1
|
Li Y, Liu Y, Ran G, Yu Y, Zhou Y, Zhu Y, Du Y, Pi L. The pentatricopeptide repeat protein DG1 promotes the transition to bilateral symmetry during Arabidopsis embryogenesis through GUN1-mediated plastid signals. THE NEW PHYTOLOGIST 2024; 244:542-557. [PMID: 39140987 DOI: 10.1111/nph.20056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
During Arabidopsis embryogenesis, the transition of the embryo's symmetry from radial to bilateral between the globular and heart stage is a crucial event, involving the formation of cotyledon primordia and concurrently the establishment of a shoot apical meristem (SAM). However, a coherent framework of how this transition is achieved remains to be elucidated. In this study, we investigated the function of DELAYED GREENING 1 (DG1) in Arabidopsis embryogenesis using a newly identified dg1-3 mutant. The absence of chloroplast-localized DG1 in the mutants led to embryos being arrested at the globular or heart stage, accompanied by an expansion of WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM) expression. This finding pinpoints the essential role of DG1 in regulating the transition to bilateral symmetry. Furthermore, we showed that this regulation of DG1 may not depend on its role in plastid RNA editing. Nevertheless, we demonstrated that the DG1 function in establishing bilateral symmetry is genetically mediated by GENOMES UNCOUPLED 1 (GUN1), which represses the transition process in dg1-3 embryos. Collectively, our results reveal that DG1 functionally antagonizes GUN1 to promote the transition of the Arabidopsis embryo's symmetry from radial to bilateral and highlight the role of plastid signals in regulating pattern formation during plant embryogenesis.
Collapse
Affiliation(s)
- Yajie Li
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yiqiong Liu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Guiping Ran
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yue Yu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yifan Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxian Zhu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yujuan Du
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Limin Pi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Yang R, Sun Y, Zhu X, Jiao B, Sun S, Chen Y, Li L, Wang X, Zeng Q, Liang Q, Huang B. The tuber-specific StbHLH93 gene regulates proplastid-to-amyloplast development during stolon swelling in potato. THE NEW PHYTOLOGIST 2024; 241:1676-1689. [PMID: 38044709 DOI: 10.1111/nph.19426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023]
Abstract
In potato, stolon swelling is a complex and highly regulated process, and much more work is needed to fully understand the underlying mechanisms. We identified a novel tuber-specific basic helix-loop-helix (bHLH) transcription factor, StbHLH93, based on the high-resolution transcriptome of potato tuber development. StbHLH93 is predominantly expressed in the subapical and perimedullary region of the stolon and developing tubers. Knockdown of StbHLH93 significantly decreased tuber number and size, resulting from suppression of stolon swelling. Furthermore, we found that StbHLH93 directly binds to the plastid protein import system gene TIC56 promoter, activates its expression, and is involved in proplastid-to-amyloplast development during the stolon-to-tuber transition. Knockdown of the target TIC56 gene resulted in similarly problematic amyloplast biogenesis and tuberization. Taken together, StbHLH93 functions in the differentiation of proplastids to regulate stolon swelling. This study highlights the critical role of proplastid-to-amyloplast interconversion during potato tuberization.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Yuan Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Xiaoling Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Baozhen Jiao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Sifan Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Yun Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Lizhu Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Xue Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Qian Zeng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Qiqi Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Binquan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| |
Collapse
|
4
|
Kuntz M, Dimnet L, Pullara S, Moyet L, Rolland N. The Main Functions of Plastids. Methods Mol Biol 2024; 2776:89-106. [PMID: 38502499 DOI: 10.1007/978-1-0716-3726-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastids are semi-autonomous organelles like mitochondria and derive from a cyanobacterial ancestor that was engulfed by a host cell. During evolution, they have recruited proteins originating from the nuclear genome, and only parts of their ancestral metabolic properties were conserved and optimized to limit functional redundancy with other cell compartments. Furthermore, large disparities in metabolic functions exist among various types of plastids, and the characterization of their various metabolic properties is far from being accomplished. In this review, we provide an overview of the main functions, known to be achieved by plastids or shared by plastids and other compartments of the cell. In short, plastids appear at the heart of all main plant functions.
Collapse
Affiliation(s)
- Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France.
| | - Laura Dimnet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Sara Pullara
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Lucas Moyet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| |
Collapse
|
5
|
Kumara PM, Varun E, Sanjay JR, Madhushree AH, Thimmappa R. De novo transcriptome analysis of Dysoxylum binectariferum to unravel the biosynthesis of pharmaceutically relevant specialized metabolites. FRONTIERS IN PLANT SCIENCE 2023; 14:1098987. [PMID: 37636089 PMCID: PMC10450223 DOI: 10.3389/fpls.2023.1098987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/05/2023] [Indexed: 08/29/2023]
Abstract
The tropical tree, D. binectariferum, is a prominent source of chromone alkaloid rohitukine, which is used in the semi-syntheses of anticancer molecules such as flavopiridol and P-276-00. The biosynthetic pathway of rohitukine or its derivatives is currently unknown in plants. Here, we explored chromone alkaloid biosynthesis in D. binectariferum through targeted transcriptome sequencing. Illumina sequencing of leaves and roots of a year-old D. binectariferum seedling generated, 42.43 and 38.74 million paired-end short reads, respectively. Quality filtering and de novo assembly of the transcriptome generated 274,970 contigs and 126,788 unigenes with an N50 contig length of 1560 bp. The assembly generated 117,619 translated unigene protein sequences and 51,598 non-redundant sequences. Nearly 80% of these non-redundant sequences were annotated to publicly available protein and nucleotide databases, suggesting the completeness and effectiveness of the transcriptome assembly. Using the assembly, we identified a chalcone synthase (CHS) and three type III polyketide synthases (PKS-III; non-CHS type) that are likely to be involved in the biosynthesis of chromone ring/noreugenin moiety of rohitukine. We also identified key enzymes like lysine decarboxylase in the piperidine pathway that make the piperidine moiety of rohitukine. Besides these, the upstream enzymes in flavonoid biosynthesis like phenylalanine ammonia-lyase (PAL), trans-cinnamate 4-hydroxylase (C4H),4-coumarate-CoA ligase (4CL), and chalcone isomerase (CHI) have also been identified. Also, terpene synthases that are likely to be involved in the biosynthesis of various terpenoid scaffolds have been identified. Together, the D. binectariferum transcriptome resource forms a basis for further exploration of biosynthetic pathways of these valuable compounds through functional validation of the candidate genes and metabolic engineering in heterologous hosts. Additionally, the transcriptome dataset generated will serve as an important resource for research on functional genomics and enzyme discovery in D. binectariferum and comparative analysis with other Meliaceae family members.
Collapse
Affiliation(s)
- Patel Mohana Kumara
- Department of Biotechnology and Crop Improvement, Kittur Rani Chennamma College of Horticulture, Arabhavi, University of Horticultural Sciences, Bagalkot, Karnataka, India
- Center for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka, India
| | - Eranna Varun
- Center for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka, India
| | - Joshi Renuka Sanjay
- Center for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka, India
| | - Anchedoddi Hanumegowda Madhushree
- Center for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka, India
| | - Ramesha Thimmappa
- Amity Institute of Genome Engineering, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
6
|
Geng R, Pang X, Li X, Shi S, Hedtke B, Grimm B, Bock R, Huang J, Zhou W. PROGRAMMED CELL DEATH8 interacts with tetrapyrrole biosynthesis enzymes and ClpC1 to maintain homeostasis of tetrapyrrole metabolites in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:2545-2560. [PMID: 36967598 DOI: 10.1111/nph.18906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/19/2023] [Indexed: 05/19/2023]
Abstract
Tetrapyrrole biosynthesis (TBS) is a dynamically and strictly regulated process. Disruptions in tetrapyrrole metabolism influence many aspects of plant physiology, including photosynthesis, programmed cell death (PCD), and retrograde signaling, thus affecting plant growth and development at multiple levels. However, the genetic and molecular basis of TBS is not fully understood. We report here PCD8, a newly identified thylakoid-localized protein encoded by an essential gene in Arabidopsis. PCD8 knockdown causes a necrotic phenotype due to excessive chloroplast damage. A burst of singlet oxygen that results from overaccumulated tetrapyrrole intermediates upon illumination is suggested to be responsible for cell death in the knockdown mutants. Genetic and biochemical analyses revealed that PCD8 interacts with ClpC1 and a number of TBS enzymes, such as HEMC, CHLD, and PORC of TBS. Taken together, our findings uncover the function of chloroplast-localized PCD8 and provide a new perspective to elucidate molecular mechanism of how TBS is finely regulated in plants.
