1
|
He R, Ju J, Liu K, Song J, Zhang S, Zhang M, Hu Y, Liu X, Li Y, Liu H. Technology of plant factory for vegetable crop speed breeding. FRONTIERS IN PLANT SCIENCE 2024; 15:1414860. [PMID: 39055363 PMCID: PMC11269239 DOI: 10.3389/fpls.2024.1414860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Sustaining crop production and food security are threatened by a burgeoning world population and adverse environmental conditions. Traditional breeding methods for vegetable crops are time-consuming, laborious, and untargeted, often taking several years to develop new and improved varieties. The challenges faced by a long breeding cycle need to be overcome. The speed breeding (SB) approach is broadly employed in crop breeding, which greatly shortens breeding cycles and facilities plant growth to obtain new, better-adapted crop varieties as quickly as possible. Potential opportunities are offered by SB in plant factories, where optimal photoperiod, light quality, light intensity, temperature, CO2 concentration, and nutrients are precisely manipulated to enhance the growth of horticultural vegetable crops, holding promise to surmount the long-standing problem of lengthy crop breeding cycles. Additionally, integrated with other breeding technologies, such as genome editing, genomic selection, and high-throughput genotyping, SB in plant factories has emerged as a smart and promising platform to hasten generation turnover and enhance the efficiency of breeding in vegetable crops. This review considers the pivotal opportunities and challenges of SB in plant factories, aiming to accelerate plant generation turnover and improve vegetable crops with precision and efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Houcheng Liu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Ta KN, Yoshida MW, Tezuka T, Shimizu-Sato S, Nosaka-Takahashi M, Toyoda A, Suzuki T, Goshima G, Sato Y. Control of Plant Cell Growth and Proliferation by MO25A, a Conserved Major Component of the Mammalian Sterile 20-Like Kinase Pathway. PLANT & CELL PHYSIOLOGY 2023; 64:336-351. [PMID: 36639938 PMCID: PMC10016325 DOI: 10.1093/pcp/pcad005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 05/22/2023]
Abstract
The precise control of cell growth and proliferation underpins the development of plants and animals. These factors affect the development and size of organs and the body. In plants, the growth and proliferation of cells are regulated by environmental stimuli and intrinsic signaling, allowing different cell types to have specific growth and proliferation characteristics. An increasing number of factors that control cell division and growth have been identified. However, the mechanisms underlying cell type-specific cell growth and proliferation characteristics in the normal developmental context are poorly understood. Here, we analyzed the rice mutant osmo25a1, which is defective in the progression of embryogenesis. The osmo25a1 mutant embryo developed incomplete embryonic organs, such as the shoot and root apical meristems. It showed a delayed progression of embryogenesis, associated with the reduced mitotic activity. The causal gene of this mutation encodes a member of the Mouse protein-25A (MO25A) family of proteins that have pivotal functions in a signaling pathway that governs cell proliferation and polarity in animals, yeasts and filamentous fungi. To elucidate the function of plant MO25A at the cellular level, we performed a functional analysis of MO25A in the moss Physcomitrium patens. Physcomitrium patens MO25A was uniformly distributed in the cytoplasm and functioned in cell tip growth and the initiation of cell division in stem cells. Overall, we demonstrated that MO25A proteins are conserved factors that control cell proliferation and growth.
Collapse
Affiliation(s)
- Kim Nhung Ta
- Department of Genome and Evolutionary Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Mari W Yoshida
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Takumi Tezuka
- Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Sae Shimizu-Sato
- Department of Genome and Evolutionary Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Misuzu Nosaka-Takahashi
- Department of Genome and Evolutionary Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
- Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Atsushi Toyoda
- Department of Genome and Evolutionary Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| | - Gohta Goshima
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba, 517-0004 Japan
| | - Yutaka Sato
- Department of Genome and Evolutionary Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
- Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| |
Collapse
|
3
|
Kashyap A, Garg P, Tanwar K, Sharma J, Gupta NC, Ha PTT, Bhattacharya RC, Mason AS, Rao M. Strategies for utilization of crop wild relatives in plant breeding programs. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4151-4167. [PMID: 36136128 DOI: 10.1007/s00122-022-04220-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Crop wild relatives (CWRs) are weedy and wild relatives of the domesticated and cultivated crops, which usually occur and are maintained in natural forms in their centres of origin. These include the ancestors or progenitors of all cultivated species and comprise rich sources of diversity for many important traits useful in plant breeding. CWRs can play an important role in broadening genetic bases and introgression of economical traits into crops, but their direct use by breeders for varietal improvement program is usually not advantageous due to the presence of crossing or chromosome introgression barriers with cultivated species as well as their high frequencies of agronomically undesirable alleles. Linkage drag may subsequently result in unfavourable traits in the subsequent progeny when segments of the genome linked with quantitative trait loci (QTL), or a phenotype, are introgressed from wild germplasm. Here, we first present an overview in regards to the contribution that wild species have made to improve biotic, abiotic stress tolerances and yield-related traits in crop varieties, and secondly summarise the various challenges which are experienced in interspecific hybridization along with their probable solutions. We subsequently suggest techniques for readily harnessing these wild relatives for fast and effective introgression of exotic alleles in pre-breeding research programs.
Collapse
Affiliation(s)
- Anamika Kashyap
- ICAR-National Institute for Plant Biotechnology, Pusa, Delhi, India
| | - Pooja Garg
- ICAR-National Institute for Plant Biotechnology, Pusa, Delhi, India
| | - Kunal Tanwar
- ICAR-National Institute for Plant Biotechnology, Pusa, Delhi, India
| | - Jyoti Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa, Delhi, India
| | - Navin C Gupta
- ICAR-National Institute for Plant Biotechnology, Pusa, Delhi, India
| | - Pham Thi Thu Ha
- Genomic Research Institute & Seed, Ton Duc Thang University, Ho Chi Minh, Vietnam
| | - R C Bhattacharya
- ICAR-National Institute for Plant Biotechnology, Pusa, Delhi, India
| | | | - Mahesh Rao
- ICAR-National Institute for Plant Biotechnology, Pusa, Delhi, India.
