1
|
Chalenko E, Lysenko V, Kosolapov A, Usova E, Dmitriev P, Yadronova O, Varduny T, Tarik E, Ignatova M, Aslanyan V, Kirichenko E. Light green leaf sectors of variegated Dracaena fragrans plants show similar rates of oxygenic photosynthesis tо that of normal, dark green leaf sectors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109040. [PMID: 39142012 DOI: 10.1016/j.plaphy.2024.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Adaptation and functional significance of chlorophyll deficit in the light green leaf sectors of variegated plants are little known. Efficiency of photosystem II for dark and light adapted states (Fv/Fm and ΔF/Fm') and fluorescence decrease rates (Rfd) of light green leaf sectors of Dracaena fragrans L. were studied by methods of PAM-fluorometry and video registration. In addition, white light reflectance and transmittance of these leaf sectors were measured using an integrating sphere. Absorption was calculated from reflectance and transmittance. Net CO2 assimilation rates (PN) were measured using a flow chamber and photolytic O2 evolution rates (PAYO2) were studied by a novel method of Fourier photoacoustics which is insensitive to respiration, photorespiration and other processes of O2 uptake. All the photosynthetic parameters (Fv/Fm, ΔF/Fm', PN and PAYO2) were found to be very close between light green and normal green leaf sectors, whereas chlorophyll content and light absorption were 7.5-fold and 1.47-fold different respectively. Contradiction between low chlorophyll absorption and high (as in normal green sectors) rate of oxygenic photosynthesis in light-green sectors was proposed to be a consequence of different contribution of cyclic electron transport around PSII (CET-PSII) and/or around PSI (CET-PSI) in the total photosynthesis occurring in these sectors. Particularly, it cannot be excluded, that some part of CET activity occurring in normal green leaf sectors may be lost in the light green sectors retaining the same linear (non-cyclic) electron transport (LET) activity as in normal green sectors.
Collapse
Affiliation(s)
- Elizaveta Chalenko
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| | - Vladimir Lysenko
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia.
| | - Aleksey Kosolapov
- Russian Research Institute for the Integrated Use and Protection of Water Resources, Rostov-on-Don, 344037, Russia
| | - Elena Usova
- Russian Research Institute for the Integrated Use and Protection of Water Resources, Rostov-on-Don, 344037, Russia
| | - Pavel Dmitriev
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| | - Olga Yadronova
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| | - Tatyana Varduny
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| | - Ekaterina Tarik
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| | - Maria Ignatova
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| | - Veronica Aslanyan
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| | - Evgeniya Kirichenko
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344049, Russia
| |
Collapse
|
2
|
Laisk A. Prying into the green black-box. PHOTOSYNTHESIS RESEARCH 2022; 154:89-112. [PMID: 36114436 DOI: 10.1007/s11120-022-00960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Life-long efforts of the Tartu photosynthesis research group have been summarized. The measurements were facilitated by self-designed instruments, distinct in multifunctionality and fastresponse time. The black-box type kinetical analysis on intact leaves has revealed several physiologically significant features of leaf photosynthesis. Rubisco studies reflected competition for the active site between the substrates and products, linearizing in vivo kinetics compared with the low-Km in vitro responses. Rubisco Activase usually activates only a small part of the Rubisco, making the rest of it a storage protein. Precisely quantifying absorbed photons and the responding transmittance changes, electron flow rates through cytochrome b6f, plastocyanin and photosystem I were measured, revealing competition between the proton-uncoupled cyclic electron flow from PSI to Cyt b6f to P700+ and the proton-coupled linear flow from PSII to Cyt b6f to P700+. Analyzing responses of O2 evolution and Chl fluorescence to ms-length light pulses we concluded that explanation of the sigmoidal fluorescence induction by excitonic connectivity between PSII units is a misconception. Each PSII processes excitation from its own antenna, but the sigmoidicity is caused by rise of the fluorescence yield of the QA-reduced PSII units after their QB site becomes occupied by reduced plastoquinone (or diuron). Unlike respiration, photosynthetic electrons must prepare their acceptor by coupled synthesis of 3ATP/4e-. Feedback regulation of this ratio leads to oscillations under saturating light and CO2, when the rate is Pi-limited. The slow oscillations (period 60s) indicate that the magnitudes of the deflections in the 3ATP/4e- ratio, corrected by regulating cyclic and alternative electron flow (including the Mehler type O2 reduction), are only a fraction of a per cent. The Pi limitation causes slip in the ATP synthase, slightly increasing the basic 12H+/3ATP requirement.
Collapse
Affiliation(s)
- Agu Laisk
- Institute of Technology, University of Tartu, W. Ostwaldi 1, 51011, Tartu, Estonia.
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
3
|
Fang L, Yin X, van der Putten PEL, Martre P, Struik PC. Drought exerts a greater influence than growth temperature on the temperature response of leaf day respiration in wheat (Triticum aestivum). PLANT, CELL & ENVIRONMENT 2022; 45:2062-2077. [PMID: 35357701 PMCID: PMC9324871 DOI: 10.1111/pce.14324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 05/22/2023]
Abstract
We assessed how the temperature response of leaf day respiration (Rd ) in wheat responded to contrasting water regimes and growth temperatures. In Experiment 1, well-watered and drought-stressed conditions were imposed on two genotypes; in Experiment 2, the two water regimes combined with high (HT), medium (MT) and low (LT) growth temperatures were imposed on one of the genotypes. Rd was estimated from simultaneous gas exchange and chlorophyll fluorescence measurements at six leaf temperatures (Tleaf ) for each treatment, using the Yin method for nonphotorespiratory conditions and the nonrectangular hyperbolic fitting method for photorespiratory conditions. The two genotypes responded similarly to growth and measurement conditions. Estimates of Rd for nonphotorespiratory conditions were generally higher than those for photorespiratory conditions, but their responses to Tleaf were similar. Under well-watered conditions, Rd and its sensitivity to Tleaf slightly acclimated to LT, but did not acclimate to HT. Temperature sensitivities of Rd were considerably suppressed by drought, and the suppression varied among growth temperatures. Thus, it is necessary to quantify interactions between drought and growth temperature for reliably modelling Rd under climate change. Our study also demonstrated that the Kok method, one of the currently popular methods for estimating Rd , underestimated Rd significantly.
