1
|
Medić A, Milićević T, Khraibah A, Herceg Romanić S, Matek Sarić M, Li Y, D'Mello R, Berezovski M, Popović A, Minić Z, Karadžić I. Total proteome and calcium-binding proteins from human breast milk: Exploring the impact of tobacco smoke exposure and environmental factors. Food Chem 2025; 472:142959. [PMID: 39842200 DOI: 10.1016/j.foodchem.2025.142959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
This study integrates proteome analysis of human breast milk (HBM) from a homogeneous group of mothers who are of similar age and live in the same geographical area, along with an analysis of essential and potentially toxic elements in HBM in relation to lifestyle and environmental factors. This preliminary proteomic study, which examined 11 samples of HBM from lactating women, identified a total of 1619 proteins across all samples, revealing significant differences in proteomes influenced by lactation stages, parity, and exposure to tobacco smoke. The pilot study aimed to explore the feasibility of correlating certain proteins with several elements, considered as indicators of tobacco smoke and environmental influences on HBM. Notably, a clear and significant correlation was found between altered calcium content in HBM and the proteome fraction associated with calcium-binding proteins. The findings suggest that all analyzed factors impact the HBM proteome and the activity of certain enzymes.
Collapse
Affiliation(s)
- Ana Medić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Višegradska 26, 11000 Belgrade, Serbia.
| | - Tijana Milićević
- University of Belgrade, Institute of Physics Belgrade, a National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Abdullah Khraibah
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5 Ottawa, ON, Canada
| | - Snježana Herceg Romanić
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia
| | - Marijana Matek Sarić
- University of Zadar, Department of Health Studies, Splitska 1, 23000, Zadar, Croatia
| | - Yingxi Li
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5 Ottawa, ON, Canada
| | - Rochelle D'Mello
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5 Ottawa, ON, Canada
| | - Maxim Berezovski
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5 Ottawa, ON, Canada
| | - Aleksandar Popović
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Zoran Minić
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5 Ottawa, ON, Canada.
| | - Ivanka Karadžić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Višegradska 26, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Kang L, Bhutto RA, Fan Y, Yi J. Fabrication, characteristics and properties of α-lactalbumin fibril-derived hydrogels: Effects of metal ions type. Food Chem 2025; 470:142715. [PMID: 39742597 DOI: 10.1016/j.foodchem.2024.142715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/03/2025]
Abstract
The effects of different valence metal ions on the formation of hydrogels with α-lactalbumin fibrils (ALAF) were comprehensively examined in this study. The properties of hydrogel were generally characterized with water holding capacity (WHC), rheology, texture, DSC and ICP tests. Except FeCl3, it was shown that KCl, NaCl, CaCl2, MgCl2, NiCl2, and AlCl3 at 90 mM could induce the formation of hydrogels with ALAF (40 mg/mL), and hydrogels formed by high valence metal salts had more good properties (viscoelasticity, WHC, and thermal stability), and the amounts of metal ions released from hydrogels with high valence salts after immersion in deionized water for 90 min were all below 10 %. Among them, the hydrogels fabricated with Mg2+ owned a maximum hardness of 35 g, up to 90 % WHC, and marvelous thermal stability. Overall, the finding about ALAF-derived hydrogels may provide some new insights for the utilization of amyloid-like fibrils in food industry.
Collapse
Affiliation(s)
- Ling Kang
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rizwan Ahmed Bhutto
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuting Fan
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Jiang Yi
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Naftaly S, Pery T, Mhajne R, Ashkar A, Davidovich-Pinhas M, Zinger A. Harnessing the Potential of Human Breast Milk to Boost Intestinal Permeability for Nanoparticles and Macromolecules. J Control Release 2025; 379:768-785. [PMID: 39842727 DOI: 10.1016/j.jconrel.2025.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
The intricate interplay between human breast milk, nanoparticles, and macromolecules holds promise for innovative nutritional delivery strategies. Compared to bovine milk and infant formula, this study explores human breast milk's role in modulating intestinal permeability and its impact on nanoparticle and macromolecule transport. Comparative analysis with bovine milk and infant formula reveals significant elevations in permeability with human breast milk, accompanied by a decrease in transepithelial electrical resistance, suggesting enhanced paracellular transport. Mechanistically, human breast milk reduces Zonula occludens-1 levels, suggesting a regulatory role in intestinal barrier function. Through in vitro and ex vivo evaluations, we aim to understand better the mechanisms behind enhanced permeability and how human breast milk affects nanoparticle physicochemical properties, potentially modulating their behavior. Specifically, human breast milk improves the intestinal permeability of liposomes in a porcine intestinal model, with associated changes in the composition of milk proteins corona related to liposome charge. These findings underscore the unexploited potential of human breast milk in facilitating transport across the intestinal barrier, offering novel avenues for human nutritional delivery and therapeutic interventions.
Collapse
Affiliation(s)
- Si Naftaly
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Topaz Pery
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Rawan Mhajne
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Areen Ashkar
- Faculty of Biotechnology and Food Engineering, Technion, Israel
| | - Maya Davidovich-Pinhas
- Faculty of Biotechnology and Food Engineering, Technion, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Assaf Zinger
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Cardiovascular Sciences Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Neurosurgery Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Resnick Sustainability Center of Catalysis, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Bruce and Ruth Rappaport Cancer Research Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
4
|
Wu Y, Yan Y, Xiong X, Li R, Duan S, Tang M, Szeto IMY, Liu H, Hodgkinson SM, Moughan PJ, Wescombe P, Wang J, Yin Y. Effect of Different Ratios of α-Lactalbumin to β-Casein in Infant Formula on True Ileal Digestibility and Intestinal Morphology of Suckling Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40033781 DOI: 10.1021/acs.jafc.4c10520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Breast milk (BM) is the optimal nutrition source for infants, providing highly digestible proteins. In contrast, the digestibility of proteins in infant formula (IF) varies, influenced by differences in proteins such as α-lactalbumin (α-La) and β-casein (β-CN). This study aimed to evaluate the true ileal digestibility (TID) of amino acids (AAs) in BM and IF with varying α-La and β-CN contents using neonatal piglets. Twenty-four 11-day-old piglets (4 groups; 6 replicates/group) received either a nitrogen-free diet, IF (high infant formula (HIF) with 1.74 g/100 α-La and 2.3 g/100 β-CN; low infant formula (LIF) with 1.07 g/100 α-La and 1.85 g/100 β-CN), or BM (1.82 g/100 α-La and 3.05 g/100 β-CN) for 7 days after 3 prefeed days. IF had higher concentrations of nitrogen, serine, threonine, and proline than BM. Glutamic acid was the most abundant AA in IF and BM, while methionine in BM and LIF or tryptophan in HIF was the least. BM showed the highest TID of AAs, with the LIF had the lowest. The HIF group's TID for AAs, especially tryptophan, was similar to BM and significantly better than LIF. These results suggest that adjusting the α-La and β-CN ratio in IF can improve AA digestibility, approaching BM levels.
Collapse
Affiliation(s)
- Yuliang Wu
- Laboratory of Animal Nutrition and Human Health and Key Laboratory of Agro-ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yalu Yan
- Inner Mongolia Yili Industrial Group, Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing 100070, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China
| | - Xia Xiong
- Laboratory of Animal Nutrition and Human Health and Key Laboratory of Agro-ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Rui Li
- Laboratory of Animal Nutrition and Human Health and Key Laboratory of Agro-ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Sufang Duan
- Inner Mongolia Yili Industrial Group, Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing 100070, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Mengxuan Tang
- Laboratory of Animal Nutrition and Human Health and Key Laboratory of Agro-ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group, Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing 100070, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Hongnan Liu
- Laboratory of Animal Nutrition and Human Health and Key Laboratory of Agro-ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | | | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
| | | | - Jianwu Wang
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
- Xiangya School of Public Health, Central South University, Changsha 410031, China
| | - Yulong Yin
- Laboratory of Animal Nutrition and Human Health and Key Laboratory of Agro-ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
5
|
Buhl EH, Christensen B, Pedersen FH, S Rensen ES. Milk osteopontin has high iron-binding capacity and facilitates iron absorption in intestinal cells. J Dairy Sci 2025; 108:90-100. [PMID: 39694241 DOI: 10.3168/jds.2024-25305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/02/2024] [Indexed: 12/20/2024]
Abstract
Insufficient absorption of iron and the consequent development of iron deficiency have serious health consequences. Hence, identification and development of iron delivery systems that can increase the bioavailability and uptake of dietary iron are important. Osteopontin (OPN) is an acidic and highly phosphorylated integrin-binding protein found in milk where it exists as a full-length protein and as N-terminally derived fragments. Milk OPN can be taken up by enterocytes and transported across the intestinal barrier into the circulation. Milk OPN has previously been shown to bind calcium and magnesium. This study investigates milk OPN as a carrier of iron and its potential to increase iron absorption in intestinal cells. Full-length OPN and N-terminal fragments of OPN were shown to bind ∼30 and ∼10 mol of iron, respectively, and the phosphorylated residues were crucial for iron binding. Osteopontin retained iron bound after simulated gastrointestinal digestion. Immunodetection of digested OPN and OPN-Fe complexes showed that the OPN-Fe complexes were more resistant to pepsin digestion than OPN without bound iron. The cellular uptake of iron was investigated by measuring intracellular ferritin formation and mRNA expression of divalent metal transporter 1 in Caco-2 cells. Osteopontin increased the uptake of iron even in the presence of phytic acid, a dietary inhibitor of iron absorption. These data indicate that OPN can function as an iron carrier for use in alternative strategies for delivering iron in a bioavailable form for intestinal uptake.
Collapse
Affiliation(s)
- Emilie H Buhl
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Brian Christensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Freja H Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Esben S S Rensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
6
|
Li X, Zhang X, Zhang M, Liu X, Gao Z, Zhao J, Qiao W, Chen L. Human milk whey proteins: Constituents, influencing factors, detection methods, and comparative analysis with other sources. Food Chem X 2025; 25:102082. [PMID: 39807410 PMCID: PMC11729002 DOI: 10.1016/j.fochx.2024.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025] Open
Abstract
Whey proteins, the most abundant proteins in human milk (HM), play a vital role in the growth and development of infants. This review first elaborates on the main components of HM whey proteins, including various proteins with specific functions, and details the functions of these proteins in terms of infant nutrition, immunity, as well as growth and development. Secondly, it analyzes factors that affect HM whey proteins, such as maternal differences, dietary habits, and geographical differences. Thirdly, it discusses detection methods for HM whey proteins, covering the principles, advantages, and limitations of different technical means. Finally, it compares whey proteins from different milk sources, highlighting their differences in composition, function, and characteristics. This review aims to comprehensively present the current research status of HM whey protein, provide a scientific basis for maternal and infant health, and contribute to optimizing infant feeding strategies and the research and development of related products.
Collapse
Affiliation(s)
- Xing Li
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaomei Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Minghui Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaojia Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Ziyue Gao
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| |
Collapse
|
7
|
de Wolf JR, Ali K, Legtenberg CG, Verveld W, Bosschaart N. The Refractive Index of Human Milk Serum: Natural Variations and Dependency on Macronutrient Concentrations. Foods 2024; 13:4124. [PMID: 39767066 PMCID: PMC11675773 DOI: 10.3390/foods13244124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The refractive index (RI) of human milk serum (also known as whey, milk soluble fraction or milk plasma) depends on the individual molecular species dissolved in the serum and their concentrations. Although the human milk serum RI is known to influence milk analysis methods based on light scattering, the RI dependency on human milk serum composition is currently unknown. Therefore, we systematically evaluate how the RI depends on natural variations in macronutrient concentrations in the soluble fraction. We measure RI variations in serum simulating samples with controlled macronutrient concentrations, as well as skimmed and whole fore-, bulk, and hindmilk from 19 donors. For both types of samples, we relate the measured RI to the macronutrient composition. From the serum simulating samples, we observe that the RI depends more on variations in whey protein, than carbohydrate concentrations, while minerals have negligible influence. For all donated samples, the average RI was 1.3470 (range 1.3466-1.3474). Per donor, no significant differences were observed in RI between fore-, bulk, and hindmilk. We conclude that protein and solids-not-fat (i.e., the total contribution of carbohydrates, proteins and minerals present in milk) concentrations are most predictive for human milk serum RI.
