3D patient-derived cell models representative of MT and temozolomide (TMZ)-induced hypermutator phenotype (HMP) in IDH-mutant glioma, providing insights into genetic and metabolic changes during MT/HMP. This novel in vitro model allows further investigation of the mechanisms of MT at the cellular level.
Collapse
Affiliation(s)
- Olga Kim
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 1142A, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Zach Sergi
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 1142A, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Guangyang Yu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 1142A, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Martha Quezado
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Danel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qi Li
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 1142A, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Peng Lu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 1142A, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Burchelle Blackman
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, Rockville, MD, 20850, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Leidos Biomedical Inc / Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Xiaolin Wu
- Genomics Technology Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Bao Tran
- Sequencing Facility, Leidos Biomedical Inc / Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Jun S Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 1142A, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Meili Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 1142A, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Hua Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 1142A, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jing Wu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 1142A, 37 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Letafati A, Taghiabadi Z, Ardekani OS, Abbasi S, Najafabadi AQ, Jazi NN, Soheili R, Rodrigo R, Yavarian J, Saso L. Unveiling the intersection: ferroptosis in influenza virus infection. Virol J 2024; 21:185. [PMID: 39135112 PMCID: PMC11321227 DOI: 10.1186/s12985-024-02462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
The influenza virus (IFV) imposes a considerable health and economic burden globally, requiring a comprehensive understanding of its pathogenic mechanisms. Ferroptosis, an iron-dependent lipid peroxidation cell death pathway, holds unique implications for the antioxidant defense system, with possible contributions to inflammation. This exploration focuses on the dynamic interplay between ferroptosis and the host defense against viruses, emphasizing the influence of IFV infections on the activation of the ferroptosis pathway. IFV causes different types of cell death, including apoptosis, necrosis, and ferroptosis. IFV-induced ferroptotic cell death is mediated by alterations in iron homeostasis, intensifying the accumulation of reactive oxygen species and promoting lipid peroxidation. A comprehensive investigation into the mechanism of ferroptosis in viral infections, specifically IFV, has great potential to identify therapeutic strategies. This understanding may pave the way for the development of drugs using ferroptosis inhibitors, presenting an effective approach to suppress viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Taghiabadi
- Department of Microbiology and Virology of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Omid Salahi Ardekani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Simin Abbasi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Qaraee Najafabadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Negar Nayerain Jazi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roben Soheili
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jila Yavarian
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy.
| |
Collapse
|
5
|
Zhang GQ, Xi C, Ju NT, Shen CT, Qiu ZL, Song HJ, Luo QY. Targeting glutamine metabolism exhibits anti-tumor effects in thyroid cancer. J Endocrinol Invest 2024; 47:1953-1969. [PMID: 38386265 PMCID: PMC11266413 DOI: 10.1007/s40618-023-02294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/25/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Effective treatment for patients with advanced thyroid cancer is lacking. Metabolism reprogramming is required for cancer to undergo oncogenic transformation and rapid tumorigenic growth. Glutamine is frequently used by cancer cells for active bioenergetic and biosynthetic needs. This study aims to investigate whether targeting glutamine metabolism is a promising therapeutic strategy for thyroid cancer. METHODS The expression of glutaminase (GLS) and glutamate dehydrogenase (GDH) in thyroid cancer tissues was evaluated by immunohistochemistry, and glutamine metabolism-related genes were assessed using real time-qPCR and western blotting. The effects of glutamine metabolism inhibitor 6-diazo-5-oxo-l-norleucine (DON) on thyroid cancer cells were determined by CCK-8, clone formation assay, Edu incorporation assay, flow cytometry, and Transwell assay. The mechanistic study was performed by real time-qPCR, western blotting, Seahorse assay, and gas chromatography-mass spectrometer assay. The effect of DON prodrug (JHU-083) on thyroid cancer in vivo was assessed using xenograft tumor models in BALB/c nude mice. RESULTS GLS and GDH were over-expressed in thyroid cancer tissues, and GLS expression was positively associated with lymph-node metastasis and TNM stage. The growth of thyroid cancer cells was significantly inhibited when cultured in glutamine-free medium. Targeting glutamine metabolism with DON inhibited the proliferation of thyroid cancer cells. DON treatment did not promote apoptosis, but increased the proportion of cells in the S phase, accompanied by the decreased expression of cyclin-dependent kinase 2 and cyclin A. DON treatment also significantly inhibited the migration and invasion of thyroid cancer cells by reducing the expression of N-cadherin, Vimentin, matrix metalloproteinase-2, and matrix metalloproteinase-9. Non-essential amino acids, including proline, alanine, aspartate, asparagine, and glycine, were reduced in thyroid cancer cells treated with DON, which could explain the decrease of proteins involved in migration, invasion, and cell cycle. The efficacy and safety of DON prodrug (JHU-083) for thyroid cancer treatment were verified in a mouse model. In addition to suppressing the proliferation and metastasis potential of thyroid cancer in vivo, enhanced innate immune response was also observed in JHU-083-treated xenograft tumors as a result of decreased expression of cluster of differentiation 47 and programmed cell death ligand 1. CONCLUSIONS Thyroid cancer exhibited enhanced glutamine metabolism, as evidenced by the glutamine dependence of thyroid cancer cells and high expression of multiple glutamine metabolism-related genes. Targeting glutamine metabolism with DON prodrug could be a promising therapeutic option for advanced thyroid cancer.
