1
|
Swaminathan S, Grover CE, Mugisha AS, Sichterman LE, Lee Y, Yang P, Mallery EL, Jareczek JJ, Leach AG, Xie J, Wendel JF, Szymanski DB, Zabotina OA. Daily glycome and transcriptome profiling reveals polysaccharide structures and correlated glycosyltransferases critical for cotton fiber growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39441672 DOI: 10.1111/tpj.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Cotton fiber is the most valuable naturally available material for the textile industry and the fiber length and strength are key determinants of its quality. Dynamic changes in the pectin, xyloglucan, xylan, and cellulose polysaccharide epitope content during fiber growth contribute to complex remodeling of fiber cell wall (CW) and quality. Detailed knowledge about polysaccharide compositional and structural alteration in the fiber during fiber elongation and strengthening is important to understand the molecular dynamics of fiber development and improve its quality. Here, large-scale glycome profiling coupled with fiber phenotype and transcriptome profiling was conducted on fiber collected daily covering the most critical window of fiber development. The profiling studies with high temporal resolution allowed us to identify specific polysaccharide epitopes associated with distinct fiber phenotypes that might contribute to fiber quality. This study revealed the critical role of highly branched RG-I pectin epitopes such as β-1,4-linked-galactans, β-1,6-linked-galactans, and arabinogalactans, in addition to earlier reported homogalacturonans and xyloglucans in the formation of cotton fiber middle lamella and contributing to fiber plasticity and elongation. We also propose the essential role of heteroxylans (Xyl-MeGlcA and Xyl-3Ar), as a guiding factor for secondary CW cellulose microfibril arrangement, thus contributing to fiber strength. Correlation analysis of profiles of polysaccharide epitopes from glycome data and expression profiles of glycosyltransferase-encoding genes from transcriptome data identified several key putative glycosyltransferases that are potentially involved in synthesizing the critical polysaccharide epitopes. The findings of this study provide a foundation to identify molecular factors that dictate important fiber traits.
Collapse
Affiliation(s)
- Sivakumar Swaminathan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Alither S Mugisha
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Lauren E Sichterman
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Youngwoo Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Pengcheng Yang
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Eileen L Mallery
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Josef J Jareczek
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Alexis G Leach
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Jun Xie
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Daniel B Szymanski
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Olga A Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| |
Collapse
|
2
|
Hernández-Hernández V, Marchand OC, Kiss A, Boudaoud A. A mechanohydraulic model supports a role for plasmodesmata in cotton fiber elongation. PNAS NEXUS 2024; 3:pgae256. [PMID: 39010940 PMCID: PMC11249074 DOI: 10.1093/pnasnexus/pgae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024]
Abstract
Plant cell growth depends on turgor pressure, the cell hydrodynamic pressure, which drives expansion of the extracellular matrix (the cell wall). Turgor pressure regulation depends on several physical, chemical, and biological factors, including vacuolar invertases, which modulate osmotic pressure of the cell, aquaporins, which determine the permeability of the plasma membrane to water, cell wall remodeling factors, which determine cell wall extensibility (inverse of effective viscosity), and plasmodesmata, which are membrane-lined channels that allow free movement of water and solutes between cytoplasms of neighboring cells, like gap junctions in animals. Plasmodesmata permeability varies during plant development and experimental studies have correlated changes in the permeability of plasmodesmal channels to turgor pressure variations. Here, we study the role of plasmodesmal permeability in cotton fiber growth, a type of cell that increases in length by at least three orders of magnitude in a few weeks. We incorporated plasmodesma-dependent movement of water and solutes into a classical model of plant cell expansion. We performed a sensitivity analysis to changes in values of model parameters and found that plasmodesmal permeability is among the most important factors for building up turgor pressure and expanding cotton fibers. Moreover, we found that nonmonotonic behaviors of turgor pressure that have been reported previously in cotton fibers cannot be recovered without accounting for dynamic changes of the parameters used in the model. Altogether, our results suggest an important role for plasmodesmal permeability in the regulation of turgor pressure.
Collapse
Affiliation(s)
- Valeria Hernández-Hernández
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, INRIA, Lyon F-69342, France
| | - Olivier C Marchand
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, INRIA, Lyon F-69342, France
- LadHyX, NRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau F- 91120, France
| | - Annamaria Kiss
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, INRIA, Lyon F-69342, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, INRIA, Lyon F-69342, France
- LadHyX, NRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau F- 91120, France
| |
Collapse
|
3
|
Wang C, Chen Y, Cui C, Shan F, Zhang R, Lyu X, Lyu L, Chang H, Yan C, Ma C. Blue Light Regulates Cell Wall Structure and Carbohydrate Metabolism of Soybean Hypocotyl. Int J Mol Sci 2023; 24:1017. [PMID: 36674538 PMCID: PMC9864885 DOI: 10.3390/ijms24021017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Soybean stem elongation and thickening are related to cell wall composition. Plant morphogenesis can be influenced by blue light, which can regulate cell wall structure and composition, and affect stem growth and development. Here, using proteomics and metabolomics, differentially expressed proteins and metabolites of hypocotyls grown in the dark and under blue light were studied to clarify the effects of blue light on the cell wall structure and carbohydrate metabolism pathway of soybean hypocotyls. Results showed that 1120 differential proteins were upregulated and 797 differential proteins were downregulated under blue light treatment, while 63 differential metabolites were upregulated and 36 differential metabolites were downregulated. Blue light promoted the establishment of cell wall structure and composition by regulating the expression of both the enzymes and metabolites related to cell wall structural composition and nonstructural carbohydrates. Thus, under blue light, the cross-sectional area of the hypocotyl and xylem were larger, the longitudinal length of pith cells was smaller, elongation of the soybean hypocotyl was inhibited, and diameter was increased.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chao Yan
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Chunmei Ma
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Jiang X, Fan L, Li P, Zou X, Zhang Z, Fan S, Gong J, Yuan Y, Shang H. Co-expression network and comparative transcriptome analysis for fiber initiation and elongation reveal genetic differences in two lines from upland cotton CCRI70 RIL population. PeerJ 2021; 9:e11812. [PMID: 34327061 PMCID: PMC8308610 DOI: 10.7717/peerj.11812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
Upland cotton is the most widely planted for natural fiber around the world, and either lint percentage (LP) or fiber length (FL) is the crucial component tremendously affecting cotton yield and fiber quality, respectively. In this study, two lines MBZ70-053 and MBZ70-236 derived from G. hirsutum CCRI70 recombinant inbred line (RIL) population presenting different phenotypes in LP and FL traits were chosen to conduct RNA sequencing on ovule and fiber samples, aiming at exploring the differences of molecular and genetic mechanisms during cotton fiber initiation and elongation stages. As a result, 249/128, 369/206, 4296/1198 and 3547/2129 up-/down- regulated differentially expressed genes (DGEs) in L2 were obtained at -3, 0, 5 and 10 days post-anthesis (DPA), respectively. Seven gene expression profiles were discriminated using Short Time-series Expression Miner (STEM) analysis; seven modules and hub genes were identified using weighted gene co-expression network analysis. The DEGs were mainly enriched into energetic metabolism and accumulating as well as auxin signaling pathway in initiation and elongation stages, respectively. Meanwhile, 29 hub genes were identified as 14-3-3ω , TBL35, GhACS, PME3, GAMMA-TIP, PUM-7, etc., where the DEGs and hub genes revealed the genetic and molecular mechanisms and differences during cotton fiber development.
Collapse
Affiliation(s)
- Xiao Jiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Liqiang Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Zhao W, Dong H, Zhou Z, Wang Y, Hu W. Potassium (K) application alleviates the negative effect of drought on cotton fiber strength by sustaining higher sucrose content and carbohydrates conversion rate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:105-113. [PMID: 33099118 DOI: 10.1016/j.plaphy.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Potassium (K) application can alleviate the negative effect of drought on fiber strength of cotton, but the involved physiological mechanism is still unclear. To explore this, two cotton varieties, Siza 3 and Simian 3, were planted under three K levels of 0, 150 and 300 kg K2O ha-1. These were exposed to two water regimes consisting of a well-watered level (WW) of 75 ± 5% soil relative water content (RSWC) and a short-term drought stress (DS) of 40 ± 5% SRWC at flowering and boll development stage of cotton. Results revealed that cotton fiber strength of the 7th main-stem fruiting branch (FB7, middle branch) and 3rd main-stem fruiting branch (FB3, lower branch) significantly decreased under drought conditions. The K application significantly increased cotton fiber strength on all FBs under both WW and DS conditions and alleviated the fiber strength decline on FB3 and FB7 under drought. Correspondingly, K application alleviated the DS-caused decrease of sucrose content, cellulose content, sucrose and callose conversion rate, and SuSy and β-1,3-glucanase activities. Correlation analysis also revealed that sucrose content was the most associated to final cotton fiber strength, followed by callose and sucrose conversion rate. Greater increase in enzymes activity, carbohydrate content and conversion rate, and final fiber strength by K application was observed in Siza 3 than in Simian 3 under DS. Summarily, since the carbohydrate content and enzymes activity under DS increased with the increase of K application, the negative effect of DS on fiber strength on FB3 and FB7 gradually reduced. Sustaining higher sucrose content and carbohydrate conversion rate (CCR) would be the strategy for K alleviating the DS-induced decline in fiber strength in cotton.
Collapse
Affiliation(s)
- Wenqing Zhao
- Key Laboratory of Crop Physiology Ecology and Production Management, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Haoran Dong
- Key Laboratory of Crop Physiology Ecology and Production Management, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungal Resources and Utilization (South), Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Zhiguo Zhou
- Key Laboratory of Crop Physiology Ecology and Production Management, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Youhua Wang
- Key Laboratory of Crop Physiology Ecology and Production Management, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Wei Hu
- Key Laboratory of Crop Physiology Ecology and Production Management, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
6
|
Guo X, Hansen BØ, Moeller SR, Harholt J, Mravec J, Willats W, Petersen BL, Ulvskov P. Extensin arabinoside chain length is modulated in elongating cotton fibre. Cell Surf 2019; 5:100033. [PMID: 32743148 PMCID: PMC7388976 DOI: 10.1016/j.tcsw.2019.100033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/18/2019] [Accepted: 10/23/2019] [Indexed: 01/02/2023] Open
Abstract
Cotton fibre provides a unicellular model system for studying cell expansion and secondary cell wall deposition. Mature cotton fibres are mainly composed of cellulose while the walls of developing fibre cells contain a variety of polysaccharides and proteoglycans required for cell expansion. This includes hydroxyproline-rich glycoproteins (HRGPs) comprising the subgroup, extensins. In this study, extensin occurrence in cotton fibres was assessed using carbohydrate immunomicroarrays, mass spectrometry and monosaccharide profiling. Extensin amounts in three species appeared to correlate with fibre quality. Fibre cell expression profiling of the four cotton cultivars, combined with extensin arabinoside chain length measurements during fibre development, demonstrated that arabinoside side-chain length is modulated during development. Implications and mechanisms of extensin side-chain length dynamics during development are discussed.