Collapse
Affiliation(s)
- Rudan Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqing Pang
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shanshan Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Boris Hedtke
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
7
|
Ershova N, Sheshukova E, Kamarova K, Arifulin E, Tashlitsky V, Serebryakova M, Komarova T. Nicotiana benthamiana Kunitz peptidase inhibitor-like protein involved in chloroplast-to-nucleus regulatory pathway in plant-virus interaction. FRONTIERS IN PLANT SCIENCE 2022; 13:1041867. [PMID: 36438111 PMCID: PMC9685412 DOI: 10.3389/fpls.2022.1041867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Plant viruses use a variety of strategies to infect their host. During infection, viruses cause symptoms of varying severity, which are often associated with altered leaf pigmentation due to structural and functional damage to chloroplasts that are affected by viral proteins. Here we demonstrate that Nicotiana benthamiana Kunitz peptidase inhibitor-like protein (KPILP) gene is induced in response to potato virus X (PVX) infection. Using reverse genetic approach, we have demonstrated that KPILP downregulates expression of LHCB1 and LHCB2 genes of antenna light-harvesting complex proteins, HEMA1 gene encoding glutamyl-tRNA reductase, which participates in tetrapyrrole biosynthesis, and RBCS1A gene encoding RuBisCO small subunit isoform involved in the antiviral immune response. Thus, KPILP is a regulator of chloroplast retrograde signaling system during developing PVX infection. Moreover, KPILP was demonstrated to affect carbon partitioning: reduced glucose levels during PVX infection were associated with KPILP upregulation. Another KPILP function is associated with plasmodesmata permeability control. Its ability to stimulate intercellular transport of reporter 2xGFP molecules indicates that KPILP is a positive plasmodesmata regulator. Moreover, natural KPILP glycosylation is indispensable for manifestation of this function. During PVX infection KPILP increased expression leads to the reduction of plasmodesmata callose deposition. These results could indicate that KPILP affects plasmodesmata permeability via callose-dependent mechanism. Thus, virus entering a cell and starting reproduction triggers KPILP expression, which leads to downregulation of nuclear-encoded chloroplast genes associated with retrograde signaling, reduction in photoassimilates accumulation and increase in intercellular transport, creating favorable conditions for reproduction and spread of viral infection.
Collapse
Affiliation(s)
- Natalia Ershova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Sheshukova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kamila Kamarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Evgenii Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vadim Tashlitsky
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Marina Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Komarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Hirosawa Y, Tada A, Matsuura T, Mori IC, Ogura Y, Hayashi T, Uehara S, Ito-Inaba Y, Inaba T. Salicylic Acid Acts Antagonistically to Plastid Retrograde Signaling by Promoting the Accumulation of Photosynthesis-associated Proteins in Arabidopsis. PLANT & CELL PHYSIOLOGY 2021; 62:1728-1744. [PMID: 34410430 DOI: 10.1093/pcp/pcab128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Plastids are involved in phytohormone metabolism as well as photosynthesis. However, the mechanism by which plastid retrograde signals and phytohormones cooperatively regulate plastid biogenesis remains elusive. Here, we investigated the effects of an inhibitor and a mutation that generate biogenic plastid signals on phytohormones and vice versa. Inhibition of plastid biogenesis by norflurazon (NF) treatment and the plastid protein import2 (ppi2) mutation caused a decrease in salicylic acid (SA) and jasmonic acid (JA). This effect can be attributed in part to the altered expression of genes involved in the biosynthesis and the metabolism of SA and JA. However, SA-dependent induction of the PATHOGENESIS-RELATED1 gene was virtually unaffected in NF-treated plants and the ppi2 mutant. Instead, the level of chlorophyll in these plants was partially restored by the exogenous application of SA. Consistent with this observation, the levels of some photosynthesis-associated proteins increased in the ppi2 and NF-treated plants in response to SA treatment. This regulation in true leaves seems to occur at the posttranscriptional level since SA treatment did not induce the expression of photosynthesis-associated genes. In salicylic acid induction deficient 2 and lesions simulating disease resistance 1 mutants, endogenous SA regulates the accumulation of photosynthesis-associated proteins through transcriptional and posttranscriptional mechanisms. These data indicate that SA acts antagonistically to the inhibition of plastid biogenesis by promoting the accumulation of photosynthesis-associated proteins in Arabidopsis, suggesting a possible link between SA and biogenic plastid signaling.
Collapse
Affiliation(s)
- Yoshihiro Hirosawa
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Akari Tada
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Susumu Uehara
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
9
|
Pamukcu S, Cerutti A, Bordat Y, Hem S, Rofidal V, Besteiro S. Differential contribution of two organelles of endosymbiotic origin to iron-sulfur cluster synthesis and overall fitness in Toxoplasma. PLoS Pathog 2021; 17:e1010096. [PMID: 34793583 PMCID: PMC8639094 DOI: 10.1371/journal.ppat.1010096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/02/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are one of the most ancient and ubiquitous prosthetic groups, and they are required by a variety of proteins involved in important metabolic processes. Apicomplexan parasites have inherited different plastidic and mitochondrial Fe-S clusters biosynthesis pathways through endosymbiosis. We have investigated the relative contributions of these pathways to the fitness of Toxoplasma gondii, an apicomplexan parasite causing disease in humans, by generating specific mutants. Phenotypic analysis and quantitative proteomics allowed us to highlight notable differences in these mutants. Both Fe-S cluster synthesis pathways are necessary for optimal parasite growth in vitro, but their disruption leads to markedly different fates: impairment of the plastidic pathway leads to a loss of the organelle and to parasite death, while disruption of the mitochondrial pathway trigger differentiation into a stress resistance stage. This highlights that otherwise similar biochemical pathways hosted by different sub-cellular compartments can have very different contributions to the biology of the parasites, which is something to consider when exploring novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
| | - Aude Cerutti
- LPHI, Univ Montpellier, CNRS, Montpellier, France
| | - Yann Bordat
- LPHI, Univ Montpellier, CNRS, Montpellier, France
| | - Sonia Hem
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Valérie Rofidal
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
10
|
Ramulifho E, Rey MEC. Proteome Mapping of South African Cassava Mosaic Virus-Infected Susceptible and Tolerant Landraces of Cassava. Proteomes 2021; 9:41. [PMID: 34842800 PMCID: PMC8628908 DOI: 10.3390/proteomes9040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
The production of cassava is threatened by the geminivirus South African cassava mosaic virus (SACMV), which causes cassava mosaic disease. Cassava landrace TME3 shows tolerance to SACMV, while T200 is highly susceptible. This study aimed to identify the leaf proteome involved in anti-viral defence. Liquid chromatography mass spectrometry (LC-MS) identified 2682 (54 differentially expressed) and 2817 (206 differentially expressed) proteins in both landraces at systemic infection (32 days post infection) and symptom recovery (67 days post infection), respectively. Differences in the number of differentially expressed proteins (DEPs) between the two landraces were observed. Gene ontology analysis showed that defence-associated pathways such as the chloroplast, proteasome, and ribosome were overrepresented at 67 days post infection (dpi) in SACMV-tolerant TME3. At 67 dpi, a high percentage (56%) of over-expressed proteins were localized in the chloroplast in TME3 compared to T200 (31% under-expressed), proposing that chloroplast proteins play a role in tolerance in TME3. Ribosomal_L7Ae domain-containing protein (Manes.12G139100) was over-expressed uniquely in TME3 at 67 dpi and interacts with the ribosomal protein Sac52 (RPL10). RPL10 is a known key player in the NIK1-mediated effector triggered immunity (ETI) response to geminivirus infection, indicating a possible role for Sac52 in SACMV recovery in TME3. In conclusion, differential protein expression responses in TME3 and T200 may be key to unravel tolerance to CMD.