Collapse
Affiliation(s)
- Liang Fang
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Xinyou Yin
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Peter E. L. van der Putten
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Pierre Martre
- LEPSE, Institut Agro SupAgro, INRAE, Univ MontpellierMontpellierFrance
| | - Paul C. Struik
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
4
|
Sagun JV, Badger MR, Chow WS, Ghannoum O. Mehler reaction plays a role in C 3 and C 4 photosynthesis under shade and low CO 2. PHOTOSYNTHESIS RESEARCH 2021; 149:171-185. [PMID: 33534052 DOI: 10.1007/s11120-021-00819-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Alternative electron fluxes such as the cyclic electron flux (CEF) around photosystem I (PSI) and Mehler reaction (Me) are essential for efficient photosynthesis because they generate additional ATP and protect both photosystems against photoinhibition. The capacity for Me can be estimated by measuring O2 exchange rate under varying irradiance and CO2 concentration. In this study, mass spectrometric measurements of O2 exchange were made using leaves of representative species of C3 and C4 grasses grown under natural light (control; PAR ~ 800 µmol quanta m-2 s-1) and shade (~ 300 µmol quanta m-2 s-1), and in representative species of gymnosperm, liverwort and fern grown under natural light. For all control grown plants measured at high CO2, O2 uptake rates were similar between the light and dark, and the ratio of Rubisco oxygenation to carboxylation (Vo/Vc) was low, which suggests little potential for Me, and that O2 uptake was mainly due to photorespiration or mitochondrial respiration under these conditions. Low CO2 stimulated O2 uptake in the light, Vo/Vc and Me in all species. The C3 species had similar Vo/Vc, but Me was highest in the grass and lowest in the fern. Among the C4 grasses, shade increased O2 uptake in the light, Vo/Vc and the assimilation quotient (AQ), particularly at low CO2, whilst Me was only substantial at low CO2 where it may contribute 20-50% of maximum electron flow under high light.
Collapse
Affiliation(s)
- Julius Ver Sagun
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Murray R Badger
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Wah Soon Chow
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
5
|
Xiao Y, Sloan J, Hepworth C, Osborne CP, Fleming AJ, Chen X, Zhu XG. Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves. PLANT, CELL & ENVIRONMENT 2021; 44:1436-1450. [PMID: 33410527 DOI: 10.1111/pce.13995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The Farquhar-von Caemmerer-Berry (FvCB) model is extensively used to model photosynthesis from gas exchange measurements. Since its publication, many methods have been developed to measure, or more accurately estimate, parameters of this model. Here, we have created a tool that uses Bayesian statistics to fit photosynthetic parameters using concurrent gas exchange and chlorophyll fluorescence measurements whilst evaluating the reliability of the parameter estimation. We have tested this tool on synthetic data and experimental data from rice leaves. Our results indicate that reliable parameter estimation can be achieved whilst only keeping one parameter, Km , that is, Michaelis constant for CO2 by Rubisco, prefixed. Additionally, we show that including detailed low CO2 measurements at low light levels increases reliability and suggests this as a new standard measurement protocol. By providing an estimated distribution of parameter values, the tool can be used to evaluate the quality of data from gas exchange and chlorophyll fluorescence measurement protocols. Compared to earlier model fitting methods, the use of a Bayesian statistics-based tool minimizes human interaction during fitting, reducing the subjectivity which is essential to most existing tools. A user friendly, interactive Bayesian tool script is provided.
Collapse
Affiliation(s)
- Yi Xiao
- Center of Excellence for Molecular Plant Science, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jen Sloan
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Chris Hepworth
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Andrew J Fleming
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Xingyuan Chen
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Xin-Guang Zhu
- Center of Excellence for Molecular Plant Science, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Dubberstein D, Lidon FC, Rodrigues AP, Semedo JN, Marques I, Rodrigues WP, Gouveia D, Armengaud J, Semedo MC, Martins S, Simões-Costa MC, Moura I, Pais IP, Scotti-Campos P, Partelli FL, Campostrini E, Ribeiro-Barros AI, DaMatta FM, Ramalho JC. Resilient and Sensitive Key Points of the Photosynthetic Machinery of Coffea spp. to the Single and Superimposed Exposure to Severe Drought and Heat Stresses. FRONTIERS IN PLANT SCIENCE 2020; 11:1049. [PMID: 32733525 PMCID: PMC7363965 DOI: 10.3389/fpls.2020.01049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/25/2020] [Indexed: 05/23/2023]
Abstract
This study unveils the single and combined drought and heat impacts on the photosynthetic performance of Coffea arabica cv. Icatu and C. canephora cv. Conilon Clone 153 (CL153). Well-watered (WW) potted plants were gradually submitted to severe water deficit (SWD) along 20 days under adequate temperature (25/20°C, day/night), and thereafter exposed to a gradual temperature rise up to 42/30°C, followed by a 14-day water and temperature recovery. Single drought affected all gas exchanges (including Amax ) and most fluorescence parameters in both genotypes. However, Icatu maintained Fv/Fm and RuBisCO activity, and reinforced electron transport rates, carrier contents, and proton gradient regulation (PGR5) and chloroplast NADH dehydrogenase-like (NDH) complex proteins abundance. This suggested negligible non-stomatal limitations of photosynthesis that were accompanied by a triggering of protective cyclic electron transport (CEF) involving both photosystems (PSs). These findings contrasted with declines in RuBisCO and PSs activities, and cytochromes (b559 , f, b563 ) contents in CL153. Remarkable heat tolerance in potential photosynthetic functioning was detected in WW plants of both genotypes (up to 37/28°C or 39/30°C), likely associated with CEF in Icatu. Yet, at 42/30°C the tolerance limit was exceeded. Reduced Amax and increased Ci values reflected non-stomatal limitations of photosynthesis, agreeing with impairments in energy capture (F0 rise), PSII photochemical efficiency, and RuBisCO and Ru5PK activities. In contrast to PSs activities and electron carrier contents, enzyme activities were highly heat sensitive. Until 37/28°C, stresses interaction was largely absent, and drought played the major role in constraining photosynthesis functioning. Harsher conditions (SWD, 42/30°C) exacerbated impairments to PSs, enzymes, and electron carriers, but uncontrolled energy dissipation was mitigated by photoprotective mechanisms. Most parameters recovered fully between 4 and 14 days after stress relief in both genotypes, although some aftereffects persisted in SWD plants. Icatu was more drought tolerant, with WW and SWD plants usually showing a faster and/or greater recovery than CL153. Heat affected both genotypes mostly at 42/30°C, especially in SWD and Icatu plants. Overall, photochemical components were highly tolerant to heat and to stress interaction in contrast to enzymes that deserve special attention by breeding programs to increase coffee sustainability in climate change scenarios.
Collapse
Affiliation(s)
- Danielly Dubberstein
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, Brazil
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana P. Rodrigues
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - José N. Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Isabel Marques
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - Weverton P. Rodrigues
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, Brazil
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Estreito, Brazil
| | - Duarte Gouveia
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Bagnols-sur-Cèze, France
| | - Magda C. Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Sónia Martins
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Maria C. Simões-Costa
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - I. Moura
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - Isabel P. Pais
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Paula Scotti-Campos
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Fábio L. Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, Brazil
| | - Eliemar Campostrini
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, Brazil
| | - Ana I. Ribeiro-Barros
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Fábio M. DaMatta
- Dept. Biologia Vegetal, Univ. Federal Viçosa (UFV), Viçosa, Brazil
| | - José C. Ramalho
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| |
Collapse
|
7
|
Yin X, van der Putten PEL, Belay D, Struik PC. Using photorespiratory oxygen response to analyse leaf mesophyll resistance. PHOTOSYNTHESIS RESEARCH 2020; 144:85-99. [PMID: 32040701 PMCID: PMC7113236 DOI: 10.1007/s11120-020-00716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 05/12/2023]
Abstract
Classical approaches to estimate mesophyll conductance ignore differences in resistance components for CO2 from intercellular air spaces (IAS) and CO2 from photorespiration (F) and respiration (Rd). Consequently, mesophyll conductance apparently becomes sensitive to (photo)respiration relative to net photosynthesis, (F + Rd)/A. This sensitivity depends on several hard-to-measure anatomical properties of mesophyll cells. We developed a method to estimate the parameter m (0 ≤ m ≤ 1) that lumps these anatomical properties, using gas exchange and chlorophyll fluorescence measurements where (F + Rd)/A ratios vary. This method was applied to tomato and rice leaves measured at five O2 levels. The estimated m was 0.3 for tomato but 0.0 for rice, suggesting that classical approaches implying m = 0 work well for rice. The mesophyll conductance taking the m factor into account still responded to irradiance, CO2, and O2 levels, similar to response patterns of stomatal conductance to these variables. Largely due to different m values, the fraction of (photo)respired CO2 being refixed within mesophyll cells was lower in tomato than in rice. But that was compensated for by the higher fraction via IAS, making the total re-fixation similar for both species. These results, agreeing with CO2 compensation point estimates, support our method of effectively analysing mesophyll resistance.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University & Research, P.O. Box 430, 6700 AK, Wageningen, The Netherlands.