Collapse
Affiliation(s)
- G-Q Zhang
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - C Xi
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - N-T Ju
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - C-T Shen
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Z-L Qiu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - H-J Song
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| | - Q-Y Luo
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
6
|
Anthony J, Varalakshmi S, Sekar AK, Devarajan N, Janakiraman B, Peramaiyan R. Glutaminase - A potential target for cancer treatment. Biomedicine (Taipei) 2024; 14:29-37. [PMID: 38939098 PMCID: PMC11204126 DOI: 10.37796/2211-8039.1445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 06/29/2024] Open
Abstract
The overexpression of glutaminase is reported to influence cancer growth and metastasis through glutaminolysis. Upregulation of glutamine catabolism is recently recognized as a critical feature of cancer, and cancer cells are observed to reprogram glutamine metabolism to maintain its survival and proliferation. Special focus is given on the glutaminase isoform, GLS1 (kidney type glutaminase), as the other isoform GLS2 (Liver type glutaminase) acts as a tumour suppressor in some conditions. Glutaminolysis linked with autophagy, which is mediated via mTORC1, also serves as a promising target for cancer therapy. Glutamine also plays a vital role in maintaining redox homeostasis. Inhibition of glutaminase aggravates oxidative stress by reducing glutathione level, thus leading to apoptotic-mediated cell death in cancer cells Therefore, inhibiting the glutaminase activity using glutaminase inhibitors such as BPTES, DON, JHU-083, CB-839, compound 968, etc. may answer many intriguing questions behind the uncontrolled proliferation of cancer cells and serve as a prophylactic treatment for cancer. Earlier reports neither discuss nor provide perspectives on exact signaling gene or pathway. Hence, the present review highlights the plausible role of glutaminase in cancer and the current therapeutic approaches and clinical trials to target and inhibit glutaminase enzymes for better cancer treatment.
Collapse
Affiliation(s)
- Josephine Anthony
- Department of Research, Meenakshi Academy of Higher Education and Research (MAHER-Deemed to be University), Chennai 600 078, Tamil Nadu,
India
| | - Sureka Varalakshmi
- Department of Research, Meenakshi Academy of Higher Education and Research (MAHER-Deemed to be University), Chennai 600 078, Tamil Nadu,
India
| | - Ashok Kumar Sekar
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu,
India
| | - Nalini Devarajan
- Department of Research, Meenakshi Academy of Higher Education and Research (MAHER-Deemed to be University), Chennai 600 078, Tamil Nadu,
India
| | - Balamurugan Janakiraman
- SRM College of Physiotherapy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203,
India
| | - Rajendran Peramaiyan
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Kingdom of
Saudi Arabia
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospital, Saveetha University, Chennai 600 077, Tamil Nadu,
India
| |
Collapse
|
7
|
Novotná K, Tenora L, Slusher BS, Rais R. Therapeutic resurgence of 6-diazo-5-oxo-l-norleucine (DON) through tissue-targeted prodrugs. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:157-180. [PMID: 39034051 DOI: 10.1016/bs.apha.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The recognition that rapidly proliferating cancer cells rely heavily on glutamine for their survival and growth has renewed interest in the development of glutamine antagonists for cancer therapy. Glutamine plays a pivotal role as a carbon source for synthesizing lipids and metabolites through the TCA cycle, as well as a nitrogen source for synthesis of amino acid and nucleotides. Numerous studies have explored the significance of glutamine metabolism in cancer, providing a robust rationale for targeting this metabolic pathway in cancer treatment. The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) has been explored as an anticancer therapeutic for nearly six decades. Initial investigations revealed remarkable efficacy in preclinical studies and promising outcomes in early clinical trials. However, further advancement of DON was hindered due to dose-limiting gastrointestinal (GI) toxicities as the GI system is highly dependent on glutamine for regulating growth and repair. In an effort to repurpose DON and mitigate gastrointestinal (GI) toxicity concerns, prodrug strategies were utilized. These strategies aimed to enhance the delivery of DON to specific target tissues, such as tumors and the central nervous system (CNS), while sparing DON delivery to normal tissues, particularly the GI tract. When administered at low daily doses, optimized for metabolic inhibition, these prodrugs exhibit remarkable effectiveness without inducing significant toxicity to normal tissues. This approach holds promise for overcoming past challenges associated with DON, offering an avenue for its successful utilization in cancer treatment.
Collapse
Affiliation(s)
- Kateřina Novotná
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic; Department of Organic Chemistry, Charles University, Faculty of Science, Prague, Czech Republic
| | - Lukáš Tenora
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Organic Chemistry, Charles University, Faculty of Science, Prague, Czech Republic
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
8
|
Zhao J, Ma X, Gao P, Han X, Zhao P, Xie F, Liu M. Advancing glioblastoma treatment by targeting metabolism. Neoplasia 2024; 51:100985. [PMID: 38479191 PMCID: PMC10950892 DOI: 10.1016/j.neo.2024.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Alterations in cellular metabolism are important hallmarks of glioblastoma(GBM). Metabolic reprogramming is a critical feature as it meets the higher nutritional demand of tumor cells, including proliferation, growth, and survival. Many genes, proteins, and metabolites associated with GBM metabolism reprogramming have been found to be aberrantly expressed, which may provide potential targets for cancer treatment. Therefore, it is becoming increasingly important to explore the role of internal and external factors in metabolic regulation in order to identify more precise therapeutic targets and diagnostic markers for GBM. In this review, we define the metabolic characteristics of GBM, investigate metabolic specificities such as targetable vulnerabilities and therapeutic resistance, as well as present current efforts to target GBM metabolism to improve the standard of care.
Collapse
Affiliation(s)
- Jinyi Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Xuemei Ma
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Peixian Gao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Xueqi Han
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Pengxiang Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Fei Xie
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Mengyu Liu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China.
| |
Collapse
|
9
|
Fan Y, Xue H, Li Z, Huo M, Gao H, Guan X. Exploiting the Achilles' heel of cancer: disrupting glutamine metabolism for effective cancer treatment. Front Pharmacol 2024; 15:1345522. [PMID: 38510646 PMCID: PMC10952006 DOI: 10.3389/fphar.2024.1345522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Cancer cells have adapted to rapid tumor growth and evade immune attack by reprogramming their metabolic pathways. Glutamine is an important nitrogen resource for synthesizing amino acids and nucleotides and an important carbon source in the tricarboxylic acid (TCA) cycle and lipid biosynthesis pathway. In this review, we summarize the significant role of glutamine metabolism in tumor development and highlight the vulnerabilities of targeting glutamine metabolism for effective therapy. In particular, we review the reported drugs targeting glutaminase and glutamine uptake for efficient cancer treatment. Moreover, we discuss the current clinical test about targeting glutamine metabolism and the prospective direction of drug development.
