1
|
Öpik M. Soil biology: Fungi in plant roots - what do they all do down there? Curr Biol 2024; 34:R1237-R1240. [PMID: 39689693 DOI: 10.1016/j.cub.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Plant roots host a range of fungi, including mycorrhizal fungi and endophytes. A new study shows that mucoromycotinan fine root endophytes can selectively utilise organic nitrogen, keep the carbon, transfer nitrogen to host and receive carbon from plants.
Collapse
Affiliation(s)
- Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Delaux PM, Gutjahr C. Evolution of small molecule-mediated regulation of arbuscular mycorrhiza symbiosis. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230369. [PMID: 39343030 PMCID: PMC11439497 DOI: 10.1098/rstb.2023.0369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 10/01/2024] Open
Abstract
The arbuscular mycorrhizal (AM) symbiosis formed by most extant land plants with symbiotic fungi evolved 450 Ma. AM promotes plant growth by improving mineral nutrient and water uptake, while the symbiotic fungi obtain carbon in return. A number of plant genes regulating the steps leading to an efficient symbiosis have been identified; however, our understanding of the metabolic processes involved in the symbiosis and how they were wired to symbiosis regulation during plant evolution remains limited. Among them, the exchange of chemical signals, the activation of dedicated biosynthesis pathways and the production of secondary metabolites regulating late stages of the AM symbiosis begin to be well described across several land plant clades. Here, we review our current understanding of these processes and propose future directions to fully grasp the phylogenetic distribution and role played by small molecules during this ancient plant symbiosis. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, 31326 Castanet-Tolosan, France
| | - Caroline Gutjahr
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam-Golm14476, Germany
| |
Collapse
|
3
|
Anckaert A, Declerck S, Poussart LA, Lambert S, Helmus C, Boubsi F, Steels S, Argüelles-Arias A, Calonne-Salmon M, Ongena M. The biology and chemistry of a mutualism between a soil bacterium and a mycorrhizal fungus. Curr Biol 2024; 34:4934-4950.e8. [PMID: 39378881 DOI: 10.1016/j.cub.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi (e.g., Rhizophagus species) recruit specific bacterial species in their hyphosphere. However, the chemical interplay and the mutual benefit of this intricate partnership have not been investigated yet, especially as it involves bacteria known as strong producers of antifungal compounds such as Bacillus velezensis. Here, we show that the soil-dwelling B. velezensis migrates along the hyphal network of the AM fungus R. irregularis, forming biofilms and inducing cytoplasmic flow in the AM fungus that contributes to host plant root colonization by the bacterium. During hyphosphere colonization, R. irregularis modulates the biosynthesis of specialized metabolites in B. velezensis to ensure stable coexistence and as a mechanism to ward off mycoparasitic fungi and bacteria. These mutual benefits are extended into a tripartite context via the provision of enhanced protection to the host plant through the induction of systemic resistance.
Collapse
Affiliation(s)
- Adrien Anckaert
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique.
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06, 1348 Louvain-la-Neuve, Belgique
| | - Laure-Anne Poussart
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Stéphanie Lambert
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Catherine Helmus
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Farah Boubsi
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Sébastien Steels
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Anthony Argüelles-Arias
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06, 1348 Louvain-la-Neuve, Belgique
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique.