Collapse
Affiliation(s)
- Johanna R. de Wolf
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands (N.B.)
| | | | | | | | | |
Collapse
|
8
|
Ghadimi D, Kaya AŞN, Krüger S, Röcken C, Schäfer H, Uchiyama J, Matsuzaki S, Bockelmann W. Exploring interplay between bovine milk-derived α-lactalbumin, pathogenic bacteria, and bacteriophages at the molecular interface of inflammation. Comp Immunol Microbiol Infect Dis 2024; 115:102271. [PMID: 39489117 DOI: 10.1016/j.cimid.2024.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
There is so far no available data about how the additive, synergistic, or antagonistic effects of the combined form of alpha-lactalbumin (α-La) and bacteriophages might modulate the cellular milieu of the host-pathogen interface. A co-culture of colonocytes and hepatocytes was stimulated with Pseudomonas aeruginosa PAO1 in the presence of KPP22 phage and incubated for 6 hours in medium alone or medium supplemented with bovine milk-origin α-La. The combination of KPP22 phage and α-La significantly inhibited P.a PAO1-elicited secretion of IL-1β, IL-6, and ICAM-1, which are the mediators and enzymes associated with the inflammatory response to an infectious-inflamed milieu. Cell viability was higher in the P.a PAO1+ KPP22 phage group compared to the P.a PAO1alone group. KPP22 phage and α-La, either alone or in combination, rescued P.a PAO1-induced aberrant PGE1/PGE2 production ratios. The convergence of ingested α-La and phages mitigates pro-inflammatory mediators. α-La leads to an increased sensitivity of opportunistic pathogenic bacteria to phages. Structural, functional, or immunological similarities between ingested α-La and phages play an important role in the mitigation of infection-driven pathobiological processes.
Collapse
Affiliation(s)
- Darab Ghadimi
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, Kiel D-24103, Germany.
| | - Aysel Şahi N Kaya
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Antalya Bilim University, Antalya, Turkey
| | - Sandra Krüger
- Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein, Arnold-Heller-Straße 3/14, Kiel D-24105, Germany
| | - Christoph Röcken
- Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein, Arnold-Heller-Straße 3/14, Kiel D-24105, Germany
| | - Heiner Schäfer
- Laboratory of Molecular Gastroenterology & Hepatology, Christian-Albrechts-University & UKSH Campus Kiel, Kiel 24105, Germany
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shigenobu Matsuzaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi, Japan
| | - Wilhelm Bockelmann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, Kiel D-24103, Germany
| |
Collapse
|
9
|
de Oliveira Bianchi JR, Fabrino DL, Quintão CMF, Dos Reis Coimbra JS, Santos IJB. Self-assembled α-lactalbumin nanostructures: encapsulation and controlled release of bioactive molecules in gastrointestinal in vitro model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9592-9602. [PMID: 39099556 DOI: 10.1002/jsfa.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Implementing encapsulation techniques is pivotal in safeguarding bioactive molecules against environmental conditions for drug delivery systems. Moreover, the food-grade nanocarrier is a delivery system and food ingredient crucial in creating nutraceutical foods. Nano α-lactalbumin has been shown to be a promissory nanocarrier for hydrophobic molecules. Furthermore, the nanoprotein can enhance the tecno-functional properties of food such as foam and emulsion. The present study investigated the nanostructured α-lactalbumin protein (nano α-la) as a delivery and controlled release system for bioactive molecules in a gastric-intestinal in vitro mimic system. RESULTS The nano α-la was synthesized by a low self-assembly technique, changing the solution ionic strength by NaCl and obtaining nano α-la 191.10 ± 21.33 nm and a spherical shape. The nano α-la showed higher encapsulation efficiency and loading capacity for quercetin than riboflavin, a potential carrier for hydrophobic compounds. Thermal analysis of nano α-la resulted in a ΔH of -1480 J g-1 for denaturation at 57.44 °C. The nanostructure formed by self-assembly modifies the foam volume increment and stability. Also, differences between nano and native proteins in emulsion activity and stability were noticed. The release profile in vitro showed that the nano α-la could not hold the molecules in gastric fluid. The Weibull and Korsmeyer-Peppas model better fits the release profile behavior in the studied fluids. CONCLUSION The present study shows the possibility of nano α-la as an alternative to molecule delivery systems and nutraceutical foods' formulation because of the high capacity to encapsulate hydrophobic molecules and the improvement of techno-functional properties. However, the nanocarrier is not perfectly suitable for the sustainable delivery of molecules in the gastrointestinal fluid, demanding improvements in the nanocarrier. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jhonatan Rafael de Oliveira Bianchi
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del Rei (UFSJ), Alto Paraopeba Campus, Ouro Branco, Brazil
| | - Daniela Leite Fabrino
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del Rei (UFSJ), Alto Paraopeba Campus, Ouro Branco, Brazil
| | - Cristiane Medina Finzi Quintão
- Department of Chemical Engineering, Federal University of São João del Rei (UFSJ), Alto Paraopeba Campus, Ouro Branco, Brazil
| | | | - Igor José Boggione Santos
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del Rei (UFSJ), Alto Paraopeba Campus, Ouro Branco, Brazil
| |
Collapse
|
10
|
Kiarashi M, Yasamineh S. Albumin nanoparticles are a promising drug delivery system in dentistry. Biomed Eng Online 2024; 23:122. [PMID: 39605007 PMCID: PMC11600845 DOI: 10.1186/s12938-024-01318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Periodontal infection is a long-lasting inflammatory condition caused by the growth and development of an abnormal and harmful community of microorganisms. This destructive illness leads to the loss of the tissues that support the teeth, degradation of the bone surrounding the teeth, and eventually tooth loss. To treat oral infections, it is necessary to use nonsurgical methods such as antibiotics. However, the indiscriminate and incorrect use of antibiotics results in drug resistance. Among these alternate therapeutic options, using nanoparticles to treat infectious dental disease was particularly significant. Consequently, researchers have worked to develop an effective and satisfactory drug delivery method for treating periodontal and dental illnesses. Albumin nanoparticles serve a considerable function as carriers in the drug delivery of chemical and biomolecular medications, such as anticancer treatments; they have several advantages, including biocompatibility and biodegradability, and they are well-tolerated with no adverse effects. Albumin nanoparticles have several benefits over other nanomaterials. Protein nanocarriers provide advantages such as biocompatibility, biodegradability, reduced immunogenicity, and lower cytotoxicity. Furthermore, this nanoparticle demonstrated significant intrinsic antibacterial properties without being loaded with antibiotic medicines. As a medication and antibacterial nanoparticle delivery method, albumin nanoparticles have substantial applications in periodontal and dental infectious disorders such as periodontal infection, apical periodontitis, and peri-implantitis. As a result, in this article, we studied the usage of albumin nanoparticles in dental disorders.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
11
|
Jiang R, Du X, Lönnerdal B. Effects of Forming Lactoferrin-Milk Protein Complexes on Lactoferrin Functionality and Intestinal Development in Infancy. Nutrients 2024; 16:4077. [PMID: 39683471 DOI: 10.3390/nu16234077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Lactoferrin (Lf) is an iron-binding glycoprotein with multiple bioactivities, including promotion of cell proliferation and differentiation, immunomodulation, and antimicrobial activity. Lf, a basic glycoprotein, can bind to α-lactalbumin (α-Lac), an acidic whey protein. The current study aimed to evaluate whether Lf forms protein complexes with α-Lac and proteins/peptides from whey protein hydrolysate (WPH) and nonfat bovine milk powder (MP) and whether forming protein complexes influences resistance to gastrointestinal digestion and affects the bioactivities of Lf in human intestinal epithelial cells (HIECs and differentiated Caco-2 cells). METHODS Lf was blended with α-Lac, WPH, or MP. Assays were conducted to evaluate the bioactivities of proteins (Lf, α-Lac, WPH, or MP) and Lf-protein blends on HIECs and Caco-2 cells. RESULTS (1) Lf forms complexes with α-Lac and proteins/peptides from WPH and MP; (2) compared with Lf alone, complexed Lf shows greater resistance to in vitro digestion; (3) forming protein complexes does not affect Lf's binding to the Lf receptor or its uptake by HIECs; and (4) forming protein complexes does not impact Lf's bioactivities, including the promotion of cell proliferation and differentiation, reduction of cell permeability by upregulating tight-junction proteins, immune modulation through the regulation of IL-18, inhibition of enteropathogenic Escherichia coli growth, and modulation of immune responses to EPEC infection. CONCLUSIONS Lf forms complexes with α-Lac and other milk proteins/peptides from WPH and MP in protein blends, and forming complexes does not affect the functionalities of Lf.
Collapse
Affiliation(s)
- Rulan Jiang
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Xiaogu Du
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA 95616, USA
| |
Collapse
|
12
|
Pérez Núñez I, Díaz R, Quiñones J, Martínez A, Velázquez L, Huaiquipán R, Tapia D, Muñoz A, Valdés M, Sepúlveda N, Paz E. Molecular Characteristics and Processing Technologies of Dairy Products from Non-Traditional Species. Molecules 2024; 29:5427. [PMID: 39598816 PMCID: PMC11597077 DOI: 10.3390/molecules29225427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Non-bovine dairy animals, commonly referred to as non-traditional dairy species, include goats, sheep, yaks, buffalo, donkeys, alpacas, llamas, and other less commonly farmed species. These animals have been integral to livestock systems since ancient times, providing milk and other essential products. Despite their historical significance, dairy production from many of these species remains predominantly confined to rural areas in developing countries, where scientific advancements and technical improvements are often limited. As a consequence of this, the scientific literature and technological developments in the processing and characterization of dairy products from these species have lagged behind those for cow's milk. This review aims to compile and analyze existing research on dairy products derived from non-traditional animals, focusing on their molecular characteristics, including proteins (alpha, beta, kappa, and total casein), fats (cholesterol and total fat), lactose, albumin, ash, total solids, and somatic cell count, among others, for each of these species. Additionally, we discuss emerging technologies employed in their processing, encompassing both non-thermal methods (such as high-pressure processing, pulsed electric fields, ultrasound processing, UV-C irradiation, gamma radiation, microfiltration, and cold plasma processing) and thermal methods (such as ohmic heating). This review also explores the specific potential applications and challenges of implementing these technologies. By synthesizing recent findings, we aim to stimulate further research into innovative technologies and strategies that can enhance the quality and yield of non-bovine dairy products. Understanding the unique properties of milk from these species may lead to new opportunities for product development, improved processing methods, and increased commercialization in both developing and developed markets.
Collapse
Affiliation(s)
- Isabela Pérez Núñez
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile; (I.P.N.); (R.H.); (D.T.); (A.M.); (M.V.)
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Ailín Martínez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
| | - Rodrigo Huaiquipán
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile; (I.P.N.); (R.H.); (D.T.); (A.M.); (M.V.)
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
| | - Daniela Tapia
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile; (I.P.N.); (R.H.); (D.T.); (A.M.); (M.V.)
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
| | - Alex Muñoz
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile; (I.P.N.); (R.H.); (D.T.); (A.M.); (M.V.)
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
| | - Marcos Valdés
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile; (I.P.N.); (R.H.); (D.T.); (A.M.); (M.V.)