Collapse
Affiliation(s)
- Yuxin Fan
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Han Xue
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Zhimin Li
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Mingge Huo
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Hongxia Gao
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
| | - Xingang Guan
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| |
Collapse
|
10
|
Novotná K, Tenora L, Prchalová E, Paule J, Alt J, Veeravalli V, Lam J, Wu Y, Šnajdr I, Gori S, Mettu VS, Tsukamoto T, Majer P, Slusher BS, Rais R. Discovery of tert-Butyl Ester Based 6-Diazo-5-oxo-l-norleucine Prodrugs for Enhanced Metabolic Stability and Tumor Delivery. J Med Chem 2023; 66:15493-15510. [PMID: 37949450 PMCID: PMC10683027 DOI: 10.1021/acs.jmedchem.3c01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) exhibits remarkable anticancer efficacy; however, its therapeutic potential is hindered by its toxicity to gastrointestinal (GI) tissues. We recently reported the discovery of DRP-104, a tumor-targeted DON prodrug with excellent efficacy and tolerability, which is currently in clinical trials. However, DRP-104 exhibits limited aqueous solubility, and the instability of its isopropyl ester promoiety leads to the formation of an inactive M1-metabolite, reducing overall systemic prodrug exposure. Herein, we aimed to synthesize DON prodrugs with various ester and amide promoieties with improved solubility, GI stability, and DON tumor delivery. Twenty-one prodrugs were synthesized and characterized in stability and pharmacokinetics studies. Of these, P11, tert-butyl-(S)-6-diazo-2-((S)-2-(2-(dimethylamino)acetamido)-3-phenylpropanamido)-5-oxo-hexanoate, showed excellent metabolic stability in plasma and intestinal homogenate, high aqueous solubility, and high tumor DON exposures and preserved the ideal tumor-targeting profile of DRP-104. In conclusion, we report a new generation of glutamine antagonist prodrugs with improved physicochemical and pharmacokinetic attributes.
Collapse
Affiliation(s)
- Kateřina Novotná
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Institute
of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences
of the Czech Republic, Prague 160 00, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Lukáš Tenora
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Institute
of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences
of the Czech Republic, Prague 160 00, Czech Republic
| | - Eva Prchalová
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Institute
of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences
of the Czech Republic, Prague 160 00, Czech Republic
| | - James Paule
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Jesse Alt
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Vijay Veeravalli
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Jenny Lam
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Ying Wu
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Ivan Šnajdr
- Institute
of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences
of the Czech Republic, Prague 160 00, Czech Republic
| | - Sadakatali Gori
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Vijaya Saradhi Mettu
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Takashi Tsukamoto
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Pavel Majer
- Institute
of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences
of the Czech Republic, Prague 160 00, Czech Republic
| | - Barbara S. Slusher
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Rana Rais
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
11
|
Parveen S, Shen J, Lun S, Zhao L, Alt J, Koleske B, Leone RD, Rais R, Powell JD, Murphy JR, Slusher BS, Bishai WR. Glutamine metabolism inhibition has dual immunomodulatory and antibacterial activities against Mycobacterium tuberculosis. Nat Commun 2023; 14:7427. [PMID: 37973991 PMCID: PMC10654700 DOI: 10.1038/s41467-023-43304-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
As one of the most successful human pathogens, Mycobacterium tuberculosis (Mtb) has evolved a diverse array of determinants to subvert host immunity and alter host metabolic patterns. However, the mechanisms of pathogen interference with host metabolism remain poorly understood. Here we show that a glutamine metabolism antagonist, JHU083, inhibits Mtb proliferation in vitro and in vivo. JHU083-treated mice exhibit weight gain, improved survival, a 2.5 log lower lung bacillary burden at 35 days post-infection, and reduced lung pathology. JHU083 treatment also initiates earlier T-cell recruitment, increased proinflammatory myeloid cell infiltration, and a reduced frequency of immunosuppressive myeloid cells when compared to uninfected and rifampin-treated controls. Metabolomic analysis of lungs from JHU083-treated Mtb-infected mice reveals citrulline accumulation, suggesting elevated nitric oxide (NO) synthesis, and lowered levels of quinolinic acid which is derived from the immunosuppressive metabolite kynurenine. JHU083-treated macrophages also produce more NO potentiating their antibacterial activity. When tested in an immunocompromised mouse model of Mtb infection, JHU083 loses its therapeutic efficacy suggesting the drug's host-directed effects are likely to be predominant. Collectively, these data reveal that JHU083-mediated glutamine metabolism inhibition results in dual antibacterial and host-directed activity against tuberculosis.
Collapse
Affiliation(s)
- Sadiya Parveen
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jessica Shen
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Liang Zhao
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jesse Alt
- Johns Hopkins University, Baltimore, MD, USA
| | - Benjamin Koleske
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert D Leone
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan D Powell
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Calico, South San Francisco, CA, USA
| | - John R Murphy
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Barbara S Slusher
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Johns Hopkins University, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Wang M, Li J, Yang X, Yan Q, Wang H, Xu X, Lu Y, Li D, Wang Y, Sun R, Zhang S, Zhang Y, Zhang Z, Meng F, Li Y. Targeting TLK2 inhibits the progression of gastric cancer by reprogramming amino acid metabolism through the mTOR/ASNS axis. Cancer Gene Ther 2023; 30:1485-1497. [PMID: 37542132 DOI: 10.1038/s41417-023-00653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Several recent studies have suggested that TLKs are related to tumor progression. However, the function and mechanism of action of TLK2 in gastric cancer (GC) remain elusive. In this study, TLK2 was found to be significantly upregulated in patients with GC and was identified as an independent prognostic factor for GC. Consistently, TLK2 knockdown markedly reduced the aggressiveness of GC, whereas its overexpression had the opposite effect. IP-MS revealed that the effects of TLK2 on GC were mainly associated with metabolism reprogramming. TLK2 knockdown suppressed amino acid synthesis by downregulating the mTORC1 pathway and ASNS expression in GC cells. Mechanistically, mTORC1 directly interacts with the ASNS protein and inhibits its degradation. Further experiments validated that the ASNS protein was degraded via ubiquitination instead of autophagy. Inhibiting and activating the mTORC1 pathway can upregulate and downregulate ASNS ubiquitination, respectively, and the mTORC1 pathway can reverse the regulatory effects of TLK2 on ASNS. Furthermore, TLK2 was found to regulate the mRNA expression of ASNS. TLK2 directly interacted with ATF4, a transcription factor of ASNS, and promoted its expression. The kinase inhibitor fostamatinib significantly inhibited the proliferative, invasive, and migratory capabilities of GC cells by inhibiting TLK2 activity. Altogether, this study reveals a novel functional relationship between TLK2 and the mTORC1/ASNS axis in GC. Therefore, TLK2 may serve as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Mingliang Wang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Jing Li
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Xiaodong Yang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Qiang Yan
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Huizhen Wang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Xin Xu
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Yida Lu
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Deguan Li
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Yigao Wang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Ruochuan Sun
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Shangxin Zhang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Yonghong Zhang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Zhen Zhang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Futao Meng
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China.
