1
|
Hubert B, Leprince O, Buitink J. Sleeping but not defenceless: seed dormancy and protection. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6110-6124. [PMID: 38758708 PMCID: PMC11480657 DOI: 10.1093/jxb/erae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 05/19/2024]
Abstract
To ensure their vital role in disseminating the species, dormant seeds have developed adaptive strategies to protect themselves against pathogens and predators. This is orchestrated through the synthesis of an array of constitutive defences that are put in place in a developmentally regulated manner, which are the focus of this review. We summarize the defence activity and the nature of the molecules coming from the exudate of imbibing seeds that leak into their vicinity, also referred to as the spermosphere. As a second layer of protection, the dual role of the seed coat will be discussed; as a physical barrier and a multi-layered reservoir of defence compounds that are synthesized during seed development. Since imbibed dormant seeds can persist in the soil for extensive periods, we address the question of whether during this time a constitutively regulated defence programme is switched on to provide further protection, via the well-defined pathogenesis-related (PR) protein family. In addition, we review the hormonal and signalling pathways that might be involved in the interplay between dormancy and defence and point out questions that need further attention.
Collapse
Affiliation(s)
- Benjamin Hubert
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Olivier Leprince
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Julia Buitink
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| |
Collapse
|
2
|
Ma J, He T, Yu R, Zhao Y, Hu H, Zhang W, Zhang Y, Liu Z, Chen M. Brassica napus BnaA09.MYB52 enhances seed coat mucilage accumulation and tolerance to osmotic stress during seed germination in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:602-611. [PMID: 38634818 DOI: 10.1111/plb.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/21/2024] [Indexed: 04/19/2024]
Abstract
Seed coat mucilage plays an important role in promoting seed germination under adversity. Previous studies have shown that Arabidopsis thaliana MYB52 (AtMYB52) can positively regulate seed coat mucilage accumulation. However, the role of Brassica napus MYB52 (BnaMYB52) in accumulation of seed coat mucilage and tolerance to osmotic stress during seed germination remains largely unknown. We cloned the BnaA09.MYB52 coding domain sequence from B. napus cv ZS11, identified its conserved protein domains and elucidated its relationship with homologues from a range of plant species. Transgenic plants overexpressing BnaA09.MYB52 in the A. thaliana myb52-1 mutant were generated through Agrobacterium-mediated transformation and used to assess the possible roles of BnaA09.MYB52 in accumulation of seed coat mucilage and tolerance to osmotic stress during seed germination. Subcellular localization and transcriptional activity assays demonstrated that BnaA09.MYB52 functions as a transcription factor. RT-qPCR results indicate that BnaA09.MYB52 is predominantly expressed in roots and developing seeds of B. napus cv ZS11. Introduction of BnaA09.MYB52 into myb52-1 restored thinner seed coat mucilage in this mutant to levels in the wild type. Consistently, expression levels of three key genes participating in mucilage formation in developing seeds of myb52-1 were also restored to wild type levels by overexpressing BnaA09.MYB52. Furthermore, BnaA09.MYB52 was induced by osmotic stress during seed germination in B. napus, and ectopic expression of BnaA09.MYB52 successfully corrected sensitivity of the myb52-1 mutant to osmotic stress during seed germination. These findings enhance our understanding of the functions of BnaA09.MYB52 and provide a novel strategy for future B. napus breeding.