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
| | - Néstor Sepúlveda
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (J.Q.); (A.M.); (L.V.); (N.S.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| |
Collapse
|
13
|
Liang D, Jiang Z, Zhang Y, Li N, Jiang H, Ding G. Maternal BMI During Lactation Is Associated with Major Protein Compositions in Early Mature Milk. Nutrients 2024; 16:3811. [PMID: 39599598 PMCID: PMC11597192 DOI: 10.3390/nu16223811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES The present study identified multiple proteins in early mature milk and explored the correlation between protein compositions in HM and maternal BMI during lactation. METHODS A total of 70 mothers giving birth to single-term infants from four representative cites were enrolled in this research. Milk samples were collected between 9 and 11 a.m. to avoid the influence of circadian rhythms. The concentration of total protein in the milk samples was determined using the Bradford method, and the concentrations of α-lactalbumin, lactoferrin, osteopontin, αs-1 casein, β-casein, and κ-casein, butyrophilin, periodic acid Schiff 6/7, fatty acid-binding protein, and xanthine oxidoreductase in the milk samples were measured through a previously published method using ultra-performance liquid chromatography coupled with mass spectrometry. A semi-structured questionnaire investigation and body measurements were carried out by trained investigators to collect the information of subjects. RESULTS In the univariate models, the concentrations of TP (r = 0.306), α-La (r = 0.260), LF (r = 0.371), OPN (r = 0.286), and αS1-CN (r = 0.324) were all positively and significantly correlated with maternal BMI. In the models' adjusted covariates, the concentrations of TP (Lg β = 7.4 × 10-3), LF (Lg β = 19.2 × 10-3), αS1-CN (Lg β = 8.2 × 10-3) and the proportion of LF (β = 0.20%) were positively correlated with continuous maternal BMI changes. TP concentrations in the HM of obese mothers were higher than in the other three groups (Lg β: 66.7 × 10-3~140.5 × 10-3), α-La concentrations were higher than in the underweight and normal groups (Lg β: 94.4 × 10-3~145.7 × 10-3), and OPN concentrations were higher than in the overweight groups (Lg β = 103.6 × 10-3). The concentrations of LF (Lg β: -298.2 × 10-3~-191.0 × 10-3), OPN (Lg β: -248.9 × 10-3~-145.3 × 10-3), and αS1-CN (Lg β: -160.7 × 10-3~-108.3 × 10-3) in the HM of underweight mothers were lower than those in the other three groups. β-CN concentrations were lower than normal (Lg β = -125.1 × 10-3) and obese groups (Lg β = -165.7 × 10-3), κ-CN concentrations were lower than the overweight (Lg β = -132.5 × 10-3) and obese groups (Lg β = -147.9 × 10-3), and the proportion of LF was lower than that of the overweight (β = -2.80%) and obese groups (β = -2.52%). The proportion of LF in normal mothers was lower than that in the overweight group (β = -1.15%). No statistically significant associations between four MFGM proteins and maternal BMI were determined as the equation models could not be fitted (p for F-test < 0.05). CONCLUSIONS Obese mothers had higher concentrations of multiple protein components than other groups, while underweight mothers had lower concentrations. The association between BMI and protein compositions may be more pronounced for certain protein types.
Collapse
Affiliation(s)
- Dong Liang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China;
| | - Zeyu Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (Z.J.); (Y.Z.)
| | - Yumei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (Z.J.); (Y.Z.)
| | - Ning Li
- China National Center for Food Safety Risk Assessment, Beijing 100022, China;
| | - Hua Jiang
- School of Nursing, Peking University, Beijing 100191, China;
| | - Gangqiang Ding
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China;
| |
Collapse
|
14
|
Al-Wraikat M, Zhang L, Li L, Abubaker MA, Liu Y. Recent advances in wolfberry polysaccharides and whey protein-based biopolymers for regulating the diversity of gut microbiota and its mechanism: A review. Int J Biol Macromol 2024; 281:136401. [PMID: 39383924 DOI: 10.1016/j.ijbiomac.2024.136401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/11/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Imbalances in gut microbiota diversity are associated with various health issues, including obesity and related disorders. There is a growing interest in developing synergistic biopolymers based on wolfberry polysaccharides and whey protein to address these problems due to their potential health benefits. This review explores recent advances in understanding how functional foods based on Lycium barbarum polysaccharides (LBP) and whey protein (WP) influence gut microbiota diversity and their underlying mechanisms. We examine the impact of these biopolymers on microbial composition and functionality, focusing on their roles in improving health by regulating gut microbiota. The combined effects of WP and LBP significantly enhance gut microbiome metabolic activities and taxonomic diversity, offering promising avenues for treating obesity and related disorders.
Collapse
Affiliation(s)
- Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Lan Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Linqiang Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
15
|
Luo F, Zhang M, Zhang L, Zhou P. Nutritional and health effects of bovine colostrum in neonates. Nutr Rev 2024; 82:1631-1645. [PMID: 38052234 DOI: 10.1093/nutrit/nuad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
High concentrations of immunoglobulins, bioactive peptides, and growth factors are found in bovine colostrum (BC), the milk produced by cows in the first few days after parturition. Various biological functions make it increasingly used to provide nutritional support and immune protection to the offspring of many species, including humans. These biological functions include cell growth stimulation, anti-infection, and immunomodulation. The primary components and biological functions of colostrum were reviewed in the literature, and the authors also looked at its latent effects on the growth and development of neonates as well as on conditions such as infections, necrotizing enterocolitis, short bowel syndrome, and feeding intolerance. The importance of BC in neonatal nutrition, immune support, growth and development, and gut health has been demonstrated in a number of experimental and animal studies. BC has also been shown to be safe at low doses without adverse effects in newborns. BC supplementation has been shown to be efficient in preventing several disorders, including rotavirus diarrhea, necrotizing enterocolitis, and sepsis in animal models of prematurity and some newborn studies. Therefore, BC supplementation should be considered in cases where maternal milk is insufficient or donor milk is unavailable. The optimal age, timing, dosage, and form of BC administration still require further investigation.
Collapse
Affiliation(s)
- Fangmei Luo
- Department of Neonatology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Min Zhang
- Department of Neonatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Lian Zhang
- Department of Neonatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Ping Zhou
- Department of Neonatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| |
Collapse
|
16
|
Ahadi-Amandi K, Ghadami SA, Sayari N, Khodarahmi R. Purification of α-lactalbumin and β-lactoglobulin from cow milk. Protein Expr Purif 2024; 223:106555. [PMID: 39004261 DOI: 10.1016/j.pep.2024.106555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Whey, a valuable byproduct of dairy processing, contains essential proteins like β-lactoglobulin (βLG) and α-lactalbumin (αLA), making it a focus of research for its nutritional benefits. Various techniques, including chromatography and membrane filtration, are employed for protein extraction, often requiring multiple purification steps. One approach that has gained prominence for the purification and concentration of proteins, including those present in whey, is the use of polyethylene glycol (PEG) in aqueous two-phase systems. Our study simplifies this process by using PEG alone for whey protein purification. This approach yielded impressive results, achieving 92 % purity for βLG and 90 % for αLA. These findings underscore the effectiveness of PEG-based purification in isolating whey proteins with high purity.
Collapse
Affiliation(s)
- Kimia Ahadi-Amandi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | | | - Narges Sayari
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
17
|
Zhu Z, Bu S, Liu J, Niu C, Wang L, Yuan H, Zhang L, Song Y. Label-free-based proteomics analysis reveals differential proteins of sheep, goat, and cow milk. J Dairy Sci 2024; 107:8908-8918. [PMID: 39004124 DOI: 10.3168/jds.2024-24998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Regarding the limited information on species protein differences between sheep, goat, and cow milk, we analyzed the differentially expressed proteins in sheep, goat, and cow milk and their functional differences using label-free proteomics technology to identify potential biomarkers. In all, 770 proteins and 2,914 peptide segments were identified. Statistical analysis showed significant differences in the relative abundances of the 74 proteins among sheep, goat, and cow milk. CSN3 and LALBA can be used as potential biomarkers for goat milk, XDH can be used as a potential biomarker for cow milk, and CTSB and BPIFB1 can be used as potential biomarkers for sheep milk. Functional analysis using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes showed that these significantly different proteins were enriched by different pathways, including thyroid hormone synthesis and glycerol phospholipid metabolism. The data revealed differences in the amounts and physiological functions of the milk proteins of different species, which may provide an important basis for research on the nutritional composition of dairy products and adulteration identification technology.
Collapse
Affiliation(s)
- Zhongshi Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shuhai Bu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jiaxin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chen Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Li Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hao Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
18
|
Jouyaeian P, Kamkar-Vatanparast M, Tehranian-Torghabeh F, Hoseinpoor S, Saberi MR, Chamani J. New perspective into the interaction behavior explore of Nano-berberine with alpha-lactalbumin in the presence of beta-lactoglobulin: Multi-spectroscopic and molecular dynamic investigations. J Mol Struct 2024; 1316:139020. [DOI: 10.1016/j.molstruc.2024.139020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Sriani T, Mahardika M, Arifvianto B, Yusof F, Whulanza Y, Prihandana GS, Baskoro AS. Study of Polysulfone-Impregnated Hydroxyapatite for Ultrafiltration in Whey Protein Separation. Polymers (Basel) 2024; 16:3079. [PMID: 39518297 PMCID: PMC11548170 DOI: 10.3390/polym16213079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Polysulfone (Psf) ultrafiltration flat-sheet membranes were modified with hydroxyapatite (HA) powder during preparation using the wet-phase inversion method. HA was incorporated to enhance the protein separation capabilities. The asymmetric Psf membranes were synthesized using NMP as the solvent. Through Scanning Electron Microscopy (SEM) analysis, it was revealed that HA was distributed across the membrane. Incorporating HA led to higher flux, the improved rejection of protein, and enhanced surface hydrophilicity. The permeability flux increased with HA concentration, peaking at 0.3 wt.%, resulting in a 38% improvement to 65 LMH/bar. Whey protein separation was evaluated using the model proteins BSA and lysozyme, representing α-Lactalbumin. The results of protein rejection for the blend membranes indicated that the rejection rates for BSA and lysozyme increased to 97.2% and 73%, respectively. Both the native and blend membranes showed similar BSA rejection rates; however, the blend membranes demonstrated better performance in lysozyme separation, indicating superior selectivity compared to native membranes. The modified membranes exhibited improved hydrophilicity, with water contact angles decreasing from 66° to 53°, alongside improved antifouling properties, indicated by a lower flux decline ratio value. This simple and economical modification method enhances permeability without sacrificing separation efficiency, hence facilitating the scalability of membrane production in the whey protein separation industry.
Collapse
Affiliation(s)
- Tutik Sriani
- Department of Research and Development, PT. Global Meditek Utama-IITOYA, Sardonoharjo, Ngaglik, Sleman, Yogyakarta 55581, Indonesia;
| | - Muslim Mahardika
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia; (M.M.); (B.A.)
| | - Budi Arifvianto
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia; (M.M.); (B.A.)
| | - Farazila Yusof
- Centre of Advanced Manufacturing & Material Processing (AMMP Centre), Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Foundation Studies in Science, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Yudan Whulanza
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok 16425, Indonesia;
| | - Gunawan Setia Prihandana
- Department of Industrial Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Surabaya 60115, Indonesia
| | - Ario Sunar Baskoro
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok 16425, Indonesia;
| |
Collapse
|
20
|
Zou Y, Chen Y, Meng Q, Wang Y, Zhang Y. Cow Milk Fatty Acid and Protein Composition in Different Breeds and Regions in China. Molecules 2024; 29:5142. [PMID: 39519783 PMCID: PMC11547715 DOI: 10.3390/molecules29215142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cow milk is rich in proteins, fats, carbohydrates, and minerals; however, its precise nutrient content varies based on various factors. In the current study, we evaluated the differences in the fatty acid and protein contents of milk and the factors associated with these differences. To achieve this, samples were collected from seven types of cows in different regions. These included samples from three dairy breeds: Chinese Holstein milk from Beijing, China (BH), Chinese Holstein milk (HH) and Jersey milk (JS) from Hebei province, China; and four dairy/meat breeds: Sanhe milk (SH) from Inner Mongolia Autonomous Region, China, Xinjiang brown milk (XH) and Simmental milk (SI) from Xinjiang Uygur Autonomous Region, China, and Shu Xuanhua milk (SX) from Sichuan province, China. Breed significantly affects total fat, fatty acid, and protein contents. Additionally, geographic region significantly affects the contents of different fatty acids, α-lactalbumin, and lactoferrin. JS has the highest total fat and casein contents. XH samples contain significantly higher unsaturated fatty acid content than BH samples and do not differ significantly from JS. Additionally, the low β-lactoglobulin and high lactoferrin contents in XH samples may be favorable for the growth and development of infants. Our results may inform the development of dairy products from different cow breeds and advance the process of accurate breed identification.