| |
Collapse
|
4
|
Singh G, Gudi S, Amandeep, Upadhyay P, Shekhawat PK, Nayak G, Goyal L, Kumar D, Kumar P, Kamboj A, Thada A, Shekhar S, Koli GK, DP M, Halladakeri P, Kaur R, Kumar S, Saini P, Singh I, Ayoubi H. Unlocking the hidden variation from wild repository for accelerating genetic gain in legumes. FRONTIERS IN PLANT SCIENCE 2022; 13:1035878. [PMID: 36438090 PMCID: PMC9682257 DOI: 10.3389/fpls.2022.1035878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2023]
Abstract
The fluctuating climates, rising human population, and deteriorating arable lands necessitate sustainable crops to fulfil global food requirements. In the countryside, legumes with intriguing but enigmatic nitrogen-fixing abilities and thriving in harsh climatic conditions promise future food security. However, breaking the yield plateau and achieving higher genetic gain are the unsolved problems of legume improvement. Present study gives emphasis on 15 important legume crops, i.e., chickpea, pigeonpea, soybean, groundnut, lentil, common bean, faba bean, cowpea, lupin, pea, green gram, back gram, horse gram, moth bean, rice bean, and some forage legumes. We have given an overview of the world and India's area, production, and productivity trends for all legume crops from 1961 to 2020. Our review article investigates the importance of gene pools and wild relatives in broadening the genetic base of legumes through pre-breeding and alien gene introgression. We have also discussed the importance of integrating genomics, phenomics, speed breeding, genetic engineering and genome editing tools in legume improvement programmes. Overall, legume breeding may undergo a paradigm shift once genomics and conventional breeding are integrated in the near future.
Collapse
Affiliation(s)
- Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Amandeep
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priyanka Upadhyay
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Pooja Kanwar Shekhawat
- Division of Crop Improvement, Plant Breeding and Genetics, Indian Council of Agricultural Research (ICAR)-Central Soil Salinity Research Institute, Karnal, Haryana, India
- Department of Plant Breeding and Genetics, Sri Karan Narendra Agriculture University, Jobner, Rajasthan, India
| | - Gyanisha Nayak
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - Lakshay Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Deepak Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Akashdeep Kamboj
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Antra Thada
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - Shweta Shekhar
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - Ganesh Kumar Koli
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Meghana DP
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priyanka Halladakeri
- Department of Genetics and Plant Breeding, Anand Agricultural University, Anand, Gujarat, India
| | - Rajvir Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sumit Kumar
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Pawan Saini
- CSB-Central Sericultural Research & Training Institute (CSR&TI), Ministry of Textiles, Govt. of India, Jammu- Kashmir, Pampore, India
| | - Inderjit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Habiburahman Ayoubi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
5
|
Gudi S, Kumar P, Singh S, Tanin MJ, Sharma A. Strategies for accelerating genetic gains in crop plants: special focus on speed breeding. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1921-1938. [PMID: 36484026 PMCID: PMC9723045 DOI: 10.1007/s12298-022-01247-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 05/02/2023]
Abstract
Feeding 10 billion people sustainably by 2050 in the era of slow genetic progress has spurred urgent calls to bring more crops per unit time. Over the last century, crop physiologists and breeders have been trying to alter plant biology to investigate and intervene in developmental processes under controlled chambers. Accelerating the breeding cycle via "speed breeding" was the outcome of these experiments. Speed breeding accelerates the genetic gain via phenome and genome-assisted trait introgression, re-domestication, and plant variety registration. Furthermore, early varietal release through speed breeding offers incremental benefits over conventional methods. However, a lack of resources and species-specific protocols encumber the technological implementation, which can be alleviated by reallocating funds to establish speed breeding units. This review discusses the limitations of conventional breeding methods and various alternative strategies to accelerate the breeding process. It also discusses the intervention at various developmental stages to reduce the generation time and global impacts of speed breeding protocols developed so far. Low-cost, field-based speed breeding protocol developed by Punjab Agricultural University, Ludhiana, Punjab, India to harvest at least three generations of wheat in a year without demanding the expensive greenhouses or growth chambers is also discussed.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| | - Satinder Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| | - Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| |
Collapse
|
6
|
Edet OU, Ishii T. Cowpea speed breeding using regulated growth chamber conditions and seeds of oven-dried immature pods potentially accommodates eight generations per year. PLANT METHODS 2022; 18:106. [PMID: 36031612 PMCID: PMC9422124 DOI: 10.1186/s13007-022-00938-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/17/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Cowpea is a dryland crop with potential to improve food security in sub-Saharan Africa, where it is mostly produced and consumed. Contemporary plant improvement technologies, including genome editing, marker-assisted selection, and optimized transformation protocols, are being deployed to improve cowpea characteristics. Integrating speed breeding with these technologies would accelerate genetic gain in cowpea breeding. There are established speed breeding protocols for other important legumes, such as soybean, peanut, and chickpea, but none has been previously reported for cowpea. RESULTS With the aid of regulated growth conditions in two different chamber types, as well as the cultivation of new plant generations from seeds of oven-dried immature pods, we developed and validated, for the first time, an efficient speed breeding protocol that accommodates approximately seven to eight breeding generations per year for 3 cowpea genotypes. The 3 cowpea genotypes were evaluated under controlled growth conditions in light-emitting diode and metal halide lamp chambers to determine the effect of CO2 supplementation on flowering and maturation durations, optimum conditions for plant growth, cross pollination, and pod development. Elevated CO2 concentration had no influence on either flowering time or pod development. Adequate temperature, relative humidity and light intensity improved plant development and the rate of successful hand pollination, and cultivating seeds of 11-day-old immature pods oven-dried at 39 °C for 2 days resulted in at least a 62% reduction in the time between pollination and sowing of the next plant generation. The plants cultivated from seeds of the oven-dried immature pods showed no defect at any stage of development. CONCLUSIONS Using the speed breeding protocol developed in this study, cowpea breeding cycles can be increased from the traditional one cycle per year in the field to as many as 8 generations per year in regulated growth chamber conditions. This protocol has no special technical requirements; hence, it can be implemented in any standard growth chamber. This would fast-track development, testing, validation, and utilization of improved cowpea cultivars.