Collapse
Key Words
- AGPs, arabinogalactan proteins
- CoMPP
- CoMPP, comprehensive microarray polymer profiling
- Cotton fibre
- Cotton fibre quality
- CrRLK1L, Catharanthus roseus receptor-like1-like kinase
- DPA, days post anthesis
- EXTs, extensins
- ExAD, arabinosyltransferase named after the mutant Extensin Arabinose Deficient
- Extensin arabinoside metabolism
- GH, glycoside hydrolase
- HPAT, hydroxyproline arabinosyltransferase
- HRGP
- HRGPs, hydroxyproline-rich glycoproteins
- Hyp-Aran, extensin side-chain of length n
- LRX, leucine-rich repeat extensins
- PCW, primary cell wall
- RRA, arabinosyltransferase named after the mutant Reduced Residual Arabinose
- SCW, secondary cell wall
- SGT, serine galactosyltransferase
- Transcriptomics
- XEG113, arabinosyltransferase named after the mutant Xyloglucan Endo-Glucanase resistant mutant 113
Collapse
Affiliation(s)
- Xiaoyuan Guo
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Bjørn Øst Hansen
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Svenning Rune Moeller
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jesper Harholt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - William Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
7
|
Guo X, Runavot JL, Bourot S, Meulewaeter F, Hernandez-Gomez M, Holland C, Harholt J, Willats WGT, Mravec J, Knox P, Ulvskov P. Metabolism of polysaccharides in dynamic middle lamellae during cotton fibre development. PLANTA 2019; 249:1565-1581. [PMID: 30737556 DOI: 10.1007/s00425-019-03107-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Evidence is presented that cotton fibre adhesion and middle lamella formation are preceded by cutin dilution and accompanied by rhamnogalacturonan-I metabolism. Cotton fibres are single cell structures that early in development adhere to one another via the cotton fibre middle lamella (CFML) to form a tissue-like structure. The CFML is disassembled around the time of initial secondary wall deposition, leading to fibre detachment. Observations of CFML in the light microscope have suggested that the development of the middle lamella is accompanied by substantial cell-wall metabolism, but it has remained an open question as to which processes mediate adherence and which lead to detachment. The mechanism of adherence and detachment were investigated here using glyco-microarrays probed with monoclonal antibodies, transcript profiling, and observations of fibre auto-digestion. The results suggest that adherence is brought about by cutin dilution, while the presence of relevant enzyme activities and the dynamics of rhamnogalacturonan-I side-chain accumulation and disappearance suggest that both attachment and detachment are accompanied by rhamnogalacturonan-I metabolism.
Collapse
Affiliation(s)
- Xiaoyuan Guo
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Jean-Luc Runavot
- Bayer CropScience NV, Innovation Center, Technologiepark 38, 9052, Ghent, Belgium
| | - Stéphane Bourot
- Bayer CropScience NV, Innovation Center, Technologiepark 38, 9052, Ghent, Belgium
| | - Frank Meulewaeter
- Bayer CropScience NV, Innovation Center, Technologiepark 38, 9052, Ghent, Belgium
| | - Mercedes Hernandez-Gomez
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Claire Holland
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Jesper Harholt
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - William G T Willats
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark.
| |
Collapse
|
8
|
Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.). BMC Genomics 2019; 20:101. [PMID: 30709338 PMCID: PMC6359794 DOI: 10.1186/s12864-019-5455-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Expansin loosens plant cell walls and involves in cell enlargement and various abiotic stresses. Plant expansin superfamily contains four subfamilies: α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). In this work, we performed a comprehensive study on the molecular characterization, phylogenetic relationship and expression profiling of common wheat (Triticum aestivum) expansin gene family using the recently released wheat genome database (IWGSC RefSeq v1.1 with a coverage rate of 94%). Results Genome-wide analysis identified 241 expansin genes in the wheat genome, which were grouped into three subfamilies (EXPA, EXPB and EXLA) by phylogenetic tree. Molecular structure analysis showed that wheat expansin gene family showed high evolutionary conservation although some differences were present in different subfamilies. Some key amino acid sites that contribute to functional divergence, positive selection, and coevolution were detected. Evolutionary analysis revealed that wheat expansin gene superfamily underwent strong positive selection. The transcriptome map and qRT-PCR analysis found that wheat expansin genes had tissue/organ expression specificity and preference, and generally highly expressed in the roots. The expression levels of some expansin genes were significantly induced by NaCl and polyethylene glycol stresses, which was consistent with the differential distribution of the cis-elements in the promoter region. Conclusions Wheat expansin gene family showed high evolutionary conservation and wide range of functional divergence. Different selection constraints may influence the evolution of the three expansin subfamilies. The different expression patterns demonstrated that expansin genes could play important roles in plant growth and abiotic stress responses. This study provides new insights into the structures, evolution and functions of wheat expansin gene family. Electronic supplementary material The online version of this article (10.1186/s12864-019-5455-1) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
|
10
|
Parekh MJ, Kumar S, Fougat RS, Zala HN, Pandit RJ. Transcriptomic profiling of developing fiber in levant cotton (Gossypium herbaceum L.). Funct Integr Genomics 2018; 18:211-223. [PMID: 29332190 DOI: 10.1007/s10142-017-0586-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
Abstract
Cotton (Gossypium spp.) is an imperative economic crop of the globe due to its natural textile fiber. Molecular mechanisms of fiber development have been greatly revealed in allotetraploid cotton but remained unexplored in Gossypium herbaceum. G. herbaceum can withstand the rigors of nature like drought and pests but produce coarse lint. This undesirable characteristic strongly needs the knowledge of fiber development at molecular basis. The present study reported the transcriptome sequence of the developing fiber of G. herbaceum on pyrosequencing and its analysis. About 1.38 million raw and 1.12 million quality trimmed reads were obtained followed by de novo assembly-generated 20,125 unigenes containing 14,882 coding sequences (CDs). BLASTx-based test of homology indicated that A1-derived transcripts shared a high similarity with Gossypium arboreum (A2). Functional annotation of the CDs using the UniProt categorized them into biological processes, cellular components, and molecular function, COG classification showed that a large number of CDs have significant homology in COG database (6215 CDs), and mapping of CDs with Kyoto Encyclopedia of Genes and Genomes (KEGG) database generated 200 pathways ultimately showing predominant engagement in the fiber development process. Transcription factors were predicted by comparison with Plant Transcription Factor Database, and their differential expression between stages exposed their important regulatory role in fiber development. Differential expression analysis based on reads per kilobase of transcript per million mapped reads (RPKM) value revealed activities of specific gene related to carbohydrate and lipid synthesis, carbon metabolism, energy metabolism, signal transduction, etc., at four stages of fiber development, and was validated by qPCR. Overall, this study will help as a valuable foundation for diploid cotton fiber improvement.
Collapse
Affiliation(s)
- Mithil J Parekh
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110, India
| | - Sushil Kumar
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110, India.
| | - Ranbir S Fougat
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110, India
| | - Harshvardhan N Zala
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110, India
| | - Ramesh J Pandit
- Department of Animal Biotechnology, Anand Agricultural University, Anand, 388 110, India
| |
Collapse
|
11
|
Dai Y, Yang J, Hu W, Zahoor R, Chen B, Zhao W, Meng Y, Zhou Z. Simulative Global Warming Negatively Affects Cotton Fiber Length through Shortening Fiber Rapid Elongation Duration. Sci Rep 2017; 7:9264. [PMID: 28835696 PMCID: PMC5569071 DOI: 10.1038/s41598-017-09545-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/25/2017] [Indexed: 02/04/2023] Open
Abstract
Global warming could possibly increase the air temperature by 1.8-4.0 °C in the coming decade. Cotton fiber is an essential raw material for the textile industry. Fiber length, which was found negatively related to the excessively high temperature, determines yarn quality to a great extent. To investigate the effects of global warming on cotton fiber length and its mechaism, cottons grown in artificially elevated temperature (34.6/30.5 °C, Tday/Tnight) and ambient temperature (31.6/27.3 °C) regions have been investigated. Becaused of the high sensitivities of enzymes V-ATPase, PEPC, and genes GhXTH1 and GhXTH2 during fiber elongation when responding to high temperature stress, the fiber rapid elongation duration (FRED) has been shortened, which led to a significant suppression on final fiber length. Through comprehensive analysis, Tnight had a great influence on fiber elongation, which means Tn could be deemed as an ideal index for forecasting the degree of high temperature stress would happen to cotton fiber property in future. Therefore, we speculate the global warming would bring unfavorable effects on cotton fiber length, which needs to take actions in advance for minimizing the loss in cotton production.
Collapse
Affiliation(s)
- Yanjiao Dai
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jiashuo Yang
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Wei Hu
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Rizwan Zahoor
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Binglin Chen
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Wenqing Zhao
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yali Meng
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Zhiguo Zhou
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
12
|
Hernandez-Gomez MC, Runavot JL, Meulewaeter F, Knox JP. Developmental features of cotton fibre middle lamellae in relation to cell adhesion and cell detachment in cultivars with distinct fibre qualities. BMC PLANT BIOLOGY 2017; 17:69. [PMID: 28359260 PMCID: PMC5374667 DOI: 10.1186/s12870-017-1017-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/24/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Cotton fibre quality traits such as fibre length, strength, and degree of maturation are determined by genotype and environment during the sequential phases of cotton fibre development (cell elongation, transition to secondary cell wall construction and cellulose deposition). The cotton fibre middle lamella (CFML) is crucial for both cell adhesion and detachment processes occurring during fibre development. To explore the relationship between fibre quality and the pace at which cotton fibres develop, a structural and compositional analysis of the CFML was carried out in several cultivars with different fibre properties belonging to four commercial species: Gossypium hirsutum, G. barbadense, G. herbaceum and G. arboreum. RESULTS Cotton fibre cell adhesion, through the cotton fibre middle lamella (CFML), is a developmentally regulated process determined by genotype. The CFML is composed of de-esterified homogalacturonan, xyloglucan and arabinan in all four fibre-producing cotton species: G. hirsutum, G. barbadense, G. herbaceum and G. arboreum. Conspicuous paired cell wall bulges are a feature of the CFML of two G. hirsutum cultivars from the onset of fibre cell wall detachment to the start of secondary cell wall deposition. Xyloglucan is abundant in the cell wall bulges and in later stages pectic arabinan is absent from these regions. CONCLUSIONS The CFML of cotton fibres is re-structured during the transition phase. Paired cell wall bulges, rich in xyloglucan, are significantly more evident in the G. hirsutum cultivars than in other cotton species.