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu, China.
| | - Yongxiang Li
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China.
| |
Collapse
|
13
|
Le NT. Metabolic regulation of endothelial senescence. Front Cardiovasc Med 2023; 10:1232681. [PMID: 37649668 PMCID: PMC10464912 DOI: 10.3389/fcvm.2023.1232681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023] Open
Abstract
Endothelial cell (EC) senescence is increasingly recognized as a significant contributor to the development of vascular dysfunction and age-related disorders and diseases, including cancer and cardiovascular diseases (CVD). The regulation of cellular senescence is known to be influenced by cellular metabolism. While extensive research has been conducted on the metabolic regulation of senescence in other cells such as cancer cells and fibroblasts, our understanding of the metabolic regulation of EC senescence remains limited. The specific metabolic changes that drive EC senescence are yet to be fully elucidated. The objective of this review is to provide an overview of the intricate interplay between cellular metabolism and senescence, with a particular emphasis on recent advancements in understanding the metabolic changes preceding cellular senescence. I will summarize the current knowledge on the metabolic regulation of EC senescence, aiming to offer insights into the underlying mechanisms and future research directions.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
14
|
Liu D, Wang H, Li X, Liu J, Zhang Y, Hu J. Small molecule inhibitors for cancer metabolism: promising prospects to be explored. J Cancer Res Clin Oncol 2023; 149:8051-8076. [PMID: 37002510 DOI: 10.1007/s00432-022-04501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 04/03/2023]
Abstract
BACKGROUND Abnormal metabolism is the main hallmark of cancer, and cancer metabolism plays an important role in tumorigenesis, metastasis, and drug resistance. Therefore, studying the changes of tumor metabolic pathways is beneficial to find targets for the treatment of cancer diseases. The success of metabolism-targeted chemotherapy suggests that cancer metabolism research will provide potential new targets for the treatment of malignant tumors. PURPOSE The aim of this study was to systemically review recent research findings on targeted inhibitors of tumor metabolism. In addition, we summarized new insights into tumor metabolic reprogramming and discussed how to guide the exploration of new strategies for cancer-targeted therapy. CONCLUSION Cancer cells have shown various altered metabolic pathways, providing sufficient fuel for their survival. The combination of these pathways is considered to be a more useful method for screening multilateral pathways. Better understanding of the clinical research progress of small molecule inhibitors of potential targets of tumor metabolism will help to explore more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - HongPing Wang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - XingXing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - JiFang Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - YanLing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
15
|
Jiménez-Alonso JJ, López-Lázaro M. Dietary Manipulation of Amino Acids for Cancer Therapy. Nutrients 2023; 15:2879. [PMID: 37447206 DOI: 10.3390/nu15132879] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer cells cannot proliferate and survive unless they obtain sufficient levels of the 20 proteinogenic amino acids (AAs). Unlike normal cells, cancer cells have genetic and metabolic alterations that may limit their capacity to obtain adequate levels of the 20 AAs in challenging metabolic environments. However, since normal diets provide all AAs at relatively constant levels and ratios, these potentially lethal genetic and metabolic defects are eventually harmless to cancer cells. If we temporarily replace the normal diet of cancer patients with artificial diets in which the levels of specific AAs are manipulated, cancer cells may be unable to proliferate and survive. This article reviews in vivo studies that have evaluated the antitumor activity of diets restricted in or supplemented with the 20 proteinogenic AAs, individually and in combination. It also reviews our recent studies that show that manipulating the levels of several AAs simultaneously can lead to marked survival improvements in mice with metastatic cancers.
Collapse
Affiliation(s)
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| |
Collapse
|
16
|
Liu Y, Chou FJ, Lang F, Zhang M, Song H, Zhang W, Davis DL, Briceno NJ, Zhang Y, Cimino PJ, Zaghloul KA, Gilbert MR, Armstrong TS, Yang C. Protein Kinase B (PKB/AKT) Protects IDH-Mutated Glioma from Ferroptosis via Nrf2. Clin Cancer Res 2023; 29:1305-1316. [PMID: 36648507 PMCID: PMC10073324 DOI: 10.1158/1078-0432.ccr-22-3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
PURPOSE Mutations of the isocitrate dehydrogenase (IDH) gene are common genetic mutations in human malignancies. Increasing evidence indicates that IDH mutations play critical roles in malignant transformation and progression. However, the therapeutic options for IDH-mutated cancers remain limited. In this study, the investigation of patient cohorts revealed that the PI3K/protein kinase B (AKT) signaling pathways were enhanced in IDH-mutated cancer cells. EXPERIMENTAL DESIGN In this study, we investigated the gene expression profile in IDH-mutated cells using RNA sequencing after the depletion of AKT. Gene set enrichment analysis (GSEA) and pathway enrichment analysis were used to discover altered molecular pathways due to AKT depletion. We further investigated the therapeutic effect of the AKT inhibitor, ipatasertib (Ipa), combined with temozolomide (TMZ) in cell lines and preclinical animal models. RESULTS GSEA and pathway enrichment analysis indicated that the PI3K/AKT pathway significantly correlated with Nrf2-guided gene expression and ferroptosis-related pathways. Mechanistically, AKT suppresses the activity of GSK3β and stabilizes Nrf2. Moreover, inhibition of AKT activity with Ipa synergizes with the genotoxic agent TMZ, leading to overwhelming ferroptotic cell death in IDH-mutated cancer cells. The preclinical animal model confirmed that combining Ipa and TMZ treatment prolonged survival. CONCLUSIONS Our findings highlighted AKT/Nrf2 pathways as a potential synthetic lethality target for IDH-mutated cancers.
