1
|
Buettner-Schmidt K, Steward K, Goniewicz ML, Schaeffer Fraase K, Orr M, Miller DR. Development of a Flavor Ingredient Wheel Linking E-Liquid Additives to the Labeled Flavor of Vaping Products. TOXICS 2024; 12:372. [PMID: 38787151 PMCID: PMC11125894 DOI: 10.3390/toxics12050372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
E-liquids contain combinations of chemicals, with many enhancing the sensory attractiveness of the product. Studies are needed to understand and characterize e-liquid ingredients, particularly flavorings, to inform future research and regulations of these products. We identified common flavor ingredients in a convenience sample of commercial e-liquids using gas chromatography-mass spectrometry. E-liquid flavors were categorized by flavor descriptors provided on the product packaging. A Flavor Ingredient Wheel was developed to link e-liquid flavor ingredients with flavor categories. An analysis of 109 samples identified 48 flavor ingredients. Consistency between the labeled flavor and ingredients used to produce such flavor was found. Our novel Flavor Ingredient Wheel organizes e-liquids by flavor and ingredients, enabling efficient analysis of the link between ingredients and their flavor profiles and allowing for quick assessment of an e-liquid ingredient's flavor profile. Investigating ingredient profiles and identifying and classifying commonly used chemicals in e-liquids may assist with future studies and improve the ability to regulate these products.
Collapse
Affiliation(s)
- Kelly Buettner-Schmidt
- School of Nursing, North Dakota State University, Fargo, ND 58108, USA; (K.S.F.); (M.O.); (D.R.M.)
| | - Katherine Steward
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA;
| | - Maciej L. Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Kolby Schaeffer Fraase
- School of Nursing, North Dakota State University, Fargo, ND 58108, USA; (K.S.F.); (M.O.); (D.R.M.)
| | - Megan Orr
- School of Nursing, North Dakota State University, Fargo, ND 58108, USA; (K.S.F.); (M.O.); (D.R.M.)
| | - Donald R. Miller
- School of Nursing, North Dakota State University, Fargo, ND 58108, USA; (K.S.F.); (M.O.); (D.R.M.)
| |
Collapse
|
2
|
Poussin C, Titz B, Xiang Y, Baglia L, Berg R, Bornand D, Choukrallah MA, Curran T, Dijon S, Dossin E, Dulize R, Etter D, Fatarova M, Medlin LF, Haiduc A, Kishazi E, Kolli AR, Kondylis A, Kottelat E, Laszlo C, Lavrynenko O, Eb-Levadoux Y, Nury C, Peric D, Rizza M, Schneider T, Guedj E, Calvino F, Sierro N, Guy P, Ivanov NV, Picavet P, Spinelli S, Hoeng J, Peitsch MC. Blood and urine multi-omics analysis of the impact of e-vaping, smoking, and cessation: from exposome to molecular responses. Sci Rep 2024; 14:4286. [PMID: 38383592 PMCID: PMC10881465 DOI: 10.1038/s41598-024-54474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
Cigarette smoking is a major preventable cause of morbidity and mortality. While quitting smoking is the best option, switching from cigarettes to non-combustible alternatives (NCAs) such as e-vapor products is a viable harm reduction approach for smokers who would otherwise continue to smoke. A key challenge for the clinical assessment of NCAs is that self-reported product use can be unreliable, compromising the proper evaluation of their risk reduction potential. In this cross-sectional study of 205 healthy volunteers, we combined comprehensive exposure characterization with in-depth multi-omics profiling to compare effects across four study groups: cigarette smokers (CS), e-vapor users (EV), former smokers (FS), and never smokers (NS). Multi-omics analyses included metabolomics, transcriptomics, DNA methylomics, proteomics, and lipidomics. Comparison of the molecular effects between CS and NS recapitulated several previous observations, such as increased inflammatory markers in CS. Generally, FS and EV demonstrated intermediate molecular effects between the NS and CS groups. Stratification of the FS and EV by combustion exposure markers suggested that this position on the spectrum between CS and NS was partially driven by non-compliance/dual use. Overall, this study highlights the importance of in-depth exposure characterization before biological effect characterization for any NCA assessment study.