Collapse
Affiliation(s)
- Offiong Ukpong Edet
- Arid Land Research Center, Tottori University, Tottori, Japan
- Department of Crop Science, University of Calabar, Calabar, Nigeria
| | - Takayoshi Ishii
- Arid Land Research Center, Tottori University, Tottori, Japan.
| |
Collapse
|
7
|
Wang F, Liu Y, Zhang A, Kong D, Bi J, Liu G, Yu X, Luo L. Breeding an early maturing, blast resistance water-saving and drought-resistance rice (WDR) cultivar using marker-assisted selection coupled with rapid generation advance. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:46. [PMID: 37313512 PMCID: PMC10248681 DOI: 10.1007/s11032-022-01319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The japonica water-saving and drought-resistance rice (Oryza sativa L.) (WDR) cultivar Huhan 9 harbors genes for resistance to rice blast (Magnaporthe oryzae), including Pi-ta and Pi-b. The early maturing japonica rice cultivar Suhuxiangjing and the high-yield WDR cultivars Huhan 3 and Huhan 11 were used as the parents to conduct single cross breeding and composite hybridization breeding. Strict drought resistance screening was conducted in the segregating generations, the genotypes of which were determined using functional markers of Pi-ta and Pi-b genes. By combining the rapid generation advance of the industrialized breeding system and multi-site shuttle identification, the new WDR cultivar Huhan 106 with early maturity, blast resistance, high yield, and high quality was bred, and it was certified by the Agricultural Crop Variety Certification Commission of Shanghai in 2020. Molecular marker-assisted selection coupled with rapid generation advance and multi-site shuttle identification is a rapid and efficient breeding method for the value-added improvement of crop varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01319-3.
Collapse
Affiliation(s)
- Feiming Wang
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yi Liu
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Anning Zhang
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Deyan Kong
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Junguo Bi
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guolan Liu
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai, 201106 China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
8
|
Nagata H, Ono A, Tonosaki K, Kawakatsu T, Sato Y, Yano K, Kishima Y, Kinoshita T. Temporal changes in transcripts of miniature inverted-repeat transposable elements during rice endosperm development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1035-1047. [PMID: 35128739 PMCID: PMC9314911 DOI: 10.1111/tpj.15698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The repression of transcription from transposable elements (TEs) by DNA methylation is necessary to maintain genome integrity and prevent harmful mutations. However, under certain circumstances, TEs may escape from the host defense system and reactivate their transcription. In Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), DNA demethylases target the sequences derived from TEs in the central cell, the progenitor cell for the endosperm in the female gametophyte. Genome-wide DNA demethylation is also observed in the endosperm after fertilization. In the present study, we used a custom microarray to survey the transcripts generated from TEs during rice endosperm development and at selected time points in the embryo as a control. The expression patterns of TE transcripts are dynamically up- and downregulated during endosperm development, especially those of miniature inverted-repeat TEs (MITEs). Some TE transcripts were directionally controlled, whereas the other DNA transposons and retrotransposons were not. We also discovered the NUCLEAR FACTOR Y binding motif, CCAAT, in the region near the 5' terminal inverted repeat of Youren, one of the transcribed MITEs in the endosperm. Our results uncover dynamic changes in TE activity during endosperm development in rice.
Collapse
Affiliation(s)
- Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
| | - Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
- Faculty of AgricultureIwate University3‐18‐8 UedaMoriokaIwate020‐8550Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization3‐1‐3 Kan‐nondaiTsukubaIbaraki305‐8604Japan
| | - Yutaka Sato
- Genetic Strains Research CenterNational Institute of GeneticsMishima, Shizuoka411‐8540Japan
| | - Kentaro Yano
- Department of Life SciencesSchool of Agriculture, Meiji University1‐1‐1 Higashi‐mitaKawasaki214‐8571Japan
| | - Yuji Kishima
- Research Faculty of AgricultureHokkaido UniversityKita‐9 Nishi‐9Kita‐ku, Sapporo060‐8589Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
| |
Collapse
|
9
|
Talabi AO, Vikram P, Thushar S, Rahman H, Ahmadzai H, Nhamo N, Shahid M, Singh RK. Orphan Crops: A Best Fit for Dietary Enrichment and Diversification in Highly Deteriorated Marginal Environments. FRONTIERS IN PLANT SCIENCE 2022; 13:839704. [PMID: 35283935 PMCID: PMC8908242 DOI: 10.3389/fpls.2022.839704] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 05/23/2023]
Abstract
Orphan crops are indigenous and invariably grown by small and marginal farmers under subsistence farming systems. These crops, which are common and widely accepted by local farmers, are highly rich in nutritional profile, good for medicinal purposes, and well adapted to suboptimal growing conditions. However, these crops have suffered neglect and abandonment from the scientific community because of very low or no investments in research and genetic improvement. A plausible reason for this is that these crops are not traded internationally at a rate comparable to that of the major food crops such as wheat, rice, and maize. Furthermore, marginal environments have poor soils and are characterized by extreme weather conditions such as heat, erratic rainfall, water deficit, and soil and water salinity, among others. With more frequent extreme climatic events and continued land degradation, orphan crops are beginning to receive renewed attention as alternative crops for dietary diversification in marginal environments and, by extension, across the globe. Increased awareness of good health is also a major contributor to the revived attention accorded to orphan crops. Thus, the introduction, evaluation, and adaptation of outstanding varieties of orphan crops for dietary diversification will contribute not only to sustained food production but also to improved nutrition in marginal environments. In this review article, the concept of orphan crops vis-à-vis marginality and food and nutritional security is defined for a few orphan crops. We also examined recent advances in research involving orphan crops and the potential of these crops for dietary diversification within the context of harsh marginal environments. Recent advances in genomics coupled with molecular breeding will play a pivotal role in improving the genetic potential of orphan crops and help in developing sustainable food systems. We concluded by presenting a potential roadmap to future research engagement and a policy framework with recommendations aimed at facilitating and enhancing the adoption and sustainable production of orphan crops under agriculturally marginal conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rakesh Kumar Singh
- International Center for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates
| |
Collapse
|
10
|
Samantara K, Bohra A, Mohapatra SR, Prihatini R, Asibe F, Singh L, Reyes VP, Tiwari A, Maurya AK, Croser JS, Wani SH, Siddique KHM, Varshney RK. Breeding More Crops in Less Time: A Perspective on Speed Breeding. BIOLOGY 2022; 11:275. [PMID: 35205141 PMCID: PMC8869642 DOI: 10.3390/biology11020275] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Breeding crops in a conventional way demands considerable time, space, inputs for selection, and the subsequent crossing of desirable plants. The duration of the seed-to-seed cycle is one of the crucial bottlenecks in the progress of plant research and breeding. In this context, speed breeding (SB), relying mainly on photoperiod extension, temperature control, and early seed harvest, has the potential to accelerate the rate of plant improvement. Well demonstrated in the case of long-day plants, the SB protocols are being extended to short-day plants to reduce the generation interval time. Flexibility in SB protocols allows them to align and integrate with diverse research purposes including population development, genomic selection, phenotyping, and genomic editing. In this review, we discuss the different SB methodologies and their application to hasten future plant improvement. Though SB has been extensively used in plant phenotyping and the pyramiding of multiple traits for the development of new crop varieties, certain challenges and limitations hamper its widespread application across diverse crops. However, the existing constraints can be resolved by further optimization of the SB protocols for critical food crops and their efficient integration in plant breeding pipelines.