Collapse
Affiliation(s)
- J Ma
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - T He
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - R Yu
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Zhao
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - H Hu
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - W Zhang
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Zhang
- Department of Ecological and Environmental Engineering, Yangling Vocational & Technical College, Yangling, Shaanxi, China
| | - Z Liu
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - M Chen
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Chand M, Chopra R, Talwar B, Homroy S, Singh PK, Dhiman A, Payyunni AW. Unveiling the potential of linseed mucilage, its health benefits, and applications in food packaging. Front Nutr 2024; 11:1334247. [PMID: 38385008 PMCID: PMC10879465 DOI: 10.3389/fnut.2024.1334247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024] Open
Abstract
Industrial waste products derived from the oil industry often contain valuable substances and elements with great potential. These by-products can be used for various purposes, including as nutrients, bioactive compounds, fuels, and polymers. Linseed mucilage (LM) is one such example of a beneficial by-product obtained from linseed. It possesses favorable chemical and functional properties, depending on its method of extraction. Different pretreatments, such as enzymatic extraction, microwave-assisted extraction, pulse electric field, and ultrasound-assisted extraction, have been explored by various researchers to enhance both the yield and quality of mucilage. Furthermore, LM has exhibited therapeutic effects in the treatment of obesity, diabetes, constipation, hyperlipidemia, cancer, and other lifestyle diseases. Additionally, it demonstrates favorable functional characteristics that make it suitable to be used in bioplastic production. These properties preserve food quality, prolong shelf life, and confer antimicrobial activity. It also has the potential to be used as a packaging material, especially considering the increasing demand for sustainable and biodegradable alternatives to plastics because of their detrimental impact on environmental health. This review primarily focuses on different extraction techniques used for linseed mucilage, its mechanism of action in terms of health benefits, and potential applications in food packaging.
Collapse
Affiliation(s)
- Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition and Food Technology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Abdul Wahid Payyunni
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| |
Collapse
|
4
|
Ladwig LM, Lucas JR. Seed mucilage in temperate grassland species is unrelated to moisture requirements. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10135. [PMID: 38384946 PMCID: PMC10880130 DOI: 10.1002/pei3.10135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 02/23/2024]
Abstract
Myxospermy, the release of seed mucilage upon hydration, plays multiple roles in seed biology. Here, we explore whether seed mucilage occurs in a suite of temperate grassland species to test if the prevalence of species producing seed mucilage is associated with habitat type or seed characteristics. Seventy plant species found in wet or dry North American temperate grasslands were tested for the presence of seed mucilage through microscopic examination of seeds imbibed with histochemical stain for mucilage. Mucilage production was compared among species with different moisture requirements and seed mass. In this study, 43 of 70 of species tested produced seed mucilage. Seed mucilage did not differ based on habitat type, species moisture requirements, or seed mass. Most seed mucilage was non-adherent and did not remain stuck to the seed after extrusion. Seed mucilage was a common trait in the surveyed temperate grassland species and was observed in 61% of evaluated species. Surprisingly, seed mucilage was more common in temperate grasslands than in previous ecological surveys from arid/semiarid systems, which found 10%-31% myxospermous species. Given the high prevalence, seed mucilage may influence seedling ecology in temperate grasslands and requires further investigation.
Collapse
Affiliation(s)
- Laura M. Ladwig
- Biology DepartmentUniversity of WisconsinOshkoshWisconsinUSA
| | | |
Collapse
|
5
|
Cheng N, Nakata PA. Disruption of the Arabidopsis Acyl-Activating Enzyme 3 Impairs Seed Coat Mucilage Accumulation and Seed Germination. Int J Mol Sci 2024; 25:1149. [PMID: 38256222 PMCID: PMC10816874 DOI: 10.3390/ijms25021149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The Acyl-activating enzyme (AAE) 3 gene encodes an oxalyl-CoA synthetase that catalyzes the conversion of oxalate to oxalyl-CoA as the first step in the CoA-dependent pathway of oxalate catabolism. Although the role of this enzyme in oxalate catabolism has been established, its biological roles in plant growth and development are less understood. As a step toward gaining a better understanding of these biological roles, we report here a characterization of the Arabidopsis thaliana aae3 (Ataae3) seed mucilage phenotype. Ruthidium red (RR) staining of Ataae3 and wild type (WT) seeds suggested that the observed reduction in Ataae3 germination may be attributable, at least in part, to a decrease in seed mucilage accumulation. Quantitative RT-PCR analysis revealed that the expression of selected mucilage regulatory transcription factors, as well as of biosynthetic and extrusion genes, was significantly down-regulated in the Ataae3 seeds. Mucilage accumulation in seeds from an engineered oxalate-accumulating Arabidopsis and Atoxc mutant, blocked in the second step of the CoA-dependent pathway of oxalate catabolism, were found to be similar to WT. These findings suggest that elevated tissue oxalate concentrations and loss of the oxalate catabolism pathway downstream of AAE3 were not responsible for the reduced Ataae3 seed germination and mucilage phenotypes. Overall, our findings unveil the presence of regulatory interplay between AAE3 and transcriptional control of mucilage gene expression.