| |
Collapse
|
4
|
Davidson-Lowe E, Zainuddin N, Trase O, McCarthy N, Ali JG. Arbuscular mycorrhizal fungi influence belowground interactions between a specialist root-feeder and its natural enemy. J Invertebr Pathol 2024; 207:108200. [PMID: 39374864 DOI: 10.1016/j.jip.2024.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/24/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
As primary producers, plants play a central role in mediating interactions across trophic levels. Although plants are the primary food source for herbivorous insects, they can protect themselves from herbivore damage. Many plants produce toxic compounds that directly reduce herbivore feeding, but plants also protect themselves indirectly by attracting natural enemies of the attacking herbivore through volatile signaling. These so-called tri-trophic interactions have historically been documented aboveground in aerial plant parts but are also known to occur belowground in root systems. In addition to herbivores, plants directly interact with other organisms, which can influence the outcomes of tri-trophic interactions. Arbuscular mycorrhizal fungi (AMF) are symbiotic soil microbes that colonize the roots of plants and facilitate nutrient uptake. These microbes can alter plant chemistry and subsequent resistance to herbivores. Few studies, however, have shown how AMF affect tri-trophic interactions above- or belowground. This study examines how AMF colonization affects the emission of root volatiles when plants are under attack by western corn rootworm, a problematic pest of corn, and subsequent attraction of entomopathogenic nematodes, a natural enemy of western corn rootworm. Mycorrhizal fungi increased rootworm survival but decreased larval weight. Differences were detected across root volatile profiles, but there was not a clear link between volatile signaling and nematode behavior. Nematodes were more attracted to non-mycorrhizal plants without rootworms and AMF alone in soil, suggesting that AMF may interfere with cues that are used in combination with volatiles which nematodes use to locate prey.
Collapse
Affiliation(s)
- Elizabeth Davidson-Lowe
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nursyafiqi Zainuddin
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Plant Protection, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Olivia Trase
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nathaniel McCarthy
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jared Gregory Ali
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Liu Y, Qian J, Lu B, Hu J, He Y, Shen J, Tang S. Arbuscular mycorrhizal symbiosis enhances the accumulation of plant-derived carbon in soil organic carbon by regulating the biosynthesis of plant biopolymers and soil metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109230. [PMID: 39461054 DOI: 10.1016/j.plaphy.2024.109230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Plant-derived carbon (C) is a critical constituent of particulate organic carbon (POC) and plays an essential role in soil organic carbon (SOC) sequestration. Yet, how arbuscular mycorrhizal fungi (AMF) control the contribution of plant-derived C to SOC storage through two processes (biosynthesis of plant biopolymers and soil metabolism) remains poorly understood. Here, we utilized transcriptome analysis to examine the effects of AMF on P. communis roots. Under the AM symbiosis, root morphological growth and tolerance to stress were strengthened, and the biosynthetic pathways of key plant biopolymers (long-chain fatty acids, cutin, suberin, and lignin) contributing to the plant-derived C were enhanced. In the subsequent metabolic processes, AMF increased soil metabolites contributing to plant-derived C (such as syringic acid) and altered soil metabolic pathways, including carbohydrate metabolism. Additionally, C-acquiring soil extracellular enzyme activities were enhanced by AMF, which could affect the stabilization of plant-derived C in soil. The contents of POC (21.71 g kg-1 soil), MAOC (10.75 g kg-1 soil), and TOC (32.47 g kg-1 soil) in soil were significantly increased by AMF. The concentrations of plant-derived C and microbial-derived C were quantified based on biomarker analysis. AMF enhanced the content of plant-derived C in both POC and MAOC fractions. What's more, plant-derived C presented the highest level in the POC fraction under the AMF treatment. This research broadens our understanding of the mechanism through which plant-derived C contributes to the accumulation of POC and SOC induced by AM symbiosis, and evidences the benefits of AMF application in SOC sequestration.
Collapse
Affiliation(s)
- Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China.
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China.
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Jing Hu
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, 32816, Orlando, Fl, USA
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Junwei Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Hu J, Li S, Zhang Y, Du D, Zhu X. Potential Regulatory Effects of Arbuscular Mycorrhizal Fungi on Lipid Metabolism of Maize in Response to Low-Temperature Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356644 DOI: 10.1021/acs.jafc.4c06908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The specific mechanisms underlying membrane lipid remodeling and changes in gene expression induced by arbuscular mycorrhizal fungi (AMF) in low-temperature-stressed plants are still unclear. In this study, physiological, transcriptomic, and lipidomic analyses were used to elucidate the physiological mechanisms by which AMF can enhance the adaptation of maize plants to low-temperature stress. The results showed that the relative electrical conductivity and malondialdehyde content of maize leaves were decreased after the inoculation with AMF, indicating that AMF reduced the peroxidation of membrane lipids and maintained the fluidity of the cell membrane. Transcriptomic analysis showed the presence of 702 differentially expressed genes induced by AMF in maize plants exposed to low-temperature stress. Furthermore, lipidomic analysis revealed changes in 10 lipid classes in AMF-inoculated maize plants compared with their noninoculated counterparts under low-temperature stress conditions. Lipid remodeling is an important strategy that arbuscular mycorrhizal plants adopt to cope with low-temperature stress.