| | - Peter E L van der Putten
- Centre for Crop Systems Analysis, Wageningen University & Research, P.O. Box 430, 6700 AK, Wageningen, The Netherlands
| | - Daniel Belay
- Selale University, P.O. Box 245, Fiche, Ethiopia
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University & Research, P.O. Box 430, 6700 AK, Wageningen, The Netherlands
| |
Collapse
|
8
|
Can Ceylon Leadwort ( Plumbago zeylanica L.) Acclimate to Lead Toxicity?-Studies of Photosynthetic Apparatus Efficiency. Int J Mol Sci 2020; 21:ijms21051866. [PMID: 32182862 PMCID: PMC7084747 DOI: 10.3390/ijms21051866] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022] Open
Abstract
Ceylon leadwort (Plumbago zeylanica) is ornamental plant known for its pharmacological properties arising from the abundant production of various secondary metabolites. It often grows in lead polluted areas. The aim of presented study was to evaluate the survival strategy of P. zeylanica to lead toxicity via photosynthetic apparatus acclimatization. Shoots of P. zeylanica were cultivated on media with different Pb concentrations (0.0, 0.05, and 0.1 g Pb∙l−1). After a four-week culture, the efficiency of the photosynthetic apparatus of plants was evaluated by Chl a fluorescence measurement, photosynthetic pigment, and Lhcb1, PsbA, PsbO, and RuBisCo protein accumulation, antioxidant enzymes activity, and chloroplast ultrastructure observation. Plants from lower Pb concentration revealed no changes in photosynthetic pigments content and light-harvesting complex (LHCII) size, as well as no limitation on the donor side of Photosystem II Reaction Centre (PSII RC). However, the activity and content of antioxidant enzymes indicated a high risk of limitation on the acceptor side of Photosystem I. In turn, plants from 0.1 g Pb∙l−1 showed a significant decrease in pigments content, LHCII size, the amount of active PSII RC, oxygen-evolving complex activity, and significant remodeling of chloroplast ultrastructure indicated limitation of PSII RC donor side. Obtained results indicate that P. zeylanica plants acclimate to lead toxicity by Pb accumulation in roots and, depending on Pb concentration, by adjusting their photosynthetic apparatus via the activation of alternative (cyclic and pseudocyclic) electron transport pathways.
Collapse
|
9
|
Busch FA, Sage RF, Farquhar GD. Plants increase CO 2 uptake by assimilating nitrogen via the photorespiratory pathway. NATURE PLANTS 2018; 4:46-54. [PMID: 29229957 DOI: 10.1038/s41477-017-0065-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/27/2017] [Indexed: 05/20/2023]
Abstract
Photorespiration is a major bioengineering target for increasing crop yields as it is often considered a wasteful process. Photorespiratory metabolism is integrated into leaf metabolism and thus may have certain benefits. Here, we show that plants can increase their rate of photosynthetic CO2 uptake when assimilating nitrogen de novo via the photorespiratory pathway by fixing carbon as amino acids in addition to carbohydrates. Plants fed NO3- had higher rates of CO2 assimilation under photorespiratory than low-photorespiratory conditions, while plants lacking NO3- nutrition exhibited lower stimulation of CO2 uptake. We modified the widely used Farquhar, von Caemmerer and Berry photosynthesis model to include the carbon and electron requirements for nitrogen assimilation via the photorespiratory pathway. Our modified model improves predictions of photosynthetic CO2 uptake and of rates of photosynthetic electron transport. The results highlight how photorespiration can improve photosynthetic performance despite reducing the efficiency of Rubisco carboxylation.
Collapse
Affiliation(s)
- Florian A Busch
- Research School of Biology and ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Acton, Australian Capital Territory, Australia.
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Graham D Farquhar
- Research School of Biology and ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
10
|
Busch FA, Sage RF. The sensitivity of photosynthesis to O 2 and CO 2 concentration identifies strong Rubisco control above the thermal optimum. THE NEW PHYTOLOGIST 2017; 213:1036-1051. [PMID: 27768823 DOI: 10.1111/nph.14258] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/10/2016] [Indexed: 05/12/2023]
Abstract
The biochemical model of C3 photosynthesis by Farquhar, von Caemmerer and Berry (FvCB) assumes that photosynthetic CO2 assimilation is limited by one of three biochemical processes that are not always easily discerned. This leads to improper assessments of biochemical limitations that limit the accuracy of the model predictions. We use the sensitivity of rates of CO2 assimilation and photosynthetic electron transport to changes in O2 and CO2 concentration in the chloroplast to evaluate photosynthetic limitations. Assessing the sensitivities to O2 and CO2 concentrations reduces the impact of uncertainties in the fixed parameters to a minimum and simultaneously entirely eliminates the need to determine the variable parameters of the model, such as Vcmax , J, or TP . Our analyses demonstrate that Rubisco limits carbon assimilation at high temperatures, while it is limited by triose phosphate utilization at lower temperatures and at higher CO2 concentrations. Measurements can be assigned a priori to one of the three functions of the FvCB model, allowing testing for the suitability of the selected fixed parameters of the model. This approach can improve the reliability of photosynthesis models on scales from the leaf level to estimating the global carbon budget.