Collapse
Affiliation(s)
| | - Jean-Luc Runavot
- Bayer CropScience NV - Innovation Center, Technologiepark, 38, 9052, Ghent, Belgium
| | - Frank Meulewaeter
- Bayer CropScience NV - Innovation Center, Technologiepark, 38, 9052, Ghent, Belgium
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
13
|
Dong CJ, Wu AM, Du SJ, Tang K, Wang Y, Liu JY. GhMCS1, the Cotton Orthologue of Human GRIM-19, Is a Subunit of Mitochondrial Complex I and Associated with Cotton Fibre Growth. PLoS One 2016; 11:e0162928. [PMID: 27632161 PMCID: PMC5025012 DOI: 10.1371/journal.pone.0162928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/30/2016] [Indexed: 11/18/2022] Open
Abstract
GRIM-19 (Gene associated with Retinoid-Interferon-induced Mortality 19) is a subunit of mitochondrial respiratory complex I in mammalian systems, and it has been demonstrated to be a multifunctional protein involved in the cell cycle, cell motility and innate immunity. However, little is known about the molecular functions of its homologues in plants. Here, we characterised GhMCS1, an orthologue of human GRIM-19 from cotton (Gossypium hirsutum L.), and found that it was essential for maintaining complex integrity and mitochondrial function in cotton. GhMCS1 was detected in various cotton tissues, with high levels expressed in developing fibres and flowers and lower levels in leaves, roots and ovules. In fibres at different developmental stages, GhMCS1 expression peaked at 5-15 days post anthesis (dpa) and then decreased at 20 dpa and diminished at 25 dpa. By Western blot analysis, GhMCS1 was observed to be localised to the mitochondria of cotton leaves and to colocalise with complex I. In Arabidopsis, GhMCS1 overexpression enhanced the assembly of complex I and thus respiratory activity, whereas the GhMCS1 homologue (At1g04630) knockdown mutants showed significantly decreased respiratory activities. Furthermore, the mutants presented with some phenotypic changes, such as smaller whole-plant architecture, poorly developed seeds and fewer trichomes. More importantly, in the cotton fibres, both the GhMCS1 transcript and protein levels were correlated with respiratory activity and fibre developmental phase. Our results suggest that GhMCS1, a functional ortholog of the human GRIM-19, is an essential subunit of mitochondrial complex I and is involved in cotton fibre development. The present data may deepen our knowledge on the potential roles of mitochondria in fibre morphogenesis.
Collapse
Affiliation(s)
- Chun-Juan Dong
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ai-Min Wu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shao-Jun Du
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Kai Tang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yun Wang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
14
|
Kuai J, Chen Y, Wang Y, Meng Y, Chen B, Zhao W, Zhou Z. Effect of Waterlogging on Carbohydrate Metabolism and the Quality of Fiber in Cotton (Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2016; 7:877. [PMID: 27446110 PMCID: PMC4916335 DOI: 10.3389/fpls.2016.00877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/03/2016] [Indexed: 05/31/2023]
Abstract
Transient waterlogging occurs frequently in the Yangtze River and adversely affects cotton fiber quality. However, the carbohydrate metabolic mechanism that affects fiber quality after waterlogging remains undescribed. Here, the effects of five waterlogging levels (0, 3, 6, 9, and 12 days) were assessed during flowering and boll formation to characterize the carbohydrates, enzymes and genes that affect the fiber quality of cotton after waterlogging. The cellulose and sucrose contents of cotton fibers were significantly decreased after waterlogging for 6 (WL6), 9 (WL9), and 12 d (WL12), although these properties were unaffected after 3 (WL3) and 6 days at the fruiting branch 14-15 (FB14-15). Sucrose phosphate synthase (SPS) was the most sensitive to waterlogging among the enzymes tested. SPS activity was decreased by waterlogging at FB6-7, whereas it was significantly enhanced under WL3-6 at FB10-15. Waterlogging down-regulated the expression of fiber invertase at 10 days post anthesis (DPA), whereas that of expansin, β-1,4-glucanase and endoxyloglucan transferase (XET) was up-regulated with increasing waterlogging time. Increased mRNA levels and activities of fiber SuSy at each fruiting branch indicated that SuSy was the main enzyme responsible for sucrose degradation because it was markedly induced by waterlogging and was active even when waterlogging was discontinued. We therefore concluded that the reduction in fiber sucrose and down-regulation of invertase at 10 DPA led to a markedly shorter fiber length under conditions WL6-12. Significantly decreased fiber strength at FB6-11 for WL6-12 was the result of the inhibition of cellulose synthesis and the up-regulation of expansin, β-1,4-glucanase and XET, whereas fiber strength increased under WL3-6 at FB14-15 due to the increased cellulose content of the fibers. Most of the indictors tested revealed that WL6 resulted in the best compensatory performance, whereas exposure to waterlogged conditions for more than 6 days led to an irreversible limitation in fiber development.
Collapse
Affiliation(s)
- Jie Kuai
- Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yinglong Chen
- Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Youhua Wang
- Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Yali Meng
- Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Binglin Chen
- Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Wenqing Zhao
- Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Zhiguo Zhou
- Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
15
|
Marowa P, Ding A, Kong Y. Expansins: roles in plant growth and potential applications in crop improvement. PLANT CELL REPORTS 2016; 35:949-65. [PMID: 26888755 PMCID: PMC4833835 DOI: 10.1007/s00299-016-1948-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE Results from various expansin related studies have demonstrated that expansins present an opportunity to improve various crops in many different aspects ranging from yield and fruit ripening to improved stress tolerance. The recent advances in expansin studies were reviewed. Besides producing the strength that is needed by the plants, cell walls define cell shape, cell size and cell function. Expansins are cell wall proteins which consist of four sub families; α-expansin, β-expansin, expansin-like A and expansin-like B. These proteins mediate cell wall loosening and they are present in all plants and in some microbial organisms and other organisms like snails. Decades after their initial discovery in cucumber, it is now clear that these small proteins have diverse biological roles in plants. Through their ability to enable the local sliding of wall polymers by reducing adhesion between adjacent wall polysaccharides and the part they play in cell wall remodeling after cytokinesis, it is now clear that expansins are required in almost all plant physiological development aspects from germination to fruiting. This is shown by the various reports from different studies using various molecular biology approaches such as gene achieve these many roles through their non-enzymatic wall loosening ability. This paper reviews and summarizes some of the reported functions of expansins and outlines the potential uses of expansins in crop improvement programs.
Collapse
Affiliation(s)
- Prince Marowa
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Anming Ding
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Yingzhen Kong
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
16
|
Yang J, Hu W, Zhao W, Chen B, Wang Y, Zhou Z, Meng Y. Fruiting Branch K(+) Level Affects Cotton Fiber Elongation Through Osmoregulation. FRONTIERS IN PLANT SCIENCE 2016; 7:13. [PMID: 26834777 PMCID: PMC4722289 DOI: 10.3389/fpls.2016.00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/07/2016] [Indexed: 05/08/2023]
Abstract
Potassium (K) deficiency in cotton plants results in reduced fiber length. As one of the primary osmotica, K(+) contributes to an increase in cell turgor pressure during fiber elongation. Therefore, it is hypothesized that fiber length is affected by K deficiency through an osmotic pathway, so in 2012 and 2013, an experiment was conducted to test this hypothesis by imposing three potassium supply regimes (0, 125, 250 kg K ha(-1)) on a low-K-sensitive cultivar, Siza 3, and a low-K-tolerant cultivar, Simian 3. We found that fibers were longer in the later season bolls than in the earlier ones in cotton plants grown under normal growth conditions, but later season bolls showed a greater sensitivity to low-K stress, especially the low-K sensitive genotype. We also found that the maximum velocity of fibre elongation (V max) is the parameter that best reflects the change in fiber elongation under K deficiency. This parameter mostly depends on cell turgor, so the content of the osmotically active solutes was analyzed accordingly. Statistical analysis showed that K(+) was the major osmotic factor affecting fiber length, and malate was likely facilitating K(+) accumulation into fibers, which enabled the low-K-tolerant genotype to cope with low-K stress. Moreover, the low-K-tolerant genotype tended to have greater K(+) absorptive capacities in the upper fruiting branches. Based on our findings, we suggest a fertilization scheme for Gossypium hirsutum that adds extra potash fertilizer or distributes it during the development of late season bolls to mitigate K deficiency in the second half of the growth season and to enhance fiber length in late season bolls.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiguo Zhou
- Key Laboratory of Crop Physiology and Ecology, Department of Agronomy, College of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Yali Meng
- Key Laboratory of Crop Physiology and Ecology, Department of Agronomy, College of Agriculture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
17
|
Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta. PLoS One 2015; 10:e0125046. [PMID: 25927364 PMCID: PMC4415818 DOI: 10.1371/journal.pone.0125046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/10/2015] [Indexed: 11/19/2022] Open
Abstract
The number of cotton (Gossypium sp.) ovule epidermal cells differentiating into fiber initials is an important factor affecting cotton yield and fiber quality. Despite extensive efforts in determining the molecular mechanisms regulating fiber initial differentiation, only a few genes responsible for fiber initial differentiation have been discovered. To identify putative genes directly involved in the fiber initiation process, we used a cotton ovule culture technique that controls the timing of fiber initial differentiation by exogenous phytohormone application in combination with comparative expression analyses between wild type and three fiberless mutants. The addition of exogenous auxin and gibberellins to pre-anthesis wild type ovules that did not have visible fiber initials increased the expression of genes affecting auxin, ethylene, ABA and jasmonic acid signaling pathways within 1 h after treatment. Most transcripts expressed differentially by the phytohormone treatment in vitro were also differentially expressed in the ovules of wild type and fiberless mutants that were grown in planta. In addition to MYB25-like, a gene that was previously shown to be associated with the differentiation of fiber initials, several other differentially expressed genes, including auxin/indole-3-acetic acid (AUX/IAA) involved in auxin signaling, ACC oxidase involved in ethylene biosynthesis, and abscisic acid (ABA) 8'-hydroxylase an enzyme that controls the rate of ABA catabolism, were co-regulated in the pre-anthesis ovules of both wild type and fiberless mutants. These results support the hypothesis that phytohormonal signaling networks regulate the temporal expression of genes responsible for differentiation of cotton fiber initials in vitro and in planta.