Collapse
Affiliation(s)
- Jindian Hu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shuxin Li
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ya Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dongsheng Du
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xiancan Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
7
|
Zhang W, Zhou Y, Qin Y, Feng Z, Zhu F, Feng G, Zhu H, Yao Q. Lipids Mediate Arbuscule Development and Senescence in Tomato Roots Colonized by Arbuscular Mycorrhizae Fungus under Drought Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18851-18863. [PMID: 39145484 DOI: 10.1021/acs.jafc.4c04769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Arbuscular mycorrhizae (AM) symbiosis can enhance plant resistance to drought stress (DS). This study aimed to investigate the DS effects on lipids at different stages of symbiosis and to link lipid profiles to arbuscule dynamics in tomato roots colonized by AM fungi. DS increased mycorrhizal colonization and arbuscule abundance at an early stage but decreased them at a later stage, delayed arbuscule development, and accelerated arbuscule senescence at a later stage. DS decreased the contents of phospholipids (PLs) and saturated neutral lipids (NLs) at the early stage but increased the contents of saturated PLs and unsaturated NLs at the late stage. Specifically, DS inhibited AM-specific PL contents but increased AM-specific NL contents, which was supported by the expression of RAM2, STR/STR2. These data indicate the negative effect of DS on AM symbiosis and arbuscule dynamics with the effect size depending on the symbiosis stage, which highlights the importance of the symbiosis stage under abiotic stress.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yongqiang Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zengwei Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Fengwa Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guangda Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qing Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Xu Y, Tu Y, Feng J, Peng Z, Peng Y, Huang J. Arbuscular Mycorrhizal Fungi Mediate the Acclimation of Rice to Submergence. PLANTS (BASEL, SWITZERLAND) 2024; 13:1908. [PMID: 39065435 PMCID: PMC11280967 DOI: 10.3390/plants13141908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Flooding is a critical factor that limits the establishment of a symbiosis between rice and arbuscular mycorrhizal fungi (AMF) in wetland ecosystems. The distribution of carbon resources in roots and the acclimation strategies of rice to flooding stress in the presence of AMF are poorly understood. We conducted a root box experiment, employing nylon sheets or nylon meshes to create separate fungal chambers that either prevented or allowed the roots and any molecules to pass through. We found that the mycorrhizal colonization rate and the expression of genes OsD14L and OsCERK1, which are involved in fungal perception during symbiosis, both increased in mycorrhizal rice roots following intermittent flooding compared to continuous flooding. Furthermore, AMF inoculation affected root morphological traits, facilitating both shallower and deeper soil exploration. Increased submergence intensity led to carbohydrate deprivation in roots, while high mycorrhizal colonization increased soil oxygen consumption and decreased the neutral lipid concentration in roots. However, mycorrhizal inoculation increased the rice photosynthesis rate and facilitated acclimation to submergence by mediating the expression of the genes OsCIPK15 and OsSUB1A to enhance rice shoot elongation and the sugar concentration in roots as a result of reduced competition for carbon between rice and AMF under different flooding conditions.
Collapse
Affiliation(s)
- Yanggui Xu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (Y.T.); (Z.P.); (Y.P.)
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Jinying Road, Guangzhou 510640, China
| | - Yuting Tu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (Y.T.); (Z.P.); (Y.P.)