Collapse
Affiliation(s)
- Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, Parlakhemundi 761211, Odisha, India;
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur 208024, Uttar Pradesh, India; (A.B.); (A.T.); (A.K.M.)
| | - Sourav Ranjan Mohapatra
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun 173230, Uttarakhand, India;
| | - Riry Prihatini
- Indonesian Tropical Fruit Research Institute, Solok 27301, West Sumatera, Indonesia;
| | - Flora Asibe
- International Institute of Tropical Agriculture, Ibadan 200001, Oyo State, Nigeria;
| | - Lokendra Singh
- Department of Genetics and Plant Breeding, Agriculture and Forestry University, Chitwan 44200, Nepal;
| | - Vincent P. Reyes
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Aichi, Japan;
| | - Abha Tiwari
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur 208024, Uttar Pradesh, India; (A.B.); (A.T.); (A.K.M.)
| | - Alok Kumar Maurya
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur 208024, Uttar Pradesh, India; (A.B.); (A.T.); (A.K.M.)
| | - Janine S. Croser
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia;
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Anantnag Khudwani, Srinagar 192101, Jammu and Kashmir, India
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia;
| | - Rajeev K. Varshney
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, Andhra Pradesh, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
11
|
Bundó M, Martín-Cardoso H, Pesenti M, Gómez-Ariza J, Castillo L, Frouin J, Serrat X, Nogués S, Courtois B, Grenier C, Sacchi GA, San Segundo B. Integrative Approach for Precise Genotyping and Transcriptomics of Salt Tolerant Introgression Rice Lines. FRONTIERS IN PLANT SCIENCE 2022; 12:797141. [PMID: 35126422 PMCID: PMC8813771 DOI: 10.3389/fpls.2021.797141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 05/24/2023]
Abstract
Rice is the most salt sensitive cereal crop and its cultivation is particularly threatened by salt stress, which is currently worsened due to climate change. This study reports the development of salt tolerant introgression lines (ILs) derived from crosses between the salt tolerant indica rice variety FL478, which harbors the Saltol quantitative trait loci (QTL), and the salt-sensitive japonica elite cultivar OLESA. Genotyping-by-sequencing (GBS) and Kompetitive allele specific PCR (KASPar) genotyping, in combination with step-wise phenotypic selection in hydroponic culture, were used for the identification of salt-tolerant ILs. Transcriptome-based genotyping allowed the fine mapping of indica genetic introgressions in the best performing IL (IL22). A total of 1,595 genes were identified in indica regions of IL22, which mainly located in large introgressions at Chromosomes 1 and 3. In addition to OsHKT1;5, an important number of genes were identified in the introgressed indica segments of IL22 whose expression was confirmed [e.g., genes involved in ion transport, callose synthesis, transcriptional regulation of gene expression, hormone signaling and reactive oxygen species (ROS) accumulation]. These genes might well contribute to salt stress tolerance in IL22 plants. Furthermore, comparative transcript profiling revealed that indica introgressions caused important alterations in the background gene expression of IL22 plants (japonica cultivar) compared with its salt-sensitive parent, both under non-stress and salt-stress conditions. In response to salt treatment, only 8.6% of the salt-responsive genes were found to be commonly up- or down-regulated in IL22 and OLESA plants, supporting massive transcriptional reprogramming of gene expression caused by indica introgressions into the recipient genome. Interactions among indica and japonica genes might provide novel regulatory networks contributing to salt stress tolerance in introgression rice lines. Collectively, this study illustrates the usefulness of transcriptomics in the characterization of new rice lines obtained in breeding programs in rice.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | | | - Michele Pesenti
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy – DiSAA, University of Milan, Milan, Italy
| | - Jorge Gómez-Ariza
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Julien Frouin
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Xavier Serrat
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Salvador Nogués
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Brigitte Courtois
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Cécile Grenier
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Gian Attilio Sacchi
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy – DiSAA, University of Milan, Milan, Italy
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
12
|
Segawa T, Nishiyama C, Tamiru-Oli M, Sugihara Y, Abe A, Sone H, Itoh N, Asukai M, Uemura A, Oikawa K, Utsushi H, Ikegami-Katayama A, Imamura T, Mori M, Terauchi R, Takagi H. Sat-BSA: an NGS-based method using local de novo assembly of long reads for rapid identification of genomic structural variations associated with agronomic traits. BREEDING SCIENCE 2021; 71:299-312. [PMID: 34776737 PMCID: PMC8573553 DOI: 10.1270/jsbbs.20148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/18/2021] [Indexed: 05/29/2023]
Abstract
Advances in next generation sequencing (NGS)-based methodologies have accelerated the identifications of simple genetic variants such as point mutations and small insertions/deletions (InDels). Structural variants (SVs) including large InDels and rearrangements provide vital sources of genetic diversity for plant breeding. However, their analysis remains a challenge due to their complex nature. Consequently, novel NGS-based approaches are needed to rapidly and accurately identify SVs. Here, we present an NGS-based bulked-segregant analysis (BSA) technique called Sat-BSA (SVs associated with traits) for identifying SVs controlling traits of interest in crops. Sat-BSA targets allele frequencies at all SNP positions to first identify candidate genomic regions associated with a trait, which is then reconstructed by long reads-based local de novo assembly. Finally, the association between SVs, RNA-seq-based gene expression patterns and trait is evaluated for multiple cultivars to narrow down the candidate genes. We applied Sat-BSA to segregating F2 progeny obtained from crosses between turnip cultivars with different tuber colors and successfully isolated two genes harboring SVs that are responsible for tuber phenotypes. The current study demonstrates the utility of Sat-BSA for the identification of SVs associated with traits of interest in species with large and heterozygous genomes.