Collapse
Affiliation(s)
- Florian A Busch
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
11
|
Dietz KJ. Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast? Mol Cells 2016; 39:20-5. [PMID: 26810073 PMCID: PMC4749869 DOI: 10.14348/molcells.2016.2324] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/23/2015] [Indexed: 11/27/2022] Open
Abstract
Photosynthesis is a highly robust process allowing for rapid adjustment to changing environmental conditions. The efficient acclimation depends on balanced redox metabolism and control of reactive oxygen species release which triggers signaling cascades and potentially detrimental oxidation reactions. Thiol peroxidases of the peroxiredoxin and glutathione peroxidase type, and ascorbate peroxidases are the main peroxide detoxifying enzymes of the chloroplast. They use different electron donors and are linked to distinct redox networks. In addition, the peroxiredoxins serve functions in redox regulation and retrograde signaling. The complexity of plastid peroxidases is discussed in context of suborganellar localization, substrate preference, metabolic coupling, protein abundance, activity regulation, interactions, signaling functions, and the conditional requirement for high antioxidant capacity. Thus the review provides an opinion on the advantage of linking detoxification of peroxides to different enzymatic systems and implementing mechanisms for their inactivation to enforce signal propagation within and from the chloroplast.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, 33501 Bielefeld,
Germany
| |
Collapse
|
12
|
Laisk A, Eichelmann H, Oja V. Oxidation of plastohydroquinone by photosystem II and by dioxygen in leaves. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:565-75. [PMID: 25800682 DOI: 10.1016/j.bbabio.2015.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/16/2015] [Accepted: 03/15/2015] [Indexed: 10/23/2022]
Abstract
In sunflower leaves linear electron flow LEF=4O2 evolution rate was measured at 20 ppm O2 in N2. PSII charge separation rate CSRII=aII∙PAD∙(Fm-F)/Fm, where aII is excitation partitioning to PSII, PAD is photon absorption density, Fm and F are maximum and actual fluorescence yields. Under 630 nm LED+720 nm far-red light (FRL), LEF was equal to CSRII with aII=0.51 to 0.58. After FRL was turned off, plastoquinol (PQH2) accumulated, but LEF decreased more than accountable by F increase, indicating PQH2-oxidizing cyclic electron flow in PSII (CEFII). CEFII was faster under conditions requiring more ATP, consistent with CEFII being coupled with proton translocation. We propose that PQH2 bound to the QC site is oxidized, one e- moving to P680+, the other e- to Cyt b559. From Cyt b559 the e- reduces QB- at the QB site, forming PQH2. About 10-15% electrons may cycle, causing misses in the period-4 flash O2 evolution and lower quantum yield of photosynthesis under stress. We also measured concentration dependence of PQH2 oxidation by dioxygen, as indicated by post-illumination decrease of Chl fluorescence yield. After light was turned off, F rapidly decreased from Fm to 0.2 Fv, but further decrease to F0 was slow and O2 concentration dependent. The rate constant of PQH2 oxidation, determined from this slow phase, was 0.054 s(-1) at 270 μM (21%) O2, decreasing with Km(O2) of 60 μM (4.6%) O2. This eliminates the interference of O2 in the measurements of CEFII.
Collapse
Affiliation(s)
- Agu Laisk
- Tartu Ülikooli Tehnoloogia Instituut, Nooruse tn. 1, Tartu 50411, Estonia.
| | - Hillar Eichelmann
- Tartu Ülikooli Tehnoloogia Instituut, Nooruse tn. 1, Tartu 50411, Estonia
| | - Vello Oja
- Tartu Ülikooli Tehnoloogia Instituut, Nooruse tn. 1, Tartu 50411, Estonia
| |
Collapse
|
13
|
Théroux-Rancourt G, Éthier G, Pepin S. Threshold response of mesophyll CO2 conductance to leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:741-53. [PMID: 24368507 PMCID: PMC3904724 DOI: 10.1093/jxb/ert436] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mesophyll conductance (gm) has been shown to impose significant limitations to net CO2 assimilation (A) in various species during water stress. Net CO2 assimilation is also limited by stomatal conductance to water (gsw), both having been shown to co-vary with leaf hydraulic conductance (Kleaf). Lately, several studies have suggested a close functional link between Kleaf, gsw, and gm. However, such relationships could only be circumstantial since a recent study has shown that the response of gm to drought could merely be an artefactual consequence of a reduced intercellular CO2 mole fraction (Ci). Experiments were conducted on 8-week-old hybrid poplar cuttings to determine the relationship between Kleaf, gsw, and g m in clones of contrasting drought tolerance. It was hypothesized that changes in gsw and Kleaf in response to drought would not impact on gm over most of its range. The results show that Kleaf decreased in concert with g sw as drought proceeded, whereas gm measured at a normalized Ci remained relatively constant up to a g sw threshold of ~0.15 mol m(-2) s(-1). This delayed gm response prevented a substantial decline in A at the early stage of the drought, thereby enhancing water use efficiency. Reducing the stomatal limitation of droughted plants by diminishing the ambient CO2 concentration of the air did not modify gm or Kleaf. The relationship between gas exchange and leaf hydraulics was similar in both drought-tolerant and drought-sensitive clones despite their contrasting vulnerability to stem cavitation and stomatal response to soil drying. The results support the hypothesis of a partial hydraulic isolation of the mesophyll from the main transpiration pathway.
Collapse
Affiliation(s)
- Guillaume Théroux-Rancourt
- Department of Plant Sciences, Horticultural Research Center, Université Laval, 2480 boul. Hochelaga, Quebec, QC, G1V 0A6, Canada
| | - Gilbert Éthier
- Department of Plant Sciences, Horticultural Research Center, Université Laval, 2480 boul. Hochelaga, Quebec, QC, G1V 0A6, Canada
| | - Steeve Pepin
- Department of Soil and Agri-Food Engineering, Horticultural Research Center, Université Laval, 2480 boul. Hochelaga, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
14
|
Shirao M, Kuroki S, Kaneko K, Kinjo Y, Tsuyama M, Förster B, Takahashi S, Badger MR. Gymnosperms have increased capacity for electron leakage to oxygen (Mehler and PTOX reactions) in photosynthesis compared with angiosperms. PLANT & CELL PHYSIOLOGY 2013; 54:1152-63. [PMID: 23624674 DOI: 10.1093/pcp/pct066] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Oxygen plays an important role in photosynthesis by participating in a number of O2-consuming reactions. O2 inhibits CO2 fixation by stimulating photorespiration, thus reducing plant production. O2 interacts with photosynthetic electron transport in the chloroplasts' thylakoids in two main ways: by accepting electrons from PSI (Mehler reaction); and by accepting electrons from reduced plastoquinone (PQ) mediated by the plastid terminal oxidase (PTOX). In this study, we show, using 101 plant species, that there is a difference in the potential for photosynthetic electron flow to O2 between angiosperms and gymnosperms. We found, from measurements of Chl fluorescence and leaf absorbance at 830 nm, (i) that electron outflow from PSII, as determined by decay kinetics of Chl fluorescence after application of a saturating light pulse, is more rapid in gymnosperms than in angiosperms; (ii) that the reaction center Chl of PSI (P700) is rapidly and highly oxidized in gymnosperms during induction of photosynthesis; and (iii) that these differences are dependent on oxygen. Finally, rates of O2 uptake measured by mass spectrometry in the absence of photorespiration were significantly promoted by illumination in dark-adapted leaves of gymnosperms, but not in those of angiosperms. The light-stimulated O2 uptake was around 10% of the maximum O2 evolution in gymnosperms and 1% in angiosperms. These results suggest that gymnosperms have increased capacity for electron leakage to oxygen in photosynthesis compared with angiosperms. The involvement of the Mehler reaction and PTOX in the electron flow to O2 is discussed.