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Jinying Road, Guangzhou 510640, China
| | - Jiayi Feng
- Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China;
| | - Zhiping Peng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (Y.T.); (Z.P.); (Y.P.)
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Jinying Road, Guangzhou 510640, China
| | - Yiping Peng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (Y.T.); (Z.P.); (Y.P.)
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Jinying Road, Guangzhou 510640, China
| | - Jichuan Huang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (Y.T.); (Z.P.); (Y.P.)
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Jinying Road, Guangzhou 510640, China
| |
Collapse
|
9
|
Corazon-Guivin MA, Rengifo del Aguila S, Corrêa RX, Cordova-Sinarahua D, Costa Maia L, Alves da Silva DK, Alves da Silva G, López-García Á, Coyne D, Oehl F. Native Arbuscular Mycorrhizal Fungi Promote Plukenetia volubilis Growth and Decrease the Infection Levels of Meloidogyne incognita. J Fungi (Basel) 2024; 10:451. [PMID: 39057336 PMCID: PMC11277566 DOI: 10.3390/jof10070451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The use of arbuscular mycorrhizal fungi (AMF) offers promising benefits to agriculture in the Amazon regions, where soils are characteristically acidic and nutrient-poor. The purpose of this research was to investigate the potential effects of two recently described species of AMF (Nanoglomus plukenetiae and Rhizoglomus variabile) native to the Peruvian Amazon for improving the plant growth of Plukenetia volubilis (inka nut or sacha inchi) and protecting the roots against soil pathogens. Two assays were simultaneously conducted under greenhouse conditions in Peru. The first focused on evaluating the biofertilizer effect of AMF inoculation, while the second examined the bioprotective effect against the root knot nematode, Meloidogyne incognita. Overall, the results showed that AMF inoculation of P. volubilis seedlings positively improved their development, particularly their biomass, height, and the leaf nutrient contents. When seedlings were exposed to M. incognita, plant growth was also noticeably higher for AMF-inoculated plants than those without AMF inoculation. Nematode reproduction was significantly suppressed by the presence of AMF, in particular R. variabile, and especially when inoculated prior to nematode exposure. The dual AMF inoculation did not necessarily lead to improved crop growth but notably improved P and K leaf contents. The findings provide strong justification for the development of products based on AMF as agro-inputs to catalyze nutrient use and uptake and protect crops against pests and diseases, especially those that are locally adapted to local crops and cropping conditions.
Collapse
Affiliation(s)
- Mike Anderson Corazon-Guivin
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca N° 315, Morales 22201, Peru;
- Center of Biotechnology and Genetics, Department of Biological Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado Km 16, Ilheus 45662-900, Brazil; (R.X.C.); (D.C.-S.)
| | - Sofía Rengifo del Aguila
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca N° 315, Morales 22201, Peru;
| | - Ronan Xavier Corrêa
- Center of Biotechnology and Genetics, Department of Biological Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado Km 16, Ilheus 45662-900, Brazil; (R.X.C.); (D.C.-S.)
| | - Deyvis Cordova-Sinarahua
- Center of Biotechnology and Genetics, Department of Biological Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado Km 16, Ilheus 45662-900, Brazil; (R.X.C.); (D.C.-S.)
| | - Leonor Costa Maia
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. da Engenharia s/n, Recife 50740-600, Brazil; (L.C.M.); (D.K.A.d.S.); (G.A.d.S.)
| | - Danielle Karla Alves da Silva
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. da Engenharia s/n, Recife 50740-600, Brazil; (L.C.M.); (D.K.A.d.S.); (G.A.d.S.)
| | - Gladstone Alves da Silva
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. da Engenharia s/n, Recife 50740-600, Brazil; (L.C.M.); (D.K.A.d.S.); (G.A.d.S.)