Collapse
Affiliation(s)
| | - Paul A. Nakata
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030-2600, USA;
| |
Collapse
|
6
|
Adhikary ND, Bains A, Sridhar K, Kaushik R, Chawla P, Sharma M. Recent advances in plant-based polysaccharide ternary complexes for biodegradable packaging. Int J Biol Macromol 2023; 253:126725. [PMID: 37678691 DOI: 10.1016/j.ijbiomac.2023.126725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Polysaccharide-based packaging has been directed toward the development of technologies for the generation of packaging with biodegradable materials that can serve as substitutes for conventional packaging. Polysaccharides are reliable sources of edible packaging materials with excellent renewability, biodegradability, and bio-compatibility as well as antioxidant and antimicrobial activities. Apart from these properties, packaging film developed from a single polysaccharide has various disadvantages due to undesirable properties. Thus, to overcome these problems, researchers focused on ternary blend-based bio-packaging instead of the primary and binary complex to improve their characteristics and properties. The review emphasizes the extraction of polysaccharides and their combination with other polymers to provide desirable characteristics and physico-mechanical properties of the biodegradable film which will upgrade the green packaging technology in the future generation This review also explores the advancement of ternary blend-based biodegradable film and their application in foods with different requirements and the future aspects for developing advanced biodegradable film. Moreover, the review concludes that cellulose, modified starch, and another plant-based polysaccharide film mostly provides good gas barrier property and better tensile strength, which can be used as a safeguard of perishable and semi-perishable foods which brings them closer to replacing commercial synthetic packaging.
Collapse
Affiliation(s)
- Nibedita Das Adhikary
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| | - Minaxi Sharma
- CARAH ASBL, Rue Paul Pastur, 11, Ath - 7800, Belgium.
| |
Collapse
|
7
|
Inglis PW, Cavalcanti TB, Facco MG, Bakker FT, Graham SA. A comprehensive genus-level phylogeny and biogeographical history of the Lythraceae based on whole plastome sequences. ANNALS OF BOTANY 2023; 132:293-318. [PMID: 37439499 PMCID: PMC10583215 DOI: 10.1093/aob/mcad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND AND AIMS The Lythraceae are a mainly subtropical to tropical family of the order Myrtales with 28 currently accepted genera and approximately 600 species. There is currently no well-supported phylogenetic and biogeographical hypothesis of the Lythraceae incorporating all currently accepted genera, which we sought to provide. METHODS Plastomes of representative species of 18 distinct Lythraceae genera were sequenced and annotated. Together with existing sequences, plastomes of all 28 currently accepted genera in the Lythraceae were brought together for the first time. The plastomes were aligned and a Bayesian phylogenetic hypothesis was produced. We then conducted a time-calibrated Bayesian analysis and a biogeographical analysis. KEY RESULTS Plastome-based Bayesian and maximum-likelihood phylogenetic trees are generally congruent with recent nuclear phylogenomic data and resolve two deeply branching major clades in the Lythraceae. One major clade concentrates shrubby and arboreal South American and African genera that inhabit seasonally dry environments, with larger, often winged seeds, adapted to dispersal by the wind. The second major clade concentrates North American, Asian, African and several near-cosmopolitan herbaceous, shrubby and arboreal genera, often inhabiting humid or aquatic environments, with smaller seeds possessing structures that facilitate dispersal by water. CONCLUSIONS We hypothesize that the Lythraceae dispersed early in the Late Cretaceous from South American to North American continents, with subsequent expansion in the Late Cretaceous of a North American lineage through Laurasia to Africa via a boreotropical route. Two later expansions of South American clades to Africa in the Palaeocene and Eocene, respectively, are also hypothesized. Transoceanic dispersal in the family is possibly facilitated by adaptations to aquatic environments that are common to many extant genera of the Lythraceae, where long-distance dispersal and vicariance may be invoked to explain several remarkable disjunct distributions in Lythraceae clades.