Collapse
|
18
|
Tang W, He Y, Tu L, Wang M, Li Y, Ruan YL, Zhang X. Down-regulating annexin gene GhAnn2 inhibits cotton fiber elongation and decreases Ca2+ influx at the cell apex. PLANT MOLECULAR BIOLOGY 2014; 85:613-25. [PMID: 24890373 DOI: 10.1007/s11103-014-0208-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/26/2014] [Indexed: 05/02/2023]
Abstract
Cotton fiber is a single cell that differentiates from the ovule epidermis and undergoes synchronous elongation with high secretion and growth rate. Apart from economic importance, cotton fiber provides an excellent single-celled model for studying mechanisms of cell-growth. Annexins are Ca(2+)- and phospholipid-binding proteins that have been reported to be localized in multiple cellular compartments and involved in control of vesicle secretions. Although several annexins have been found to be highly expressed in elongating cotton fibers, their functional roles in fiber development remain unknown. Here, 14 annexin family members were identified from the fully sequenced diploid G. raimondii (D5 genome), half of which were expressed in fibers of the cultivated tetraploid species G. hirsutum (cv. YZ1). Among them, GhAnn2 from the D genome of the tetraploid species displayed high expression level in elongating fiber. The expression of GhAnn2 could be induced by some phytohormones that play important roles in fiber elongation, such as IAA and GA3. RNAi-mediated down-regulation of GhAnn2 inhibited fiber elongation and secondary cell wall synthesis, resulting in shorter and thinner mature fibers in the transgenic plants. Measurement with non-invasive scanning ion-selective electrode revealed that the rate of Ca(2+) influx from extracellular to intracellular was decreased at the fiber cell apex of GhAnn2 silencing lines, in comparison to that in the wild type. These results indicate that GhAnn2 may regulate fiber development through modulating Ca(2+) fluxes and signaling.
Collapse
Affiliation(s)
- Wenxin Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
19
|
Naoumkina M, Thyssen G, Fang DD, Hinchliffe DJ, Florane C, Yeater KM, Page JT, Udall JA. The Li2 mutation results in reduced subgenome expression bias in elongating fibers of allotetraploid cotton (Gossypium hirsutum L.). PLoS One 2014; 9:e90830. [PMID: 24598808 PMCID: PMC3944810 DOI: 10.1371/journal.pone.0090830] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/04/2014] [Indexed: 12/18/2022] Open
Abstract
Next generation sequencing (RNA-seq) technology was used to evaluate the effects of the Ligon lintless-2 (Li2) short fiber mutation on transcriptomes of both subgenomes of allotetraploid cotton (Gossypium hirsutum L.) as compared to its near-isogenic wild type. Sequencing was performed on 4 libraries from developing fibers of Li2 mutant and wild type near-isogenic lines at the peak of elongation followed by mapping and PolyCat categorization of RNA-seq data to the reference D5 genome (G. raimondii) for homeologous gene expression analysis. The majority of homeologous genes, 83.6% according to the reference genome, were expressed during fiber elongation. Our results revealed: 1) approximately two times more genes were induced in the AT subgenome comparing to the DT subgenome in wild type and mutant fiber; 2) the subgenome expression bias was significantly reduced in the Li2 fiber transcriptome; 3) Li2 had a significantly greater effect on the DT than on the AT subgenome. Transcriptional regulators and cell wall homeologous genes significantly affected by the Li2 mutation were reviewed in detail. This is the first report to explore the effects of a single mutation on homeologous gene expression in allotetraploid cotton. These results provide deeper insights into the evolution of allotetraploid cotton gene expression and cotton fiber development.
Collapse
Affiliation(s)
- Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Gregory Thyssen
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
| | - David D. Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
| | - Doug J. Hinchliffe
- Cotton Chemistry & Utilization Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
| | - Christopher Florane
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, Louisiana, United States of America
| | - Kathleen M. Yeater
- USDA-ARS-Southern Plains Area, College Station, Texas, United States of America
| | - Justin T. Page
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah, United States of America
| | - Joshua A. Udall
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
20
|
Wang C, Lv Y, Xu W, Zhang T, Guo W. Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the Im gene in immature fiber (im) mutant in Gossypium hirsutum L. BMC Genomics 2014; 15:94. [PMID: 24483163 PMCID: PMC3925256 DOI: 10.1186/1471-2164-15-94] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The immature fiber (im) mutant of Gossypium hirsutum L. is a special cotton fiber mutant with non-fluffy fibers. It has low dry weight and fineness of fibers due to developmental defects in fiber secondary cell wall (SCW). RESULTS We compared the cellulose content in fibers, thickness of fiber cell wall and fiber transcriptional profiling during SCW development in im mutant and its near-isogenic wild-type line (NIL) TM-1. The im mutant had lower cellulose content and thinner cell walls than TM-1 at same fiber developmental stage. During 25 ~ 35 day post-anthesis (DPA), sucrose content, an important carbon source for cellulose synthesis, was also significantly lower in im mutant than in TM-1. Comparative analysis of fiber transcriptional profiling from 13 ~ 25 DPA indicated that the largest transcriptional variations between the two lines occurred at the onset of SCW development. TM-1 began SCW biosynthesis approximately at 16 DPA, whereas the same fiber developmental program in im mutant was delayed until 19 DPA, suggesting an asynchronous fiber developmental program between TM-1 and im mutant. Functional classification and enrichment analysis of differentially expressed genes (DEGs) between the two NILs indicated that genes associated with biological processes related to cellulose synthesis, secondary cell wall biogenesis, cell wall thickening and sucrose metabolism, respectively, were significantly up-regulated in TM-1. Twelve genes related to carbohydrate metabolism were validated by quantitative reverse transcription PCR (qRT-PCR) and confirmed a temporal difference at the earlier transition and SCW biosynthesis stages of fiber development between TM-1 and im mutant. CONCLUSIONS We propose that Im is an important regulatory gene influencing temporal differences in expression of genes related to fiber SCW biosynthesis. This study lays a foundation for cloning the Im gene, elucidating molecular mechanism of fiber SCW development and further genetic manipulation for the improvement of fiber fineness and maturity.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanda Lv
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Wentin Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Kumar S, Kumar K, Pandey P, Rajamani V, Padmalatha KV, Dhandapani G, Kanakachari M, Leelavathi S, Kumar PA, Reddy VS. Glycoproteome of elongating cotton fiber cells. Mol Cell Proteomics 2013; 12:3677-89. [PMID: 24019148 PMCID: PMC3861716 DOI: 10.1074/mcp.m113.030726] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/04/2013] [Indexed: 11/21/2022] Open
Abstract
Cotton ovule epidermal cell differentiation into long fibers primarily depends on wall-oriented processes such as loosening, elongation, remodeling, and maturation. Such processes are governed by cell wall bound structural proteins and interacting carbohydrate active enzymes. Glycosylation plays a major role in the structural, functional, and localization aspects of the cell wall and extracellular destined proteins. Elucidating the glycoproteome of fiber cells would reflect its wall composition as well as compartmental requirement, which must be system specific. Following complementary proteomic approaches, we have identified 334 unique proteins comprising structural and regulatory families. Glycopeptide-based enrichment followed by deglycosylation with PNGase F and A revealed 92 unique peptides containing 106 formerly N-linked glycosylated sites from 67 unique proteins. Our results showed that structural proteins like arabinogalactans and carbohydrate active enzymes were relatively more abundant and showed stage- and isoform-specific expression patterns in the differentiating fiber cell. Furthermore, our data also revealed the presence of heterogeneous and novel forms of structural and regulatory glycoproteins. Comparative analysis with other plant glycoproteomes highlighted the unique composition of the fiber glycoproteome. The present study provides the first insight into the identity, abundance, diversity, and composition of the glycoproteome within single celled cotton fibers. The elucidated composition also indirectly provides clues about unicellular compartmental requirements underlying single cell differentiation.
Collapse
Affiliation(s)
- Saravanan Kumar
- From the ‡Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Krishan Kumar
- From the ‡Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Pankaj Pandey
- From the ‡Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Vijayalakshmi Rajamani
- From the ‡Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Gurusamy Dhandapani
- §National Research Centre on Plant Biotechnology (NRCPB), IARI, New Delhi, India
| | | | - Sadhu Leelavathi
- From the ‡Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Vanga Siva Reddy
- From the ‡Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
22
|
Naoumkina M, Hinchliffe DJ, Turley RB, Bland JM, Fang DD. Integrated metabolomics and genomics analysis provides new insights into the fiber elongation process in Ligon lintless-2 mutant cotton (Gossypium hirsutum L.). BMC Genomics 2013; 14:155. [PMID: 23497242 PMCID: PMC3605188 DOI: 10.1186/1471-2164-14-155] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The length of cotton fiber is an important agronomic trait characteristic that directly affects the quality of yarn and fabric. The cotton (Gossypium hirsutum L.) fiber mutation, Ligon lintless-2, is controlled by a single dominant gene (Li(2)) and results in extremely shortened lint fibers on mature seeds with no visible pleiotropic effects on vegetative growth and development. The Li(2) mutant phenotype provides an ideal model system to study fiber elongation. To understand metabolic processes involved in cotton fiber elongation, changes in metabolites and transcripts in the Li(2) mutant fibers were compared to wild-type fibers during development. RESULTS Principal component analysis of metabolites from GC-MS data separated Li(2) mutant fiber samples from WT fiber samples at the WT elongation stage, indicating that the Li(2) mutation altered the metabolome of the mutant fibers. The observed alterations in the Li(2) metabolome included significant reductions in the levels of detected free sugars, sugar alcohols, sugar acids, and sugar phosphates. Biological processes associated with carbohydrate biosynthesis, cell wall loosening, and cytoskeleton were also down-regulated in Li(2) fibers. Gamma-aminobutyric acid, known as a signaling factor in many organisms, was significantly elevated in mutant fibers. Higher accumulation of 2-ketoglutarate, succinate, and malate suggested higher nitrate assimilation in the Li(2) line. Transcriptional activation of genes involved in nitrogen compound metabolism along with changes in the levels of nitrogen transport amino acids suggested re-direction of carbon flow into nitrogen metabolism in Li(2) mutant fibers. CONCLUSIONS This report provides the first comprehensive analysis of metabolite and transcript changes in response to the Li(2) mutation in elongating fibers. A number of factors associated with cell elongation found in this study will facilitate further research in understanding metabolic processes of cotton fiber elongation.