| | - Álvaro López-García
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (EEZ), CSIC, 18008 Granada, Spain;
| | - Danny Coyne
- International Institute of Tropical Agriculture (IITA), Ibadan 200113, Nigeria;
| | - Fritz Oehl
- Agroscope, Competence Division for Plants and Plant Products, Plant Protection Products-Impact and Assessment, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland;
| |
Collapse
|
10
|
Der C, Courty PE, Recorbet G, Wipf D, Simon-Plas F, Gerbeau-Pissot P. Sterols, pleiotropic players in plant-microbe interactions. TRENDS IN PLANT SCIENCE 2024; 29:524-534. [PMID: 38565452 DOI: 10.1016/j.tplants.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Plant-microbe interactions (PMIs) are regulated through a wide range of mechanisms in which sterols from plants and microbes are involved in numerous ways, including recognition, transduction, communication, and/or exchanges between partners. Phytosterol equilibrium is regulated by PMIs through expression of genes involved in phytosterol biosynthesis, together with their accumulation. As such, PMI outcomes also include plasma membrane (PM) functionalization events, in which phytosterols have a central role, and activation of sterol-interacting proteins involved in cell signaling. In spite (or perhaps because) of such multifaceted abilities, an overall mechanism of sterol contribution is difficult to determine. However, promising approaches exploring sterol diversity, their contribution to PMI outcomes, and their localization would help us to decipher their crucial role in PMIs.
Collapse
Affiliation(s)
- Christophe Der
- Agroécologie, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | | | - Ghislaine Recorbet
- Agroécologie, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Daniel Wipf
- Agroécologie, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | | | | |
Collapse
|
11
|
Martin FM, van der Heijden MGA. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. THE NEW PHYTOLOGIST 2024; 242:1486-1506. [PMID: 38297461 DOI: 10.1111/nph.19541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
Collapse
Affiliation(s)
- Francis M Martin
- Université de Lorraine, INRAE, UMR IAM, Champenoux, 54280, France
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Marcel G A van der Heijden
- Department of Agroecology & Environment, Plant-Soil Interactions, Agroscope, Zürich, 8046, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zürich, 8057, Switzerland
| |
Collapse
|
12
|
Zhang W, Xia K, Feng Z, Qin Y, Zhou Y, Feng G, Zhu H, Yao Q. Tomato plant growth promotion and drought tolerance conferred by three arbuscular mycorrhizal fungi is mediated by lipid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108478. [PMID: 38430785 DOI: 10.1016/j.plaphy.2024.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) can promote plant growth and enhance plant drought tolerance with varying effect size among different fungal species. However, the linkage between the variation and the lipid metabolism, which is exclusively derived from plants, has been little explored thus far. Here, we established AM symbiosis between tomato (Solanum lycopersicum) plants and three AMF species (Rhizophagus intraradices, Funneliformis mosseae, Rhizophagus irregularis) under well watered (WW) or drought stressed (DS) conditions in pot experiment. The plant biomass, chlorophyll fluorescence Fv/Fm, shoot P content and mycorrhizal colonization were determined. Meanwhile, fatty acid (FA) profiles and relative expression of genes encoding for nutrition exchange (SlPT4, SlPT5, RAM2, STR/STR2) in roots were also monitored. DS significantly decreased plant biomass while AMF significantly increased it, with three fungal species varying in their growth promoting capacity and drought tolerance capacity. The growth promoting effect of R. irregularis was lower than those of R. intraradices and F. mosseae, and was associated with higher mycorrhizal colonization and more consumption of lipids. However, the drought tolerance capacity of R. irregularis was greater than those of R. intraradices and F. mosseae, and was associated with less decrease in mycorrhizal colonization and lipid content. We also found that AMF mediated plant drought tolerance via regulating both AM specific FAs and non-AM specific FAs in a complementary manner. These data suggest that lipid metabolism in AM plays a crucial role in plant drought tolerance mediated by AMF.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, China
| | - Kaili Xia
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Zengwei Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Yongqiang Qin
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Yang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Guangda Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China.
| | - Qing Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, China.