Collapse
Affiliation(s)
- Tenta Segawa
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Chisato Nishiyama
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Muluneh Tamiru-Oli
- Department of Animal, Plant and Soil Sciences, AgriBio Building, La Trobe University, 5 Ring Road, Bundoora, VIC 3086, Australia
| | - Yu Sugihara
- Kyoto University, Nakajou 1, Mozume, Mukou, Kyoto 617-0001, Japan
| | - Akira Abe
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate 024-0003, Japan
| | - Hinako Sone
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Noriaki Itoh
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Mayu Asukai
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Aiko Uemura
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate 024-0003, Japan
| | - Kaori Oikawa
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate 024-0003, Japan
| | - Hiroe Utsushi
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate 024-0003, Japan
| | | | - Tomohiro Imamura
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Masashi Mori
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Ryohei Terauchi
- Kyoto University, Nakajou 1, Mozume, Mukou, Kyoto 617-0001, Japan
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate 024-0003, Japan
| | - Hiroki Takagi
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| |
Collapse
|
13
|
Kamenya SN, Mikwa EO, Song B, Odeny DA. Genetics and breeding for climate change in Orphan crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1787-1815. [PMID: 33486565 PMCID: PMC8205878 DOI: 10.1007/s00122-020-03755-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/16/2020] [Indexed: 05/17/2023]
Abstract
Climate change is rapidly changing how we live, what we eat and produce, the crops we breed and the target traits. Previously underutilized orphan crops that are climate resilient are receiving much attention from the crops research community, as they are often the only crops left in the field after periods of extreme weather conditions. There are several orphan crops with incredible resilience to biotic and abiotic stresses. Some are nutritious, while others provide good sources of biofuel, medicine and other industrial raw materials. Despite these benefits, orphan crops are still lacking in important genetic and genomic resources that could be used to fast track their improvement and make their production profitable. Progress has been made in generating draft genomes of at least 28 orphan crops over the last decade, thanks to the reducing cost of sequencing. The implementation of a structured breeding program that takes advantage of additional modern crop improvement tools such as genomic selection, speed breeding, genome editing, high throughput phenotyping and breeding digitization would make rapid improvement of these orphan crops possible, but would require coordinated research investment. Other production challenges such as lack of adequate germplasm conservation, poor/non-existent seed systems and agricultural extension services, as well as poor marketing channels will also need to be improved if orphan crops were to be profitable. We review the importance of breeding orphan crops under the increasing effects of climate change, highlight existing gaps that need to be addressed and share some lessons to be learned from major crops.
Collapse
Affiliation(s)
- Sandra Ndagire Kamenya
- African Center of Excellence in Agroecology and Livelihood Systems, Uganda Martyrs University, Kampala, Uganda
| | - Erick Owuor Mikwa
- The International Crops Research Institute for the Semi-Arid Tropics - Eastern and Southern Africa, Nairobi, Kenya
| | - Bo Song
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute At Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518060, People's Republic of China.
| | - Damaris Achieng Odeny
- The International Crops Research Institute for the Semi-Arid Tropics - Eastern and Southern Africa, Nairobi, Kenya.
| |
Collapse
|
14
|
Tonosaki K, Ono A, Kunisada M, Nishino M, Nagata H, Sakamoto S, Kijima ST, Furuumi H, Nonomura KI, Sato Y, Ohme-Takagi M, Endo M, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Mutation of the imprinted gene OsEMF2a induces autonomous endosperm development and delayed cellularization in rice. THE PLANT CELL 2021; 33:85-103. [PMID: 33751094 PMCID: PMC8136911 DOI: 10.1093/plcell/koaa006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/29/2020] [Indexed: 05/22/2023]
Abstract
In angiosperms, endosperm development comprises a series of developmental transitions controlled by genetic and epigenetic mechanisms that are initiated after double fertilization. Polycomb repressive complex 2 (PRC2) is a key component of these mechanisms that mediate histone H3 lysine 27 trimethylation (H3K27me3); the action of PRC2 is well described in Arabidopsis thaliana but remains uncertain in cereals. In this study, we demonstrate that mutation of the rice (Oryza sativa) gene EMBRYONIC FLOWER2a (OsEMF2a), encoding a zinc-finger containing component of PRC2, causes an autonomous endosperm phenotype involving proliferation of the central cell nuclei with separate cytoplasmic domains, even in the absence of fertilization. Detailed cytological and transcriptomic analyses revealed that the autonomous endosperm can produce storage compounds, starch granules, and protein bodies specific to the endosperm. These events have not been reported in Arabidopsis. After fertilization, we observed an abnormally delayed developmental transition in the endosperm. Transcriptome and H3K27me3 ChIP-seq analyses using endosperm from the emf2a mutant identified downstream targets of PRC2. These included >100 transcription factor genes such as type-I MADS-box genes, which are likely required for endosperm development. Our results demonstrate that OsEMF2a-containing PRC2 controls endosperm developmental programs before and after fertilization.
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Author for correspondence: (T.Ki.), (K.T.)
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Megumi Kunisada
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Megumi Nishino
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Saku T Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Hiroyasu Furuumi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yutaka Sato
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Masaki Endo
- Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA
| | - Katsunori Hatakeyama
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Taiji Kawakatsu
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
- Author for correspondence: (T.Ki.), (K.T.)