Collapse
Affiliation(s)
- Peter W Inglis
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), Caixa Postal 02372 – Brasília, DF – CEP 70770-917, Brazil
| | - Taciana B Cavalcanti
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), Caixa Postal 02372 – Brasília, DF – CEP 70770-917, Brazil
| | - Marlon G Facco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Freek T Bakker
- Biosystematics Group, Wageningen University & Research, Postbus 647, NL-6700 AP, Wageningen, The Netherlands
| | - Shirley A Graham
- Missouri Botanical Garden, 4344 Shaw Boulevard, Saint Louis, MO 63110, USA
| |
Collapse
|
8
|
Alejo-Jacuinde G, Nájera-González HR, Chávez Montes RA, Gutierrez Reyes CD, Barragán-Rosillo AC, Perez Sanchez B, Mechref Y, López-Arredondo D, Yong-Villalobos L, Herrera-Estrella L. Multi-omic analyses reveal the unique properties of chia (Salvia hispanica) seed metabolism. Commun Biol 2023; 6:820. [PMID: 37550387 PMCID: PMC10406817 DOI: 10.1038/s42003-023-05192-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
Chia (Salvia hispanica) is an emerging crop considered a functional food containing important substances with multiple potential applications. However, the molecular basis of some relevant chia traits, such as seed mucilage and polyphenol content, remains to be discovered. This study generates an improved chromosome-level reference of the chia genome, resolving some highly repetitive regions, describing methylation patterns, and refining genome annotation. Transcriptomic analysis shows that seeds exhibit a unique expression pattern compared to other organs and tissues. Thus, a metabolic and proteomic approach is implemented to study seed composition and seed-produced mucilage. The chia genome exhibits a significant expansion in mucilage synthesis genes (compared to Arabidopsis), and gene network analysis reveals potential regulators controlling seed mucilage production. Rosmarinic acid, a compound with enormous therapeutic potential, was classified as the most abundant polyphenol in seeds, and candidate genes for its complex pathway are described. Overall, this study provides important insights into the molecular basis for the unique characteristics of chia seeds.
Collapse
Affiliation(s)
- Gerardo Alejo-Jacuinde
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | - Héctor-Rogelio Nájera-González
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | - Ricardo A Chávez Montes
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | | | - Alfonso Carlos Barragán-Rosillo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | - Benjamin Perez Sanchez
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Damar López-Arredondo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | - Lenin Yong-Villalobos
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA.
| | - Luis Herrera-Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA.
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto., 36821, Mexico.