Collapse
Affiliation(s)
- Yunxia Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (Y.C.)
| | - Yifei Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (Y.C.)
| | - Qingyong Meng
- College of Biological Science, China Agricultural University, Beijing 100193, China;
| | - Yachun Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (Y.C.)
| |
Collapse
|
21
|
Solarczyk P, Slósarz J, Gołębiewski M, Natalello A, Musati M, Luciano G, Priolo A, Puppel K. The Influence of Crossbreeding on the Composition of Protein and Fat Fractions in Milk: A Comparison Between Purebred Polish Holstein Friesian and Polish Holstein Friesian × Swedish Red Cows. Nutrients 2024; 16:3634. [PMID: 39519466 PMCID: PMC11547650 DOI: 10.3390/nu16213634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES In this study, the differences in protein and fat bioactive components between the milk from purebred Polish Holstein Friesian (PHF) cows and PHF cows crossbred with Swedish Red (SRB) were investigated. The objective was to assess the impact of genetic variation on the nutritional quality of their milk. METHODS This study was conducted at the Warsaw University of Life Sciences' (WULS) experimental dairy farm in Warsaw, Poland, and involved 60 primiparous cows divided into two groups: 30 PHF×SRB crossbred cows and 30 purebred PHF cows. All cows were housed in a free-stall system with an average lactation yield exceeding 10,000 kg/lactation. The milk composition analyses included total protein, casein, whey protein, fatty acid profiles, and vitamin content. RESULTS Milk from the PHF×SRB hybrids showed a significantly greater total protein content (3.53%) compared to that from the purebred PHF cows (3.28%). The casein content was higher in the hybrids' milk (2.90%) than the purebreds' milk (2.78%), while the whey protein levels were lower in the purebred milk (0.50%) than in the hybrid milk (0.63%). The hybrids exhibited higher concentrations of certain saturated fatty acids in their milk, while the purebreds' milk contained greater amounts of beneficial unsaturated fatty acids and fat-soluble vitamins-E, D, and K. CONCLUSIONS These results indicate that genetic selection through crossbreeding can enhance the nutritional quality of milk. The differences observed in protein, fatty-acid, and vitamin content underscore the role of the genotype in milk composition, suggesting that breeding strategies can optimize dairy products' health benefits.
Collapse
Affiliation(s)
- Paweł Solarczyk
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Jan Slósarz
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Marcin Gołębiewski
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Antonio Natalello
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Martino Musati
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Giuseppe Luciano
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Alessandro Priolo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Kamila Puppel
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
22
|
Wilmot L, Miller C, Patil I, Kelly AL, Jimenez-Flores R. The relevance of a potential bioactive ingredient: The milk fat globule membrane. J Dairy Sci 2024:S0022-0302(24)01227-X. [PMID: 39414020 DOI: 10.3168/jds.2024-25412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
The milk fat globule membrane (MFGM) is the surrounding membrane of the triacyl glyceride-dense fat globules in milk. The native MFGM is a tri-layer structure formed during the biosynthesis of lipids in the rough endoplasmic reticulum of lactocytes within the mammary gland. It is composed of a phospholipid tri-layer, cholesterol, many proteins, glycosylated proteins, and various lipids (Brink and Lönnerdal, 2020). The 2 main sources of MFGM are cream derived during butter production and whey derived from cheese manufacturing. The use of MFGM ingredients in nutritional products, especially in infant nutrition, has received great attention in recent years. Today, there is a range of commercially available MFGM-enriched ingredients from various suppliers across the globe. The basic components of the tri-layer, phospholipids, and proteins have been shown to exert bioactive effects in various models including in humans. It is not yet known how the differences in composition of such complex ingredients impact the bioactive potential of MFGM within the dairy matrix. The MFGM becomes more complex as a result of processing as it loses its native tri-layer structure and MFGM fragments are formed. This review aims to bring to light the underlying mechanisms for the bioactive effects of MFGM ingredients on human health.
Collapse
Affiliation(s)
- Leia Wilmot
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Celeste Miller
- Department of Food Science and Technology, Parker Food Science & Technology, The Ohio State University, Columbus, Ohio, USA
| | - Isha Patil
- Department of Food Science and Technology, Parker Food Science & Technology, The Ohio State University, Columbus, Ohio, USA
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Rafael Jimenez-Flores
- Department of Food Science and Technology, Parker Food Science & Technology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
23
|
Barnard J, Roberts S, Kelly M, Lastella M, Aisbett B, Condo D. Alpha-lactalbumin and sleep: A systematic review. J Sleep Res 2024; 33:e14141. [PMID: 38185736 DOI: 10.1111/jsr.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
Insufficient sleep is a growing global problem, with poor sleep associated with many negative health and performance outcomes. Previous reviews investigating the effect of diet on sleep have highlighted the amino acid tryptophan as a promising sleep-promoting nutrient, with the richest food source of tryptophan, ⍺-lactalbumin, requiring further investigation. Therefore, this systematic review aimed to review the existing evidence of association between ⍺-lactalbumin and sleep. Four electronic databases (CINAHL Complete, Embase, MEDLINE Complete, and SPORTDiscus with Full Text) were searched from database inception to March 2023, with primary research articles included if they contained α-lactalbumin as an independent variable, an outcome measure of sleep or sleepiness, and participants were ≥ 18 years old. Eight studies were reviewed, with four studies recruiting athletic populations (50%) and four recruiting healthy participants (50%). Sleep or sleepiness was measured objectively in six studies (75%), with two studies employing polysomnography and four utilizing actigraphy to assess sleep. Across the studies, 20-60 g of ⍺-lactalbumin was supplemented, with five studies (63%) observing a positive association between α-lactalbumin and sleep. Sleep-onset latency was the primary sleep metric improved following evening supplementation of α-lactalbumin (≤ 3.5 hr pre-sleep), with no studies observing any negative associations with sleep. Data from this review suggest that individuals that have difficulty initiating sleep may benefit most from pre-sleep α-lactalbumin supplementation. Further research is required to establish the effect that α-lactalbumin has on sleep architecture, through the use of more comprehensive sleep analysis tools such as portable electroencephalography or polysomnography, in combination with stringent dietary controls.
Collapse
Affiliation(s)
- Jackson Barnard
- Centre for Sport Research (CSR), Deakin University, Burwood, Australia
| | - Spencer Roberts
- Centre for Sport Research (CSR), Deakin University, Burwood, Australia
| | - Monica Kelly
- Centre for Sport Research (CSR), Deakin University, Burwood, Australia
| | - Michele Lastella
- Appleton Institute for Behavioural Science, CQUniversity, Wayville, Australia
| | - Brad Aisbett
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Dominique Condo
- Centre for Sport Research (CSR), Deakin University, Burwood, Australia
| |
Collapse
|
24
|
Alessandri G, Mancabelli L, Fontana F, Lepore E, Forte G, Burratti M, Ventura M, Turroni F. Disclosing α-lactalbumin impact on the intestinal and vaginal microbiota of women suffering from polycystic ovary syndrome. Microb Biotechnol 2024; 17:e14540. [PMID: 39364592 PMCID: PMC11450379 DOI: 10.1111/1751-7915.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/17/2024] [Indexed: 10/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most widespread endocrinopathy affecting women of reproductive age with detrimental effects on life quality and health. Among several mechanisms involved in its aetiopathogenesis, recent studies have also postulated the involvement of the vaginal and intestinal microbiota in the development of this disorder. In this study, an accurate insight into the microbial changes associated with PCOS was performed through a pooled-analysis highlighting that this syndrome is characterized by intestinal and vaginal dysbiosis with a reduction of beneficial microorganisms and a higher proportion of potential pathogens. Based on this observation, we evaluated the ability of a milk-derived protein exerting positive outcomes in the management of PCOS, that is, α-lactalbumin (α-LA), to recover PCOS-related dysbiosis. In vitro experiments revealed that this protein improved the growth performances of members of two health-promoting bacterial genera, that is, Bifidobacterium and Lactobacillus, depleted in both intestinal and vaginal microbiota of PCOS-affected women. In addition, α-LA modulated the taxonomic composition and growth performances of the microbial players of the complex intestinal and vaginal microbiota. Finally, an in vivo pilot study further corroborated these observations. The oral administration of α-LA for 30 days to women with PCOS revealed that this protein may have a role in favouring the growth of health-promoting bacteria yet limiting the proliferation of potential pathogens. Overall, our results could pave the way to the use of α-LA as a valid compound with 'prebiotic effects' to limit/restore the PCOS-related intestinal and vaginal dysbiosis.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Leonardo Mancabelli
- Department of Medicine and SurgeryUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | | | | | | | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| |
Collapse
|
25
|
El-Fakharany EM, El-Gendi H, Abdel-Wahhab K, Abu-Serie MM, El-Sahra DG, Ashry M. Therapeutic efficacy of α-lactalbumin coated oleic acid based liposomes against colorectal carcinoma in Caco-2 cells and DMH-treated albino rats. J Biomol Struct Dyn 2024; 42:9220-9234. [PMID: 37624964 DOI: 10.1080/07391102.2023.2250452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Colorectal cancer (CRC) is a malignant tumor recognized as a major cause of morbidity and mortality throughout the world. Therefore, novel liposomes of oleic acid coated with camel α-lactalbumin (α-LA coated liposomes) were developed for their potential antitumor activity against CRC, both in vitro and in DMH-induced CRC-modeled animal. In vitro results indicated the high safety of α-LA coated liposomes towards normal human cells with potent antitumor activity against Caco-2 cells at an IC50 value of 57.01 ± 3.55 µM with selectivity index of 6.92 ± 0.48. This antitumor activity has been attributed to induction of the apoptotic mechanism, as demonstrated by nuclear condensation and arrest of Caco-2 cells in sub-G1 populations. α-LA coated liposomes also revealed a significant up-regulation of the p53 gene combined with a down-regulation of the Bcl2 gene. Moreover, in vivo results revealed that treatment of induced-CRC modeled animals with α-LA coated liposomes for six weeks markedly improved the CRC-disorders; this was achieved from the significant reduction in the values of AFP, CEA, CA19.9, TNF-α, IL-1β, MDA, and NO coupled with remarkable rise in SOD, GPx, GSH, CAT, and CD4+ levels. The histopathological findings asserted the therapeutic potential of α-LA coated liposomes in the treatment of CRC. Therefore, the present results proved the antitumor activity of α-LA coated liposomes against CRC through the restoration of impaired oxidative stress, improved immune response, and reduced inflammation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA- City), Alexandria, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, GEBRI, SRTA-City, Alexandria, Egypt
| | | | - Marwa M Abu-Serie
- Medical Biotechnology Department, GEBRI, SRTA-City, Alexandria, Egypt
| | - Doaa Galal El-Sahra
- Medical Surgical Nursing Department, Faculty of Nursing, Modern University for Technology and Information, Cairo, Egypt
| | - Mahmoud Ashry
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit, Egypt
| |
Collapse
|
26
|
Giezenaar C, Montoya CA, Kreutz K, Hodgkinson S, Roy NC, Mace LJ, Fraser K, Fernstrom JD, McNabb WC, Moughan PJ. Effects of Different Protein Sources on Amino Acid Absorption and Plasma Appearance of Tryptophan, Large Neutral Amino Acids, and Tryptophan Metabolites in Pigs. J Nutr 2024; 154:2948-2962. [PMID: 39019158 DOI: 10.1016/j.tjnut.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Absorption of tryptophan (TRP) across the gut epithelium is potentially modulated by competing large neutral amino acids (LNAAs), which could affect the appearance of TRP and its metabolites in the bloodstream. OBJECTIVES This study aimed to determine, in a growing pig model of an adult human, the absorption of TRP and other LNAAs from the gastrointestinal tract, and plasma appearance of TRP, LNAAs, and TRP metabolites, in response to dietary proteins varying in TRP content. METHODS Pigs were adapted for 7 d to each of 4 diets that differed in their protein source and TRP content: 1) alpha-lactalbumin (AL; 9.95 mg TRP/g diet DM), 2) whey protein (6.59 mg TRP/g), 3) casein (3.73 mg TRP/g), or 4) zein (0.14 mg TRP/g). On day 8, pigs were euthanised after a 12-h fast (baseline), or 1, 2, 3, 4, or 6 h after they received a test meal consisting of 45 g protein, or a protein-free meal (n = 6 pigs at each time in each meal group). Tryptophan and LNAA absorption from the small intestine, and appearance of TRP, LNAAs, and TRP metabolites (melatonin, serotonin, kynurenine pathway metabolites), in the portal vein and systemic circulation, were determined. RESULTS AL intake resulted in sustained elevated plasma TRP concentrations after an overnight fast. The amount of TRP absorbed was dose-dependently related to protein TRP content (P = 0.028), with fastest rates for pigs fed AL (371 mg/h). Portal and systemic plasma TRP, TRP/LNAA, and the TRP metabolites were highest (P ≤ 0.05) after AL intake, and remained above baseline levels for ∼4 h postprandially. Absorption rates of TRP correlated with postprandial plasma TRP and TRP metabolites (P ≤ 0.05). CONCLUSIONS In adult humans, postprandial plasma TRP and TRP metabolite concentrations can likely be modulated by the TRP content of the meal.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand; Food Experience and Sensory Testing (Feast) Laboratory, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.