Collapse
Affiliation(s)
- Carine Poussin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Yang Xiang
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Laurel Baglia
- University of Rochester Medical Center, Rochester, NY, USA
| | - Rachel Berg
- University of Rochester Medical Center, Rochester, NY, USA
| | - David Bornand
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | | | - Timothy Curran
- University of Rochester Medical Center, Rochester, NY, USA
| | - Sophie Dijon
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Eric Dossin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Remi Dulize
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Doris Etter
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Maria Fatarova
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Loyse Felber Medlin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Adrian Haiduc
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Edina Kishazi
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Aditya R Kolli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Emmanuel Kottelat
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Csaba Laszlo
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Oksana Lavrynenko
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Yvan Eb-Levadoux
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Catherine Nury
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Dariusz Peric
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Melissa Rizza
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Florian Calvino
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Philippe Guy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Patrick Picavet
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | | | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| |
Collapse
|
3
|
Lenski M, Zarcone G, Maallem S, Garçon G, Lo-Guidice JM, Allorge D, Anthérieu S. Metabolomics Provides Novel Insights into the Potential Toxicity Associated with Heated Tobacco Products, Electronic Cigarettes, and Tobacco Cigarettes on Human Bronchial Epithelial BEAS-2B Cells. TOXICS 2024; 12:128. [PMID: 38393223 PMCID: PMC10893046 DOI: 10.3390/toxics12020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Smoking is an established risk factor for various pathologies including lung cancer. Electronic cigarettes (e-cigs) and heated tobacco products (HTPs) have appeared on the market in recent years, but their safety or, conversely, their toxicity has not yet been demonstrated. This study aimed to compare the metabolome of human lung epithelial cells exposed to emissions of e-cigs, HTPs, or 3R4F cigarettes in order to highlight potential early markers of toxicity. BEAS-2B cells were cultured at the air-liquid interface and exposed to short-term emissions from e-cigs set up at low or medium power, HTPs, or 3R4F cigarettes. Untargeted metabolomic analyses were performed using liquid chromatography coupled with mass spectrometry. Compared to unexposed cells, both 3R4F cigarette and HTP emissions affected the profiles of exogenous compounds, one of which is carcinogenic, as well as those of endogenous metabolites from various pathways including oxidative stress, energy metabolism, and lipid metabolism. However, these effects were observed at lower doses for cigarettes (2 and 4 puffs) than for HTPs (60 and 120 puffs). No difference was observed after e-cig exposure, regardless of the power conditions. These results suggest a lower acute toxicity of e-cig emissions compared to cigarettes and HTPs in BEAS-2B cells. The pathways deregulated by HTP emissions are also described to be altered in respiratory diseases, emphasizing that the toxicity of HTPs should not be underestimated.