| |
Collapse
|
15
|
Suganami M, Suzuki Y, Tazoe Y, Yamori W, Makino A. Co-overproducing Rubisco and Rubisco activase enhances photosynthesis in the optimal temperature range in rice. PLANT PHYSIOLOGY 2021; 185:108-119. [PMID: 33631807 PMCID: PMC8133551 DOI: 10.1093/plphys/kiaa026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/30/2020] [Indexed: 05/09/2023]
Abstract
Rubisco limits C3 photosynthesis under some conditions and is therefore a potential target for improving photosynthetic efficiency. The overproduction of Rubisco is often accompanied by a decline in Rubisco activation, and the protein ratio of Rubisco activase (RCA) to Rubisco (RCA/Rubisco) greatly decreases in Rubisco-overproducing plants (RBCS-ox). Here, we produced transgenic rice (Oryza sativa) plants co-overproducing both Rubisco and RCA (RBCS-RCA-ox). Rubisco content in RBCS-RCA-ox plants increased by 23%-44%, and RCA/Rubisco levels were similar or higher than those of wild-type plants. However, although the activation state of Rubisco in RBCS-RCA-ox plants was enhanced, the rates of CO2 assimilation at 25°C in RBCS-RCA-ox plants did not differ from that of wild-type plants. Alternatively, at a moderately high temperature (optimal range of 32°C-36°C), the rates of CO2 assimilation in RBCS-ox and RBCS-RCA-ox plants were higher than in wild-type plants under conditions equal to or lower than current atmospheric CO2 levels. The activation state of Rubisco in RBCS-RCA-ox remained higher than that of RBCS-ox plants, and activated Rubisco content in RCA overproducing, RBCS-ox, RBCS-RCA-ox, and wild-type plants was highly correlated with the initial slope of CO2 assimilation against intercellular CO2 pressures (A:Ci) at 36°C. Thus, a simultaneous increase in Rubisco and RCA contents leads to enhanced photosynthesis within the optimal temperature range.
Collapse
Affiliation(s)
- Mao Suganami
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yuji Suzuki
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Youshi Tazoe
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Wataru Yamori
- Graduate School of Agricultural Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
16
|
Sekine D, Yabe S. Simulation-based optimization of genomic selection scheme for accelerating genetic gain while preventing inbreeding depression in onion breeding. BREEDING SCIENCE 2020; 70:594-604. [PMID: 33603556 PMCID: PMC7878936 DOI: 10.1270/jsbbs.20047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Genomic selection (GS) is being increasingly employed in plant breeding programs to accelerate genetic gain of economically important traits. However, its efficiency differs greatly across species, due to differences in reproduction and breeding strategies. Onion (Allium cepa L.) is an out-crossing crop but can be easily self-pollinated. High inbreeding depression occurs, and contamination of self-pollinated seeds is unavoidable in onion breeding. Taking this into consideration, 10-year breeding programs with and without GS were simulated. In addition to general GS, we proposed GS schemes to prevent inbreeding depression by avoiding co-selection of close relatives and combining the shortening of generation time and updating of the prediction model. The results showed that general GS with shortening of generation time yielded the highest genetic gain among the selection schemes in early years. However, inbreeding increased rapidly, reaching very high levels in later years. The proposed GS combining shortening of generation time with updating of the prediction model was superior to the others in later years, as it yielded relatively high genetic gain while maintaining significantly low levels of inbreeding. These results suggested that GS can be beneficial in onion breeding, and an optimal scheme should be selected depending on the selection period.
Collapse
Affiliation(s)
- Daisuke Sekine
- Institute of Vegetable and Floriculture Science, National agriculture and Food Research Organization, Tsu, Mie 514-2392, Japan
| | - Shiori Yabe
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
17
|
Suketomo C, Kazama T, Toriyama K. Fertility restoration of Chinese wild rice-type cytoplasmic male sterility by CRISPR/Cas9-mediated genome editing of nuclear-encoded RETROGRADE-REGULATED MALE STERILITY. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:285-292. [PMID: 33088191 PMCID: PMC7557670 DOI: 10.5511/plantbiotechnology.20.0326b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cytoplasmic male sterility (CMS) is a trait that produces nonfunctional pollen caused by the interaction between mitochondrial and nuclear genes. In Chinese-wild (CW) type CMS, CWA, in rice (Oryza sativa L.), its mitochondria enhance the expression of the nuclear gene RETROGRADE-REGULATED MALE STERILITY (RMS), which causes pollen abortion. Fertility is recovered when its expression decreases in a restorer line, CWR. The expression of RMS is controlled by the single nucleotide polymorphism (SNP) located in the promoter region 2,286 bp upstream of the start codon of RMS. However, another gene, PPR2, which encodes pentatricopeptide repeat-domain containing protein, is predicted in the reverse strand of this region and a premature stop codon is created in CWR by the SNP. To prove RMS is directly involved in restoring fertility of CW-CMS, we introduced mutations into RMS and PPR2 using CRISPR/Cas9. Fertility was recovered in the genome-edited CMS plants with reduced expression of RMS and unaltered expression of PPR2, when the mutation was introduced in the promoter regions of RMS within or outside the coding sequence (CDS) of PPR2. Fertility restoration was not obtained when the mutation was introduced within the CDS of RMS. Our results demonstrated that PPR2 is not responsible for fertility restoration, and fertility was recovered by reduced expression of RMS, providing us with a new artificial fertility restorer line for agronomical use.
Collapse
Affiliation(s)
- Chihiro Suketomo
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Tomohiko Kazama
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Kinya Toriyama
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
- E-mail: Tel: +81-22-757-4231 Fax: +81-22-757-4232
| |
Collapse
|
18
|
Ishimoto K, Sohonahra S, Kishi-Kaboshi M, Itoh JI, Hibara KI, Sato Y, Watanabe T, Abe K, Miyao A, Nosaka-Takahashi M, Suzuki T, Ta NK, Shimizu-Sato S, Suzuki T, Toyoda A, Takahashi H, Nakazono M, Nagato Y, Hirochika H, Sato Y. Specification of basal region identity after asymmetric zygotic division requires mitogen-activated protein kinase 6 in rice. Development 2019; 146:dev.176305. [PMID: 31118231 DOI: 10.1242/dev.176305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/13/2019] [Indexed: 01/31/2023]
Abstract
Asymmetric cell division is a key step in cellular differentiation in multicellular organisms. In plants, asymmetric zygotic division produces the apical and basal cells. The mitogen-activated protein kinase (MPK) cascade in Arabidopsis acts in asymmetric divisions such as zygotic division and stomatal development, but whether the effect on cellular differentiation of this cascade is direct or indirect following asymmetric division is not clear. Here, we report the analysis of a rice mutant, globular embryo 4 (gle4). In two- and four-cell-stage embryos, asymmetric zygotic division and subsequent cell division patterns were indistinguishable between the wild type and gle4 mutants. However, marker gene expression and transcriptome analyses showed that specification of the basal region was compromised in gle4 We found that GLE4 encodes MPK6 and that GLE4/MPK6 is essential in cellular differentiation rather than in asymmetric zygotic division. Our findings provide a new insight into the role of MPK in plant development. We propose that the regulation of asymmetric zygotic division is separate from the regulation of cellular differentiation that leads to apical-basal polarity.