| | - Carlos A Montoya
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand; Smart Foods and Bioproducts, Te Ohu Rangahau Kai Facility, AgResearch Limited, Palmerston North, New Zealand
| | - Kevin Kreutz
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand
| | - Suzanne Hodgkinson
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand; Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Louise J Mace
- Smart Foods and Bioproducts, Te Ohu Rangahau Kai Facility, AgResearch Limited, Palmerston North, New Zealand
| | - Karl Fraser
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand; Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - John D Fernstrom
- Department of Psychiatry, and Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Warren C McNabb
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Paul J Moughan
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand
| |
Collapse
|
27
|
Villani C, Sacchetti G, Invernizzi RW. Boosting Serotonin Synthesis Is Not Sufficient to Improve Motor Coordination of Mecp2 Heterozygous Mouse Model of Rett Syndrome. Biomolecules 2024; 14:1230. [PMID: 39456163 PMCID: PMC11506563 DOI: 10.3390/biom14101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Motor deficit is a core symptom of Rett syndrome, a rare neurological disease caused in most cases by mutations of the methyl-CpG-binding protein2 (MECP2) gene. Serotonin reuptake inhibitors improve motor coordination in Mecp2 heterozygous (Het) mice and serotonin depletion prevented this effect. Here, we assess alterations in indole levels in various brain regions and whether boosting brain serotonin synthesis with the serotonin precursors tryptophan, 5-hydroxytryptophan and α-lactalbumin rescued motor coordination deficit of Mecp2 Het mice. Motor coordination was assessed in the accelerated rotarod during and after systemic administration of serotonin precursors for 2-3 weeks. Since no data are available, the effect of α-lactalbumin on tryptophan, serotonin and 5-hydroxyindoleacetic acid levels was evaluated in various brain regions in order to identify the dose of ALAC to evaluate on motor coordination. As compared to WT, Mecp2 Het mice show reduced levels of serotonin in the whole brain, hippocampus, brainstem and cerebral cortex, but not the striatum. Reduced levels of 5-hydroxyindoleacetic acid were observed in the hippocampus and brainstem. Doses of serotonin precursors increasing brain tryptophan and/or serotonin production and metabolism had no effect on motor coordination. The results indicate that boosting serotonin synthesis is not sufficient to improve motor coordination of Mecp2 Het mice.
Collapse
Affiliation(s)
| | | | - Roberto W. Invernizzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156 Milan, Italy; (C.V.)
| |
Collapse
|
28
|
Precupas A, Gheorghe D, Leonties AR, Popa VT. Resveratrol Effect on α-Lactalbumin Thermal Stability. Biomedicines 2024; 12:2176. [PMID: 39457489 PMCID: PMC11504486 DOI: 10.3390/biomedicines12102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The effect of resveratrol (RESV) on α-lactalbumin (α-LA) thermal stability was evaluated using differential scanning calorimetry (DSC), circular dichroism (CD) and dynamic light scattering (DLS) measurements. Complementary information offered by molecular docking served to identify the binding site of the ligand on the native structure of protein and the type of interacting forces. DSC thermograms revealed a double-endotherm pattern with partial overlapping of the two components. The most relevant effect of RESV is manifested in the narrowing of the protein thermal fingerprint: the first process (peak temperature T1) is shifted to higher temperatures while the second one (peak temperature T2) to lower values. The CD data indicated partial conformational changes in the protein non-α-helix domain at T1, resulting in a β-sheet richer intermediate (BSRI) with an unaffected, native-like α-helix backbone. The RESV influence on this process may be defined as slightly demoting, at least within DSC conditions (linear heating rate of 1 K min-1). On further heating, unfolding of the α-helix domain takes place at T2, with RESV acting as a promoter of the process. Long time incubation at 333 K produced the same type of BSRI: no significant effect of RESV on the secondary structure content was detected by CD spectroscopy. Nevertheless, the size distribution of the protein population obtained from DLS measurements revealed the free (non-bound) RESV action manifested in the developing of larger size aggregates.
Collapse
Affiliation(s)
- Aurica Precupas
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania; (D.G.); (A.R.L.)
| | | | | | - Vlad Tudor Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania; (D.G.); (A.R.L.)
| |
Collapse
|
29
|
Wang B, Wu Y, Lv X, Liu L, Li J, Du G, Chen J, Liu Y. Synergistic regulation of chassis cell growth and screening of promoters, signal peptides and fusion protein linkers for enhanced recombinant protein expression in Bacillus subtilis. Int J Biol Macromol 2024; 280:136037. [PMID: 39332549 DOI: 10.1016/j.ijbiomac.2024.136037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Growth-advantageous microbial chassis cells are beneficial for shortening fermentation period and boosting biomolecule productivity. This study focused on enhancing recombinant proteins synthesis efficiency in Bacillus subtilis by CRISPRi-mediated metabolism regulation for improved cell growth and screening expression elements. Specifically, by repressing odhA gene expression to reallocate cellular resource and overexpressing atpC, atpD and atpG genes to reprogram energy metabolism, the growth-advantageous chassis cell with high specific growth rate of 0.63 h-1 and biomass yield of 0.41 g DCW/g glucose in minimum medium was developed, representing 61.54 % and 46.43 % increasements compared to B. subtilis 168. Subsequently, using screened optimal P566 promoter and (EAAAK)3 protein linker, secretory bovine alpha-lactalbumin (α-LA) titer reached 1.02 mg/L. Finally, to test protein synthesis capability of cells, intracellular GFP, secretory α-LA and α-amylase were expressed with P566 promoter, representing 43.76 %, 75.49 % and 82.98 % increasements. The growth-advantageous B. subtilis chassis cells exhibit their potential to boost bioproduction productivity.
Collapse
Affiliation(s)
- Bin Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
30
|
Valzania L, Alami A, Léopold P. A temporal allocation of amino acid resources ensures fitness and body allometry in Drosophila. Dev Cell 2024; 59:2277-2286.e6. [PMID: 38851190 DOI: 10.1016/j.devcel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/29/2024] [Accepted: 05/15/2024] [Indexed: 06/10/2024]
Abstract
Organisms have evolved strategies to store resources and overcome periods of low or no nutrient access, including transient shortages or longer non-feeding developmental transitions. Holometabolous insects like Drosophila represent an attractive model to study resource allocation during development because they alternate feeding and non-feeding periods. Amino acids are essential components for tissue growth and renewal, but the strategies used for their storage remain largely unexplored. Here, we characterize the molecular mechanisms for the temporal production, accumulation, and use of specific storage proteins called hexamerins, and demonstrate their role in ensuring tissue formation and adult fitness. Moreover, we show that preventing hexamerin stores enhances the growth of early-developing organs while compromising the emergence of late-forming ones, consequently altering body allometry.
Collapse
Affiliation(s)
- Luca Valzania
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 rue d'Ulm, 75005 Paris, France.
| | - Aya Alami
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 rue d'Ulm, 75005 Paris, France
| | - Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
31
|
Bogdanova LR, Nikiforova AA, Ziganshina SA, Zuev YF, Sedov IA. Influence of divalent metal cations on α-lactalbumin fibril formation. J Biol Inorg Chem 2024; 29:601-609. [PMID: 39126483 DOI: 10.1007/s00775-024-02071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The effect of binding of divalent metal cations (Ca2+, Cu2+, Mg2+, Mn2+, Zn2+) on the kinetics of fibril formation of bovine α-lactalbumin at acidic conditions is considered. The kinetic parameters of the process were determined using a thioflavin T fluorescence assay. The DSC thermograms of bovine α-lactalbumin in the presence and absence of cations were recorded. The duration of the lag period correlates with the changes in the thermal stability of the molten globule of the protein in the presence of cations. The final thioflavin T fluorescence intensity after formation of the mature fibrils decreases under the influence of calcium ions which strongly bind to the monomeric protein, and increases in solutions containing copper and especially zinc. These ions seem to accelerate secondary nucleation processes and change the fibril morphology, which was confirmed by atomic force microscopy imaging.
Collapse
Affiliation(s)
- L R Bogdanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - A A Nikiforova
- Department of Chemistry, Kazan Federal University, Kazan, Russia
| | - S A Ziganshina
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Yu F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - I A Sedov
- Department of Chemistry, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
32
|
Dhar H, Verma S, Dogra S, Katoch S, Vij R, Singh G, Sharma M. Functional attributes of bioactive peptides of bovine milk origin and application of in silico approaches for peptide prediction and functional annotations. Crit Rev Food Sci Nutr 2024; 64:9432-9454. [PMID: 37218679 DOI: 10.1080/10408398.2023.2212803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bovine milk peptides are the protein fragments with diverse bioactive properties having antioxidant, anticarcinogenic, other therapeutic and nutraceutical potentials. These peptides are formed in milk by enzymatic hydrolysis, gastrointestinal digestion and fermentation processes. They have significant health impact with high potency and low toxicity making them a suitable natural alternative for preventing and managing diseases. Antibiotic resistance has increased the quest for better peptide candidates with antimicrobial effects. This article presents a comprehensive review on well documented antimicrobial, immunological, opioid, and anti-hypertensive activities of bovine milk peptides. It also covers the usage of computational biology tools and databases for prediction and analysis of the food-derived bioactive peptides. In silico analysis of amino acid sequences of Bos taurus milk proteins have been predicted to generate peptides with dipeptidyl peptidase IV inhibitory and ACE inhibitory properties, making them favorable candidates for developing blood sugar lowering drugs and anti-hypertensives. In addition to the prediction of new bioactive peptides, application of bioinformatics tools to predict novel functions of already known peptides is also discussed. Overall, this review focuses on the reported as well as predicted biologically active peptide of casein and whey proteins of bovine milk that can be utilized to develop therapeutic agents.