Collapse
Affiliation(s)
- Masayoshi Shirao
- Department of Agriculture, Forest and Forest Products Sciences, Plant Metabolic Physiology, Kyushu University, Fukuoka, 812-8581 Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Tholen D, Ethier G, Genty B, Pepin S, Zhu XG. Variable mesophyll conductance revisited: theoretical background and experimental implications. PLANT, CELL & ENVIRONMENT 2012; 35:2087-103. [PMID: 22590996 DOI: 10.1111/j.1365-3040.2012.02538.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The CO(2) concentration at the site of carboxylation inside the chloroplast stroma depends not only on the stomatal conductance, but also on the conductance of CO(2) between substomatal cavities and the site of CO(2) fixation. This conductance, commonly termed mesophyll conductance (g(m) ), significantly constrains the rate of photosynthesis. Here we show that estimates of g(m) are influenced by the amount of respiratory and photorespiratory CO(2) from the mitochondria diffusing towards the chloroplasts. This results in an apparent CO(2) and oxygen sensitivity of g(m) that does not imply a change in intrinsic diffusion properties of the mesophyll, but depends on the ratio of mitochondrial CO(2) release to chloroplast CO(2) uptake. We show that this effect (1) can bias the estimation of the CO(2) photocompensation point and non-photorespiratory respiration in the light; (2) can affect the estimates of ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) kinetic constants in vivo; and (3) results in an apparent obligatory correlation between stomatal conductance and g(m) . We further show that the amount of photo(respiratory) CO(2) that is refixed by Rubisco can be directly estimated through measurements of g(m) .
Collapse
Affiliation(s)
- Danny Tholen
- State Key Laboratory of Hybrid Rice Research, Chinese Academy of Sciences, Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China.
| | | | | | | | | |
Collapse
|
16
|
Stirbet A. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. PHOTOSYNTHESIS RESEARCH 2012; 113:15-61. [PMID: 22810945 DOI: 10.1007/s11120-012-9754-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/29/2012] [Indexed: 05/03/2023]
Abstract
The fast (up to 1 s) chlorophyll (Chl) a fluorescence induction (FI) curve, measured under saturating continuous light, has a photochemical phase, the O-J rise, related mainly to the reduction of Q(A), the primary electron acceptor plastoquinone of Photosystem II (PSII); here, the fluorescence rise depends strongly on the number of photons absorbed. This is followed by a thermal phase, the J-I-P rise, which disappears at subfreezing temperatures. According to the mainstream interpretation of the fast FI, the variable fluorescence originates from PSII antenna, and the oxidized Q(A) is the most important quencher influencing the O-J-I-P curve. As the reaction centers of PSII are gradually closed by the photochemical reduction of Q(A), Chl fluorescence, F, rises from the O level (the minimal level) to the P level (the peak); yet, the relationship between F and [Q(A) (-)] is not linear, due to the presence of other quenchers and modifiers. Several alternative theories have been proposed, which give different interpretations of the O-J-I-P transient. The main idea in these alternative theories is that in saturating light, Q(A) is almost completely reduced already at the end of the photochemical phase O-J, but the fluorescence yield is lower than its maximum value due to the presence of either a second quencher besides Q(A), or there is an another process quenching the fluorescence; in the second quencher hypothesis, this quencher is consumed (or the process of quenching the fluorescence is reversed) during the thermal phase J-I-P. In this review, we discuss these theories. Based on our critical examination, that includes pros and cons of each theory, as well mathematical modeling, we conclude that the mainstream interpretation of the O-J-I-P transient is the most credible one, as none of the alternative ideas provide adequate explanation or experimental proof for the almost complete reduction of Q(A) at the end of the O-J phase, and for the origin of the fluorescence rise during the thermal phase. However, we suggest that some of the factors influencing the fluorescence yield that have been proposed in these newer theories, as e.g., the membrane potential ΔΨ, as suggested by Vredenberg and his associates, can potentially contribute to modulate the O-J-I-P transient in parallel with the reduction of Q(A), through changes at the PSII antenna and/or at the reaction center, or, possibly, through the control of the oxidation-reduction of the PQ-pool, including proton transfer into the lumen, as suggested by Rubin and his associates. We present in this review our personal perspective mainly on our understanding of the thermal phase, the J-I-P rise during Chl a FI in plants and algae.
Collapse
|
17
|
Laisk A, Oja V, Eichelmann H. Oxygen evolution and chlorophyll fluorescence from multiple turnover light pulses: charge recombination in photosystem II in sunflower leaves. PHOTOSYNTHESIS RESEARCH 2012; 113:145-155. [PMID: 22644479 DOI: 10.1007/s11120-012-9751-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/09/2012] [Indexed: 06/01/2023]
Abstract
Oxygen evolution and Chl fluorescence induction were measured during multiple turnover light pulses (MTP) of 630-nm wavelength, intensities from 250 to 8,000 μmol quanta m(-2) s(-1) and duration from 0.3 to 200 ms in sunflower leaves at 22 °C. The ambient O(2) concentration was 10-30 ppm and MTP were applied after pre-illumination under far-red light (FRL), which oxidized plastoquinone (PQ) and randomized S-states because of the partial excitation of PSII. Electron (e ( - )) flow was calculated as 4·O(2) evolution. Illumination with MTP of increasing length resulted in increasing O(2) evolution per pulse, which was differentiated against pulse length to find the time course of O(2) evolution rate with sub-millisecond resolution. Comparison of the quantum yields, Y (IIO) = e ( - )/hν from O(2) evolution and Y (IIF) = (F (m) - F)/F (m) from Chl fluorescence, detected significant losses not accompanied by fluorescence emission. These quantum losses are discussed to be caused by charge recombination between Q (A) (-) and oxidized TyrZ at a rate of about 1,000 s(-1), either directly or via the donor side equilibrium complex Q(A) → P (D1) (+) ↔ TyrZ(ox), or because of cycling facilitated by Cyt b (559). Predicted from the suggested mechanism, charge recombination is enhanced by damage to the water-oxidizing complex and by restricted PSII acceptor side oxidation. The rate of PSII charge recombination/cycling is fast enough for being important in photoprotection.
Collapse
Affiliation(s)
- Agu Laisk
- Tartu Ülikooli Molekulaar-ja Rakubioloogia Instituut, Riia tn. 23, Tartu, 51010, Estonia.
| | | | | |
Collapse
|
18
|
Yin X, Struik PC. Mathematical review of the energy transduction stoichiometries of C(4) leaf photosynthesis under limiting light. PLANT, CELL & ENVIRONMENT 2012; 35:1299-312. [PMID: 22321164 DOI: 10.1111/j.1365-3040.2012.02490.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A generalized model for electron (e(-) ) transport limited C(4) photosynthesis of NAD-malic enzyme and NADP-malic enzyme subtypes is presented. The model is used to review the thylakoid stoichiometries in vivo under strictly limiting light conditions, using published data on photosynthetic quantum yield and on photochemical efficiencies of photosystems (PS). Model review showed that cyclic e(-) transport (CET), rather than direct O(2) photoreduction, most likely contributed significantly to the production of extra ATP required for the C(4) cycle. Estimated CET, and non-cyclic e(-) transport supporting processes like nitrogen reduction, accounted for ca. 45 and 7% of total photosystem I (PSI) e(-) fluxes, respectively. The factor for excitation partitioning to photosystem II (PSII) was ca. 0.4. Further model analysis, in terms of the balanced NADPH: ATP ratio required for metabolism, indicated that: (1) the Q-cycle is obligatory; (2) the proton: ATP ratio is 4; and (3) the efficiency of proton pumping per e(-) transferred through the cytochrome b(6) /f complex is the same for CET and non-cyclic pathways. The analysis also gave an approach to theoretically assess CO(2) leakiness from bundle-sheath cells, and projected a leakiness of 0.07-0.16. Compared with C(3) photosynthesis, the most striking C(4) stoichiometry is its high fraction of CET.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, P. O. Box 430, 6700 AK Wageningen, The Netherlands.