Collapse
Affiliation(s)
- Yang Liu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Fu-Ju Chou
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Fengchao Lang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Meili Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Hua Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Wei Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Dionne L. Davis
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Nicole J. Briceno
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Yang Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Patrick J. Cimino
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Kareem A. Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Mark R. Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Terri S. Armstrong
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| |
Collapse
|
17
|
Suri GS, Kaur G, Carbone GM, Shinde D. Metabolomics in oncology. Cancer Rep (Hoboken) 2023; 6:e1795. [PMID: 36811317 PMCID: PMC10026298 DOI: 10.1002/cnr2.1795] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Oncogenic transformation alters intracellular metabolism and contributes to the growth of malignant cells. Metabolomics, or the study of small molecules, can reveal insight about cancer progression that other biomarker studies cannot. Number of metabolites involved in this process have been in spotlight for cancer detection, monitoring, and therapy. RECENT FINDINGS In this review, the "Metabolomics" is defined in terms of current technology having both clinical and translational applications. Researchers have shown metabolomics can be used to discern metabolic indicators non-invasively using different analytical methods like positron emission tomography, magnetic resonance spectroscopic imaging etc. Metabolomic profiling is a powerful and technically feasible way to track changes in tumor metabolism and gauge treatment response across time. Recent studies have shown metabolomics can also predict individual metabolic changes in response to cancer treatment, measure medication efficacy, and monitor drug resistance. Its significance in cancer development and treatment is summarized in this review. CONCLUSION Although in infancy, metabolomics can be used to identify treatment options and/or predict responsiveness to cancer treatments. Technical challenges like database management, cost and methodical knowhow still persist. Overcoming these challenges in near further can help in designing new treatment régimes with increased sensitivity and specificity.
Collapse
Affiliation(s)
- Gurparsad Singh Suri
- Department of Biological Sciences, California Baptist University, Riverside, California, USA
| | - Gurleen Kaur
- Department of Biological Sciences, California Baptist University, Riverside, California, USA
| | - Giuseppina M Carbone
- Institute of Oncology Research (IOR), Universita' della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Dheeraj Shinde
- Institute of Oncology Research (IOR), Universita' della Svizzera Italiana (USI), Bellinzona, Switzerland
| |
Collapse
|
18
|
Parveen S, Shen J, Lun S, Zhao L, Koleske B, Leone RD, Rais R, Powell JD, Murphy JR, Slusher BS, Bishai WR. Glutamine metabolism inhibition has dual immunomodulatory and antibacterial activities against Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529704. [PMID: 36865287 PMCID: PMC9980128 DOI: 10.1101/2023.02.23.529704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
As one of the most successful human pathogens, Mycobacterium tuberculosis (Mtb) has evolved a diverse array of determinants to subvert host immunity and alter host metabolic patterns. However, the mechanisms of pathogen interference with host metabolism remain poorly understood. Here we show that a novel glutamine metabolism antagonist, JHU083, inhibits Mtb proliferation in vitro and in vivo. JHU083-treated mice exhibit weight gain, improved survival, a 2.5 log lower lung bacillary burden at 35 days post-infection, and reduced lung pathology. JHU083 treatment also initiates earlier T-cell recruitment, increased proinflammatory myeloid cell infiltration, and a reduced frequency of immunosuppressive myeloid cells when compared to uninfected and rifampin-treated controls. Metabolomics analysis of lungs from JHU083-treated Mtb-infected mice revealed reduced glutamine levels, citrulline accumulation suggesting elevated NOS activity, and lowered levels of quinolinic acid which is derived from the immunosuppressive metabolite kynurenine. When tested in an immunocompromised mouse model of Mtb infection, JHU083 lost its therapeutic efficacy suggesting the drug's host-directed effects are likely to be predominant. Collectively, these data reveal that JHU083-mediated glutamine metabolism inhibition results in dual antibacterial and host-directed activity against tuberculosis.
Collapse
Affiliation(s)
- Sadiya Parveen
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jessica Shen
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Liang Zhao
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin Koleske
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Robert D. Leone
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan D. Powell
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - John R. Murphy
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
19
|
Kaushik AK, Tarangelo A, Boroughs LK, Ragavan M, Zhang Y, Wu CY, Li X, Ahumada K, Chiang JC, Tcheuyap VT, Saatchi F, Do QN, Yong C, Rosales T, Stevens C, Rao AD, Faubert B, Pachnis P, Zacharias LG, Vu H, Cai F, Mathews TP, Genovese G, Slusher BS, Kapur P, Sun X, Merritt M, Brugarolas J, DeBerardinis RJ. In vivo characterization of glutamine metabolism identifies therapeutic targets in clear cell renal cell carcinoma. SCIENCE ADVANCES 2022; 8:eabp8293. [PMID: 36525494 PMCID: PMC9757752 DOI: 10.1126/sciadv.abp8293] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/16/2022] [Indexed: 05/05/2023]
Abstract
Targeting metabolic vulnerabilities has been proposed as a therapeutic strategy in renal cell carcinoma (RCC). Here, we analyzed the metabolism of patient-derived xenografts (tumorgrafts) from diverse subtypes of RCC. Tumorgrafts from VHL-mutant clear cell RCC (ccRCC) retained metabolic features of human ccRCC and engaged in oxidative and reductive glutamine metabolism. Genetic silencing of isocitrate dehydrogenase-1 or isocitrate dehydrogenase-2 impaired reductive labeling of tricarboxylic acid (TCA) cycle intermediates in vivo and suppressed growth of tumors generated from tumorgraft-derived cells. Glutaminase inhibition reduced the contribution of glutamine to the TCA cycle and resulted in modest suppression of tumorgraft growth. Infusions with [amide-15N]glutamine revealed persistent amidotransferase activity during glutaminase inhibition, and blocking these activities with the amidotransferase inhibitor JHU-083 also reduced tumor growth in both immunocompromised and immunocompetent mice. We conclude that ccRCC tumorgrafts catabolize glutamine via multiple pathways, perhaps explaining why it has been challenging to achieve therapeutic responses in patients by inhibiting glutaminase.