Collapse
Affiliation(s)
- Hena Dhar
- Department of Microbiology, School of Biosciences, RIMT University, Mandi Gobindgarh, India
| | - Subhash Verma
- Department of Veterinary Microbiology, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Sarita Dogra
- PGIMR, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Shailja Katoch
- Department of Veterinary Microbiology, Sardar Vallabh Bhai Patel University of Agriculture and Technology, Meerut, India
| | - Rishika Vij
- Department of Veterinary Physiology & Biochemistry, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Geetanjali Singh
- Department of Veterinary Physiology & Biochemistry, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Mandeep Sharma
- Department of Veterinary Microbiology, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| |
Collapse
|
33
|
Ma Z, Zhao J, Zou Y, Mao X. The enhanced affinity of moderately hydrolyzed whey protein to EGCG promotes the isoelectric separation and unlocks the protective effects on polyphenols. Food Chem 2024; 450:138833. [PMID: 38653053 DOI: 10.1016/j.foodchem.2024.138833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 04/25/2024]
Abstract
The instability and discoloration of (-)-epigallocatechin-3-gallate (EGCG) constrain its application in functional dairy products. Concurrently, challenges persist in the separation and utilization of whey in the dairy industry. By harnessing the interactions between polyphenols and whey proteins or their hydrolysates, this study proposed a method that involved limited enzymatic hydrolysis followed by the addition of EGCG and pH adjustment around the isoelectric point to obtain whey protein hydrolysates (WPH)-EGCG. Over 92 % of protein-EGCG complexes recovered from whey while ensuring the preservation of α-lactalbumin. The combination between EGCG and WPH depended on hydrogen bonding and hydrophobic interactions, significantly enhanced the thermal stability and storage stability of EGCG. Besides, the intestinal phase retention rate of EGCG in WPH-EGCG complex was significantly increased by 23.67 % compared to free EGCG. This work represents an exploratory endeavor in the improvement of EGCG stability and expanding the utilization approaches of whey.
Collapse
Affiliation(s)
- Zhiyuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Jiale Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Yang Zou
- Tianjin Haihe Dairy Co., LTD, China
| | - Xueying Mao
- College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China.
| |
Collapse
|
34
|
Ulaangerel T, Wang M, Zhao B, Yi M, Shen Y, Mengkh Y, Wen X, Dugarjav M, Bou G. A Comparative Analysis of the Gene Expression Profiles in the Mammary Glands of Lactating and Nonlactating Mares at the Second Month of Gestation. Animals (Basel) 2024; 14:2319. [PMID: 39199853 PMCID: PMC11350905 DOI: 10.3390/ani14162319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
To investigate molecular regulation involved in lactation during pregnancy, this study focused on the transcriptomic profiles of mammary tissue from lactating and non-lactating Mongolian mares at the second month of gestation. A total of 4197 differentially expressed genes were identified by comparing mammary tissues from pregnant mares at two different states, including 1974 differentially expressed genes such as the milk protein-related genes a-s1-casein (CSN1S1), k-casein (CSN3), lactalbumin (LALBA), and lactoferrin (LTF), which were highly expressed in the lactating mares group, and overall, these differentially expressed genes were mainly associated with biological processes such as endoplasmic reticulum protein processing, the Toll-like receptor signaling pathway, steroid biosynthesis, cytokine-cytokine receptor interactions, and amino sugar and nucleotide glycolysis. These findings serve as a foundation for investigating the molecular underpinnings of lactation in pregnant equids.
Collapse
Affiliation(s)
- Tseweendolmaa Ulaangerel
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.U.); (M.W.); (B.Z.); (M.Y.); (Y.S.); (X.W.); (M.D.)
| | - Min Wang
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.U.); (M.W.); (B.Z.); (M.Y.); (Y.S.); (X.W.); (M.D.)
- Animal Quarantine & Disease Control Center, Darhan-Muminggan Joint County, Baotou 014500, China
| | - Bilig Zhao
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.U.); (M.W.); (B.Z.); (M.Y.); (Y.S.); (X.W.); (M.D.)
| | - Minna Yi
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.U.); (M.W.); (B.Z.); (M.Y.); (Y.S.); (X.W.); (M.D.)
| | - Yingchao Shen
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.U.); (M.W.); (B.Z.); (M.Y.); (Y.S.); (X.W.); (M.D.)
| | - Yibeeltu Mengkh
- Xilingol League Animal Husbandry Work Station, Xilinhot 026099, China;
| | - Xin Wen
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.U.); (M.W.); (B.Z.); (M.Y.); (Y.S.); (X.W.); (M.D.)
| | - Manglai Dugarjav
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.U.); (M.W.); (B.Z.); (M.Y.); (Y.S.); (X.W.); (M.D.)
| | - Gerelchimeg Bou
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.U.); (M.W.); (B.Z.); (M.Y.); (Y.S.); (X.W.); (M.D.)
| |
Collapse
|
35
|
Gazi I, Reiding KR, Groeneveld A, Bastiaans J, Huppertz T, Heck AJR. LacdiNAc to LacNAc: remodelling of bovine α-lactalbumin N-glycosylation during the transition from colostrum to mature milk. Glycobiology 2024; 34:cwae062. [PMID: 39115362 PMCID: PMC11319639 DOI: 10.1093/glycob/cwae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
α -Lactalbumin, an abundant protein present in the milk of most mammals, is associated with biological, nutritional and technological functionality. Its sequence presents N-glycosylation motifs, the occupancy of which is species-specific, ranging from no to full occupancy. Here, we investigated the N-glycosylation of bovine α-lactalbumin in colostrum and milk sampled from four individual cows, each at 9 time points starting from the day of calving up to 28.0 d post-partum. Using a glycopeptide-centric mass spectrometry-based glycoproteomics approach, we identified N-glycosylation at both Asn residues found in the canonical Asn-Xxx-Ser/Thr motif, i.e. Asn45 and Asn74 of the secreted protein. We found similar glycan profiles in all four cows, with partial site occupancies, averaging at 35% and 4% for Asn45 and Asn74, respectively. No substantial changes in occupancy occurred over lactation at either site. Fucosylation, sialylation, primarily with N-acetylneuraminic acid (Neu5Ac), and a high ratio of N,N'-diacetyllactosamine (LacdiNAc)/N-acetyllactosamine (LacNAc) motifs were characteristic features of the identified N-glycans. While no substantial changes occurred in site occupancy at either site during lactation, the glycoproteoform (i.e. glycosylated form of the protein) profile revealed dynamic changes; the maturation of the α-lactalbumin glycoproteoform repertoire from colostrum to mature milk was marked by substantial increases in neutral glycans and the number of LacNAc motifs per glycan, at the expense of LacdiNAc motifs. While the implications of α-lactalbumin N-glycosylation on functionality are still unclear, we speculate that N-glycosylation at Asn74 results in a structurally and functionally different protein, due to competition with the formation of its two intra-molecular disulphide bridges.
Collapse
Affiliation(s)
- Inge Gazi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - André Groeneveld
- Research and Development, FrieslandCampina, Stationsplein 4, Amersfoort 3818 LE, The Netherlands
| | - Jan Bastiaans
- Research and Development, FrieslandCampina, Stationsplein 4, Amersfoort 3818 LE, The Netherlands
| | - Thom Huppertz
- Research and Development, FrieslandCampina, Stationsplein 4, Amersfoort 3818 LE, The Netherlands
- Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
36
|
Nielsen MB, Meyer AS, Arnau J. The Next Food Revolution Is Here: Recombinant Microbial Production of Milk and Egg Proteins by Precision Fermentation. Annu Rev Food Sci Technol 2024; 15:173-187. [PMID: 38134386 DOI: 10.1146/annurev-food-072023-034256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Animal-based agriculture and the production of protein-rich foods from animals, particularly from ruminants, are not sustainable and have serious climate effects. A new type of alternative proteins is now on the menu, namely animal proteins produced recombinantly by microbial fermentation. This new technology, precision fermentation, is projected to completely disrupt traditional animal-based agriculture. Certain milk and egg proteins along with specific meat substitute analog components produced by precision fermentation are already entering the market. This first wave of precision fermentation products targets the use of these proteins as protein additives, and several commercial players are already active in the field. The cost-efficiency requirements involve production titers above 50 g/L which are several orders of magnitude higher than those for pharmaceutical protein manufacture, making strain engineering, process optimization, and scale-up critical success factors. This new development within alternative proteins defines a new research direction integrating biotechnology, process engineering, and sustainable food protein production.
Collapse
Affiliation(s)
- M B Nielsen
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- 21st.BIO, Søborg, Denmark;
| | - A S Meyer
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
37
|
Szyller H, Antosz K, Batko J, Mytych A, Dziedziak M, Wrześniewska M, Braksator J, Pytrus T. Bioactive Components of Human Milk and Their Impact on Child's Health and Development, Literature Review. Nutrients 2024; 16:1487. [PMID: 38794725 PMCID: PMC11124180 DOI: 10.3390/nu16101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The composition of human breast milk is an ideal combination of substances necessary for the healthy development of an infant's body while protecting from pathogens and the balanced development of the microbiota. Its composition is dynamic and changes with the age of the child, meeting their current needs. The study provides a thorough overview of human milk components, such as immunological components, growth factors, hormones, carbohydrates, lipids, minerals, and vitamins. Authors focus on capturing the most important aspects of the effects of these substances on a newborn's body, while also looking for specific connections and describing the effects on given systems. Supplementation and the use of ingredients are also discussed. The purpose of this paper is to present the current state of knowledge about the bioactive components of human milk and their impact on the growth, development, and health of the young child.
Collapse
Affiliation(s)
- Hubert Szyller
- Student Scientific Group of Pediatric Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.A.); (J.B.); (A.M.); (M.D.); (M.W.)
| | - Katarzyna Antosz
- Student Scientific Group of Pediatric Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.A.); (J.B.); (A.M.); (M.D.); (M.W.)
| | - Joanna Batko
- Student Scientific Group of Pediatric Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.A.); (J.B.); (A.M.); (M.D.); (M.W.)
| | - Agata Mytych
- Student Scientific Group of Pediatric Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.A.); (J.B.); (A.M.); (M.D.); (M.W.)
| | - Marta Dziedziak
- Student Scientific Group of Pediatric Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.A.); (J.B.); (A.M.); (M.D.); (M.W.)
| | - Martyna Wrześniewska
- Student Scientific Group of Pediatric Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.A.); (J.B.); (A.M.); (M.D.); (M.W.)
| | - Joanna Braksator
- 2nd Clinical Department of Paediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wrocalw, Poland; (J.B.); (T.P.)
| | - Tomasz Pytrus
- 2nd Clinical Department of Paediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wrocalw, Poland; (J.B.); (T.P.)
| |
Collapse
|
38
|
Mazur K, Kusznierewicz B, Martysiak-Żurowska D, Drążkowska I, Malinowska-Pańczyk E. The Effect of Hyperbaric Storage on the Nutritional Value and Retention of Certain Bioactive Proteins in Human Milk. Nutrients 2024; 16:1455. [PMID: 38794693 PMCID: PMC11124269 DOI: 10.3390/nu16101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Human milk (HM) contains the essential macronutrients and bioactive compounds necessary for the normal growth and development of newborns. The milk collected by human milk banks is stored frozen and pasteurized, reducing its nutritional and biological value. The purpose of this study was to determine the effect of hyperbaric storage at subzero temperatures (HS-ST) on the macronutrients and bioactive proteins in HM. As control samples, HM was stored at the same temperatures under 0.1 MPa. A Miris HM analyzer was used to determine the macronutrients and the energy value. The lactoferrin (LF), lysozyme (LYZ) and α-lactalbumin (α-LAC) content was checked using high-performance liquid chromatography, and an ELISA test was used to quantify secretory immunoglobulin A (sIgA). The results showed that the macronutrient content did not change significantly after 90 days of storage at 60 MPa/-5 °C, 78 MPa/-7 °C, 111 MPa/-10 °C or 130 MPa/-12 °C. Retention higher than 90% of LYZ, α-LAC, LF and sIgA was observed in the HM stored at conditions of up to 111 MPa/-10 °C. However, at 130 MPa/-12 °C, there was a reduction in LYZ and LF, by 39 and 89%, respectively. The storage of HM at subzero temperatures at 0.1 MPa did not affect the content of carbohydrates or crude and true protein. For fat and the energy value, significant decreases were observed at -5 °C after 90 days of storage.