| | | |
Collapse
|
19
|
Lysenko V. Fluorescence kinetic parameters and cyclic electron transport in guard cell chloroplasts of chlorophyll-deficient leaf tissues from variegated weeping fig (Ficus benjamina L.). PLANTA 2012; 235:1023-1033. [PMID: 22134781 DOI: 10.1007/s00425-011-1560-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/21/2011] [Indexed: 05/27/2023]
Abstract
Residual chlorophyll in chlorophyll-deficient (albino) areas of variegated leaves of Ficus benjamina originates from guard cell chloroplasts. Photosynthetic features of green and albino sectors of F. benjamina were studied by imaging the distribution of the fluorescence decrease ratio Rfd within a leaf calculated from maximum (Fm) and steady-state leaf chlorophyll fluorescence (Fs) at 690 and 740 nm. Local areas of albino sectors demonstrated an abnormally high Rfd(740)/Rfd(690) ratio. Fluorescence transients excited in albino sectors at red (640 and 690 nm) wavelengths showed an abrupt decrease of the Rfd values (0.4 and 0.1, correspondingly) as compared with those excited at blue wavelengths (1.7-2.4). This "Red Drop" was not observed for green sectors. Normal and chlorophyll-deficient leaf sectors of F. benjamina were also tested for linear and cyclic electron transport in thylakoids. The tests have been performed studying fluorescence at a steady-state phase with CO(2)-excess impulse feeding, photoacoustic signal generated by pulse light source at wavelengths selectively exciting PSI, fluorescence kinetics under anaerobiosis and fluorescence changes observed by dual-wavelength excitation method. The data obtained for albino sectors strongly suggest the possibility of a cyclic electron transport simultaneously occurring in guard cell thylakoids around photosystems I and II under blue light, whereas linear electron transport is absent or insufficient.
Collapse
Affiliation(s)
- Vladimir Lysenko
- Scientific Research Institute of Biology, Southern Federal University, Stachky Ave 194/1, 344090, Rostov-on-Don, Russia.
| |
Collapse
|
20
|
Eichelmann H, Oja V, Peterson R, Laisk A. The rate of nitrite reduction in leaves as indicated by O₂ and CO₂ exchange during photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2205-15. [PMID: 21239375 PMCID: PMC3060700 DOI: 10.1093/jxb/erq428] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Light response (at 300 ppm CO(2) and 10-50 ppm O(2) in N(2)) and CO(2) response curves [at absorbed photon fluence rate (PAD) of 550 μmol m(-2) s(-1)] of O(2) evolution and CO(2) uptake were measured in tobacco (Nicotiana tabacum L.) leaves grown on either NO(3)(-) or NH(4)(+) as N source and in potato (Solanum tuberosum L.), sorghum (Sorghum bicolor L. Moench), and amaranth (Amaranthus cruentus L.) leaves grown on NH(4)NO(3). Photosynthetic O(2) evolution in excess of CO(2) uptake was measured with a stabilized zirconia O(2) electrode and an infrared CO(2) analyser, respectively, and the difference assumed to represent the rate of electron flow to acceptors alternative to CO(2), mainly NO(2)(-), SO(4)(2-), and oxaloacetate. In NO(3)(-)-grown tobacco, as well as in sorghum, amaranth, and young potato, the photosynthetic O(2)-CO(2) flux difference rapidly increased to about 1 μmol m(-2) s(-1) at very low PADs and the process was saturated at 50 μmol quanta m(-2) s(-1). At higher PADs the O(2)-CO(2) flux difference continued to increase proportionally with the photosynthetic rate to a maximum of about 2 μmol m(-2) s(-1). In NH(4)(+)-grown tobacco, as well as in potato during tuber filling, the low-PAD component of surplus O(2) evolution was virtually absent. The low-PAD phase was ascribed to photoreduction of NO(2)(-) which successfully competes with CO(2) reduction and saturates at a rate of about 1 μmol O(2) m(-2) s(-1) (9% of the maximum O(2) evolution rate). The high-PAD component of about 1 μmol O(2) m(-2) s(-1), superimposed on NO(2)(-) reduction, may represent oxaloacetate reduction. The roles of NO(2)(-), oxaloacetate, and O(2) reduction in the regulation of ATP/NADPH balance are discussed.
Collapse
Affiliation(s)
- H. Eichelmann
- Institute of Molecular and Cell Biology, Tartu University, Riia st. 23, Tartu 51010, Estonia
| | - V. Oja
- Institute of Molecular and Cell Biology, Tartu University, Riia st. 23, Tartu 51010, Estonia
| | - R.B. Peterson
- Department of Biochemistry and Genetics, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06511, USA
| | - A. Laisk
- Institute of Molecular and Cell Biology, Tartu University, Riia st. 23, Tartu 51010, Estonia
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
21
|
Vredenberg W. Kinetic analyses and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems. Biosystems 2010; 103:138-51. [PMID: 21070830 DOI: 10.1016/j.biosystems.2010.10.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/28/2022]
Abstract
In this paper the model and simulation of primary photochemical and photo-electrochemical reactions in dark-adapted intact plant leaves is presented. A descriptive algorithm has been derived from analyses of variable chlorophyll a fluorescence and P700 oxidation kinetics upon excitation with multi-turnover pulses (MTFs) of variable intensity and duration. These analyses have led to definition and formulation of rate equations that describe the sequence of primary linear electron transfer (LET) steps in photosystem II (PSII) and of cyclic electron transport (CET) in PSI. The model considers heterogeneity in PSII reaction centers (RCs) associated with the S-states of the OEC and incorporates in a dark-adapted state the presence of a 15-35% fraction of Q(B)-nonreducing RCs that probably is identical with the S₀ fraction. The fluorescence induction algorithm (FIA) in the 10 μs-1s excitation time range considers a photochemical O-J-D, a photo-electrochemical J-I and an I-P phase reflecting the response of the variable fluorescence to the electric trans-thylakoid potential generated by the proton pump fuelled by CET in PSI. The photochemical phase incorporates the kinetics associated with the double reduction of the acceptor pair of pheophytin (Phe) and plastoquinone Q(A) [PheQ(A)] in Q(B) nonreducing RCs and the associated doubling of the variable fluorescence, in agreement with the three-state trapping model (TSTM) of PS II. The decline in fluorescence emission during the so called SMT in the 1-100s excitation time range, known as the Kautsky curve, is shown to be associated with a substantial decrease of CET-powered proton efflux from the stroma into the chloroplast lumen through the ATPsynthase of the photosynthetic machinery.