Collapse
Affiliation(s)
- Kiyoe Ishimoto
- Department of Plant Production Sciences, Graduate School of Bioagricultural sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shino Sohonahra
- Department of Plant Production Sciences, Graduate School of Bioagricultural sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mitsuko Kishi-Kaboshi
- Molecular Genetics Department, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Jun-Ichi Itoh
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Ken-Ichiro Hibara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yutaka Sato
- Genome Resource Unit, Agrogenomics Resource Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Tsuneaki Watanabe
- Molecular Genetics Department, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kiyomi Abe
- Molecular Genetics Department, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Akio Miyao
- Molecular Genetics Department, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | - Toshiya Suzuki
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Nhung Kim Ta
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Sae Shimizu-Sato
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Atsushi Toyoda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hirokazu Takahashi
- Department of Plant Production Sciences, Graduate School of Bioagricultural sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mikio Nakazono
- Department of Plant Production Sciences, Graduate School of Bioagricultural sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yasuo Nagato
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Hirohiko Hirochika
- Molecular Genetics Department, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yutaka Sato
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
19
|
Rana MM, Takamatsu T, Baslam M, Kaneko K, Itoh K, Harada N, Sugiyama T, Ohnishi T, Kinoshita T, Takagi H, Mitsui T. Salt Tolerance Improvement in Rice through Efficient SNP Marker-Assisted Selection Coupled with Speed-Breeding. Int J Mol Sci 2019; 20:ijms20102585. [PMID: 31130712 PMCID: PMC6567206 DOI: 10.3390/ijms20102585] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022] Open
Abstract
Salinity critically limits rice metabolism, growth, and productivity worldwide. Improvement of the salt resistance of locally grown high-yielding cultivars is a slow process. The objective of this study was to develop a new salt-tolerant rice germplasm using speed-breeding. Here, we precisely introgressed the hst1 gene, transferring salinity tolerance from “Kaijin” into high-yielding “Yukinko-mai” (WT) rice through single nucleotide polymorphism (SNP) marker-assisted selection. Using a biotron speed-breeding technique, we developed a BC3F3 population, named “YNU31-2-4”, in six generations and 17 months. High-resolution genotyping by whole-genome sequencing revealed that the BC3F2 genome had 93.5% similarity to the WT and fixed only 2.7% of donor parent alleles. Functional annotation of BC3F2 variants along with field assessment data indicated that “YNU31-2-4” plants carrying the hst1 gene had similar agronomic traits to the WT under normal growth condition. “YNU31-2-4” seedlings subjected to salt stress (125 mM NaCl) had a significantly higher survival rate and increased shoot and root biomasses than the WT. At the tissue level, quantitative and electron probe microanalyzer studies indicated that “YNU31-2-4” seedlings avoided Na+ accumulation in shoots under salt stress. The “YNU31-2-4” plants showed an improved phenotype with significantly higher net CO2 assimilation and lower yield decline than WT under salt stress at the reproductive stage. “YNU31-2-4” is a potential candidate for a new rice cultivar that is highly tolerant to salt stress at the seedling and reproductive stages, and which might maintain yields under a changing global climate.
Collapse
Affiliation(s)
- Md Masud Rana
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Agronomy Division, Bangladesh Rice Research Institute, Gazipur-1701, Bangladesh.
| | - Takeshi Takamatsu
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Marouane Baslam
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Kentaro Kaneko
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Kimiko Itoh
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Naoki Harada
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Toshie Sugiyama
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Takayuki Ohnishi
- Center for Education and Research of Community Collaboration, Utsunomiya University, Utsunomiya 321-8505, Japan.
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan.
| | - Hiroki Takagi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Ishikawa 921-8836, Japan.
| | - Toshiaki Mitsui
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| |
Collapse
|
20
|
Nagatoshi Y, Fujita Y. Accelerating Soybean Breeding in a CO2-Supplemented Growth Chamber. PLANT & CELL PHYSIOLOGY 2019; 60:77-84. [PMID: 30219921 PMCID: PMC6343635 DOI: 10.1093/pcp/pcy189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/07/2018] [Indexed: 05/13/2023]
Abstract
Soybean (Glycine max) is the most important dicot crop worldwide, and is increasingly used as a model legume due to the wide availability of genomic soybean resources; however, the slow generation times of soybean plants are currently a major hindrance to research. Here, we demonstrate a method for accelerating soybean breeding in compact growth chambers, which greatly shortens the generation time of the plants and accelerates breeding and research projects. Our breeding method utilizes commonly used fluorescent lamps (220 µmol m-2 s-1 at the canopy level), a 14 h light (30°C)/10 h dark (25°C) cycle and carbon dioxide (CO2) supplementation at >400 p.p.m. Using this approach, the generation time of the best-characterized elite Japanese soybean cultivar, Enrei, was shortened from 102-132 d reported in the field to just 70 d, thereby allowing up to 5 generations per year instead of the 1-2 generations currently possible in the field and/or greenhouse. The method also facilitates the highly efficient and controlled crossing of soybean plants. Our method uses CO2 supplementation to promote the growth and yield of plants, appropriate light and temperature conditions to reduce the days to flowering, and the reaping and sowing of immature seeds to shorten the reproductive period greatly. Thus, the appropriate parameters enable acceleration of soybean breeding in the compact growth chambers commonly used for laboratory research. The parameters used in our method could therefore be optimized for other species, cultivars, accessions and experimental designs to facilitate rapid breeding in a wide range of crops.
Collapse
Affiliation(s)
- Yukari Nagatoshi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Yasunari Fujita
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
21
|
Yan G, Liu H, Wang H, Lu Z, Wang Y, Mullan D, Hamblin J, Liu C. Accelerated Generation of Selfed Pure Line Plants for Gene Identification and Crop Breeding. FRONTIERS IN PLANT SCIENCE 2017; 8:1786. [PMID: 29114254 PMCID: PMC5660708 DOI: 10.3389/fpls.2017.01786] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/02/2017] [Indexed: 05/18/2023]
Abstract
Production of pure lines is an important step in biological studies and breeding of many crop plants. The major types of pure lines for biological studies and breeding include doubled haploid (DH) lines, recombinant inbred lines (RILs), and near isogenic lines (NILs). DH lines can be produced through microspore and megaspore culture followed by chromosome doubling while RILs and NILs can be produced through introgressions or repeated selfing of hybrids. DH approach was developed as a quicker method than conventional method to produce pure lines. However, its drawbacks of genotype-dependency and only a single chance of recombination limited its wider application. A recently developed fast generation cycling system (FGCS) achieved similar times to those of DH for the production of selfed pure lines but is more versatile as it is much less genotype-dependent than DH technology and does not restrict recombination to a single event. The advantages and disadvantages of the technologies and their produced pure line populations for different purposes of biological research and breeding are discussed. The development of a concept of complete in vitro meiosis and mitosis system is also proposed. This could integrate with the recently developed technologies of single cell genomic sequencing and genome wide selection, leading to a complete laboratory based pre-breeding scheme.