Collapse
Affiliation(s)
- Elelwani Ramulifho
- Plant Biotechnology Laboratory, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2001, South Africa;
- Germplasm Development, Agricultural Research Council-Small Grain Institute, Bethlehem 9700, South Africa
| | - Marie Emma Christine Rey
- Plant Biotechnology Laboratory, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2001, South Africa;
| |
Collapse
|
11
|
Kumar AU, Ling APK. Gene introduction approaches in chloroplast transformation and its applications. J Genet Eng Biotechnol 2021; 19:148. [PMID: 34613540 PMCID: PMC8494830 DOI: 10.1186/s43141-021-00255-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/25/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Chloroplast is a type of plastid that is believed to be originated from ancestral cyanobacteria. Chloroplast besides being a major component for photosynthesis, also takes part in another major plant metabolism, making it one of the major components of plants. MAIN BODY Chloroplast transformation is an alternative and better genetic engineering approach compared to the nuclear transformation that has been widely applied in plant genetic engineering. Chloroplast transformation has exhibited various positive effects as compared to nuclear transformation. This is a more preferred technique by researchers. To carry out chloroplast transformation, the vector design must be performed, and a selectable marker needs to be incorporated before the chloroplast could uptake the construct. The common way of introducing a gene into the host, which is the chloroplast, involves the biolistic, PEG-mediated, carbon nanotubes carriers, UV-laser microbeam, and Agrobacterium-mediated transformation approaches. Apart from discussing the processes involved in introducing the gene into the chloroplast, this review also focuses on the various applications brought about by chloroplast transformation, particularly in the field of agriculture and environmental science. CONCLUSION Chloroplast transformation has shown a lot of advantages and proven to be a better alternative compared to nuclear genome transformation. Further studies must be conducted to uncover new knowledge regarding chloroplast transformation as well as to discover its additional applications in the fields of biotechnology.
Collapse
Affiliation(s)
- Asqwin Uthaya Kumar
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Li C, Shang JX, Qiu C, Zhang B, Wang J, Wang S, Sun Y. Plastid-Localized EMB2726 Is Involved in Chloroplast Biogenesis and Early Embryo Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:675838. [PMID: 34367201 PMCID: PMC8343077 DOI: 10.3389/fpls.2021.675838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Embryogenesis is a critical developmental process that establishes the body organization of higher plants. During this process, the biogenesis of chloroplasts from proplastids is essential. A failure in chloroplast development during embryogenesis can cause morphologically abnormal embryos or embryonic lethality. In this study, we isolated a T-DNA insertion mutant of the Arabidopsis gene EMBRYO DEFECTIVE 2726 (EMB2726). Heterozygous emb2726 seedlings produced about 25% albino seeds with embryos that displayed defects at the 32-cell stage and that arrested development at the late globular stage. EMB2726 protein was localized in chloroplasts and was expressed at all stages of development, such as embryogenesis. Moreover, the two translation elongation factor Ts domains within the protein were critical for its function. Transmission electron microscopy revealed that the cells in emb2726 embryos contained undifferentiated proplastids and that the expression of plastid genome-encoded photosynthesis-related genes was dramatically reduced. Expression studies of DR5:GFP, pDRN:DRN-GFP, and pPIN1:PIN1-GFP reporter lines indicated normal auxin biosynthesis but altered polar auxin transport. The expression of pSHR:SHR-GFP and pSCR:SCR-GFP confirmed that procambium and ground tissue precursors were lacking in emb2726 embryos. The results suggest that EMB2726 plays a critical role during Arabidopsis embryogenesis by affecting chloroplast development, possibly by affecting the translation process in plastids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu Sun
- Hebei Key Laboratory of Molecular and Cellular Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
13
|
Li J, Li X, Khatab AA, Xie G. Phylogeny, structural diversity and genome-wide expression analysis of fibrillin family genes in rice. PHYTOCHEMISTRY 2020; 175:112377. [PMID: 32315840 DOI: 10.1016/j.phytochem.2020.112377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Fibrillins (FBNs) constitute a plastid-lipid-associated protein family that plays a role in chloroplast development, lipids metabolism and stress responses in plants. Until now, FBNs have been functionally characterized in stability of thylakoid and responses to the different stress stimuli. Consequently, phylogeny, domain composition and structural features of 121 FBNs family proteins from ten representative species have been identified. As results, phylogenetic analysis demonstrated that FBNs proteins were grouped into 24 clades and further subdivided into three groups, including terrestrial plant-specific, algae-specific, and intermediate group. These FBNs genes had different numbers of introns and exons but encoded the conserved N-terminal chloroplast transport peptide (CTP) domains and plastid lipid-associated protein (PAP) domains, which greatly contributed to the sub-functionalization and neo-functionalization. Meanwhile, the CTP domains of eleven OsFBN proteins except OsFBN8 could help them transport into chloroplasts. The PAP domains of OsFBN2 and OsFBN4 showed the in vitro specific binding activity to C12-C22 fatty acids that were affected by YxD motif. The qRT-PCR analysis showed that OsFBN genes were differentially induced by heat stress and cold stress in rice. Collectively, this study has provided the new insights into the evolution, structure, and functions of FBN gene family and will help to elucidate the molecular mechanisms of these proteins functioning in growth, development and adaptations in the global climate change.
Collapse
Affiliation(s)
- Jiajia Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Xukai Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Ahmed Adel Khatab
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt.
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
14
|
Konarska A. Microstructure of floral nectaries in Robinia viscosa var. hartwigii (Papilionoideae, Fabaceae)-a valuable but little-known melliferous plant. PROTOPLASMA 2020; 257:421-437. [PMID: 31736015 DOI: 10.1007/s00709-019-01453-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Floral nectaries are important components of floral architecture and significant taxonomic traits facilitating assessment of relationships between taxa and can contribute substantially to studies on the ecology and evolution of a particular genus. Knowledge of nectary structure and functioning allows better understanding of the mutualistic interactions between the pollinator and the plant. Robinia viscosa var. hartwigii (Hartweg's locust), planted in many European countries as an ornamental plant and used for recovery of degraded areas and urban arborisation, is a valuable melliferous species often visited by honeybees and bumblebees. The aim of this study was to investigate the microstructure of the floral nectaries of R. viscosa var. hartwigii with the use of light, fluorescence, scanning, and transmission electron microscopes. The photosynthetic nectaries were located on the inner surface of the cup-like receptacle. The components of pre-nectar were synthesised in the chloroplasts of the glandular parenchyma and transported via the conducting elements of the phloem. Nectar was released through modified nectarostomata. Nectar secretion presumably proceeded in the eccrine mode, whereas nectar transport represented the symplastic and apoplastic types. The cuticle on the nectary epidermis surface contained lipids, essentials oils, and flavonoids, while proteins and flavonoids were present in the glandular parenchyma cells. Idioblasts containing phenolic compounds, tannins, and polysaccharides were observed between the glandular parenchyma cells. The location of the nectaries and the mode of nectar production in the flowers of the Hartweg's locust follow the common location and structure pattern characteristic for the nectaries in some members of the subfamily Papilionoideae and can be a significant taxonomic trait for the genus Robinia and the tribe Robinieae.