Collapse
Affiliation(s)
- Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124, USA.
| | | | | | | | | |
Collapse
|
23
|
Lacape JM, Claverie M, Vidal RO, Carazzolle MF, Guimarães Pereira GA, Ruiz M, Pré M, Llewellyn D, Al-Ghazi Y, Jacobs J, Dereeper A, Huguet S, Giband M, Lanaud C. Deep sequencing reveals differences in the transcriptional landscapes of fibers from two cultivated species of cotton. PLoS One 2012; 7:e48855. [PMID: 23166598 PMCID: PMC3499527 DOI: 10.1371/journal.pone.0048855] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/01/2012] [Indexed: 01/17/2023] Open
Abstract
Cotton (Gossypium) fiber is the most prevalent natural product used in the textile industry. The two major cultivated species, G. hirsutum (Gh) and G. barbadense (Gb), are allotetraploids with contrasting fiber quality properties. To better understand the molecular basis for their fiber differences, EST pyrosequencing was used to document the fiber transcriptomes at two key development stages, 10 days post anthesis (dpa), representing the peak of fiber elongation, and 22 dpa, representing the transition to secondary cell wall synthesis. The 617,000 high quality reads (89% of the total 692,000 reads) from 4 libraries were assembled into 46,072 unigenes, comprising 38,297 contigs and 7,775 singletons. Functional annotation of the unigenes together with comparative digital gene expression (DGE) revealed a diverse set of functions and processes that were partly linked to specific fiber stages. Globally, 2,770 contigs (7%) showed differential expression (>2-fold) between 10 and 22 dpa (irrespective of genotype), with 70% more highly expressed at 10 dpa, while 2,248 (6%) were differentially expressed between the genotypes (irrespective of stage). The most significant genes with differential DGE at 10 dpa included expansins and lipid transfer proteins (higher in Gb), while at 22 dpa tubulins, cellulose, and sucrose synthases showed higher expression in Gb. DGE was compared with expression data of 10 dpa-old fibers from Affymetrix microarrays. Among 543 contigs showing differential expression on both platforms, 74% were consistent in being either over-expressed in Gh (242 genes) or in Gb (161 genes). Furthermore, the unigene set served to identify 339 new SSRs and close to 21,000 inter-genotypic SNPs. Subsets of 88 SSRs and 48 SNPs were validated through mapping and added 65 new loci to a RIL genetic map. The new set of fiber ESTs and the gene-based markers complement existing available resources useful in basic and applied research for crop improvement in cotton.
Collapse
|
24
|
Held MA, Be E, Zemelis S, Withers S, Wilkerson C, Brandizzi F. CGR3: a Golgi-localized protein influencing homogalacturonan methylesterification. MOLECULAR PLANT 2011; 4:832-44. [PMID: 21422118 DOI: 10.1093/mp/ssr012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant cell walls are complex structures that offer structural and mechanical support to plant cells and are ultimately responsible for plant architecture and form. Pectins are a large group of complex polysaccharides of the plant cell wall that are made in the Golgi and secreted to the wall. The methylesterification of pectins is believed to be an important factor for the dynamic properties of the cell wall. Here, we report on a protein of unknown function discovered using an extensive proteomics analysis of cotton Golgi. Through bioinformatic analyses, we identified the ortholog of such protein, here named cotton Golgi-related 3 (CGR3) in Arabidopsis and found that it shares conserved residues with S-adenosylmethionine methyltransferases. We established that CGR3 is localized at the Golgi apparatus and that the expression of the CGR3 gene is correlated with that of several cell wall biosynthetic genes, suggesting a possible role of the protein in pectin modifications. Consistent with this hypothesis, immunofluorescence microscopy with antibodies for homogalacturonan pectins (HG) indicated that the cell walls of cgr3 knockout mutants and plants overexpressing CGR3 are decreased and increased in HG methylesterification, respectively. Our results suggest that CGR3 plays a role in the methylesterification of homogalacturonan in Arabidopsis.
Collapse
Affiliation(s)
- Michael A Held
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
25
|
Wang L, Ruan YL. Unraveling mechanisms of cell expansion linking solute transport, metabolism, plasmodesmtal gating and cell wall dynamics. PLANT SIGNALING & BEHAVIOR 2010; 5:1561-4. [PMID: 21139427 PMCID: PMC3115103 DOI: 10.4161/psb.5.12.13568] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 09/09/2010] [Indexed: 05/07/2023]
Abstract
Cell expansion is a major component of plant cell development and plays a key role in organ growth, hence realization of crop productivity. Thus, unraveling mechanisms controlling plant cell expansion is essential not only for understanding fundamental plant biology but also for designing innovative approaches to increase crop yield and quality. The multi-cellular plant tissues, however, impose enormous technique challenges to assess the contribution of molecular or cellular events to the expansion of given cell types as they often deeply embedded within the tissues, thus are not readily accessible for sampling or measurement. In this context, cotton fibers, single-celled hairs developed from the seed coat epidermis represent an ideal system for studying regulation of cell expansion, owing to their rapid and synchronized elongation (up to 3~5 cm long) and high accessibility for experimentation. Recently, we demonstrated the essential role of vacuolar invertase (VIN) in early fiber elongation. Remarkably, we discovered that VIN controls cotton fiber and Arabidopsis root elongating through osmotic dependent and independent pathways, respectively. This shows mechanistic complexity of cell expansion. Here, we evaluate the coordinated actions of multiple pathways in regulating cotton fiber elongation linking solute transport and metabolism with plasmodesmatal gating, water flow and cell wall dynamics and we outline future directions for deepening our understanding of plant cell expansion.
Collapse
Affiliation(s)
- Lu Wang
- Australia-China Research Centre for Crop Improvement; University of Newcastle; Callaghan, NSW, Australia
- Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, China
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement; University of Newcastle; Callaghan, NSW, Australia
- School of Environmental and Life Sciences; University of Newcastle; Callaghan, NSW, Australia
| |
Collapse
|
26
|
Wang J, Wang HY, Zhao PM, Han LB, Jiao GL, Zheng YY, Huang SJ, Xia GX. Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers. PLANT & CELL PHYSIOLOGY 2010; 51:1276-90. [PMID: 20558432 DOI: 10.1093/pcp/pcq086] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cotton fiber development at the stages of elongation and secondary wall synthesis determines the traits of fiber length and strength. To date, the mechanisms controlling the progression of these two phases remain elusive. In this work, the function of a fiber-preferential actin-binding protein (GhPFN2) was characterized by cytological and molecular studies on the fibers of transgenic green-colored cotton (Gossypium hirsutum) through three successive generations. Overexpression of GhPFN2 caused pre-terminated cell elongation, resulting in a marked decrease in the length of mature fibers. Cytoskeleton staining and quantitative assay revealed that thicker and more abundant F-actin bundles formed during the elongation stage in GhPFN2-overexpressing fibers. Accompanying this alteration, the developmental reorientation of transverse microtubules to the oblique direction was advanced by 2 d at the period of transition from elongation to secondary wall deposition. Birefringence and reverse transcription-PCR analyses showed that earlier onset of secondary wall synthesis occurred in parallel. These data demonstrate that formation of the higher actin structure plays a determinant role in the progression of developmental phases in cotton fibers, and that GhPFN2 acts as a critical modulator in this process. Such a function of the actin cytoskeleton in cell phase conversion may be common to other secondary wall-containing plant cells.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Aberrant Expression of Critical Genes during Secondary Cell Wall Biogenesis in a Cotton Mutant, Ligon Lintless-1 (Li-1). Comp Funct Genomics 2010:659301. [PMID: 20148073 PMCID: PMC2817544 DOI: 10.1155/2009/659301] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 09/16/2009] [Accepted: 10/09/2009] [Indexed: 11/17/2022] Open
Abstract
Over ninety percent of the value of cotton comes from its fiber; however, the genetic mechanisms governing fiber development are poorly understood. Due to their biochemical and morphological diversity in fiber cells cotton fiber mutants have been useful in examining fiber development; therefore, using the Ligon Lintless (Li-1) mutant, a monogenic dominant cotton mutant with very short fibers, we employed the high throughput approaches of microarray technology and real time PCR to gain insights into what genes were critical during the secondary cell wall synthesis stage. Comparative transcriptome analysis of the normal TM-1 genotype and the near isogenic Li-1 revealed that over 100 transcripts were differentially expressed at least 2-fold during secondary wall biogenesis, although the genetic profile of the expansion phase showed no significant differences in the isolines. Of particular note, we identified three candidate gene families-expansin, sucrose synthase, and tubulin-whose expression in Li-1 deviates from normal expression patterns of its parent, TM-1. These genes may contribute to retarded growth of fibers in Li-1 since they are fiber-expressed structural and metabolic genes. This work provides more details into the mechanisms of fiber development, and suggests the Li gene is active during the later stages of fiber development.
Collapse
|
28
|
Response of the enzymes to nitrogen applications in cotton fiber (Gossypium hirsutum L.) and their relationships with fiber strength. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2009; 52:1065-72. [PMID: 19937205 DOI: 10.1007/s11427-009-0147-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 11/25/2008] [Indexed: 10/20/2022]
Abstract
To investigate the response of key enzymes to nitrogen (N) rates in cotton fiber and its relationship with fiber strength, experiments were conducted in 2005 and 2006 with cotton cultivars in Nanjing. Three N rates 0, 240 and 480 kgN/hm(2), signifying optimum and excessive nitrogen application levels were applied. The activities and the gene expressions of the key enzymes were affected by N, and the characteristics of cellulose accumulation and fiber strength changed as the N rate varied. Beta-1,3-glucanase activity in cotton fiber declined from 9 DPA till boll opening, and the beta-1, 3-glucanase coding gene expression also followed a unimodal curve in 12-24 DPA. In 240 kgN/hm(2) condition, the characteristics of enzyme activity and gene expression manner for sucrose synthase and beta-1,3-glucanase in developing cotton fiber were more favorable for forming a longer and more steady cellulose accumulation process, and for high strength fiber development.
Collapse
|
29
|
Singh B, Avci U, Eichler Inwood SE, Grimson MJ, Landgraf J, Mohnen D, Sørensen I, Wilkerson CG, Willats WGT, Haigler CH. A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles. PLANT PHYSIOLOGY 2009; 150:684-99. [PMID: 19369592 PMCID: PMC2689960 DOI: 10.1104/pp.109.135459] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 04/07/2009] [Indexed: 05/17/2023]
Abstract
Cotton (Gossypium hirsutum) provides the world's dominant renewable textile fiber, and cotton fiber is valued as a research model because of its extensive elongation and secondary wall thickening. Previously, it was assumed that fibers elongated as individual cells. In contrast, observation by cryo-field emission-scanning electron microscopy of cotton fibers developing in situ within the boll demonstrated that fibers elongate within tissue-like bundles. These bundles were entrained by twisting fiber tips and consolidated by adhesion of a cotton fiber middle lamella (CFML). The fiber bundles consolidated via the CFML ultimately formed a packet of fiber around each seed, which helps explain how thousands of cotton fibers achieve their great length within a confined space. The cell wall nature of the CFML was characterized using transmission electron microscopy, including polymer epitope labeling. Toward the end of elongation, up-regulation occurred in gene expression and enzyme activities related to cell wall hydrolysis, and targeted breakdown of the CFML restored fiber individuality. At the same time, losses occurred in certain cell wall polymer epitopes (as revealed by comprehensive microarray polymer profiling) and sugars within noncellulosic matrix components (as revealed by gas chromatography-mass spectrometry analysis of derivatized neutral and acidic glycosyl residues). Broadly, these data show that adhesion modulated by an outer layer of the primary wall can coordinate the extensive growth of a large group of cells and illustrate dynamic changes in primary wall structure and composition occurring during the differentiation of one cell type that spends only part of its life as a tissue.