| |
Collapse
|
13
|
A L, J K. At the root of plant symbioses: Untangling the genetic mechanisms behind mutualistic associations. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102448. [PMID: 37758591 DOI: 10.1016/j.pbi.2023.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023]
Abstract
Mutualistic interactions between plants and microorganisms shape the continuous evolution and adaptation of plants such as to the terrestrial environment that was a founding event of subsequent life on land. Such interactions also play a central role in the natural and agricultural ecosystems and are of primary importance for a sustainable future. To boost plant's productivity and resistance to biotic and abiotic stresses, new approaches involving associated symbiotic organisms have recently been explored. New discoveries on mutualistic symbioses evolution and the interaction between partners will be key steps to enhance plant potential.
Collapse
Affiliation(s)
- Lebreton A
- INRAE, Aix-Marseille Université, Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, UMR 7257, 13288 Marseille, France.
| | - Keller J
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| |
Collapse
|
14
|
Bell CA, Magkourilou E, Ault JR, Urwin PE, Field KJ. Phytophagy impacts the quality and quantity of plant carbon resources acquired by mutualistic arbuscular mycorrhizal fungi. Nat Commun 2024; 15:801. [PMID: 38280873 PMCID: PMC10821877 DOI: 10.1038/s41467-024-45026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
Arbuscular mycorrhizal (AM) fungi associate with the roots of many plant species, enhancing their hosts access to soil nutrients whilst obtaining their carbon supply directly as photosynthates. AM fungi often face competition for plant carbon from other organisms. The mechanisms by which plants prioritise carbon allocation to mutualistic AM fungi over parasitic symbionts remain poorly understood. Here, we show that host potato plants (Solanum tuberosum cv. Désirée) selectively allocate carbon resources to tissues interacting with AM fungi rather than those interacting with phytophagous parasites (the nematode Globodera pallida). We found that plants reduce the supply of hexoses but maintain the flow of plant-derived fatty acids to AM fungi when concurrently interacting with parasites. Transcriptomic analysis suggest that plants prioritise carbon transfer to AM fungi by maintaining expression of fatty acid biosynthesis and transportation pathways, whilst decreasing the expression of mycorrhizal-induced hexose transporters. We also report similar findings from a different plant host species (Medicago truncatula) and phytophagous pest (the aphid Myzus persicae). These findings suggest a general mechanism of plant-driven resource allocation in scenarios involving multiple symbionts.
Collapse
Affiliation(s)
- C A Bell
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - E Magkourilou
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - J R Ault
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - P E Urwin
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - K J Field
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
15
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Molecular and Systems Biology Approaches for Harnessing the Symbiotic Interaction in Mycorrhizal Symbiosis for Grain and Oil Crop Cultivation. Int J Mol Sci 2024; 25:912. [PMID: 38255984 PMCID: PMC10815302 DOI: 10.3390/ijms25020912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Mycorrhizal symbiosis, the mutually beneficial association between plants and fungi, has gained significant attention in recent years due to its widespread significance in agricultural productivity. Specifically, arbuscular mycorrhizal fungi (AMF) provide a range of benefits to grain and oil crops, including improved nutrient uptake, growth, and resistance to (a)biotic stressors. Harnessing this symbiotic interaction using molecular and systems biology approaches presents promising opportunities for sustainable and economically-viable agricultural practices. Research in this area aims to identify and manipulate specific genes and pathways involved in the symbiotic interaction, leading to improved cereal and oilseed crop yields and nutrient acquisition. This review provides an overview of the research frontier on utilizing molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Moreover, we address the mechanistic insights and molecular determinants underpinning this exchange. We conclude with an overview of current efforts to harness mycorrhizal diversity to improve cereal and oilseed health through systems biology.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University of Casablanca, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Biology, Multidisciplinary Faculty of Nador, Mohamed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
16
|