Collapse
Affiliation(s)
- Agata Konarska
- Department of Botany, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland.
| |
Collapse
|
15
|
Chiewchankaset P, Siriwat W, Suksangpanomrung M, Boonseng O, Meechai A, Tanticharoen M, Kalapanulak S, Saithong T. Understanding carbon utilization routes between high and low starch-producing cultivars of cassava through Flux Balance Analysis. Sci Rep 2019; 9:2964. [PMID: 30814632 PMCID: PMC6393550 DOI: 10.1038/s41598-019-39920-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
Analysis of metabolic flux was used for system level assessment of carbon partitioning in Kasetsart 50 (KU50) and Hanatee (HN) cassava cultivars to understand the metabolic routes for their distinct phenotypes. First, the constraint-based metabolic model of cassava storage roots, rMeCBM, was developed based on the carbon assimilation pathway of cassava. Following the subcellular compartmentalization and curation to ensure full network connectivity and reflect the complexity of eukaryotic cells, cultivar specific data on sucrose uptake and biomass synthesis were input, and rMeCBM model was used to simulate storage root growth in KU50 and HN. Results showed that rMeCBM-KU50 and rMeCBM-HN models well imitated the storage root growth. The flux-sum analysis revealed that both cultivars utilized different metabolic precursors to produce energy in plastid. More carbon flux was invested in the syntheses of carbohydrates and amino acids in KU50 than in HN. Also, KU50 utilized less flux for respiration and less energy to synthesize one gram of dry storage root. These results may disclose metabolic potential of KU50 underlying its higher storage root and starch yield over HN. Moreover, sensitivity analysis indicated the robustness of rMeCBM model. The knowledge gained might be useful for identifying engineering targets for cassava yield improvement.
Collapse
Affiliation(s)
- Porntip Chiewchankaset
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Wanatsanan Siriwat
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Malinee Suksangpanomrung
- Plant Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathumthani, 12120, Thailand
| | - Opas Boonseng
- Rayong Field Crops Research Center, Department of Agriculture, Rayong, 21150, Thailand
| | - Asawin Meechai
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (Bang Mod), Bangkok, 10140, Thailand
| | - Morakot Tanticharoen
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Saowalak Kalapanulak
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
| | - Treenut Saithong
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
| |
Collapse
|
16
|
Li H, Ji G, Wang Y, Qian Q, Xu J, Sodmergen, Liu G, Zhao X, Chen M, Zhai W, Li D, Zhu L. WHITE PANICLE3, a Novel Nucleus-Encoded Mitochondrial Protein, Is Essential for Proper Development and Maintenance of Chloroplasts and Mitochondria in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:762. [PMID: 29928286 PMCID: PMC5997807 DOI: 10.3389/fpls.2018.00762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/17/2018] [Indexed: 09/11/2023]
Abstract
Mitochondria and chloroplasts are interacting organelles that play important roles in plant development. In addition to a small number proteins encoded by their own genomes, the majority of mitochondrial and chloroplast proteins are encoded in the cell nucleus and imported into the organelle. As a consequence, coordination between mitochondria, chloroplasts, and the nucleus is of crucial importance to plant cells. Variegated mutants are chloroplast-defective mutants and are considered to be ideal models for studying the intercommunication between these organelles. Here, we report the isolation of WHITE PANICLE3 (WP3), a nuclear gene involved in variegation, from a naturally occurring white panicle rice mutant. Disrupted expression of WP3 in the mutant leads to severe developmental defects in both chloroplasts and mitochondria, and consequently causes the appearance of white-striped leaves and white panicles in the mutant plants. Further investigation showed that WP3 encodes a protein most likely targeted to mitochondria and is specifically expressed in rice panicles. Interestingly, we demonstrate that the recessive white-panicle phenotype in the wp3 mutant is inherited in a typical Mendelian manner, while the white-striped leaf phenotype in wp3 is maternally inherited. Our data collectively suggest that the nucleus-encoded mitochondrial protein, WP3, plays an essential role in the regulation of chloroplast development in rice panicles by maintaining functional mitochondria. Therefore, the wp3 mutant is an excellent model in which to explore the communication between the nucleus, mitochondria, and chloroplasts in plant cells.
Collapse
Affiliation(s)
- Hongchang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guobiao Ji
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yun Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qian Qian
- China National Rice Research Institute, Hangzhou, China
| | - Jichen Xu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Sodmergen
- School of Life Sciences, Peking University, Beijing, China
| | - Guozhen Liu
- College of Life Sciences, Agricultural University of Hebei, Baoding, China
| | - Xianfeng Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingsheng Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenxue Zhai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Characterization and Comparative Analysis of the Complete Chloroplast Genome of the Critically Endangered Species Streptocarpus teitensis (Gesneriaceae). BIOMED RESEARCH INTERNATIONAL 2018; 2018:1507847. [PMID: 29770326 PMCID: PMC5889905 DOI: 10.1155/2018/1507847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/27/2017] [Accepted: 01/28/2018] [Indexed: 11/28/2022]
Abstract
Streptocarpus teitensis (Gesneriaceae) is an endemic species listed as critically endangered in the International Union for Conservation of Nature (IUCN) red list of threatened species. However, the sequence and genome information of this species remains to be limited. In this article, we present the complete chloroplast genome structure of Streptocarpus teitensis and its evolution inferred through comparative studies with other related species. S. teitensis displayed a chloroplast genome size of 153,207 bp, sheltering a pair of inverted repeats (IR) of 25,402 bp each split by small and large single-copy (SSC and LSC) regions of 18,300 and 84,103 bp, respectively. The chloroplast genome was observed to contain 116 unique genes, of which 80 are protein-coding, 32 are transfer RNAs, and four are ribosomal RNAs. In addition, a total of 196 SSR markers were detected in the chloroplast genome of Streptocarpus teitensis with mononucleotides (57.1%) being the majority, followed by trinucleotides (33.2%) and dinucleotides and tetranucleotides (both 4.1%), and pentanucleotides being the least (1.5%). Genome alignment indicated that this genome was comparable to other sequenced members of order Lamiales. The phylogenetic analysis suggested that Streptocarpus teitensis is closely related to Lysionotus pauciflorus and Dorcoceras hygrometricum.
Collapse
|
18
|
Chen H, Li S, Li L, Hu H, Zhao J. Arabidopsis EMB1990 Encoding a Plastid-Targeted YlmG Protein Is Required for Chloroplast Biogenesis and Embryo Development. FRONTIERS IN PLANT SCIENCE 2018; 9:181. [PMID: 29503657 PMCID: PMC5820536 DOI: 10.3389/fpls.2018.00181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/31/2018] [Indexed: 05/24/2023]
Abstract
In higher plants, embryo development originated from fertilized egg cell is the first step of the life cycle. The chloroplast participates in many essential metabolic pathways, and its function is highly associated with embryo development. However, the mechanisms and relevant genetic components by which the chloroplast functions in embryogenesis are largely uncharacterized. In this paper, we describe the Arabidopsis EMB1990 gene, encoding a plastid-targeted YlmG protein which is required for chloroplast biogenesis and embryo development. Loss of the EMB1990/YLMG1-1 resulted in albino seeds containing abortive embryos, and the morphological development of homozygous emb1990 embryos was disrupted after the globular stage. Our results showed that EMB1990/YLMG1-1 was expressed in the primordia and adaxial region of cotyledon during embryogenesis, and the encoded protein was targeted to the chloroplast. TEM observation of cellular ultrastructure showed that chloroplast biogenesis was impaired in emb1990 embryo cells. Expression of certain plastid genes was also affected in the loss-of-function mutants, including genes encoding core protein complex subunits located in the thylakoid membrane. Moreover, the tissue-specific genes of embryo development were misexpressed in emb1990 mutant, including genes known to delineate cell fate decisions in the SAM (shoot apical meristem), cotyledon and hypophysis. Taken together, we propose that the nuclear-encoded YLMG1-1 is targeted to the chloroplast and required for normal plastid gene expression. Hence, YLMG1-1 plays a critical role in Arabidopsis embryogenesis through participating in chloroplast biogenesis.