Collapse
Affiliation(s)
- Marie Lenski
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
- CHU Lille, Unité Fonctionnelle de Toxicologie, F-59037 Lille, France
| | - Gianni Zarcone
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
| | - Saïd Maallem
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
| | - Jean-Marc Lo-Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
| | - Delphine Allorge
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
- CHU Lille, Unité Fonctionnelle de Toxicologie, F-59037 Lille, France
| | - Sébastien Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
| |
Collapse
|
4
|
Shields PG. Role of untargeted omics biomarkers of exposure and effect for tobacco research. ADDICTION NEUROSCIENCE 2023; 7:100098. [PMID: 37396411 PMCID: PMC10310069 DOI: 10.1016/j.addicn.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Tobacco research remains a clear priority to improve individual and population health, and has recently become more complex with emerging combustible and noncombustible tobacco products. The use of omics methods in prevention and cessation studies are intended to identify new biomarkers for risk, compared risks related to other products and never use, and compliance for cessation and reinitation. to assess the relative effects of tobacco products to each other. They are important for the prediction of reinitiation of tobacco use and relapse prevention. In the research setting, both technical and clinical validation is required, which presents a number of complexities in the omics methodologies from biospecimen collection and sample preparation to data collection and analysis. When the results identify differences in omics features, networks or pathways, it is unclear if the results are toxic effects, a healthy response to a toxic exposure or neither. The use of surrogate biospecimens (e.g., urine, blood, sputum or nasal) may or may not reflect target organs such as the lung or bladder. This review describes the approaches for the use of omics in tobacco research and provides examples of prior studies, along with the strengths and limitations of the various methods. To date, there is little consistency in results, likely due to small number of studies, limitations in study size, the variability in the analytic platforms and bioinformatic pipelines, differences in biospecimen collection and/or human subject study design. Given the demonstrated value for the use of omics in clinical medicine, it is anticipated that the use in tobacco research will be similarly productive.
Collapse
Affiliation(s)
- Peter G. Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH
| |
Collapse
|
5
|
Kanobe MN, Nelson PR, Brown BG, Chen P, Makena P, Caraway JW, Prasad GL, Round EK. Changes in Biomarkers of Exposure and Potential Harm in Smokers Switched to Vuse Vibe or Vuse Ciro Electronic Nicotine Delivery Systems. TOXICS 2023; 11:564. [PMID: 37505530 PMCID: PMC10384956 DOI: 10.3390/toxics11070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Electronic nicotine delivery systems (ENDS) have the potential to provide nicotine to tobacco consumers while reducing exposure to combustion-related toxicants. Here, we report changes in biomarkers of exposure (BoE) and biomarkers of potential harm (BoPH) in smokers who completely switched to Vuse Vibe and Vuse Ciro ENDS products, or to smoking abstinence in a randomized, controlled clinical study. Thirteen BoE (12 urinary and one blood) that indicate exposure to harmful and potentially harmful toxicants (HPHCs) were evaluated at baseline on day 5. Urinary BoPH linked to oxidative stress, platelet activation, and inflammation were also assessed at baseline, and on day 5 and day 7. Nicotine exposure was lower in Vuse Vibe and Vuse Ciro groups compared to baseline values. Urinary non-nicotine BoE decreased significantly (52.3-96.7%) in the Vuse ENDS groups, and the reductions were similar in magnitude to those observed in the abstinence group. Blood carboxyhemoglobin decreased 52.8-55.0% in all study groups. Decreases (10-50%) in BoPH were observed in all study groups. Thus, smokers who switch exclusively to Vuse Vibe or Vuse Ciro products or completely abstain from smoking are exposed to substantially lower levels of HPHCs, and experience improvements in BoPH of oxidative stress and inflammation pathways.