Liu X, Feng Z, Zhang W, Yao Q, Zhu H. Exogenous myristate promotes the colonization of arbuscular mycorrhizal fungi in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1250684. [PMID: 38023845 PMCID: PMC10652774 DOI: 10.3389/fpls.2023.1250684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) can establish symbiotic associations with the roots of most terrestrial plants, thereby improving the tolerance of the host plants to biotic and abiotic stresses. Although AMF cannot synthesize lipids de novo, they can obtain lipids from the root cells for their growth and development. A recent study reveals that AMF can directly take up myristate (C14:0 lipid) from the environment and produce a large amount of hyphae in asymbiotic status; however, the effect of environmental lipids on AM symbiosis is still unclear. In this study, we inoculated tomato (Solanum lycopersicum) with AMF in an in vitro dual culture system and a sand culture system, and then applied exogenous myristate to the substrate, in order to explore the effect of exogenous lipids on the mycorrhizal colonization of AMF. We investigated the hyphae growth, development, and colonization of AMF, and examined the gene expression involved in phosphate transport, lipid biosynthesis, and transport. Results indicate that exogenous lipids significantly stimulated the growth and branching of hyphae, and significantly increased the number of hyphopodia and mycorrhizal colonization of AMF, with arbuscular abundance and intraradical spores or vesicles being the most promoted. In contrast, exogenous myristate decreased the growth range and host tropism of the germ tubes, and largely inhibited the exchange of nutrition between symbionts. As a result, exogenous myristate did not affect the plant growth. This study suggests that lipids promote mycorrhizal colonization by enhancing the growth and development of AMF hyphae and increasing their contact opportunities with plant roots. To the best of our knowledge, this is the first report that shows that lipids promote the colonization of AMF. Our study highlights the importance of better understanding the roles of environmental lipids in the establishment and maintenance of AM symbiosis and, thus, in agricultural production.
Collapse
Affiliation(s)
- Xiaodi Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zengwei Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wei Zhang
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou, China
| | - Qing Yao
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
17
|
Ganugi P, Caffi T, Gabrielli M, Secomandi E, Fiorini A, Zhang L, Bellotti G, Puglisi E, Fittipaldi MB, Asinari F, Tabaglio V, Trevisan M, Lucini L. A 3-year application of different mycorrhiza-based plant biostimulants distinctively modulates photosynthetic performance, leaf metabolism, and fruit quality in grapes ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1236199. [PMID: 37711298 PMCID: PMC10497758 DOI: 10.3389/fpls.2023.1236199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
The use of microbial biostimulants in agriculture is recognized as a sustainable approach to promoting crop productivity and quality due to improved nutrient uptake, enhanced stress tolerance, and improved ability to cope with non-optimal environments. The present paper aimed to comparatively investigate the effect of seven different commercial mycorrhizal-based treatments in terms of yield, phytochemical components, and technological traits of Malvasia di Candia Aromatica grape (Vitis vinifera L.) plants. Metabolomic analysis and photosynthetic performance were first investigated in leaves to point out biochemical differences related to plant growth. Higher photosynthetic efficiency and better PSII functioning were found in biostimulant-treated vines, reflecting an overall decrease in photoinhibition compared to untreated plants. Untargeted metabolomics followed by multivariate statistics highlighted a robust reprogramming of primary (lipids) and secondary (alkaloids and terpenoids) metabolites in treated plants. The analysis of berry yield and chemical components exhibited significant differences depending on the biostimulant product. Generally, berries obtained from treated plants displayed improved contents of polyphenols and sugars, while yield remained unchanged. These results elucidated the significant role of microbial biostimulants in determining the quality of grape berries and eliciting biochemical changes in vines.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Tito Caffi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Mario Gabrielli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Elena Secomandi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Sciences, Technologies and Society, University School for Advanced Studies, IUSS, Pavia, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Bellotti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Florencia Asinari
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
18
|
Deng C, Zou YN, Hashem A, Kuča K, Abd-Allah EF, Wu QS. The visualized knowledge map and hot topic analysis of glomalin-related soil proteins in the carbon field based on Citespace. CHEMICAL AND BIOLOGICAL TECHNOLOGIES IN AGRICULTURE 2023; 10:48. [DOI: 10.1186/s40538-023-00428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 09/02/2023]