Collapse
|
19
|
Abstract
Plastids are semiautonomous organelles like mitochondria, and derive from a cyanobacterial ancestor that was engulfed by a host cell. During evolution, they have recruited proteins originating from the nuclear genome, and only parts of their ancestral metabolic properties were conserved and optimized to limit functional redundancy with other cell compartments. Furthermore, large disparities in metabolic functions exist among various types of plastids, and the characterization of their various metabolic properties is far from being accomplished. In this review, we provide an overview of the main functions, known to be achieved by plastids or shared by plastids and other compartments of the cell. In short, plastids appear at the heart of all main plant functions.
Collapse
Affiliation(s)
- Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France.
| | - Imen Bouchnak
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Lucas Moyet
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Daniel Salvi
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| |
Collapse
|
20
|
Sun YH, Hung CY, Qiu J, Chen J, Kittur FS, Oldham CE, Henny RJ, Burkey KO, Fan L, Xie J. Accumulation of high OPDA level correlates with reduced ROS and elevated GSH benefiting white cell survival in variegated leaves. Sci Rep 2017; 7:44158. [PMID: 28276518 PMCID: PMC5343462 DOI: 10.1038/srep44158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022] Open
Abstract
Variegated 'Marble Queen' (Epipremnum aureum) plant has white (VMW) and green (VMG) sectors within the same leaf. The white sector cells containing undifferentiated chloroplasts are viable, but the underlying mechanism for their survival and whether these white cells would use any metabolites as signal molecules to communicate with the nucleus for maintaining their viability remain unclear. We analyzed and compared phytohormone levels with their precursors produced in chloroplasts between VMW and VMG, and further compared their transcriptomes to understand the consequences related to the observed elevated 12-oxo phytodienoic acid (OPDA), which was 9-fold higher in VMW than VMG. Transcriptomic study showed that a large group of OPDA-responsive genes (ORGs) were differentially expressed in VMW, including stress-related transcription factors and genes for reactive oxygen species (ROS) scavengers, DNA replication and repair, and protein chaperones. Induced expression of these ORGs could be verified in OPDA-treated green plants. Reduced level of ROS and higher levels of glutathione in VMW were further confirmed. Our results suggest that elevated OPDA or its related compounds are recruited by white cells as a signaling molecule(s) to up-regulate stress and scavenging activity related genes that leads to reduced ROS levels and provides survival advantages to the white cells.
Collapse
Affiliation(s)
- Ying-Hsuan Sun
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Jie Qiu
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Jianjun Chen
- Environmental Horticulture Department and Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA
| | - Farooqahmed S. Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Carla E. Oldham
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Richard J. Henny
- Environmental Horticulture Department and Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA
| | - Kent O. Burkey
- USDA-ARS Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Longjiang Fan
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
21
|
Liu H, Wang X, Ren K, Li K, Wei M, Wang W, Sheng X. Light Deprivation-Induced Inhibition of Chloroplast Biogenesis Does Not Arrest Embryo Morphogenesis But Strongly Reduces the Accumulation of Storage Reserves during Embryo Maturation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1287. [PMID: 28775734 PMCID: PMC5517488 DOI: 10.3389/fpls.2017.01287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/07/2017] [Indexed: 05/18/2023]
Abstract
The chloroplast is one of the most important organelles found exclusively in plant and algal cells. Previous reports indicated that the chloroplast is involved in plant embryogenesis, but the role of the organelle during embryo morphogenesis and maturation is still a controversial question demanding further research. In the present study, siliques of Arabidopsis at the early globular stage were enwrapped using tinfoil, and light deprivation-induced inhibition of the chloroplast biogenesis were validated by stereomicroscope, laser scanning confocal microscope and transmission electron microscope. Besides, the effects of inhibited chloroplast differentiation on embryogenesis, especially on the reserve deposition were analyzed using periodic acid-Schiff reaction, Nile red labeling, and Coomassie brilliant blue staining. Our results indicated that tinfoil enwrapping strongly inhibited the formation of chloroplasts, which did not arrest embryo morphogenesis, but markedly influenced embryo maturation, mainly through reducing the accumulation of storage reserves, especially starch grains and oil. Our data provide a new insight into the roles of the chloroplast during embryogenesis.
Collapse
Affiliation(s)
- Huichao Liu
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Xiaoxia Wang
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Kaixuan Ren
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Kai Li
- Department of Chemistry, Capital Normal UniversityBeijing, China
| | - Mengmeng Wei
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Wenjie Wang
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Xianyong Sheng
- College of Life Sciences, Capital Normal UniversityBeijing, China
- *Correspondence: Xianyong Sheng,
| |
Collapse
|
22
|
Wilson ME, Mixdorf M, Berg RH, Haswell ES. Plastid osmotic stress influences cell differentiation at the plant shoot apex. Development 2016; 143:3382-93. [PMID: 27510974 DOI: 10.1242/dev.136234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 08/02/2016] [Indexed: 01/05/2023]
Abstract
The balance between proliferation and differentiation in the plant shoot apical meristem is controlled by regulatory loops involving the phytohormone cytokinin and stem cell identity genes. Concurrently, cellular differentiation in the developing shoot is coordinated with the environmental and developmental status of plastids within those cells. Here, we employ an Arabidopsis thaliana mutant exhibiting constitutive plastid osmotic stress to investigate the molecular and genetic pathways connecting plastid osmotic stress with cell differentiation at the shoot apex. msl2 msl3 mutants exhibit dramatically enlarged and deformed plastids in the shoot apical meristem, and develop a mass of callus tissue at the shoot apex. Callus production in this mutant requires the cytokinin receptor AHK2 and is characterized by increased cytokinin levels, downregulation of cytokinin signaling inhibitors ARR7 and ARR15, and induction of the stem cell identity gene WUSCHEL Furthermore, plastid stress-induced apical callus production requires elevated plastidic reactive oxygen species, ABA biosynthesis, the retrograde signaling protein GUN1, and ABI4. These results are consistent with a model wherein the cytokinin/WUS pathway and retrograde signaling control cell differentiation at the shoot apex.