Collapse
Affiliation(s)
- Katarzyna Mazur
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdańsk, Poland; (K.M.); (B.K.); (D.M.-Ż.)
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdańsk, Poland; (K.M.); (B.K.); (D.M.-Ż.)
| | - Dorota Martysiak-Żurowska
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdańsk, Poland; (K.M.); (B.K.); (D.M.-Ż.)
| | - Izabela Drążkowska
- Division of Neonatology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Edyta Malinowska-Pańczyk
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdańsk, Poland; (K.M.); (B.K.); (D.M.-Ż.)
| |
Collapse
|
39
|
Ramani A, Hazra T, Mudgil S, Mudgil D. Emerging potential of whey proteins in prevention of cancer. FOOD AND HUMANITY 2024; 2:100199. [DOI: 10.1016/j.foohum.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
40
|
Liu Y, Li XY, Li L, Yin YQ, Zhang HL, Wang KL, Zhou J, Chen Y, Zhang YH. A comprehensive evaluation of milk protein molecular weight distribution based on exclusion chromatography dataset. Food Chem 2024; 436:137725. [PMID: 37839124 DOI: 10.1016/j.foodchem.2023.137725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 09/19/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Molecular weight is one of the main characteristic parameters of proteins, which is the basis for the functional properties of milk protein. This research aims at establishing molecular weight distribution pattern of milk protein based on exclusion chromatography. The method selected Na3PO4-Na2SO4 (0.1 M, pH 6.7) buffer as the mobile phase and detected at 220 nm by HPLC-UV. The protein molecular weight distributions were determined and compared for human milk, bovine milk, and infant formula. The proportion of macromolecular proteins is much higher in infant formula compared to human or bovine milk. The protein molecular weights of human and bovine milk are significantly different around 90, 20, 14, and 2 kDa. The results provide holistic compare of bovine milk, human milk, and infant formula through protein molecular distribution. The new evaluation indicators for protein will drive technological simulation of infant formula.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China; Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot 011517, PR China
| | - Xiao-Yan Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ling Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Qi Yin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Han-Lin Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Kun-Long Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Jie Zhou
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yun Chen
- Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot 011517, PR China.
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
41
|
Eker F, Akdaşçi E, Duman H, Yalçıntaş YM, Canbolat AA, Kalkan AE, Karav S, Šamec D. Antimicrobial Properties of Colostrum and Milk. Antibiotics (Basel) 2024; 13:251. [PMID: 38534686 DOI: 10.3390/antibiotics13030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
The growing number of antibiotic resistance genes is putting a strain on the ecosystem and harming human health. In addition, consumers have developed a cautious attitude towards chemical preservatives. Colostrum and milk are excellent sources of antibacterial components that help to strengthen the immunity of the offspring and accelerate the maturation of the immune system. It is possible to study these important defenses of milk and colostrum, such as lactoferrin, lysozyme, immunoglobulins, oligosaccharides, etc., as biotherapeutic agents for the prevention and treatment of numerous infections caused by microbes. Each of these components has different mechanisms and interactions in various places. The compound's mechanisms of action determine where the antibacterial activity appears. The activation of the antibacterial activity of milk and colostrum compounds can start in the infant's mouth during lactation and continue in the gastrointestinal regions. These antibacterial properties possess potential for therapeutic uses. In order to discover new perspectives and methods for the treatment of bacterial infections, additional investigations of the mechanisms of action and potential complexes are required.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Yalçın Mert Yalçıntaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Ahmet Alperen Canbolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Arda Erkan Kalkan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Dunja Šamec
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| |
Collapse
|
42
|
El-Aidie SAM, Khalifa GSA. Innovative applications of whey protein for sustainable dairy industry: Environmental and technological perspectives-A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13319. [PMID: 38506186 DOI: 10.1111/1541-4337.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Industrial waste management is critical to maintaining environmental sustainability. The dairy industry (DI), as one of the major consumers of freshwater, generates substantial whey dairy effluent, which is notably rich in organic matter and thus a significant pollutant. The effluent represents environmental risks due to its high biological and chemical oxygen demands. Today, stringent government regulations, environmental laws, and heightened consumer health awareness are compelling industries to responsibly manage and reuse whey waste. Therefore, this study investigates sustainable solutions for efficiently utilizing DI waste. Employing a systematic review approach, the research reveals that innovative technologies enable the creation of renewable, high-quality, value-added food products from dairy byproducts. These innovations offer promising sustainable waste management strategies for the dairy sector, aligning with economic interests. The main objectives of the study deal with, (a) assessing the environmental impact of dairy sector waste, (b) exploring the multifaceted nutritional and health benefits inherent in cheese whey, and (c) investigating diverse biotechnological approaches to fashion value-added, eco-friendly dairy whey-based products for potential integration into various food products, and thus fostering economic sustainability. Finally, the implications of this work span theoretical considerations, practical applications, and outline future research pathways crucial for advancing the sustainable management of dairy waste.
Collapse
Affiliation(s)
- Safaa A M El-Aidie
- Dairy Technology Department, Animal Production Research Institute, Agricultural Research Centre, Giza, Egypt
| | | |
Collapse
|
43
|
Arini APK, Namangkalakul W, Limraksasin P, Osathanon T. Effects of lactalbumin enzymatic hydrolysate on human squamous cell carcinoma cells-an in vitro study. J Oral Biol Craniofac Res 2024; 14:222-229. [PMID: 38495954 PMCID: PMC10940804 DOI: 10.1016/j.jobcr.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/08/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Objectives Alpha-lactalbumin, the protein from human and bovine milk has been found to be promising as an alternative of anticancer agent. This study was aimed to investigate the effects of lactalbumin enzymatic hydrolysate (LAH) on cell proliferation, migration, and mRNA expression of matrix metalloproteinase (MMP) on human squamous cell carcinoma (hSCC) cell lines, in vitro. Methods Tongue (HSC-4 and 7) and pharyngeal (HN-30 and 31) hSCC cell lines were treated with a two-fold dilution of LAH (0.39-100 mg/ml). Cell viability and cell proliferation were examined by MTT assay. Colony forming unit (CFU) was assessed by crystal violet blue staining. Cell migration was investigated by scratch wound healing assay. Gene expression of metastasis-associated MMPs was assessed by RT-qPCR. Statistical analyses were evaluated at p value = 0.05. Results LAH at concentration of 50 and 100 mg/ml exhibited cytotoxicity on hSCC cells. The proliferation and CFU ability of hSCC cells were significantly attenuated after LAH treatment. The mRNA expression of MMP2, MMP9, and MMP14 was reduced in HN-30 and HN-31 cells while expression of MMP2 and MMP14 was downregulated in HSC-7 cells. Only MMP1 mRNA level was reduced in HSC-4 cells. However, cell migration of all hSCC cell lines did not alter after LAH treatment. Conclusion LAH treatment exhibits inhibitory effects on hSCC cell growth, proliferation and MMPs gene expression. Thus, LAH should be the promising alternative agent to develop the prospective anti-cancer drug.
Collapse
Affiliation(s)
| | - Worachat Namangkalakul
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Phoonsuk Limraksasin
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
44
|
Si Q, Sun W, Liang B, Chen B, Meng J, Xie D, Feng L, Jiang P. Systematic Metabolic Profiling of Mice with Sleep-Deprivation. Adv Biol (Weinh) 2024; 8:e2300413. [PMID: 37880935 DOI: 10.1002/adbi.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Adequate sleep is essential for the biological maintenance of physical energy. Lack of sleep can affect thinking, lead to emotional anxiety, reduce immunity, and interfere with endocrine and metabolic processes, leading to disease. Previous studies have focused on long-term sleep deprivation and the risk of cancer, heart disease, diabetes, and obesity. However, systematic metabolomics analyses of blood, heart, liver, spleen, kidney, brown adipose tissue, and fecal granules have not been performed. This study aims to systematically assess the metabolic changes in the target organs caused by sleep deprivation in vivo, to search for differential metabolites and the involved metabolic pathways, to further understand the impact of sleep deprivation on health, and to provide strong evidence for the need for early intervention.
Collapse
Affiliation(s)
- Qingying Si
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Wenxue Sun
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Benhui Liang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410000, People's Republic of China
| | - Beibei Chen
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Junjun Meng
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Dadi Xie
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| |
Collapse
|
45
|
Liu B, Li X, Zhang JP, Li X, Yuan Y, Hou GH, Zhang HJ, Zhang H, Li Y, Mezzenga R. Protein Nanotubes as Advanced Material Platforms and Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307627. [PMID: 37921269 DOI: 10.1002/adma.202307627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Protein nanotubes (PNTs) as state-of-the-art nanocarriers are promising for various potential applications both in the food and pharmaceutical industries. Derived from edible starting sources like α-lactalbumin, lysozyme, and ovalbumin, PNTs bear properties of biocompatibility and biodegradability. Their large specific surface area and hydrophobic core facilitate chemical modification and loading of bioactive substances, respectively. Moreover, their enhanced permeability and penetration ability across biological barriers such as intestinal mucus, extracellular matrix, and thrombus clot, make it promising platforms for health-related applications. Most importantly, their simple preparation processes enable large-scale production, supporting applications in the biomedical and nanotechnological fields. Understanding the self-assembly principles is crucial for controlling their morphology, size, and shape, and thus provides the ground to a multitude of applications. Here, the current state-of-the-art of PNTs including their building materials, physicochemical properties, and self-assembly mechanisms are comprehensively reviewed. The advantages and limitations, as well as challenges and prospects for their successful applications in biomaterial and pharmaceutical sectors are then discussed and highlighted. Potential cytotoxicity of PNTs and the need of regulations as critical factors for enabling in vivo applications are also highlighted. In the end, a brief summary and future prospects for PNTs as advanced platforms and delivery systems are included.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
- Department of Nutrition and Health, China Agricultural University, Beijing, 100091, P. R. China
| | - Xing Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Ji Peng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Xin Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Yu Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Guo Hua Hou
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hui Juan Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hui Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zürich, 8092, Switzerland
- Department of Materials, ETH Zurich, Zürich, 8092, Switzerland
| |
Collapse
|
46
|
Saadi S, Makhlouf C, Nacer NE, Halima B, Faiza A, Kahina H, Wahiba F, Afaf K, Rabah K, Saoudi Z. Whey proteins as multifunctional food materials: Recent advancements in hydrolysis, separation, and peptidomimetic approaches. Compr Rev Food Sci Food Saf 2024; 23:e13288. [PMID: 38284584 DOI: 10.1111/1541-4337.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Whey protein derived bioactives, including α-lactalbumin, ß-lactoglobulin, bovine serum albumin, lactoferrin, transferrin, and proteose-peptones, have exhibited wide ranges of functional, biological and therapeutic properties varying from anticancer, antihypertensive, and antimicrobial effects. In addition, their functional properties involve gelling, emulsifying, and foaming abilities. For these reasons, this review article is framed to understand the relationship existed in between those compound levels and structures with their main functional, biological, and therapeutic properties exhibited either in vitro or in vivo. The impacts of hydrolysis mechanism and separation techniques in enhancing those properties are likewise discussed. Furthermore, special emphasize is given to multifunctional effects of whey derived bioactives and their future trends in ameliorating further food, pharmaceutical, and nutraceutical products. The underlying mechanism effects of those properties are still remained unclear in terms of activity levels, efficacy, and targeted effectiveness. For these reasons, some important models linking to functional properties, thermal properties and cell circumstances are established. Moreover, the coexistence of radical trapping groups, chelating groups, sulfhydryl groups, inhibitory groups, and peptide bonds seemed to be the key elements in triggering those functions and properties. Practical Application: Whey proteins are the byproducts of cheese processing and usually the exploitation of these food waste products has increasingly getting acceptance in many countries, especially European countries. Whey proteins share comparable nutritive values to milk products, particularly on their richness on important proteins that can serve immune protection, structural, and energetic roles. The nutritive profile of whey proteins shows diverse type of bioactive molecules like α-lactalbumin, ß-lactoglobulin, lactoferrin, transferrin, immunoglobulin, and proteose peptones with wide biological importance to the living system, such as in maintaining immunological, neuronal, and signaling roles. The diversification of proteins of whey products prompted scientists to exploit the real mechanisms behind of their biological and therapeutic effects, especially in declining the risk of cancer, tumor, and further complications like diabetes type 2 and hypertension risk effects. For these reasons, profiling these types of proteins using different proteomic and peptidomic approaches helps in determining their biological and therapeutic targets along with their release into gastrointestinal tract conditions and their bioavailabilities into portal circulation, tissue, and organs. The wide applicability of those protein fractions and their derivative bioactive products showed significant impacts in the field of emulsion and double emulsion stabilization by playing roles as emulsifying, surfactant, stabilizing, and foaming agents. Their amphoteric properties helped them to act as excellent encapsulating agents, particularly as vehicle for delivering important vitamins and bioactive compounds. The presence of ferric elements increased their transportation to several metal-ions in the same time increased their scavenging effects to metal-transition and peroxidation of lipids. Their richness with almost essential and nonessential amino acids makes them as selective microbial starters, in addition their richness in sulfhydryl amino acids allowed them to act a cross-linker in conjugating further biomolecules. For instance, conjugating gold-nanoparticles and fluorescent materials in targeting diseases like cancer and tumors in vivo is considered the cutting-edges strategies for these versatile molecules due to their active diffusion across-cell membrane and the presence of specific transporters to these therapeutic molecules.