| |
Collapse
|
9
|
Diehl D, Knott M, Schaumann GE. Purification effects show seed and root mucilage's ability to respond to changing rhizosphere conditions. Biopolymers 2023; 114:e23561. [PMID: 37435955 DOI: 10.1002/bip.23561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Mucilage, a polysaccharide-containing hydrogel, is hypothesized to play a key role in the rhizosphere as a self-organized system because it may vary its supramolecular structure with changes in the surrounding solution. However, there is currently limited research on how these changes are reflected in the physical properties of real mucilage. This study examines the role of solutes in maize root, wheat root, chia seed, and flax seed mucilage in relation to their physical properties. Two purification methods, dialysis and ethanol precipitation, were applied to determine the purification yield, cation content, pH, electrical conductivity, surface tension, viscosity, transverse 1 H relaxation time, and contact angle after drying of mucilage before and after purification. The two seed mucilage types contain more polar polymers that are connected to larger assemblies via multivalent cation crosslinks, resulting in a denser network. This is reflected in higher viscosity and water retention ability compared to root mucilage. Seed mucilage also contains fewer surfactants, making them better wettable after drying compared to the two root mucilage types. The root mucilage types, on the other hand, contain smaller polymers or polymer assemblies and become less wettable after drying. However, wettability not only depends on the amount of surfactants but also on their mobility, as well as the strength and mesh size of the network structure. The changes in physical properties and cation composition observed after ethanol precipitation and dialysis suggest that the polymer network of seed mucilage is more stable and specialized in protecting the seeds from unfavorable environmental conditions. In contrast, root mucilage is characterized by fewer cationic interactions and its network relies more on hydrophobic interactions. This allows root mucilage to be more flexible in responding to changing environmental conditions, facilitating nutrient and water exchange between root surfaces and the rhizosphere soil.
Collapse
Affiliation(s)
- Doerte Diehl
- Environmental and Soil Chemistry Group, Rheinland-Pfälzische Technische Universität Kaiserslautern Landau, RPTU in Landau, iES Institute for Environmental Sciences, Landau, Germany
| | - Mathilde Knott
- Environmental and Soil Chemistry Group, Rheinland-Pfälzische Technische Universität Kaiserslautern Landau, RPTU in Landau, iES Institute for Environmental Sciences, Landau, Germany
| | - Gabriele E Schaumann
- Environmental and Soil Chemistry Group, Rheinland-Pfälzische Technische Universität Kaiserslautern Landau, RPTU in Landau, iES Institute for Environmental Sciences, Landau, Germany
| |
Collapse
|
10
|
Paravar A, Maleki Farahani S, Rezazadeh A. Morphological, physiological and biochemical response of L allemantia species to elevated temperature and light duration during seed development. Heliyon 2023; 9:e15149. [PMID: 37123928 PMCID: PMC10133671 DOI: 10.1016/j.heliyon.2023.e15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Seed weight, storability, and germinability can depend on maternal plant's environment. However, there is slight information about the effect of light and temperature on seed quality of Lallemantia species. The purpose of this research was to determine the properties of physio-biochemical of maternal plant, seed quality, and seed chemical composition of Lallemantia species (Lallemantia iberica and Lallemantia royleana) under temperature (15 °C, 25 °C, and 35 °C) and photoperiod (8 hd-1, 16 hd-1, and 24 hd-1) maternal plants environment. Increasing temperature and photoperiod caused a reduction in leaf chlorophyll, stomatal movement, total soluble sugar, superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) enzymes activities, and an increment in malondialdehyde (MDA) and hydrogen peroxide (H2O2) content of seeds. However, the highest weight, germination, vigor index, and longevity, seed chemical compositions were obtained in offspring which matured under 25 °C for 16 hd-1. The highest germination, oil, and relative percentage of fatty acids (oleic acid (OA), linoleic acid (LA), and linolenic acid (LNA)) were obtained in L. iberica seeds. On the contrary, longevity, mucilage, and sucrose were more abundant in L. royleana seeds. Overall, this research has clearly shown that temperature and light quality and quantity of maternal plant's environment have an immensely effect on producing of seeds with high-quality. However, it is necessary to investigate the impact of the epigenetic mechanisms of the maternal plant on the offspring in future studies.