Collapse
Affiliation(s)
- Bir Singh
- North Carolina State University, Department of Crop Science, Raleigh, North Carolina 27695-7620, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang YW, Bian SM, Yao Y, Liu JY. Comparative Proteomic Analysis Provides New Insights into the Fiber Elongating Process in Cotton. J Proteome Res 2008; 7:4623-37. [DOI: 10.1021/pr800550q] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yi-Wei Yang
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, P. R. China
| | - Shao-Min Bian
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, P. R. China
| | - Yuan Yao
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, P. R. China
| | - Jin-Yuan Liu
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
31
|
Liu D, Tu L, Wang L, Li Y, Zhu L, Zhang X. Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers. PLANT CELL REPORTS 2008; 27:1385-94. [PMID: 18392624 DOI: 10.1007/s00299-008-0545-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 03/18/2008] [Accepted: 03/25/2008] [Indexed: 05/19/2023]
Abstract
Cotton fiber (Gossypium hirsutum L. and G. barbadense L.) is a good model for studies of plant cell elongation and cell wall biogenesis. Aquaporins are ancient membrane channel proteins that facilitate the permeation of water across biological membranes. We studied GhPIP1-2, encoding plasma membrane intrinsic protein, and GhgammaTIP1, encoding tonoplast intrinsic protein, during cotton fiber development. The full-length cDNAs of GhPIP1-2 and GhgammaTIP1 were obtained through 5' RACE. The deduced amino acid sequences of GhPIP1-2 and GhgammaTIP1 share high sequence identity with aquaporins from diverse plant species. Phylogenetic analysis of GhPIP1-2 and GhgammaTIP1 with other plant aquaporins showed that GhPIP1-2 belongs to the PIP1 group of the PIP subfamily and GhgammaTIP1 belongs to the gammaTIP group of the TIP subfamily. GhPIP1-2 and GhgammaTIP1 contain three and two introns, respectively. Genomic Southern blot analysis indicated that GhPIP1-2 and GhgammaTIP1 have several copies and multiple homologous genes in allotetraploid cotton. Northern blot analysis with gene-specific probes and real-time PCR demonstrated that GhPIP1-2 and GhgammaTIP1 are predominantly expressed during cotton fiber elongation, with the highest expression levels at 5 days post-anthesis. Moreover, expression patterns of the two genes in G. hirsutum and G. barbadense are similar, whereas the expression levels in G. barbadense are much lower than that in G. hirsutum. The high and preferential expression of GhPIP1-2 and GhgammaTIP1 during fiber cell elongation suggests that they may play important roles in supporting the rapid influx of water into vacuoles during cotton fiber cell expansion.
Collapse
Affiliation(s)
- Diqiu Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | | | | | | | | |
Collapse
|
32
|
SHU HM, WANG YH, ZHANG WJ, ZHOU ZHG. Activity Changes of Enzymes Associated with Fiber Development and Relationship with Fiber Specific Strength in Two Cotton Cultivars. ACTA AGRONOMICA SINICA 2008. [DOI: 10.1016/s1875-2780(08)60018-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Lightfoot DJ, Malone KM, Timmis JN, Orford SJ. Evidence for alternative splicing of MADS-box transcripts in developing cotton fibre cells. Mol Genet Genomics 2007; 279:75-85. [PMID: 17943315 DOI: 10.1007/s00438-007-0297-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 09/26/2007] [Indexed: 01/23/2023]
Abstract
The MADS-box family of genes encodes transcription factors that have widely ranging roles in diverse aspects of plant development. In this study, four cotton MADS-box cDNA clones of the type II (MIKC) class were isolated, with phylogenetic analysis indicating that the cotton sequences are of the AGAMOUS subclass. The corresponding transcripts were detected in developing cotton fibre cells as well as in whole ovule and flower tissue, with differential expression in stems, leaves and roots. Reverse transcription PCR showed extensive alternative splicing in one of the reactions, and 11 mRNAs of different intron/exon composition and length were characterised. Sequence differences between the transcripts indicated that they could not be derived from the same pre-mRNA and that the sequenced transcript pool was derived from two distinct MADS-box genes. Several of the alternatively spliced transcripts potentially encoded proteins with altered K-domains and/or C-terminal regions and the variant proteins may have altered cellular roles. This work is the first that describes MADS-box gene expression in elongating cotton fibres and adds to a growing body of evidence for the prevalence of alternative splicing in the expression of MADS-box and other genes.
Collapse
Affiliation(s)
- Damien J Lightfoot
- Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, 5005, Australia
| | | | | | | |
Collapse
|
34
|
Delaney SK, Orford SJ, Martin-Harris M, Timmis JN. The fiber specificity of the cotton FSltp4 gene promoter is regulated by an AT-rich promoter region and the AT-hook transcription factor GhAT1. PLANT & CELL PHYSIOLOGY 2007; 48:1426-37. [PMID: 17715150 DOI: 10.1093/pcp/pcm111] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Fiber-specific genes are expressed preferentially or exclusively in cotton (Gossypium spp.) fiber and are thought to have important functions in fiber development. The promoters of these genes are of interest because they control transcription in the fiber cell and may be used in the genetic manipulation of fiber quality. The promoter of a cotton lipid transfer protein gene, FSltp4, was isolated and shown to direct fiber-specific transcription of an abundant mRNA in cotton. In transgenic tobacco, this promoter was strongly active in leaf trichomes. Deletion analysis of the promoter identified an AT-rich 84 bp fiber specificity region (FSR) necessary for activity exclusively in the fiber cells. Cotton fiber proteins that bind the FSR were isolated using a yeast one-hybrid assay. One of these was a putative AT-hook transcription factor (GhAT1) containing two AT-hook motifs. GhAT1 was shown to be nuclear localized, and GhAT1 transcripts were found to be preferentially expressed in ovules and non-fiber tissues. Overexpression of GhAT1 strongly repressed the activity of the FSltp4 promoter in the trichomes of transgenic tobacco. These results suggest that GhAT1 assists in the specification of fiber cells by repressing FSltp4 in the non-fiber tissues of the cotton plant.
Collapse
Affiliation(s)
- Sven K Delaney
- Discipline of Genetics, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | |
Collapse
|
35
|
An C, Saha S, Jenkins JN, Scheffler BE, Wilkins TA, Stelly DM. Transcriptome profiling, sequence characterization, and SNP-based chromosomal assignment of the EXPANSIN genes in cotton. Mol Genet Genomics 2007; 278:539-53. [PMID: 17724613 DOI: 10.1007/s00438-007-0270-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 06/15/2007] [Indexed: 10/22/2022]
Abstract
The knowledge of biological significance associated with DNA markers is very limited in cotton. SNPs are potential functional marker to tag genes of biological importance. Plant expansins are a group of extracellular proteins that directly modify the mechanical properties of cell walls, enable turgor-driven cell extension, and likely affect length and quality of cotton fibers. Here, we report the expression profiles of EXPANSIN transcripts during fiber elongation and the discovery of SNP markers, assess the SNP characteristics, and localize six EXPANSIN A genes to chromosomes. Transcriptome profiling of cotton fiber oligonucleotide microarrays revealed that seven EXPANSIN transcripts were differentially expressed when there was parallel polar elongation during morphogenesis at early stage of fiber development, suggesting that major and minor isoforms perform discrete functions during polar elongation and lateral expansion. Ancestral and homoeologous relationships of the six EXPANSIN A genes were revealed by phylogenetic grouping and comparison to extant A- and D-genome relatives of contemporary AD-genome cottons. The average rate of SNP per nucleotide was 2.35% (one SNP per 43 bp), with 1.74 and 3.99% occurring in coding and noncoding regions, respectively, in the selected genotypes. An unequal evolutionary rate of the EXPANSIN A genes at the subgenome level of tetraploid cotton was recorded. Chromosomal locations for each of the six EXPANSIN A genes were established by gene-specific SNP markers. Results revealed a strategy for discovering SNP markers in a polyploidy species like cotton. These markers could be useful to associate candidate genes with the complex fiber traits in MAS.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | |
Collapse
|
36
|
Shani Z, Dekel M, Roiz L, Horowitz M, Kolosovski N, Lapidot S, Alkan S, Koltai H, Tsabary G, Goren R, Shoseyov O. Expression of endo-1,4-beta-glucanase (cel1) in Arabidopsis thaliana is associated with plant growth, xylem development and cell wall thickening. PLANT CELL REPORTS 2006; 25:1067-74. [PMID: 16758197 DOI: 10.1007/s00299-006-0167-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 03/29/2006] [Accepted: 04/01/2006] [Indexed: 05/10/2023]
Abstract
Arabidopsis thaliana CEL1 protein was detected in young expanding tissues. Immunostaining revealed that CEL1 accumulated mostly in xylem cells. The primary, as well as the secondary xylem showed considerable CEL1 staining. CEL1 was also observed in young epidermal cells, in which the thicker lateral and tangential walls stained more intensely than the inner walls. In newly formed cell walls, the lateral tangential walls were labeled more intensively than the inner walls. Cellulase activity was found to be significantly higher in growing tissue compared to mature parts of the plant. Cel1 expression concurrently with cellulase activity could be restored in detached matured leaves by sucrose treatment after 48 h in the culture medium.
Collapse
Affiliation(s)
- Ziv Shani
- CBD-Technologies Ltd., Tamar Science Park, PO Box 199, Rehovot, 76100, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dotto MC, Martínez GA, Civello PM. Expression of expansin genes in strawberry varieties with contrasting fruit firmness. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:301-7. [PMID: 16889972 DOI: 10.1016/j.plaphy.2006.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Indexed: 05/04/2023]
Abstract
Fruit softening is associated with cell wall disassembly mediated by the action of a complex set of enzymes and proteins. Expansins, a group of proteins with unknown enzymatic activity, are proposed to be involved in this process. In order to study the involvement of expansins in strawberry fruit softening we have analyzed the expression level of five expansin mRNAs (FaEXP1, FaEXP2, FaEXP4, FaEXP5 and FaEXP6) in the cultivars "Selva", "Camarosa" and "Toyonaka", which differ in fruit firmness during ripening. We have found a correlation between mRNA expression levels and fruit firmness for FaEXP1, FaEXP2 and FaEXP5. For these three mRNAs we have observed higher expression levels in the softest cultivar (Toyonaka) than in the other two firmer cultivars (Selva and Camarosa) at the beginning of ripening. This correlation was not found in the case of FaEXP4 and FaEXP6, although both genes displayed a different expression pattern in the three cultivars analyzed. Western-blot analysis revealed that the accumulation of expansin proteins begins earlier in the softest cultivar during ripening.