Collapse
Affiliation(s)
- Margaret E Wilson
- Department of Biology, Mailbox 1137, One Brookings Drive, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Matthew Mixdorf
- Department of Biology, Mailbox 1137, One Brookings Drive, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - R Howard Berg
- Integrated Microscopy Facility, Donald Danforth Plant Science Center, 975 North Warson Rd., Saint Louis, MO 63132 USA
| | - Elizabeth S Haswell
- Department of Biology, Mailbox 1137, One Brookings Drive, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| |
Collapse
|
23
|
Chen H, Zou W, Zhao J. Ribonuclease J is required for chloroplast and embryo development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2079-91. [PMID: 25871650 PMCID: PMC4378637 DOI: 10.1093/jxb/erv010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 05/20/2023]
Abstract
Chloroplasts perform many essential metabolic functions and their proper development is critically important in embryogenesis. However, little is known about how chloroplasts function in embryogenesis and more relevant components need to be characterized. In this study, we show that Arabidopsis Ribonuclease J (RNase J) is required for chloroplast and embryo development. Mutation of AtRNJ led to albino ovules containing aborted embryos; the morphological development of rnj embryos was disturbed after the globular stage. Observation of ultrastructures indicated that these aborted embryos may result from impaired chloroplast development. Furthermore, by analyzing the molecular markers of cell fate decisions (STM, FIL, ML1, SCR, and WOX5) in rnj embryos, we found that this impairment of chloroplast development may lead to aberrant embryo patterning along the apical-basal axis, indicating that AtRNJ is important in initiating and maintaining the organization of shoot apical meristems (SAMs), cotyledons, and hypocotyls. Moreover, the transport and response of auxin in rnj embryos was found to be disrupted, suggesting that AtRNJ may be involved in auxin-mediated pathways during embryogenesis. Therefore, we speculate that RNJ plays a vital role in embryo morphogenesis and apical-basal pattern formation by regulating chloroplast development.
Collapse
Affiliation(s)
- Hongyu Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
24
|
McCuaig B, Dufour SC, Raguso RA, Bhatt AP, Marino P. Structural changes in plastids of developing Splachnum ampullaceum sporophytes and relationship to odour production. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:466-473. [PMID: 25213550 PMCID: PMC4346412 DOI: 10.1111/plb.12256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
Many mosses of the family Splachnaceae are entomophilous and rely on flies for spore dispersal. Splachnum ampullaceum produces a yellow- or pink-coloured hypophysis that releases volatile compounds, attracting flies to the mature moss. The biosynthetic sources of the visual and aromatic cues within the hypophysis have not been identified, and may be either symbiotic cyanobacteria or chromoplasts that break down lipids into volatile compounds. Here, we used transmission electron microscopy and gas chromatography-mass spectrometry (GC-MS) to investigate the sources of these attractants, focusing on different tissues and stages of maturation. Microscopy revealed an abundance of plastids within the hypophysis, while no symbiotic bacteria were observed. During plant maturation, plastids differentiated from amyloplasts with large starch granules to photosynthetic chloroplasts and finally to chromoplasts with lipid accumulations. We used GC-MS to identify over 50 volatile organic compounds from mature sporophytes including short-chain oxygenated compounds, unsaturated irregular terpenoids, fatty acid-derived 6- and 8-carbon alcohols and ketones, and the aromatic compounds acetophenone and p-cresol. The hypophysis showed localised production of pungent volatiles, mainly short-chain fermentation compounds and p-cresol. Some of these volatiles have been shown to be produced from lipid oxidase degradation of linolenic acid within chromoplasts. However, other compounds (such as cyclohexanecarboxylic acid esters) may have a microbial origin. Further investigation is necessary to identify the origin of fly attractants in these mosses.
Collapse
Affiliation(s)
- B McCuaig
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | | | | | | | | |
Collapse
|
25
|
Allorent G, Osorio S, Vu JL, Falconet D, Jouhet J, Kuntz M, Fernie AR, Lerbs-Mache S, Macherel D, Courtois F, Finazzi G. Adjustments of embryonic photosynthetic activity modulate seed fitness in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 205:707-19. [PMID: 25256557 DOI: 10.1111/nph.13044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/10/2014] [Indexed: 05/19/2023]
Abstract
In this work, we dissect the physiological role of the transient photosynthetic stage observed in developing seeds of Arabidopsis thaliana. By combining biochemical and biophysical approaches, we demonstrate that despite similar features of the photosynthetic apparatus, light absorption, chloroplast morphology and electron transport are modified in green developing seeds, as a possible response to the peculiar light environment experienced by them as a result of sunlight filtration by the pericarp. In particular, enhanced exposure to far-red light, which mainly excites photosystem I, largely enhances cyclic electron flow around this complex at the expenses of oxygen evolution. Using pharmacological, genetic and metabolic analyses, we show that both linear and cyclic electron flows are important during seed formation for proper germination timing. Linear flow provides specific metabolites related to oxygen and water stress responses. Cyclic electron flow possibly adjusts the ATP to NADPH ratio to cope with the specific energy demand of developing seeds. By providing a comprehensive scenario of the characteristics, function and consequences of embryonic photosynthesis on seed vigour, our data provide a rationale for the transient building up of a photosynthetic machinery in seeds.
Collapse
Affiliation(s)
- Guillaume Allorent
- Laboratoire de Physiologie Cellulaire & Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, F-38054, Grenoble, France; Université Grenoble-Alpes, F-38054, Grenoble, France; Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054, Grenoble, France; Unité Sous Contrat 1359, Institut National Recherche Agronomique, F-38054, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hudik E, Yoshioka Y, Domenichini S, Bourge M, Soubigout-Taconnat L, Mazubert C, Yi D, Bujaldon S, Hayashi H, De Veylder L, Bergounioux C, Benhamed M, Raynaud C. Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant. PLANT PHYSIOLOGY 2014; 166:152-67. [PMID: 25037213 PMCID: PMC4149703 DOI: 10.1104/pp.114.242628] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.
Collapse
Affiliation(s)
- Elodie Hudik
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Yasushi Yoshioka
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Séverine Domenichini
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Mickaël Bourge
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Ludivine Soubigout-Taconnat
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Christelle Mazubert
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Dalong Yi
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Sandrine Bujaldon
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Hiroyuki Hayashi
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Lieven De Veylder
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Moussa Benhamed
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Cécile Raynaud
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| |
Collapse
|
27
|
Feng J, Fan P, Jiang P, Lv S, Chen X, Li Y. Chloroplast-targeted Hsp90 plays essential roles in plastid development and embryogenesis in Arabidopsis possibly linking with VIPP1. PHYSIOLOGIA PLANTARUM 2014; 150:292-307. [PMID: 23875936 DOI: 10.1111/ppl.12083] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/14/2013] [Accepted: 06/15/2013] [Indexed: 05/20/2023]
Abstract
The Arabidopsis genome contains seven members of Hsp90. Mutations in plastid AtHsp90.5 were reported to cause defects in chloroplast development and embryogenesis. However, the exact function of plastid AtHsp90.5 has not yet been defined. In this study, albino seedlings were found among AtHsp90.5 transformed Arabidopsis, which were revealed to be AtHsp90.5 co-suppressed plants. The accumulation of photosynthetic super-complexes in the albinos was decreased, and expression of genes involved in photosynthesis was significantly down-regulated. AtHsp90.5 T-DNA insertion mutants were embryo-lethal with embryo arrested at the heart stage. Further investigation showed AtHsp90.5 expression was up-regulated in the siliques at 4 days post anthesis (DPA). Confocal microscopy proved AtHsp90.5 was located in the chloroplasts. Plastid development in the AtHsp90.5 mutants and co-suppressed plants was seriously impaired, and few thylakoid membranes were observed, indicating the involvement of AtHsp90.5 in chloroplast biogenesis. AtHsp90.5 was found to interact with vesicle-inducing protein in plastids 1 (VIPP1) by bimolecular fluorescence complementation system. The ratio between VIPP1 oligomers and monomers in AtHsp90.5 co-suppressed plants drastically shifted toward the oligomeric state. Our study confirmed that AtHsp90.5 is vital for chloroplast biogenesis and embryogenesis. Further evidence also suggested that AtHsp90.5 may help in the disassembly of VIPP1 for thylakoid membrane formation and/or maintenance.