Collapse
Affiliation(s)
- Wim Vredenberg
- Dept. of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
22
|
Gotoh E, Matsumoto M, Ogawa K, Kobayashi Y, Tsuyama M. A qualitative analysis of the regulation of cyclic electron flow around photosystem I from the post-illumination chlorophyll fluorescence transient in Arabidopsis: a new platform for the in vivo investigation of the chloroplast redox state. PHOTOSYNTHESIS RESEARCH 2010; 103:111-23. [PMID: 20054711 DOI: 10.1007/s11120-009-9525-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 12/22/2009] [Indexed: 05/05/2023]
Abstract
A transient in chlorophyll fluorescence after cessation of actinic light illumination, which has been ascribed to electron donation from stromal reductants to plastoquinone (PQ) by the NAD(P)H-dehydrogenase (NDH) complex, was investigated in Arabidopsis thaliana. The transient was absent in air in a mutant lacking the NDH complex (ndhM). However, in ndhM, the transient was detected in CO(2)-free air containing 2% O(2). To investigate the reason, ndhM was crossed with a pgr5 mutant impaired in ferredoxin (Fd)-dependent electron donation from NADPH to PQ, which is known to be redundant for NDH-dependent PQ reduction in the cyclic electron flow around photosystem I (PSI). In ndhM pgr5, the transient was absent even in CO(2)-free air with 2% O(2), demonstrating that the post-illumination transient can also be induced by the Fd- (or PGR5)-dependent PQ reduction. On the other hand, the transient increase in chlorophyll fluorescence was found to be enhanced in normal air in a mutant impaired in plastid fructose-1,6-bisphosphate aldolase (FBA) activity. The mutant, termed fba3-1, offers unique opportunities to examine the relative contribution of the two paths, i.e., the NDH- and Fd- (or PGR5)-dependent paths, on the PSI cyclic electron flow. Crossing fba3-1 with either ndhM or pgr5 and assessing the transient suggested that the main route for the PSI cyclic electron flow shifts from the NDH-dependent path to the Fd-dependent path in response to sink limitation of linear electron flow.
Collapse
Affiliation(s)
- Eiji Gotoh
- Department of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
23
|
Yin X, Struik PC. Theoretical reconsiderations when estimating the mesophyll conductance to CO(2) diffusion in leaves of C(3) plants by analysis of combined gas exchange and chlorophyll fluorescence measurements. PLANT, CELL & ENVIRONMENT 2009; 32:1513-1524. [PMID: 19558403 DOI: 10.1111/j.1365-3040.2009.02016.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Existing methods to estimate the mesophyll conductance to CO(2) diffusion (g(m)) are often based on combined gas exchange and chlorophyll fluorescence measurements. However, estimations of average g(m) by these methods are often unreliable either because the range of usable data is too narrow or because the estimations are very sensitive to measurement errors. We describe three method variants to estimate g(m), for which a wider range of data are usable. They use curve-fitting techniques, which minimise the sum of squared model deviations from the data for A (CO(2) assimilation rate) or for J (linear electron transport rate). Like the existing approaches, they are all based on common physiological principles assuming that electron transport limits A. The proposed variants were far less sensitive than the existing approaches to 'measurement noise' either created randomly in the generated data set or inevitably existing in real data sets. Yet, the estimates of g(m) from the three variants differed by approximately 15%. Moreover, for each variant, a stoichiometric uncertainty in linear electron transport-limited photosynthesis can cause another 15% difference. Any estimation of g(m) using gas exchange and chlorophyll fluorescence measurements should be considered with caution, especially when g(m) is high.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, 6700 AK Wageningen, the Netherlands
| | | |
Collapse
|
24
|
Yin X, Struik PC, Romero P, Harbinson J, Evers JB, VAN DER Putten PEL, Vos J. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. PLANT, CELL & ENVIRONMENT 2009; 32:448-64. [PMID: 19183300 DOI: 10.1111/j.1365-3040.2009.01934.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We appraised the literature and described an approach to estimate the parameters of the Farquhar, von Caemmerer and Berry model using measured CO(2) assimilation rate (A) and photosystem II (PSII) electron transport efficiency (Phi(2)). The approach uses curve fitting to data of A and Phi(2) at various levels of incident irradiance (I(inc)), intercellular CO(2) (C(i)) and O(2). Estimated parameters include day respiration (R(d)), conversion efficiency of I(inc) into linear electron transport of PSII under limiting light [kappa(2(LL))], electron transport capacity (J(max)), curvature factor (theta) for the non-rectangular hyperbolic response of electron flux to I(inc), ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) CO(2)/O(2) specificity (S(c/o)), Rubisco carboxylation capacity (V(cmax)), rate of triose phosphate utilization (T(p)) and mesophyll conductance (g(m)). The method is used to analyse combined gas exchange and chlorophyll fluorescence measurements on leaves of various ages and positions in wheat plants grown at two nitrogen levels. Estimated S(c/o) (25 degrees C) was 3.13 mbar microbar(-1); R(d) was lower than respiration in the dark; J(max) was lower and theta was higher at 2% than at 21% O(2); kappa(2(LL)), V(cmax), J(max) and T(p) correlated to leaf nitrogen content; and g(m) decreased with increasing C(i) and with decreasing I(inc). Based on the parameter estimates, we surmised that there was some alternative electron transport.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Leaf C3 Photosynthesis in silico: Integrated Carbon/Nitrogen Metabolism. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Lazár D, Schansker G. Models of Chlorophyll a Fluorescence Transients. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
A Model of the Generalized Stoichiometry of Electron Transport Limited C3 Photosynthesis: Development and Applications. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Abstract
The use of chlorophyll fluorescence to monitor photosynthetic performance in algae and plants is now widespread. This review examines how fluorescence parameters can be used to evaluate changes in photosystem II (PSII) photochemistry, linear electron flux, and CO(2) assimilation in vivo, and outlines the theoretical bases for the use of specific fluorescence parameters. Although fluorescence parameters can be measured easily, many potential problems may arise when they are applied to predict changes in photosynthetic performance. In particular, consideration is given to problems associated with accurate estimation of the PSII operating efficiency measured by fluorescence and its relationship with the rates of linear electron flux and CO(2) assimilation. The roles of photochemical and nonphotochemical quenching in the determination of changes in PSII operating efficiency are examined. Finally, applications of fluorescence imaging to studies of photosynthetic heterogeneity and the rapid screening of large numbers of plants for perturbations in photosynthesis and associated metabolism are considered.