Collapse
Affiliation(s)
- Sami Saadi
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Chaalal Makhlouf
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratory of Biotechnology and Food Quality, Institute of Nutrition, Food and Agro-Food Technologies, University of Constantine 1, Constantine, Algeria
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Science, University of Bejaia, Bejaia, Algeria
| | - Nor Elhouda Nacer
- Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, Batna, Algeria
| | - Boughellout Halima
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Adoui Faiza
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Hafid Kahina
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Equipe MaQuaV, Laboratoire Bioqual INATAA, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Falek Wahiba
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Kheroufi Afaf
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Kezih Rabah
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratory of Biotechnology and Food Quality, Institute of Nutrition, Food and Agro-Food Technologies, University of Constantine 1, Constantine, Algeria
| | - Zineddine Saoudi
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| |
Collapse
|
47
|
Laganà AS, Myers SH, Forte G, Naem A, Krentel H, Allahqoli L, Alkatout I, Unfer V. Inositols in treating polycystic ovary syndrome and non-insulin dependent diabetes mellitus: now and the future. Expert Opin Drug Metab Toxicol 2024; 20:61-72. [PMID: 38226638 DOI: 10.1080/17425255.2024.2306851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
INTRODUCTION This Expert Opinion covers recent updates in the use of Inositol in polycystic ovary syndrome (PCOS) and type II diabetes and gives support to researchers and clinicians. AREAS COVERED This article discusses the role of Myo-Inositol (MI) and D-Chiro-Inositol (DCI) in physiological function, the use of MI in PCOS, the risks of using DCI in reproductive conditions, the 40:1 combination of MI/DCI in PCOS. Furthermore, we discuss the issues of insulin resistance and how α-lactalbumin may increase the intestinal bioavailability of MI. The paper then transitions to talk about the use of inositols in diabetes, including type II diabetes, Gestational Diabetes Mellitus (GDM), and double diabetes. Literature searches were performed with the use of PubMed, Google Scholar, and Web of Science between July and October 2023. EXPERT OPINION Inositol therapy has grown in the clinical field of PCOS, with it demonstrating an efficacy like that of metformin. The use of α-lactalbumin has further supported the use of MI, as issues with intestinal bioavailability have been largely overcome. In contrast, the effect of inositol treatment on the different PCOS phenotypes remains an outstanding question. The use of inositols in type II diabetes requires further study despite promising analogous data from GDM.
Collapse
Affiliation(s)
- Antonio Simone Laganà
- Unit of Obstetrics and Gynecology, "Paolo Giaccone" Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | | | | | - Antoine Naem
- Department of Obstetrics, Gynecology, Gynecologic Oncology and Senology, Bethesda Hospital Duisburg, Duisburg, Germany
- Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany
| | - Harald Krentel
- Department of Obstetrics, Gynecology, Gynecologic Oncology and Senology, Bethesda Hospital Duisburg, Duisburg, Germany
| | - Leila Allahqoli
- Midwifery Department, Ministry of Health and Medical Education, Tehran, Iran
| | - Ibrahim Alkatout
- Campus Kiel, Kiel School of Gynaecological Endoscopy, University Hospitals Schleswig-Holstein, Kiel, Germany
| | - Vittorio Unfer
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| |
Collapse
|
48
|
Gupta JK, Singh K. Pharmacological Potential of Bioactive Peptides for the Treatment of Diseases Associated with Alzheimer's and Brain Disorders. Curr Mol Med 2024; 24:962-979. [PMID: 37691200 DOI: 10.2174/1566524023666230907115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
Bioactive peptides are a promising class of therapeutics for the treatment of diseases associated with Alzheimer's and brain disorders. These peptides are derived from naturally occurring proteins and have been shown to possess a variety of beneficial properties. They may modulate neurotransmitter systems, reduce inflammation, and improve cognitive performance. In addition, bioactive peptides have the potential to target specific molecular pathways involved in the pathogenesis of Alzheimer's and brain disorders. For example, peptides have been shown to interact with amyloid-beta, a major component of amyloid plaques found in Alzheimer's disease, and have been shown to reduce its accumulation in the brain. Furthermore, peptides have been found to modulate the activity of glutamate receptors, which are important for memory and learning, as well as to inhibit the activity of enzymes involved in the formation of toxic amyloid-beta aggregates. Finally, bioactive peptides have the potential to reduce oxidative stress and inflammation, two major components of many neurological disorders. These peptides could be used alone or in combination with traditional pharmacological treatments to improve the management of diseases associated with Alzheimer's and brain disorders.
Collapse
Affiliation(s)
- Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
49
|
Baghlaf MA, Eid NM, Enani S, Kokandi S, Alhussaini B, Waked MS. Prevalence and Risk Factors for IgE and IgG Cow's Milk Protein Allergies in Saudi Arabia. Cureus 2023; 15:e50812. [PMID: 38125695 PMCID: PMC10730981 DOI: 10.7759/cureus.50812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Cow's milk protein allergies (CMPAs) particularly occur in infancy and early childhood due to an immunological allergic reaction to milk proteins. This issue is increasing in Saudi Arabia and requires research to improve health status and provide alternatives. Our study aims to investigate the important aspects of immunoglobulin E (IgE) and IgG CMPA in Saudi Arabia regarding its prevalence and association with demographic and health-related factors in both adult and pediatric populations. A descriptive retrospective cross-sectional study was conducted on 376 patients, comprising 314 adults aged between 19 and 86 years, and 62 pediatric patients aged between one and 12 years. The study focused on individuals who attended a private medical center in Jeddah city over the past five years. Laboratory results for food allergy of IgE and IgG tests, including cow's milk proteins (CMPs), serum 25-hydroxyvitamin D (25OHD), specific IgE inhalant allergy results, and other health-related factors were collected from an electronic record system. Results have shown that casein was the most common sensitizing allergen of CMPs in adults, whereas α-lactalbumin was the most common sensitizing allergen in pediatrics. The most frequent sensitizing allergen in IgG CMP was cow's milk in 54/92 (58.7%) adults, followed by cow's sour milk products 41 (44.6%). Cow's milk was the most common sensitizing allergen in 20/20 (100%) children. The rate of CMPA was significantly higher in children younger than five years old (P =0.003), while children who interacted with pets had a marginal significantly reduced rate (P = 0.054). Thus, cow's milk is the most sensitizing allergen in IgG CMPs in adults and pediatrics.
Collapse
Affiliation(s)
- Mashail A Baghlaf
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, SAU
| | - Noura M Eid
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, SAU
- King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, SAU
| | - Sumia Enani
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, SAU
- Food, Nutrition, and Lifestyle Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, SAU
| | - Samia Kokandi
- Department of Nutrition, International Medical Center, Jeddah, SAU
| | - Bakr Alhussaini
- Department of Pediatric Gastroenterology, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | | |
Collapse
|
50
|
Tufan E, Sivas GG, Gürel-Gökmen B, Yılmaz-Karaoğlu S, Dursun E, Çalışkan-Ak E, Muhan A, Özbeyli D, Şener G, Tunali-Akbay T. Whey protein concentrate ameliorates the methotrexate-induced liver and kidney damage. Br J Nutr 2023; 130:1704-1711. [PMID: 36950976 DOI: 10.1017/s0007114523000752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Methotrexate (MTX) is a cytotoxic immunosuppressant that is widely used in the treatment of tumours, rheumatoid arthritis and psoriasis. This study aims to evaluate the effects of whey proteins on MTX-induced liver and kidney damage by focusing on oxidant–antioxidant systems and eating habits. The study was conducted in four groups of thirty Sprague–Dawley rats (control, control + whey protein concentrate (WPC), MTX, MTX + WPC). A single dose of 20 mg/kg MTX was administered intraperitoneally to the MTX groups. Control and MTX groups were given 2 g/kg WPC by oral gavage every day for 10 d. At the end of day 10, blood samples were drawn and liver and kidney tissues were removed. MTX administration increased the lipid peroxidation level and decreased glutathione level, superoxide dismutase and glutathione-S-transferase activities in the liver and kidney. Administration of WPC significantly reduced the damage caused by MTX in the liver and kidney. While a decrease in serum urea level and an increase in serum creatinine level were detected in the MTX group, WPC administration reversed these results up to control group levels. Administration of WPC to the MTX group significantly reversed the histopathological damage scores of the liver and kidney. WPC administration ameliorated the MTX-induced oxidative damage in the liver and kidney tissues due to its antioxidant properties. Liver and kidney damage can be prevented by using whey proteins as a nutraceutical in MTX therapy. In conclusion, whey proteins demonstrated a protective effect against MTX-induced liver and kidney damage.
Collapse
Affiliation(s)
- Elif Tufan
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry Department, İstanbul, Turkey
| | - Güzin Göksun Sivas
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry Department, İstanbul, Turkey
| | - Begüm Gürel-Gökmen
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry Department, İstanbul, Turkey
| | - Sümeyye Yılmaz-Karaoğlu
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry Department, İstanbul, Turkey
| | - Ercan Dursun
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry Department, İstanbul, Turkey
| | - Esin Çalışkan-Ak
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Histology and Embryology Department, İstanbul, Turkey
| | - Aleyna Muhan
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Histology and Embryology Department, İstanbul, Turkey
| | - Dilek Özbeyli
- Marmara University, Faculty of Vocational School of Health Services, İstanbul, Turkey
| | - Göksel Şener
- Fenerbahçe University, Faculty of Pharmacy, Pharmacology Department, İstanbul, Turkey
| | - Tuğba Tunali-Akbay
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry Department, İstanbul, Turkey
| |
Collapse
|