Collapse
Affiliation(s)
- Akash K. Kaushik
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amy Tarangelo
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lindsey K. Boroughs
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mukundan Ragavan
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yuanyuan Zhang
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng-Yang Wu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiangyi Li
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristen Ahumada
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jui-Chung Chiang
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vanina T. Tcheuyap
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Faeze Saatchi
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Quyen N. Do
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cissy Yong
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Tracy Rosales
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christina Stevens
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aparna D. Rao
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Brandon Faubert
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Panayotis Pachnis
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauren G. Zacharias
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hieu Vu
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Cai
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas P. Mathews
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara S. Slusher
- Department of Neurology and Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Payal Kapur
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Matthew Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - James Brugarolas
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J. DeBerardinis
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
20
|
Chen S, Jiang J, Shen A, Miao Y, Cao Y, Zhang Y, Cong P, Gao P. Rewired Metabolism of Amino Acids and Its Roles in Glioma Pathology. Metabolites 2022; 12:918. [PMID: 36295820 PMCID: PMC9611130 DOI: 10.3390/metabo12100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Amino acids (AAs) are indispensable building blocks of diverse bio-macromolecules as well as functional regulators for various metabolic processes. The fact that cancer cells live with a voracious appetite for specific AAs has been widely recognized. Glioma is one of the most lethal malignancies occurring in the central nervous system. The reprogrammed metabolism of AAs benefits glioma proliferation, signal transduction, epigenetic modification, and stress tolerance. Metabolic alteration of specific AAs also contributes to glioma immune escape and chemoresistance. For clinical consideration, fluctuations in the concentrations of AAs observed in specific body fluids provides opportunities to develop new diagnosis and prognosis markers. This review aimed at providing an extra dimension to understanding glioma pathology with respect to the rewired AA metabolism. A deep insight into the relevant fields will help to pave a new way for new therapeutic target identification and valuable biomarker development.
Collapse
Affiliation(s)
- Sirui Chen
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ao Shen
- HE University, Shenyang 110163, China
| | - Ying Miao
- E&M College, Shenyang Aerospace University, Shenyang 110136, China
| | - Yunfeng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Ying Zhang
- Internal Medicine Department, Dalian Public Health Clinical Center, Dalian 116033, China
| | - Peiyu Cong
- Neurosurgery Department, Affiliated Dalian Municipal Central Hospital of Dalian Medical University, Dalian 116022, China
| | - Peng Gao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
21
|
Mohamed E, Kumar A, Zhang Y, Wang AS, Chen K, Lim Y, Shai A, Taylor JW, Clarke J, Hilz S, Berger MS, Solomon DA, Costello JF, Molinaro AM, Phillips JJ. PI3K/AKT/mTOR signaling pathway activity in IDH-mutant diffuse glioma and clinical implications. Neuro Oncol 2022; 24:1471-1481. [PMID: 35287169 PMCID: PMC9435510 DOI: 10.1093/neuonc/noac064] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND IDH-mutant diffuse gliomas are heterogeneous, and improved methods for optimal patient therapeutic stratification are needed. PI3K/AKT/mTOR signaling activity can drive disease progression and potential therapeutic inhibitors of the pathway are available. Yet, the prevalence of PI3K/AKT/mTOR signaling pathway activity in IDH-mutant glioma is unclear and few robust strategies to assess activity in clinical samples exist. METHODS PI3K/AKT/mTOR signaling pathway activity was evaluated in a retrospective cohort of 132 IDH-mutant diffuse glioma (91 astrocytoma and 41 oligodendroglioma, 1p/19q-codeleted) through quantitative multiplex immunoprofiling using phospho-specific antibodies for PI3K/AKT/mTOR pathway members, PRAS40, RPS6, and 4EBP1, and tumor-specific anti-IDH1 R132H. Expression levels were correlated with genomic evaluation of pathway intrinsic genes and univariate and multivariate Cox proportional hazard regression models were used to evaluate the relationship with outcome. RESULTS Tumor-specific expression of p-PRAS40, p-RPS6, and p-4EBP1 was common in IDH-mutant diffuse glioma and increased with CNS WHO grade from 2 to 3. Genomic analysis predicted pathway activity in 21.7% (13/60) while protein evaluation identified active PI3K/AKT/mTOR signaling in 56.6% (34/60). Comparison of expression in male versus female patients suggested sexual dimorphism. Of particular interest, when adjusting for clinical prognostic factors, the level of phosphorylation of RPS6 was strongly associated with PFS (P < .005). Phosphorylation levels of both PRAS40 and RPS6 showed an association with PFS in univariate analysis. CONCLUSIONS Our study emphasizes the value of proteomic assessment of signaling pathway activity in tumors as a means to identify relevant oncogenic pathways and potentially as a biomarker for identifying aggressive disease.