Collapse
Affiliation(s)
- Neil R Baker
- Department of Biological Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom.
| |
Collapse
|
29
|
Laisk A, Eichelmann H, Oja V, Talts E, Scheibe R. Rates and Roles of Cyclic and Alternative Electron Flow in Potato Leaves. ACTA ACUST UNITED AC 2007; 48:1575-88. [DOI: 10.1093/pcp/pcm129] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. PLANT, CELL & ENVIRONMENT 2007; 30:1284-98. [PMID: 17727418 DOI: 10.1111/j.1365-3040.2007.01700.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The effects of short-term (minutes) variations of CO2 concentration on mesophyll conductance to CO2 (gm) were evaluated in six different C3 species by simultaneous measurements of gas exchange, chlorophyll fluorescence, online carbon isotope discrimination and a novel curve-fitting method. Depending on the species, gm varied from five- to ninefold, along the range of sub-stomatal CO2 concentrations typically used in photosynthesis CO2-response curves (AN)-Ci curves; where AN is the net photosynthetic flux and Ci is the CO2 concentrations in the sub-stomatal cavity), that is, 50 to 1500 micromol CO2 mol(-1) air. Although the pattern was species-dependent, gm strongly declined at high Ci, where photosynthesis was not limited by CO2, but by regeneration of ribulose-1,5-bisphosphate or triose phosphate utilization. Moreover, these changes on gm were found to be totally independent of the velocity and direction of the Ci changes. The response of gm to Ci resembled that of stomatal conductance (gs), but kinetic experiments suggested that the response of gm was actually faster than that of gs. Transgenic tobacco plants differing in the amounts of aquaporin NtAQP1 showed different slopes of the gm-Ci response, suggesting a possible role for aquaporins in mediating CO2 responsiveness of gm. The importance of these findings is discussed in terms of their effects on parameterization of AN-Ci curves.
Collapse
Affiliation(s)
- Jaume Flexas
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears. Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Balears, Spain.
| | | | | | | | | | | |
Collapse
|
31
|
Laisk A, Oja V, Eichelmann H. Kinetics of leaf oxygen uptake represent in planta activities of respiratory electron transport and terminal oxidases. PHYSIOLOGIA PLANTARUM 2007; 131:1-9. [PMID: 18251919 DOI: 10.1111/j.1399-3054.2007.00910.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present, for the first time, the oxygen response kinetics of mitochondrial respiration measured in intact leaves (sunflower and aspen). Low O(2) concentrations in N(2) (9-1500 ppm) were preset in a flow-through gas exchange measurement system, and the decrease in O(2) concentration and the increase in CO(2) concentration as result of leaf respiration were measured by a zirconium cell O(2) analyser and infrared-absorption CO(2) analyser, respectively. The low O(2) concentrations little influenced the rate of CO(2) evolution during the 60-s exposure. The initial slope of the O(2) uptake curve on the dissolved O(2) concentration basis was relatively constant in leaves of a single species, 1.5 mm s(-1) in sunflower and 1.8 mm s(-1) in aspen. The apparent K(0.5)(O(2)) values ranged from 0.33 to 0.67 microM in sunflower and from 0.33 to 1.1 microM in aspen, mainly because of the variation of the maximum rate, V(max) (leaf temperature 22 degrees C). The initial slope of the O(2) response of respiration characterizes the catalytic efficiency of terminal oxidases, an important parameter of the respiratory machinery in leaves. The plateau of the response characterizes the activity of the mitochondrial electron transport chain and is subject to regulations in accordance with the necessity for ATP production. The relatively low oxygen conductivity of terminal oxidases means that in leaves, less than 10% of the photosynthetic oxygen can be reassimilated by mitochondria.
Collapse
Affiliation(s)
- Agu Laisk
- Institute for Molecular and Cell Biology, Tartu University, Riia street 23, Tartu 51010, Estonia.
| | | | | |
Collapse
|
32
|
Oja V, Eichelmann H, Laisk A. Calibration of simultaneous measurements of photosynthetic carbon dioxide uptake and oxygen evolution in leaves. PLANT & CELL PHYSIOLOGY 2007; 48:198-203. [PMID: 17169918 DOI: 10.1093/pcp/pcl056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The stoichiometric ratio of O2 evolution to CO2 uptake during photosynthesis reveals information about reductive metabolism, including the reduction of alternative electron acceptors, such as nitrite and oxaloacetate. Recently we reported that in simultaneous measurements of CO2 uptake and O2 evolution in a sunflower leaf, O2 evolution changed by 7% more than CO2 uptake when light intensity was varied. Since the O2/CO2 exchange ratio is approximately 1, small differences are important. Thus, these gas exchange measurements need precise calibration. In this work, we describe a new calibration procedure for such simultaneous measurements, based on the changes of O2 concentration caused by the addition of pure CO2 or O2 into a flow of dry air (20.95% O2) through one and the same capillary. The relative decrease in O2 concentration during the addition of CO2 and the relative increase in O2 concentration during the addition of O2 allowed us to calibrate the CO2 and O2 scales of the measurement system with an error (relative standard deviation, RSD) of <1%. Measurements on a sunflower leaf resulted in an O2/CO2 ratio between 1.0 and 1.03 under different CO2 concentrations and light intensities, in the presence of an ambient O2 concentration of 20-50 micromol mol(-1). This shows that the percentage use of reductive power from photochemistry in synthesis of inorganic or organic matter other than CO2 assimilation in the C3 cycle is very low in mature leaves and, correspondingly, the reduction of alternative acceptors is a weak source of coupled ATP synthesis.
Collapse
Affiliation(s)
- Vello Oja
- Tartu Ulikooli Molekulaar- ja Rakubioloogia Instituut, Riia tn. 23, Tartu, 51010, Estonia
| | | | | |
Collapse
|
33
|
Laisk A, Eichelmann H, Oja V. C3 photosynthesis in silico. PHOTOSYNTHESIS RESEARCH 2006; 90:45-66. [PMID: 17131095 DOI: 10.1007/s11120-006-9109-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 09/26/2006] [Indexed: 05/12/2023]
Abstract
A computer model comprising light reactions, electron-proton transport, enzymatic reactions, and regulatory functions of C3 photosynthesis has been developed as a system of differential budget equations for intermediate compounds. The emphasis is on electron transport through PSII and PSI and on the modeling of Chl fluorescence and 810 nm absorptance signals. Non-photochemical quenching of PSII excitation is controlled by lumenal pH. Alternative electron transport is modeled as the Mehler type O2 reduction plus the malate-oxaloacetate shuttle based on the chloroplast malate dehydrogenase. Carbon reduction enzymes are redox-controlled by the ferredoxin-thioredoxin system, sucrose synthesis is controlled by the fructose 2,6-bisphosphate inhibition of cytosolic FBPase, and starch synthesis is controlled by ADP-glucose pyrophosphorylase. Photorespiratory glycolate pathway is included in an integrated way, sufficient to reproduce steady-state rates of photorespiration. Rate-equations are designed on principles of multisubstrate-multiproduct enzyme kinetics. The parameters of the model were adopted from literature or were estimated from fitting the photosynthetic rate and pool sizes to experimental data. The model provided good simulations for steady-state photosynthesis, Chl fluorescence, and 810 nm transmittance signals under varying light, CO2 and O2 concentrations, as well as for the transients of post-illumination CO2 uptake, Chl fluorescence induction and the 810 nm signal. The modeling shows that the present understanding of photosynthesis incorporated in the model is basically correct, but still insufficient to reproduce the dark-light induction of photosynthesis, the time kinetics of non-photochemical quenching, 'photosynthetic control' of plastoquinone oxidation, cyclic electron flow around PSI, oscillations in photosynthesis. The model may find application for predicting the results of gene transformations, the analysis of kinetic experimental data, the training of students.
Collapse
Affiliation(s)
- Agu Laisk
- Institute for Molecular and Cell Biology, Tartu University, 23 Riia st., Tartu, 51010, Estonia.
| | | | | |
Collapse
|