Collapse
Affiliation(s)
- Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. China
| | | | | | | | | | | |
Collapse
|
28
|
Huang C, Yu QB, Lv RH, Yin QQ, Chen GY, Xu L, Yang ZN. The reduced plastid-encoded polymerase-dependent plastid gene expression leads to the delayed greening of the Arabidopsis fln2 mutant. PLoS One 2013; 8:e73092. [PMID: 24019900 PMCID: PMC3760890 DOI: 10.1371/journal.pone.0073092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/19/2013] [Indexed: 12/21/2022] Open
Abstract
In Arabidopsis leaf coloration mutants, the delayed greening phenomenon is common. Nonetheless, the mechanism remains largely elusive. Here, a delayed greening mutant fln2–4 of FLN2 (Fructokinase-Like Protein2) was studied. FLN2 is one component of Transcriptionally Active Chromosome (TAC) complex which is thought to contain the complete plastid-encoded polymerase (PEP). fln2–4 displayed albino phenotype on medium without sucrose. The PEP-dependent plastid gene expression and chloroplast development were inhibited in fln2–4. Besides interacting with thioredoxin z (TRX z), we identified that FLN2 interacted with another two members of TAC complex in yeast including its homologous protein FLN1 (Fructokinase-Like Protein1) and pTAC5. This indicates that FLN2 functions in regulation of PEP activity associated with these TAC components. fln2–4 exhibited delayed greening on sucrose-containing medium. Comparison of the PEP-dependent gene expression among two complete albino mutants (trx z and ptac14), two yellow mutants (ecb2–2 and ys1) and the fln2–4 showed that fln2–4 remains partial PEP activity. FLN2 and FLN1 are the target proteins of TRX z involved in affecting the PEP activity. Together with the data that FLN1 could interact with itself in yeast, FLN1 may form a homodimer to replace FLN1–FLN2 as the TRX z target in redox pathway for maintaining partial PEP activity in fln2–4. We proposed the partial PEP activity in the fln2 mutant allowed plastids to develop into fully functional chloroplasts when exogenous sucrose was supplied, and finally the mutants exhibited green phenotype.
Collapse
Affiliation(s)
- Chao Huang
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Qing-Bo Yu
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Ruo-Hong Lv
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Qian-Qian Yin
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Gen-Yun Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Ling Xu
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Zhong-Nan Yang
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
- * E-mail:
| |
Collapse
|
29
|
Li N, Jia J, Xia C, Liu X, Kong X. Characterization and mapping of novel chlorophyll deficient mutant genes in durum wheat. BREEDING SCIENCE 2013; 63:169-75. [PMID: 23853511 PMCID: PMC3688378 DOI: 10.1270/jsbbs.63.169] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/06/2012] [Indexed: 05/06/2023]
Abstract
The yellow-green leaf mutant has a non-lethal chlorophyll-deficient mutation that can be exploited in photosynthesis and plant development research. A novel yellow-green mutant derived from Triticum durum var. Cappelli displays a yellow-green leaf color from the seedling stage to the mature stage. Examination of the mutant chloroplasts with transmission electron microscopy revealed that the shape of chloroplast changed, grana stacks in the stroma were highly variable in size and disorganized. The pigment content, including chlorophyll a, chlorophyll b, total chlorophyll and carotene, was decreased in the mutant. In contrast, the chla/chlb ratio of the mutants was increased in comparison with the normal green leaves. We also found a reduction in the photosynthetic rate, fluorescence kinetic parameters and yield-related agronomic traits of the mutant. A genetic analysis revealed that two nuclear recessive genes controlled the expression of this trait. The genes were designated ygld1 and ygld2. Two molecular markers co-segregated with these genes. ygld 1 co-segregated with the SSR marker wmc110 on chromosome 5AL and ygld 2 co-segregated with the SSR marker wmc28 on chromosome 5BL. These results will contribute to the gene cloning and the understanding of the mechanisms underlying chlorophyll metabolism and chloroplast development in wheat.
Collapse
Affiliation(s)
| | | | | | - Xu Liu
- Corresponding author (e-mail: )
| | | |
Collapse
|
30
|
Shen Y, Li C, McCarty DR, Meeley R, Tan BC. Embryo defective12 encodes the plastid initiation factor 3 and is essential for embryogenesis in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:792-804. [PMID: 23451851 DOI: 10.1111/tpj.12161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 05/09/2023]
Abstract
Embryo-specific mutants in maize define a unique class of genetic loci that affect embryogenesis without a significant deleterious impact on endosperm development. Here we report the characterization of an embryo specific12 (emb12) mutant in maize. Embryogenesis in the emb12 mutants is arrested at or before transition stage. The mutant embryo at an early stage exhibits abnormal cell structure with increased vacuoles and dramatically reduced internal membrane organelles. In contrast, the mutant endosperm appears normal in morphology, cell structure, starch, lipid and protein accumulation. The Emb12 locus was cloned by transposon tagging and predicts a protein with a high similarity to prokaryotic translation initiation factor 3 (IF3). EMB12-GFP fusion analysis indicates that EMB12 is localized in plastids. The RNA in situ hybridization and protein immunohistochemical analyses indicate that a high level of Emb12 expression localizes in the embryo proper at early developmental stages and in the embryo axis at later stages. Western analysis indicates that plastid protein synthesis is impaired. These results indicate that Emb12 encodes the plastid IF3 which is essential for embryogenesis but not for endosperm development in maize.
Collapse
Affiliation(s)
- Yun Shen
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, N.T. Hong Kong, China
| | | | | | | | | |
Collapse
|
31
|
Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E, Matringe M, Ravanel S, Seigneurin-Berny D. The Biosynthetic Capacities of the Plastids and Integration Between Cytoplasmic and Chloroplast Processes. Annu Rev Genet 2012; 46:233-64. [DOI: 10.1146/annurev-genet-110410-132544] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Gilles Curien
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Michel Matringe
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Stéphane Ravanel
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| |
Collapse
|
32
|
Romani I, Tadini L, Rossi F, Masiero S, Pribil M, Jahns P, Kater M, Leister D, Pesaresi P. Versatile roles of Arabidopsis plastid ribosomal proteins in plant growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:922-34. [PMID: 22900828 DOI: 10.1111/tpj.12000] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A lack of individual plastid ribosomal proteins (PRPs) can have diverse phenotypic effects in Arabidopsis thaliana, ranging from embryo lethality to compromised vitality, with the latter being associated with photosynthetic lesions and decreases in the expression of plastid proteins. In this study, reverse genetics was employed to study the function of eight PRPs, five of which (PRPS1, -S20, -L27, -L28 and -L35) have not been functionally characterised before. In the case of PRPS17, only leaky alleles or RNA interference lines had been analysed previously. PRPL1 and PRPL4 have been described as essential for embryo development, but their mutant phenotypes are analysed in detail here. We found that PRPS20, -L1, -L4, -L27 and -L35 are required for basal ribosome activity, which becomes crucial at the globular stage and during the transition from the globular to the heart stage of embryogenesis. Thus, lack of any of these PRPs leads to alterations in cell division patterns, and embryo development ceases prior to the heart stage. PRPL28 is essential at the latest stages of embryo-seedling development, during the greening process. PRPS1, -S17 and -L24 appear not to be required for basal ribosome activity and the organism can complete its entire life cycle in their absence. Interestingly, despite the prokaryotic origin of plastids, the significance of individual PRPs for plant development cannot be predicted from the relative phenotypic severity of the corresponding mutants in prokaryotic systems.