Collapse
Affiliation(s)
- Marcela C Dotto
- Instituto de Investigaciones Biotecnológicas--Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Camino Circunvalación Laguna Km. 6, (B7130IWA) Chascomús, Argentina
| | | | | |
Collapse
|
38
|
Wu Y, Machado AC, White RG, Llewellyn DJ, Dennis ES. Expression profiling identifies genes expressed early during lint fibre initiation in cotton. PLANT & CELL PHYSIOLOGY 2006; 47:107-27. [PMID: 16278222 DOI: 10.1093/pcp/pci228] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cotton fibres are a subset of single epidermal cells that elongate from the seed coat to produce the long cellulose strands or lint used for spinning into yarn. To identify genes that might regulate lint fibre initiation, expression profiles of 0 days post-anthesis (dpa) whole ovules from six reduced fibre or fibreless mutants were compared with wild-type linted cotton using cDNA microarrays. Numerous clones were differentially expressed, but when only those genes that are normally expressed in the ovule outer integument (where fibres develop) were considered, just 13 different cDNA clones were down-regulated in some or all of the mutants. These included: a Myb transcription factor (GhMyb25) similar to the Antirrhinum Myb AmMIXTA, a putative homeodomain protein (related to Arabidopsis ATML1), a cyclin D gene, some previously identified fibre-expressed structural and metabolic genes, such as lipid transfer protein, alpha-expansin and sucrose synthase, as well as some unknown genes. Laser capture microdissection and reverse transcription-PCR were used to show that both the GhMyb25 and the homeodomain gene were predominantly ovule specific and were up-regulated on the day of anthesis in fibre initials relative to adjacent non-fibre ovule epidermal cells. Their spatial and temporal expression pattern therefore coincided with the time and location of fibre initiation. Constitutive overexpression of GhMyb25 in transgenic tobacco resulted in an increase in branched long-stalked leaf trichomes. The involvement of cell cycle genes prompted DNA content measurements that indicated that fibre initials, like leaf trichomes, undergo DNA endoreduplication. Cotton fibre initiation therefore has some parallels with leaf trichome development, although the detailed molecular mechanisms are clearly different.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cotton Fiber
- Crosses, Genetic
- DNA, Plant/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Homeobox
- Genes, Plant
- Gossypium/genetics
- Gossypium/growth & development
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Mutation
- Phenotype
- Phylogeny
- Plant Proteins/genetics
- Plants, Genetically Modified
- Sequence Homology, Amino Acid
- Nicotiana/genetics
- Nicotiana/growth & development
Collapse
Affiliation(s)
- Yingru Wu
- CSIRO Plant Industry, Canberra, ACT, Australia
| | | | | | | | | |
Collapse
|
39
|
Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Asami T, Yoshida S, Allen RD. Brassinosteroid regulates fiber development on cultured cotton ovules. PLANT & CELL PHYSIOLOGY 2005; 46:1384-91. [PMID: 15958497 DOI: 10.1093/pcp/pci150] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Our current understanding of the role of phytohormones in the development of cotton fibers is derived largely from an amenable culture system in which cotton ovules, collected on the day of anthesis, are floated on liquid media. Under these conditions, supplemental auxin and gibberellin were found to promote fiber initiation and elongation. More recently, addition of low concentrations of the brassinosteroid brassinolide (BL) were also found to promote fiber elongation while a brassinosteroid biosynthesis inhibitor brassinazole2001 (Brz) inhibited fiber development. In order to elucidate the role of brassinosteroid in cotton fiber development further, we have performed a more detailed analysis of the effects of these chemicals on cultured cotton ovules. Our results confirm that exogenous BL promotes fiber elongation while treatment with Brz inhibits it. Furthermore, treatment of cotton floral buds with Brz results in the complete absence of fiber differentiation, indicating that BR is required for fiber initiation as well as elongation. Expression of fiber genes associated with cell elongation increased in ovules treated with BL and was suppressed by Brz treatment, establishing a correlation between brassinosteroid-regulated gene expression and fiber elongation. These results establish a clear connection between brassinosteroid and fiber development and open the door for genetic analysis of cotton development through direct modification of the brassinosteroid signal transduction pathway.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Wu YT, Liu JY. Molecular cloning and characterization of a cotton glucuronosyltranferase gene. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:573-82. [PMID: 15940874 DOI: 10.1016/j.jplph.2004.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A glucuronosyltranferase gene has been isolated from cotton (Gossypium hirsutum) fiber cells using rapid amplification of the cDNA ends. The full-length cDNA, designated GhGlcAT1, is 1400 bp in length (AY346330) and contains an open reading frame of 1107 bp encoding a protein of 368 amino acids. Alignment of the GhGlcAT1 predicted amino acid sequence was shown to have high sequence similarity with animal glucuronosyltranferases. A phylogenic tree generated by the PHYLIP program package showed that GhGlcAT1 is clustered into the plant glucuronosyltranferase proteins and is distinct from those of other species. Homology modeling of the GhGlcAT1 structure using Homo sapiens native glucuronosyltranferase (1 kws and 1 fgg) structure as a template strongly suggests that the main-chain conformation and the folding patterns were similar to structural features characteristic of animal glucuronosyltranferases. Northern blot analysis showed that the transcripts of GhGlcAT1 were abundant in fiber cells, moderate in stem, but not detected in ovule, flower, seed, root and leaf. Transcripts were most abundant at 15dpa fiber. The transcription occurred at both the primary wall elongation stage and former stage of secondary cell thickening, suggesting that GhGLcAT1 may be involved in non-cellulose polysacchrides biosynthesis of the cotton cell wall.
Collapse
Affiliation(s)
- Yao-Ting Wu
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, PR China
| | | |
Collapse
|
41
|
Romo S, Jiménez T, Labrador E, Dopico B. The gene for a xyloglucan endotransglucosylase/hydrolase from Cicer arietinum is strongly expressed in elongating tissues. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:169-76. [PMID: 15820665 DOI: 10.1016/j.plaphy.2005.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 01/19/2005] [Indexed: 05/02/2023]
Abstract
We have isolated a Cicer arietinum cDNA clone (CaXTH1) encoding a protein that belongs to the family 16 of glycosyl hydrolases and has all the conserved features of xyloglucan endotransglucosylase/hydrolases (XTH) proteins, including the presence of a highly conserved domain (DEIDFEFLG) and four Cys which suggest the potential for forming disulfide bonds. These facts indicate that CaXTH1 encodes a putative XTH. This chickpea protein showed a high level of sequence identity with group 1 XTHs that have xyloglucan endotransglucosylase (XET) activity. CaXTH1 was selected by differential screening of a cDNA library constructed using mRNA from C. arietinum polyethylene glycol (PEG) treated epicotyls, as a clone whose expression decreased when epicotyl growth was inhibited by PEG. CaXTH1 shows an expression pattern that seems to be specific for growing tissue, mostly epicotyls and the growing internodes of adult stems. CaXTH1 mRNA was not detected in any other organs of either seedlings or adult plants. CaXTH1 mRNA was abundant when epicotyls are actively growing; there was almost no expression after PEG-treatment. CaXTH1 was up-regulated by indole acetic acid (IAA) and brassinolides (BR), showing the highest transcript levels after IAA plus BR treatment. In situ hybridization study revealed that CaXTH1 is mainly expressed in epidermal cells, the target of the cell expansion process, and also in vascular tissues. The present results suggest an involvement of the putative XTH encoded by CaXTH1 in the chickpea cell expansion process.
Collapse
Affiliation(s)
- Silvia Romo
- Dpto. de Fisiología Vegetal, Facultad de Biología, Universidad de Salamanca, Centro Hispano-Luso de Investigaciones Agrarias, Pza Doctores de la Reina s/n, Salamanca 37007, Spain
| | | | | | | |
Collapse
|
42
|
Humphries JA, Walker AR, Timmis JN, Orford SJ. Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene. PLANT MOLECULAR BIOLOGY 2005; 57:67-81. [PMID: 15821869 DOI: 10.1007/s11103-004-6768-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 11/25/2004] [Indexed: 05/20/2023]
Abstract
Cotton fibres are single, highly elongated cells derived from the outer epidermis of ovules, and are developmentally similar to the trichomes of Arabidopsis thaliana. To identify genes involved in the molecular control of cotton fibre initiation, we isolated four putative homologues of the Arabidopsis trichome-associated gene TRANSPARENT TESTA GLABRA1 (TTG1). All four WD-repeat genes are derived from the ancestral D diploid genome of tetraploid cotton and are expressed in many tissues throughout the plant, including ovules and growing fibres. Two of the cotton genes were able to restore trichome formation in ttg1 mutant Arabidopsis plants. Both these genes also complemented the anthocyanin defect in a white-flowered Matthiola incana ttg1 mutant. These results demonstrate parallels in differentiation between trichomes in cotton and Arabidopsis, and indicate that these cotton genes may be functional homologues of AtTTG1.
Collapse
MESH Headings
- Amino Acid Sequence
- Anthocyanins/biosynthesis
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/ultrastructure
- Arabidopsis Proteins/genetics
- Brassicaceae/genetics
- Brassicaceae/metabolism
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Flowers/genetics
- Flowers/metabolism
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genetic Complementation Test
- Gossypium/genetics
- Gossypium/growth & development
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Mutation
- Phenotype
- Plant Proteins/genetics
- Plants, Genetically Modified
- Protein Isoforms/genetics
- Repetitive Sequences, Amino Acid/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- John A Humphries
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide SA 5005, Australia
| | | | | | | |
Collapse
|
43
|
Ruan YL, Xu SM, White R, Furbank RT. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. PLANT PHYSIOLOGY 2004; 136:4104-13. [PMID: 15557097 PMCID: PMC535841 DOI: 10.1104/pp.104.051540] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 09/27/2004] [Accepted: 09/28/2004] [Indexed: 05/18/2023]
Abstract
Cotton fibers are single-celled hairs that elongate to several centimeters long from the seed coat epidermis of the tetraploid species (Gossypium hirsutum and Gossypium barbadense). Thus, cotton fiber is a unique system to study the mechanisms of rapid cell expansion. Previous work has shown a transient closure of plasmodesmata during fiber elongation (Y.-L. Ruan, D.J. Llewellyn, R.T. Furbank [2001] Plant Cell 13: 47-60). To examine the importance of this closure in fiber elongation, we compared the duration of the plasmodesmata closure among different cotton genotypes differing in fiber length. Confocal imaging of the membrane-impermeant fluorescent molecule carboxyfluorescein revealed a genotypic difference in the duration of the plasmodesmata closure that positively correlates with fiber length among three tetraploid genotypes and two diploid progenitors. In all cases, the closure occurred at the rapid phase of elongation. Aniline blue staining and immunolocalization studies showed that callose deposition and degradation at the fiber base correlates with the timing of plasmodesmata closure and reopening, respectively. Northern analyses showed that the expression of a fiber-specific beta-1,3-glucanase gene, GhGluc1, was undetectable when callose was deposited at the fiber base but became evident at the time of callose degradation. Genotypically, the level of GhGluc1 expression was high in the short fiber genotype and weak in the intermediate and long fiber genotypes. The data provide genotypic and developmental evidence that (1) plasmodesmata closure appears to play an important role in elongating cotton fibers, (2) callose deposition and degradation may be involved in the plasmodesmata closure and reopening, respectively, and (3) the expression of GhGluc1 could play a role in this process by degrading callose, thus opening the plasmodesmata.