Collapse
Affiliation(s)
- Arezoo Paravar
- Department of Crop Production and Plant Breeding, College of Agriculture, Shahed University, Tehran, Iran
| | - Saeideh Maleki Farahani
- Department of Crop Production and Plant Breeding, College of Agriculture, Shahed University, Tehran, Iran
- Corresponding author.
| | - Alireza Rezazadeh
- Department of Plant Protection, College of Agriculture, Shahed University, Tehran, Iran
| |
Collapse
|
11
|
Liu H, Luo Q, Tan C, Song J, Zhang T, Men S. Biosynthesis- and transport-mediated dynamic auxin distribution during seed development controls seed size in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1259-1277. [PMID: 36648165 DOI: 10.1111/tpj.16109] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Auxin is indispensable to the fertilization-induced coordinated development of the embryo, endosperm, and seed coat. However, little attention has been given to the distribution pattern, maintenance mechanism, and function of auxin throughout the process of seed development. In the present study, we found that auxin response signals display a dynamic distribution pattern during Arabidopsis seed development. Shortly after fertilization, strong auxin response signals were observed at the funiculus, chalaza, and micropylar integument where the embryo attaches. Later, additional signals appeared at the middle layer of the inner integument (ii1') above the chalaza and the whole inner layer of the outer integument (oi1). These signals peaked when the seed was mature, then declined upon desiccation and disappeared in the dried seed. Auxin biosynthesis genes, including ASB1, TAA1, YUC1, YUC4, YUC8, and YUC9, contributed to the accumulation of auxin in the funiculus and seed coat. Auxin efflux carrier PIN3 and influx carrier AUX1 also contributed to the polar auxin distribution in the seed coat. PIN3 was expressed in the ii1 (innermost layer of the inner integument) and oi1 layers of the integument and showed polar localization. AUX1 was expressed in both layers of the outer integument and the endosperm and displayed a uniform localization. Further research demonstrated that the accumulation of auxin in the seed coat regulates seed size. Transgenic plants that specifically express the YUC8 gene in the oi2 or ii1 seed coat produced larger seeds. These results provide useful tools for cultivating high-yielding crops.
Collapse
Affiliation(s)
- Huabin Liu
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiong Luo
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chao Tan
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jia Song
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tan Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shuzhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
12
|
Seed Mucilage Promotes Dispersal of Plantago asiatica Seeds by Facilitating Attachment to Shoes. SUSTAINABILITY 2022. [DOI: 10.3390/su14116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Understanding the mechanisms underlying seed dispersal is a fundamental issue in plant ecology and vegetation management. Several species demonstrate myxospermy, a phenomenon where the seeds form mucilage after absorbing water. Mucilage is thought to act as a glue, enabling seeds to attach to the external surfaces of dispersing agents. However, there have been no quantitative investigations of the efficacy of this function of seed mucilage. We performed a trampling and walking experiment to investigate the seed dispersal of a perennial herb, Asian plantain (Plantago asiatica L.), which forms polysaccharide mucilage upon hydration. Our experiment showed that: (1) after trampling, more seeds of P. asiatica attached to shoes in wet conditions (after rainfall), in which seed mucilage was created, than in dry conditions (no rainfall); and (2) after walking for 1000 m, more seeds remained attached to shoes in wet conditions than in dry conditions. Our results indicate that mucilage promotes the adherence of seeds to the surface of vectors. We therefore provide the first empirical evidence that seed mucilage facilitates epizoochory and human-mediated dispersal.
Collapse
|
13
|
Ohtani M, Kotake T, Mortimer JC, Demura T. The Mechanics and Biology of Plant Cell Walls: Resilience and Sustainability for Our Future Society. PLANT & CELL PHYSIOLOGY 2021; 62:1787-1790. [PMID: 34958673 DOI: 10.1093/pcp/pcab168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Misato Ohtani
- Department of Integrated Sciences, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha,Kashiwa, Chiba, 277-8563 Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
| | - Jenny C Mortimer
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
| |
Collapse
|
14
|
Novel trends and opportunities for microencapsulation of flaxseed oil in foods: A review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|