Collapse
Affiliation(s)
- Milly N Kanobe
- RAI Services Company, 401 N. Main Street, Winston-Salem, NC 27101, USA
| | - Paul R Nelson
- Former Employees of RAI Services Company, 105 Bowes Road, Winston Salem, NC 27106, USA
| | - Buddy G Brown
- Former Employees of RAI Services Company, 5714 Wonderous Lane, Durham, NC 27712, USA
| | - Peter Chen
- RAI Services Company, 401 N. Main Street, Winston-Salem, NC 27101, USA
| | - Patrudu Makena
- RAI Services Company, 401 N. Main Street, Winston-Salem, NC 27101, USA
| | - John W Caraway
- RAI Services Company, 401 N. Main Street, Winston-Salem, NC 27101, USA
| | - Gaddamanugu L Prasad
- Former Employees of RAI Services Company, 490 Friendship Place Ct, Lewisville, NC 27023, USA
- Prasad Scientific Consulting LLC, 490 Friendship Place Ct, Lewisville, NC 27023, USA
| | - Elaine K Round
- BAT (Investments) Limited, Globe House, 1 Water Street, London WC2R 3LA, UK
| |
Collapse
|
6
|
Dai HD, Qiu F, Jackson K, Fruttiger M, Rizzo WB. Untargeted Metabolomic Analysis of Sjögren-Larsson Syndrome Reveals a Distinctive Pattern of Multiple Disrupted Biochemical Pathways. Metabolites 2023; 13:682. [PMID: 37367841 DOI: 10.3390/metabo13060682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Sjögren-Larsson syndrome (SLS) is a rare inherited neurocutaneous disease characterized by ichthyosis, spastic diplegia or tetraplegia, intellectual disability and a distinctive retinopathy. SLS is caused by bi-allelic mutations in ALDH3A2, which codes for fatty aldehyde dehydrogenase (FALDH) and results in abnormal lipid metabolism. The biochemical abnormalities in SLS are not completely known, and the pathogenic mechanisms leading to symptoms are still unclear. To search for pathways that are perturbed in SLS, we performed untargeted metabolomic screening in 20 SLS subjects along with age- and sex-matched controls. Of 823 identified metabolites in plasma, 121 (14.7%) quantitatively differed in the overall SLS cohort from controls; 77 metabolites were decreased and 44 increased. Pathway analysis pointed to disrupted metabolism of sphingolipids, sterols, bile acids, glycogen, purines and certain amino acids such as tryptophan, aspartate and phenylalanine. Random forest analysis identified a unique metabolomic profile that had a predictive accuracy of 100% for discriminating SLS from controls. These results provide new insight into the abnormal biochemical pathways that likely contribute to disease in SLS and may constitute a biomarker panel for diagnosis and future therapeutic studies.
Collapse
Affiliation(s)
- Hongying Daisy Dai
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - William B Rizzo
- Department of Pediatrics and Child Health Research Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Children's Hospital & Medical Center, Omaha, NE 68114, USA
| |
Collapse
|
7
|
Diagnosis and prognosis of COVID-19 employing analysis of patients' plasma and serum via LC-MS and machine learning. Comput Biol Med 2022; 146:105659. [PMID: 35751188 PMCID: PMC9123826 DOI: 10.1016/j.compbiomed.2022.105659] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To implement and evaluate machine learning (ML) algorithms for the prediction of COVID-19 diagnosis, severity, and fatality and to assess biomarkers potentially associated with these outcomes. MATERIAL AND METHODS Serum (n = 96) and plasma (n = 96) samples from patients with COVID-19 (acute, severe and fatal illness) from two independent hospitals in China were analyzed by LC-MS. Samples from healthy volunteers and from patients with pneumonia caused by other viruses (i.e. negative RT-PCR for COVID-19) were used as controls. Seven different ML-based models were built: PLS-DA, ANNDA, XGBoostDA, SIMCA, SVM, LREG and KNN. RESULTS The PLS-DA model presented the best performance for both datasets, with accuracy rates to predict the diagnosis, severity and fatality of COVID-19 of 93%, 94% and 97%, respectively. Low levels of the metabolites ribothymidine, 4-hydroxyphenylacetoylcarnitine and uridine were associated with COVID-19 positivity, whereas high levels of N-acetyl-glucosamine-1-phosphate, cysteinylglycine, methyl isobutyrate, l-ornithine and 5,6-dihydro-5-methyluracil were significantly related to greater severity and fatality from COVID-19. CONCLUSION The PLS-DA model can help to predict SARS-CoV-2 diagnosis, severity and fatality in daily practice. Some biomarkers typically increased in COVID-19 patients' serum or plasma (i.e. ribothymidine, N-acetyl-glucosamine-1-phosphate, l-ornithine, 5,6-dihydro-5-methyluracil) should be further evaluated as prognostic indicators of the disease.