Collapse
Affiliation(s)
- Yong-Ling Ruan
- CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | |
Collapse
|
44
|
Jan A, Yang G, Nakamura H, Ichikawa H, Kitano H, Matsuoka M, Matsumoto H, Komatsu S. Characterization of a xyloglucan endotransglucosylase gene that is up-regulated by gibberellin in rice. PLANT PHYSIOLOGY 2004; 136:3670-81. [PMID: 15516498 PMCID: PMC527165 DOI: 10.1104/pp.104.052274] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 09/16/2004] [Accepted: 09/16/2004] [Indexed: 05/18/2023]
Abstract
Xyloglucan endotransglucosylases/hydrolases (XTHs) that mediate cleavage and rejoining of the beta (1-4)-xyloglucans of the primary cell wall are considered to play an important role in the construction and restructuring of xyloglucan cross-links. A novel rice (Oryza sativa) XTH-related gene, OsXTH8, was cloned and characterized after being identified by cDNA microarray analysis of gibberellin-induced changes in gene expression in rice seedlings. OsXTH8 was a single copy gene; its full-length cDNA was 1,298 bp encoding a predicted protein of 290 amino acids. Phylogenetic analysis revealed that OsXTH8 falls outside of the three established subfamilies of XTH-related genes. OsXTH8 was preferentially expressed in rice leaf sheath in response to gibberellic acid. In situ hybridization and OsXTH8 promoter GUS fusion analysis revealed that OsXTH8 was highly expressed in vascular bundles of leaf sheath and young nodal roots where the cells are actively undergoing elongation and differentiation. OsXTH8 gene expression was up-regulated by gibberellic acid and there was very little effect of other hormones. In two genetic mutants of rice with abnormal height, the expression of OsXTH8 positively correlated with the height of the mutants. Transgenic rice expressing an RNAi construct of OsXTH8 exhibited repressed growth. These results indicate that OsXTH8 is differentially expressed in rice leaf sheath in relation to gibberellin and potentially involved in cell elongation processes.
Collapse
Affiliation(s)
- Asad Jan
- National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Arpat AB, Waugh M, Sullivan JP, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing RA, Wilkins TA. Functional genomics of cell elongation in developing cotton fibers. PLANT MOLECULAR BIOLOGY 2004; 54:911-29. [PMID: 15604659 DOI: 10.1007/s11103-004-0392-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cotton fibers are single-celled seed trichomes of major economic importance. Factors that regulate the rate and duration of cell expansion control fiber morphology and important agronomic traits. For genetic characterization of rapid cell elongation in cotton fibers, approximately 14,000 unique genes were assembled from 46,603 expressed sequence tags (ESTs) from developmentally staged fiber cDNAs of a cultivated diploid species ( Gossypium arboreum L.). Conservatively, the fiber transcriptome represents 35-40% of the genes in the cotton genome. In silico expression analysis revealed that rapidly elongating fiber cells exhibit significant metabolic activity, with the bulk of gene transcripts, represented by three major functional groups - cell wall structure and biogenesis, the cytoskeleton and energy/carbohydrate metabolism. Oligonucleotide microarrays revealed dynamic changes in gene expression between primary and secondary cell wall biogenesis showing that fiber genes in the dbEST are highly stage-specific for cell expansion - a conclusion supported by the absence of known secondary cell wall-specific genes from our fiber dbEST. During the developmental switch from primary to secondary cell wall syntheses, 2553 "expansion-associated" fiber genes are significantly down regulated. Genes (81) significantly up-regulated during secondary cell wall synthesis are involved in cell wall biogenesis and energy/carbohydrate metabolism, which is consistent with the stage of cellulose synthesis during secondary cell wall modification in developing fibers. This work provides the first in-depth view of the genetic complexity of the transcriptome of an expanding cell, and lays the groundwork for studying fundamental biological processes in plant biology with applications in agricultural biotechnology.
Collapse
Affiliation(s)
- A Bulak Arpat
- Department of Agronomy and Range Science, University of California, One Shields Ave., CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Suo J, Liang X, Pu L, Zhang Y, Xue Y. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). ACTA ACUST UNITED AC 2003; 1630:25-34. [PMID: 14580676 DOI: 10.1016/j.bbaexp.2003.08.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cotton (Gossypium hirsutum L.) fibers are derived from ovule epidermis, which are developmentally similar to Arabidopsis trichome where several MYB transcription factors have been shown to control their formation. However, little is known about the molecular control of cotton fiber initiation. Here we isolated 55 cotton MYB domain-containing sequences expressed in ovules during fiber initiation. Among them, GhMYB109, encoding a R2R3 MYB transcription factor of 234 amino acids, was found to be structurally related to AtMYBGL1 and AtWER controlling the trichome initiation in Arabidopsis thaliana. Southern blot hybridization revealed that GhMYB109 is present as a unique-copy gene in cotton genome. RNA expression analysis showed that it is specifically expressed in cotton fiber initial cells as well as elongating fibers. These results suggested that GhMYB109 likely plays a direct role in the initiation and elongation of cotton fiber cells.
Collapse
Affiliation(s)
- Jinfeng Suo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | |
Collapse
|
47
|
Tokumoto H, Wakabayashi K, Kamisaka S, Hoson T. Xyloglucan breakdown during cotton fiber development. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:1411-1414. [PMID: 14658396 DOI: 10.1078/0176-1617-01066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cotton (Gossypium herbaceum L.) fibers elongated almost linearly up to about 20 days post anthesis. The molecular mass of xyloglucans in fiber cell walls decreased gradually during the elongation stage. When enzymatically active (native) cell wall preparations of fibers were autolyzed, the molecular mass of xyloglucans decreased. The decrease was most prominent in wall preparations obtained from the rapidly elongating fibers. The xyloglucan-degrading activity was recovered from the fiber cell walls with 3 mol/L NaCl, and the activity was high at the stages in which fibers elongated vigorously. These results suggest the possible involvement of xyloglucan metabolism in the regulation of cotton fiber elongation.
Collapse
Affiliation(s)
- Hayato Tokumoto
- Department of Biological Sciences, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | | | | | | |
Collapse
|
48
|
Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, Burr B, Hau B. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum x Gossypium barbadense backcross population. Genome 2003; 46:612-26. [PMID: 12897870 DOI: 10.1139/g03-050] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An interspecific Gossypium hirsutum x Gossypium barbadense backcross population of 75 BC1 plants was evaluated for 1014 markers. The map consists of 888 loci, including 465 AFLPs, 229 SSRs, 192 RFLPs, and 2 morphological markers, ordered in 37 linkage groups that represent most if not all of the 26 chromosomes, altogether spanning 4400 cM. Loci were not evenly distributed over linkage groups, and 18 of the 26 long groups had a single dense region. This paper proposes a partially revised list of the 13 pairs of homoeologous A/D chromosomes of the 2n = 4x = 52 tetraploid cotton genome. The major revisions, which involve the c3-c17, c4-c22, c5-D08, and c10-c20 homoeologous pairs, are based on the mapping of 68 SSR and RFLP loci with a known chromosome assignment, as well as on comparative alignments with previously published G. hirsutum x G. barbadense maps. The overall congruency in the locus orders and distances of common SSR and RFLP loci in these maps allows for an estimation of the consensus length that reaches a minimum of 5500 cM, and is encouraging for future efforts aimed at developing an integrated map of cultivated cotton. The present map also provides a firm framework for precision mapping of Mendelian components of quantitative traits in cotton
Collapse
Affiliation(s)
- J-M Lacape
- Centre International en Recherche Agronomique pour le Développement TA, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhao GR, Liu JY. Isolation of a cotton RGP gene: a homolog of reversibly glycosylated polypeptide highly expressed during fiber development. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:370-4. [PMID: 11997105 DOI: 10.1016/s0167-4781(01)00311-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A full-length cDNA encoding putative reversibly glycosylated polypeptide (RGP) was cloned from cotton fiber cells using differential display combined with rapid amplification of the cDNA ends. The gene, designated GhRGP1, contains an open reading frame of 1080 bp encoding a protein of 359 amino acids which has 78-86% identity with other plant RGPs. Northern blot analysis showed that the gene is preferentially expressed in fiber cells and its transcripts are abundant both at the primary cell wall elongation stage and at the later stage of secondary cell thickening, suggesting that GhRGP1 may be involved in non-cellulosic polysaccharide biosynthesis of the plant cell wall.
Collapse
Affiliation(s)
- Guang-Rong Zhao
- Department of Biological Sciences and Biotechnology, Tsinghua University, 100084, Beijing, PR China
| | | |
Collapse
|
50
|
Tokumoto H, Wakabayashi K, Kamisaka S, Hoson T. Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development. PLANT & CELL PHYSIOLOGY 2002; 43:411-418. [PMID: 11978869 DOI: 10.1093/pcp/pcf048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cotton (Gossypium herbaceum L.) fiber development consists of a fiber elongation stage (up to 20 d post-anthesis) and a subsequent cell wall thickening stage. Cell wall analysis revealed that the extractable matrix (pectic and hemicellulosic) polysaccharides accounted for 30-50% of total sugar content in the fiber elongation stage but less than 3% in the cell wall thickening stage. By contrast, cellulose increased dramatically after the fiber elongation ceased. The amounts of extractable xyloglucans and arabinose- and galactose-containing polymers per seed increased in the early fiber elongation stage and decreased thereafter. The amounts of extractable acidic polymers and non-cellulosic beta-glucans (mainly composed of beta-1,3-glucans) increased in parallel with fiber elongation and then decreased. The molecular masses of extractable non-cellulosic beta-glucans, and arabinose- and galactose-containing polymers decreased during both fiber elongation and cell wall thickening stages. The molecular mass of extractable xyloglucans also decreased during the fiber elongation stage, but this decrease ceased during the cell wall thickening stage. Conversely, the molecular size of acidic polymers in the extractable pectic fraction increased during both stages. Thus, not only the amounts but also the molecular size of the extractable matrix polysaccharides showed substantial changes during cotton fiber development.
Collapse
Affiliation(s)
- Hayato Tokumoto
- Department of Biological Sciences, Graduate School of Science, Osaka City University, Sumiyoshi-ku 558-8585 Japan
| | | | | | | |
Collapse
|