Abstract
AbstractArbuscular mycorrhizal fungi (AMF) in the soil have many positive effects on growth, nutrient acquisition, and stress tolerance of host plants, as well as soil fertility, soil structure, and soil ecology. Glomalin-related soil proteins (GRSP) are a mixture of humic substances and heat-stable glycoproteins, primarily of AMF origin. GRSP are as an important component of soil organic carbon (C) pools, which can stabilize and sequestrate C, thus reducing soil C emissions for slowing down global warming. Based on the CiteSpace software and the core collection of Web of Science as the database, this study made a visual analysis of GRSP’s literature in the C field published from 1999 to 2022, including the number of publications, countries, institutions, co-cited literature, keywords, top cited papers, etc. The study regarding the GRSP in the C field could be divided into the initial stage (1999–2009), the steady stage (2010–2018), and the explosive stage (2019–2022). The Chinese Academy of Sciences is the organization with the most publications, and the United States, China, and India are the three leading nations in the C field of GRSP. However, there was little collaboration among the participating countries and the study’s institutions. The focus of the research has shifted from the composition and content of GRSP in C to the question of whether C in GRSP affects soil properties. Future research was also prospected.
Graphical Abstract
Collapse
|
19
|
Dreyer I, Vergara-Valladares F, Mérida-Quesada F, Rubio-Meléndez ME, Hernández-Rojas N, Riedelsberger J, Astola-Mariscal SZ, Heitmüller C, Yanez-Chávez M, Arrey-Salas O, San Martín-Davison A, Navarro-Retamal C, Michard E. The Surprising Dynamics of Electrochemical Coupling at Membrane Sandwiches in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:204. [PMID: 36616332 PMCID: PMC9824766 DOI: 10.3390/plants12010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Transport processes across membranes play central roles in any biological system. They are essential for homeostasis, cell nutrition, and signaling. Fluxes across membranes are governed by fundamental thermodynamic rules and are influenced by electrical potentials and concentration gradients. Transmembrane transport processes have been largely studied on single membranes. However, several important cellular or subcellular structures consist of two closely spaced membranes that form a membrane sandwich. Such a dual membrane structure results in remarkable properties for the transport processes that are not present in isolated membranes. At the core of membrane sandwich properties, a small intermembrane volume is responsible for efficient coupling between the transport systems at the two otherwise independent membranes. Here, we present the physicochemical principles of transport coupling at two adjacent membranes and illustrate this concept with three examples. In the supplementary material, we provide animated PowerPoint presentations that visualize the relationships. They could be used for teaching purposes, as has already been completed successfully at the University of Talca.
Collapse
Affiliation(s)
- Ingo Dreyer
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Fernando Vergara-Valladares
- Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Franko Mérida-Quesada
- Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - María Eugenia Rubio-Meléndez
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Naomí Hernández-Rojas
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Janin Riedelsberger
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Sadith Zobeida Astola-Mariscal
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Charlotte Heitmüller
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Mónica Yanez-Chávez
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| | - Oscar Arrey-Salas
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| | - Alex San Martín-Davison
- Instituto de Investigación Interdisciplinaria, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Carlos Navarro-Retamal
- Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742–5815, USA
| | - Erwan Michard
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| |
Collapse
|
20
|
Saijo Y, Betsuyaku S, Toyota M, Tsuda K. A Continuous Extension of Plant Biotic Interactions Research. PLANT & CELL PHYSIOLOGY 2022; 63:1321-1323. [PMID: 36135335 DOI: 10.1093/pcp/pcac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Yusuke Saijo
- Division of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, 630-0192 Japan
| | - Shigeyuki Betsuyaku
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194 Japan
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570 Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
- Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, No.1 Shizishan Road, Hongshan, Wuhan 430070, China
| |
Collapse
|