Collapse
|
8
|
Dai H, Benowitz NL, Achutan C, Farazi PA, Degarege A, Khan AS. Exposure to Toxicants Associated With Use and Transitions Between Cigarettes, e-Cigarettes, and No Tobacco. JAMA Netw Open 2022; 5:e2147891. [PMID: 35142830 PMCID: PMC8832174 DOI: 10.1001/jamanetworkopen.2021.47891] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IMPORTANCE Transitions between e-cigarettes and cigarettes are common among tobacco users, but empirical evidence on the health outcomes of switching tobacco products is scarce. OBJECTIVES To examine changes in urinary biomarkers between baseline and 1-year follow-up among adult tobacco users switching between e-cigarettes and cigarettes. DESIGN, SETTING, AND PARTICIPANTS This cohort study used data from wave 1 (baseline, September 2013 to December 2014) and wave 2 (1-year follow-up, October 2014 to October 2015) of the Population Assessment of Tobacco and Health Study. A subset of the probability sample of US adults who voluntarily provided biospecimens at 2 waves was analyzed. Participants were divided into 3 mutually exclusive groups at baseline: exclusive cigarette smokers, exclusive e-cigarette users, and dual users. Data analysis was performed in 2021. EXPOSURES Harmful and potentially harmful constituents included nicotine metabolites, tobacco-specific nitrosamines (TSNAs; including 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol [NNAL]), metals, polycyclic aromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs). MAIN OUTCOMES AND MEASURES Within-participant changes in 55 urinary biomarkers of exposure (BOEs) to harmful and potentially harmful constituents were examined using multivariable regression models. RESULTS Among 3211 participants (55.6% women, 68.3% White, 13.2% Black, and 11.8% Hispanic) at baseline, 21.9% of exclusive cigarette users, 42.8% of exclusive e-cigarette users, and 62.1% of dual users changed product use at follow-up (all percentages are weighted). There was a significant reduction in urine concentrations of TSNAs, PAHs, and VOCs when users transitioned from exclusive cigarette to exclusive e-cigarette use, with a 92% decrease in NNAL, from a mean of 168.4 pg/mg creatinine (95% CI, 102.3-277.1 pg/mg creatinine) to 12.9 pg/mg creatinine (95% CI, 6.4-25.7 pg/mg creatinine; P < .001). A similar panel of BOEs decreased when dual users transitioned to exclusive e-cigarette use; NNAL levels decreased by 96%, from a mean of 143.4 pg/mg creatinine (95% CI, 86.7-237.0 pg/mg creatinine) to 6.3 pg/mg creatinine (95% CI, 3.5-11.4 pg/mg creatinine; P < .001). Nicotine metabolites, TSNAs, PAHs, and VOCs significantly increased when baseline exclusive e-cigarette users transitioned to exclusive cigarette use or dual use. Switching from exclusive cigarette use to dual use was not associated with significant decreases in BOEs. CONCLUSIONS AND RELEVANCE This national cohort study provides evidence on the potential harm reduction associated with transitioning from exclusive cigarette use or dual use to exclusive e-cigarette use. e-Cigarettes tend to supplement cigarettes through dual use instead of cessation at the population level. Continuous monitoring of BOE at the population level and assessment of BOE change by product transition are warranted, as well as defined adverse health outcomes.
Collapse
Affiliation(s)
- Hongying Dai
- College of Public Health, University of Nebraska Medical Center, Omaha
| | - Neal L. Benowitz
- The Center for Tobacco Control Research and Education, Department of Medicine, University of California, San Francisco, San Francisco
| | - Chandran Achutan
- College of Public Health, University of Nebraska Medical Center, Omaha
| | | | - Abraham Degarege
- College of Public Health, University of Nebraska Medical Center, Omaha
| | - Ali S. Khan
- College of Public Health, University of Nebraska Medical Center, Omaha
| |
Collapse
|