Collapse
Affiliation(s)
- Esraa Mohamed
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Anupam Kumar
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Yalan Zhang
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Albert S Wang
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Katharine Chen
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Yunita Lim
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Anny Shai
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Jennie W Taylor
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Jennifer Clarke
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Stephanie Hilz
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - David A Solomon
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA.,Division of Neuropathology, Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
22
|
Huang M, Xiong D, Pan J, Zhang Q, Sei S, Shoemaker RH, Lubet RA, Montuenga LM, Wang Y, Slusher BS, You M. Targeting Glutamine Metabolism to Enhance Immunoprevention of EGFR-Driven Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105885. [PMID: 35861366 PMCID: PMC9475521 DOI: 10.1002/advs.202105885] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Vaccination against EGFR can be one of the venues to prevent lung cancer. Blocking glutamine metabolism has been shown to improve anticancer immunity. Here, the authors report that JHU083, an orally active glutamine antagonist prodrug designed to be preferentially activated in the tumor microenvironment, has potent anticancer effects on EGFR-driven mouse lung tumorigenesis. Lung tumor development is significantly suppressed when treatment with JHU083 is combined with an EGFR peptide vaccine (EVax) than either single treatment. Flow cytometry and single-cell RNA sequencing of the lung tumors reveal that JHU083 increases CD8+ T cell and CD4+ Th1 cell infiltration, while EVax elicits robust Th1 cell-mediated immune responses and protects mice against EGFRL858R mutation-driven lung tumorigenesis. JHU083 treatment decreases immune suppressive cells, including both monocytic- and granulocytic-myeloid-derived suppressor cells, regulatory T cells, and pro-tumor CD4+ Th17 cells in mouse models. Interestingly, Th1 cells are found to robustly upregulate oxidative metabolism and adopt a highly activated and memory-like phenotype upon glutamine inhibition. These results suggest that JHU083 is highly effective against EGFR-driven lung tumorigenesis and promotes an adaptive T cell-mediated tumor-specific immune response that enhances the efficacy of EVax.
Collapse
Affiliation(s)
- Mofei Huang
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Donghai Xiong
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Jing Pan
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Qi Zhang
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Shizuko Sei
- Chemopreventive Agent Development Research GroupDivision of Cancer PreventionNational Cancer InstituteBethesdaMD20850USA
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research GroupDivision of Cancer PreventionNational Cancer InstituteBethesdaMD20850USA
| | - Ronald A. Lubet
- Chemopreventive Agent Development Research GroupDivision of Cancer PreventionNational Cancer InstituteBethesdaMD20850USA
| | - Luis M. Montuenga
- Program in Solid Tumors and BiomarkersCenter for Applied Medical Research (CIMA)University of NavarraPamplona31009Spain
- Department of Histology and PathologyUniversity of NavarraPamplona31009Spain
- Respiratory Tract Tumors GroupIdisnaPamplona31000Spain
- Respiratory Tract Tumors ProgramCIBERONCMadrid28013Spain
| | - Yian Wang
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Barbara S. Slusher
- Johns Hopkins Drug DiscoveryJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMD2128USA
| | - Ming You
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| |
Collapse
|
23
|
Stumpo V, Guida L, Bellomo J, Van Niftrik CHB, Sebök M, Berhouma M, Bink A, Weller M, Kulcsar Z, Regli L, Fierstra J. Hemodynamic Imaging in Cerebral Diffuse Glioma-Part B: Molecular Correlates, Treatment Effect Monitoring, Prognosis, and Future Directions. Cancers (Basel) 2022; 14:1342. [PMID: 35267650 PMCID: PMC8909110 DOI: 10.3390/cancers14051342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Gliomas, and glioblastoma in particular, exhibit an extensive intra- and inter-tumoral molecular heterogeneity which represents complex biological features correlating to the efficacy of treatment response and survival. From a neuroimaging point of view, these specific molecular and histopathological features may be used to yield imaging biomarkers as surrogates for distinct tumor genotypes and phenotypes. The development of comprehensive glioma imaging markers has potential for improved glioma characterization that would assist in the clinical work-up of preoperative treatment planning and treatment effect monitoring. In particular, the differentiation of tumor recurrence or true progression from pseudoprogression, pseudoresponse, and radiation-induced necrosis can still not reliably be made through standard neuroimaging only. Given the abundant vascular and hemodynamic alterations present in diffuse glioma, advanced hemodynamic imaging approaches constitute an attractive area of clinical imaging development. In this context, the inclusion of objective measurable glioma imaging features may have the potential to enhance the individualized care of diffuse glioma patients, better informing of standard-of-care treatment efficacy and of novel therapies, such as the immunotherapies that are currently increasingly investigated. In Part B of this two-review series, we assess the available evidence pertaining to hemodynamic imaging for molecular feature prediction, in particular focusing on isocitrate dehydrogenase (IDH) mutation status, MGMT promoter methylation, 1p19q codeletion, and EGFR alterations. The results for the differentiation of tumor progression/recurrence from treatment effects have also been the focus of active research and are presented together with the prognostic correlations identified by advanced hemodynamic imaging studies. Finally, the state-of-the-art concepts and advancements of hemodynamic imaging modalities are reviewed together with the advantages derived from the implementation of radiomics and machine learning analyses pipelines.
Collapse
Affiliation(s)
- Vittorio Stumpo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Lelio Guida
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jacopo Bellomo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Christiaan Hendrik Bas Van Niftrik
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Martina Sebök
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Moncef Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, 69500 Lyon, France;
| | - Andrea Bink
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Zsolt Kulcsar
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| |
Collapse
|
24
|
Inhibitory Effect of a Glutamine Antagonist on Proliferation and Migration of VSMCs via Simultaneous Attenuation of Glycolysis and Oxidative Phosphorylation. Int J Mol Sci 2021; 22:ijms22115602. [PMID: 34070527 PMCID: PMC8198131 DOI: 10.3390/ijms22115602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of atherosclerosis and restenosis. Glycolysis and glutaminolysis are increased in rapidly proliferating VSMCs to support their increased energy requirements and biomass production. Thus, it is essential to develop new pharmacological tools that regulate metabolic reprogramming in VSMCs for treatment of atherosclerosis. The effects of 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist, have been broadly investigated in highly proliferative cells; however, it is unclear whether DON inhibits proliferation of VSMCs and neointima formation. Here, we investigated the effects of DON on neointima formation in vivo as well as proliferation and migration of VSMCs in vitro. DON simultaneously inhibited FBS- or PDGF-stimulated glycolysis and glutaminolysis as well as mammalian target of rapamycin complex I activity in growth factor-stimulated VSMCs, and thereby suppressed their proliferation and migration. Furthermore, a DON-derived prodrug, named JHU-083, significantly attenuated carotid artery ligation-induced neointima formation in mice. Our results suggest that treatment with a glutamine antagonist is a promising approach to prevent progression of atherosclerosis and restenosis.