Collapse
Affiliation(s)
- Isidora Romani
- Dipartimento di Bioscienze, Università degli studi di Milano, I-20133 Milano, ItalyLehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, GermanyPlant Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yin T, Pan G, Liu H, Wu J, Li Y, Zhao Z, Fu T, Zhou Y. The chloroplast ribosomal protein L21 gene is essential for plastid development and embryogenesis in Arabidopsis. PLANTA 2012; 235:907-21. [PMID: 22105802 DOI: 10.1007/s00425-011-1547-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/31/2011] [Indexed: 05/22/2023]
Abstract
Embryogenesis in higher plants is controlled by a complex gene network. Identification and characterization of genes essential for embryogenesis will provide insights into the early events in embryo development. In this study, a novel mutant with aborted seed development (asd) was identified in Arabidopsis. The asd mutant produced about 25% of albino seeds at the early stage of silique development. The segregation of normal and albino seeds was inherited as a single recessive embryo-lethal trait. The gene disrupted in the asd mutant was isolated through map-based cloning. The mutated gene contains a single base change (A to C) in the coding region of RPL21C (At1g35680) that is predicted to encode the chloroplast 50S ribosomal protein L21. Allele test with other two T-DNA insertion lines in RPL21C and a complementation test demonstrated that the mutation in RPL21C was responsible for the asd phenotype. RPL21C exhibits higher expression in leaves and flowers compared with expression levels in roots and developing seeds. The RPL21C-GFP fusion protein was localized in chloroplasts. Cytological observations showed that the asd embryo development was arrested at the globular stage. There were no plastids with normal thylakoids and as a result no normal chloroplasts formed in mutant cells, indicating an indispensable role of the ASD gene in chloroplasts biogenesis. Our studies suggest that the chloroplast ribosomal protein L21 gene is required for chloroplast development and embryogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Tuanzhang Yin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Burch-Smith TM, Zambryski PC. Plasmodesmata paradigm shift: regulation from without versus within. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:239-60. [PMID: 22136566 DOI: 10.1146/annurev-arplant-042811-105453] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant cells are surrounded by cellulosic cell walls, creating a potential challenge to resource sharing and information exchange between individual cells. To overcome this, plants have evolved channels called plasmodesmata that provide cytoplasmic continuity between each cell and its immediate neighbors. We first review plasmodesmata basics-their architecture, their origin, the types of cargo they transport, and their molecular components. The bulk of this review discusses the regulation of plasmodesmata formation and function. Historically, plasmodesmata research has focused intensely on uncovering regulatory or structural proteins that reside within or immediately adjacent to plasmodesmata. Recent findings, however, underscore that plasmodesmata are exquisitely sensitive to signals far removed from the plasmodesmal channel itself. Signals originating from molecules and pathways that regulate cellular homeostasis-such as reactive oxygen species, organelle-organelle signaling, and organelle-nucleus signaling-lead to astonishing alterations in gene expression that affect plasmodesmata formation and function.
Collapse
Affiliation(s)
- Tessa M Burch-Smith
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
35
|
Isemer R, Krause K, Grabe N, Kitahata N, Asami T, Krupinska K. Plastid Located WHIRLY1 Enhances the Responsiveness of Arabidopsis Seedlings Toward Abscisic Acid. FRONTIERS IN PLANT SCIENCE 2012; 3:283. [PMID: 23269926 PMCID: PMC3529394 DOI: 10.3389/fpls.2012.00283] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/30/2012] [Indexed: 05/20/2023]
Abstract
WHIRLY1 is a protein that can be translocated from the plastids to the nucleus, making it an ideal candidate for communicating information between these two compartments. Mutants of Arabidopsis thaliana lacking WHIRLY1 (why1) were shown to have a reduced sensitivity toward salicylic acid (SA) and abscisic acid (ABA) during germination. Germination assays in the presence of abamine, an inhibitor of ABA biosynthesis, revealed that the effect of SA on germination was in fact caused by a concomitant stimulation of ABA biosynthesis. In order to distinguish whether the plastid or the nuclear isoform of WHIRLY1 is adjusting the responsiveness toward ABA, sequences encoding either the complete WHIRLY1 protein or a truncated form lacking the plastid transit peptide were overexpressed in the why1 mutant background. In plants overexpressing the full-length sequence, WHIRLY1 accumulated in both plastids and the nucleus, whereas in plants overexpressing the truncated sequence, WHIRLY1 accumulated exclusively in the nucleus. Seedlings containing recombinant WHIRLY1 in both compartments were hypersensitive toward ABA. In contrast, seedlings possessing only the nuclear form of WHIRLY1 were as insensitive toward ABA as the why1 mutants. ABA was furthermore shown to lower the rate of germination of wildtype seeds even in the presence of abamine which is known to inhibit the formation of xanthoxin, the plastid located precursor of ABA. From this we conclude that plastid located WHIRLY1 enhances the responsiveness of seeds toward ABA even when ABA is supplied exogenously.
Collapse
Affiliation(s)
- Rena Isemer
- Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, University of TromsøTromsø, Norway
| | - Nils Grabe
- Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
| | - Nobutaka Kitahata
- Department of Applied Biological Chemistry, The University of TokyoTokyo, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of TokyoTokyo, Japan
| | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
- *Correspondence: Karin Krupinska, Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany. e-mail:
| |
Collapse
|
36
|
Myers AM, James MG, Lin Q, Yi G, Stinard PS, Hennen-Bierwagen TA, Becraft PW. Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function. THE PLANT CELL 2011; 23:2331-47. [PMID: 21685260 PMCID: PMC3160020 DOI: 10.1105/tpc.111.087205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The maize (Zea mays) opaque5 (o5) locus was shown to encode the monogalactosyldiacylglycerol synthase MGD1. Null and point mutations of o5 that affect the vitreous nature of mature endosperm engendered an allelic series of lines with stepwise reductions in gene function. C(18:3)/C(18:2) galactolipid abundance in seedling leaves was reduced proportionally, without significant effects on total galactolipid content. This alteration in polar lipid composition disrupted the organization of thylakoid membranes into granal stacks. Total galactolipid abundance in endosperm was strongly reduced in o5(-) mutants, causing developmental defects and changes in starch production such that the normal simple granules were replaced with compound granules separated by amyloplast membrane. Complete loss of MGD1 function in a null mutant caused kernel lethality owing to failure in both endosperm and embryo development. The data demonstrate that low-abundance galactolipids with five double bonds serve functions in plastid membranes that are not replaced by the predominant species with six double bonds. Furthermore, the data identify a function of amyloplast membranes in the development of starch granules. Finally, the specific changes in lipid composition suggest that MGD1 can distinguish the constituency of acyl groups on its diacylglycerol substrate based upon the degree of desaturation.
Collapse
Affiliation(s)
- Alan M. Myers
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Martha G. James
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Qiaohui Lin
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Gibum Yi
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Philip S. Stinard
- U.S. Department of Agriculture/Agricultural Research Service, Maize Genetics Cooperation Stock Center, Urbana, Illinois 61801
| | | | - Philip W. Becraft
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Address correspondence to
| |
Collapse
|
37
|
Retrograde signaling pathway from plastid to nucleus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:167-204. [PMID: 21875565 DOI: 10.1016/b978-0-12-386037-8.00002-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plastids are a diverse group of organelles found in plants and some parasites. Because genes encoding plastid proteins are divided between the nuclear and plastid genomes, coordinated expression of genes in two separate genomes is indispensable for plastid function. To coordinate nuclear gene expression with the functional or metabolic state of plastids, plant cells have acquired a retrograde signaling pathway from plastid to nucleus, also known as the plastid signaling pathway. To date, several metabolic processes within plastids have been shown to affect the expression of nuclear genes. Recent progress in this field has also revealed that the plastid signaling pathway interacts and shares common components with other intracellular signaling pathways. This review summarizes our current knowledge on retrograde signaling from plastid to nucleus in plant cells and its role in plant growth and development.
Collapse
|