Collapse
|
25
|
Di Gregorio E, Miolo G, Saorin A, Steffan A, Corona G. From Metabolism to Genetics and Vice Versa: The Rising Role of Oncometabolites in Cancer Development and Therapy. Int J Mol Sci 2021; 22:5574. [PMID: 34070384 PMCID: PMC8197491 DOI: 10.3390/ijms22115574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last decades, the study of cancer metabolism has returned to the forefront of cancer research and challenged the role of genetics in the understanding of cancer development. One of the major impulses of this new trend came from the discovery of oncometabolites, metabolic intermediates whose abnormal cellular accumulation triggers oncogenic signalling and tumorigenesis. These findings have led to reconsideration and support for the long-forgotten hypothesis of Warburg of altered metabolism as oncogenic driver of cancer and started a novel paradigm whereby mitochondrial metabolites play a pivotal role in malignant transformation. In this review, we describe the evolution of the cancer metabolism research from a historical perspective up to the oncometabolites discovery that spawned the new vision of cancer as a metabolic disease. The oncometabolites' mechanisms of cellular transformation and their contribution to the development of new targeted cancer therapies together with their drawbacks are further reviewed and discussed.
Collapse
Affiliation(s)
- Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Asia Saorin
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| |
Collapse
|
26
|
Schiliro C, Firestein BL. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells 2021; 10:cells10051056. [PMID: 33946927 PMCID: PMC8146072 DOI: 10.3390/cells10051056] [Citation(s) in RCA: 258] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells alter metabolic processes to sustain their characteristic uncontrolled growth and proliferation. These metabolic alterations include (1) a shift from oxidative phosphorylation to aerobic glycolysis to support the increased need for ATP, (2) increased glutaminolysis for NADPH regeneration, (3) altered flux through the pentose phosphate pathway and the tricarboxylic acid cycle for macromolecule generation, (4) increased lipid uptake, lipogenesis, and cholesterol synthesis, (5) upregulation of one-carbon metabolism for the production of ATP, NADH/NADPH, nucleotides, and glutathione, (6) altered amino acid metabolism, (7) metabolism-based regulation of apoptosis, and (8) the utilization of alternative substrates, such as lactate and acetate. Altered metabolic flux in cancer is controlled by tumor-host cell interactions, key oncogenes, tumor suppressors, and other regulatory molecules, including non-coding RNAs. Changes to metabolic pathways in cancer are dynamic, exhibit plasticity, and are often dependent on the type of tumor and the tumor microenvironment, leading in a shift of thought from the Warburg Effect and the “reverse Warburg Effect” to metabolic plasticity. Understanding the complex nature of altered flux through these multiple pathways in cancer cells can support the development of new therapies.
Collapse
Affiliation(s)
- Chelsea Schiliro
- Cell and Developmental Biology Graduate Program and Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA;
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-848-445-8045
| |
Collapse
|
27
|
Alt J, Gori SS, Lemberg KM, Pal A, Veeravalli V, Wu Y, Aguilar JM, Dash RP, Tenora L, Majer P, Sun Q, Slusher BS, Rais R. Glutamine Antagonist GA-607 Causes a Dramatic Accumulation of FGAR which can be used to Monitor Target Engagement. Curr Drug Metab 2021; 22:735-745. [PMID: 34488583 PMCID: PMC8684803 DOI: 10.2174/1389200222666210831125041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Metabolomic analyses from our group and others have shown that tumors treated with glutamine antagonists (GA) exhibit robust accumulation of formylglycinamide ribonucleotide (FGAR), an intermediate in the de novo purine synthesis pathway. The increase in FGAR is attributed to the inhibition of the enzyme FGAR amidotransferase (FGAR-AT) that catalyzes the ATP-dependent amidation of FGAR to formylglycinamidine ribonucleotide (FGAM). While perturbation of this pathway resulting from GA therapy has long been recognized, no study has reported systematic quantitation and analyses of FGAR in plasma and tumors. OBJECTIVE Herein, we aimed to evaluate the efficacy of our recently discovered tumor-targeted GA prodrug, GA-607 (isopropyl 2-(6-acetamido-2-(adamantane-1-carboxamido)hexanamido)-6-diazo-5-oxohexanoate), and demonstrate its target engagement by quantification of FGAR in plasma and tumors. METHODS Efficacy and pharmacokinetics of GA-607 were evaluated in a murine EL4 lymphoma model followed by global tumor metabolomic analysis. Liquid chromatography-mass spectrometry (LC-MS) based methods employing the ion-pair chromatography approach were developed and utilized for quantitative FGAR analyses in plasma and tumors. RESULTS GA-607 showed preferential tumor distribution and robust single-agent efficacy in a murine EL4 lymphoma model. While several metabolic pathways were perturbed by GA-607 treatment, FGAR showed the highest increase qualitatively. Using our newly developed sensitive and selective LC-MS method, we showed a robust >80- and >10- fold increase in tumor and plasma FGAR levels, respectively, with GA-607 treatment. CONCLUSION These studies describe the importance of FGAR quantification following GA therapy in cancer and underscore its importance as a valuable pharmacodynamic marker in the preclinical and clinical development of GA therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Barbara S. Slusher
- Address correspondence to these authors at the Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, Maryland, 21205, USA; Tel: 410-614-0662; Fax: 410-614-0659; E-mail: and Tel: 410-502-0497; E-mail:
| | - Rana Rais
- Address correspondence to these authors at the Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, Maryland, 21205, USA; Tel: 410-614-0662; Fax: 410-614-0659; E-mail: and Tel: 410-502-0497; E-mail:
| |
Collapse
|