Collapse
Affiliation(s)
- Guijun Yan
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Guijun Yan
| | - Hui Liu
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
| | - Haibo Wang
- Hebei Centre of Plant Genetic Engineering, Institute of Genetics and Physiology, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Huhhot, China
| | - Yanxia Wang
- Hebei Province Wheat Engineering Technical Research Center, Shijiazhuang Academy of Agricultural Sciences, Shijiazhuang, China
| | - Daniel Mullan
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- InterGrain Pty. Ltd., Bibra Lake, WA, Australia
| | - John Hamblin
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- SuperSeeds Technologies Pty. Ltd., Perth, WA, Australia
| | - Chunji Liu
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, St. Lucia, QLD, Australia
| |
Collapse
|
22
|
Tanaka J, Hayashi T, Iwata H. A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system. BREEDING SCIENCE 2016; 66:542-551. [PMID: 27795679 PMCID: PMC5010295 DOI: 10.1270/jsbbs.15038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/05/2016] [Indexed: 05/18/2023]
Abstract
A new plant breeding method-the biotron breeding system (BBS)-can rapidly produce advanced generations in rice (Oryza sativa L.) breeding. This method uses a growth chamber (biotron) with CO2 control, accompanied by tiller removal and embryo rescue to decrease the period before seed maturity. However, tiller removal and embryo rescue are laborious and impractical for large populations. We investigated the influences of increased CO2, tiller removal, and root restriction on the days to heading (DTH) from seeding in growth chambers. The higher CO2 concentration significantly decreased DTH, but tiller removal and root restriction had little effect on DTH and drastically reduced seed yield. Based on these findings, we propose a simplified BBS (the sBBS) that eliminates the need for tiller removal and embryo rescue, but controls CO2 levels and day-length and maintains an appropriate root volume. Using the sBBS, we could reduce the interval between generations in 'Nipponbare' to less than 3 months, without onerous manipulations. To demonstrate the feasibility of the sBBS, we used it to develop isogenic lines using 'Oborozuki' as the donor parent for the low-amylose allele Wx1-1 and 'Akidawara' as the recipient. We were able to perform four crossing cycles in a year.
Collapse
Affiliation(s)
- Junichi Tanaka
- Institute of Crop Science, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- Graduate School of Life and Environmental Science, University of Tsukuba,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- Corresponding author (e-mail: )
| | - Takeshi Hayashi
- Institute of Crop Science, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- Graduate School of Life and Environmental Science, University of Tsukuba,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | - Hiroyoshi Iwata
- Graduate School of Agriculture and Life Science, The University of Tokyo,
1-1-1 Yayoi, Bunkyo, Tokyo 113-8657,
Japan
| |
Collapse
|
23
|
Okazaki Y, Saito K. Integrated metabolomics and phytochemical genomics approaches for studies on rice. Gigascience 2016; 5:11. [PMID: 26937280 PMCID: PMC4774183 DOI: 10.1186/s13742-016-0116-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/06/2016] [Indexed: 01/10/2023] Open
Abstract
Metabolomics is widely employed to monitor the cellular metabolic state and assess the quality of plant-derived foodstuffs because it can be used to manage datasets that include a wide range of metabolites in their analytical samples. In this review, we discuss metabolomics research on rice in order to elucidate the overall regulation of the metabolism as it is related to the growth and mechanisms of adaptation to genetic modifications and environmental stresses such as fungal infections, submergence, and oxidative stress. We also focus on phytochemical genomics studies based on a combination of metabolomics and quantitative trait locus (QTL) mapping techniques. In addition to starch, rice produces many metabolites that also serve as nutrients for human consumers. The outcomes of recent phytochemical genomics studies of diverse natural rice resources suggest there is potential for using further effective breeding strategies to improve the quality of ingredients in rice grains.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 Japan ; Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813 Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 Japan ; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| |
Collapse
|
24
|
Kuroda M, Ikenaga S. Single-tube hydroponics as a novel idea for small-scale production of crop seed in a plant incubator. Biosci Biotechnol Biochem 2014; 79:63-7. [PMID: 25175017 DOI: 10.1080/09168451.2014.951026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We present a novel protocol for small-scale production of crop seed in a plant incubator termed "Single-tube hydroponics." Our protocol minimizes the materials and methods for cultivation whereby a large number of independent plants can be cultured in a limited space. This study may aid in the improvement of crop seed components, especially in the cultivation of transgenic plants.
Collapse
Affiliation(s)
- Masaharu Kuroda
- a Division of Crop Development , National Agricultural and Food Research Organization-Agricultural Research Center (NARO-ARC) , Joetsu , Japan
| | | |
Collapse
|
25
|
Sekine D, Ohnishi T, Furuumi H, Ono A, Yamada T, Kurata N, Kinoshita T. Dissection of two major components of the post-zygotic hybridization barrier in rice endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:792-9. [PMID: 24286595 DOI: 10.1111/tpj.12333] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/07/2013] [Accepted: 09/10/2013] [Indexed: 05/13/2023]
Abstract
A post-zygotic hybridization barrier is often observed in the endosperm of seeds produced by interspecific or interploidy crosses. In Arabidopsis thaliana, for example, hybrid endosperm from both types of cross shows altered timing of cellularization and an altered rate of nuclear divisions. Therefore, it has been proposed that interspecific and interploidy crosses share common molecular mechanisms for establishment of an effective species barrier. However, these two types of hybridization barrier may be initiated by different intrinsic cues: the interspecific cross barrier arises after hybridization of genomes with differences in DNA sequences, while the interploidy cross barrier arises after hybridization of genomes with the same DNA sequences but differences in ploidy levels. In this study, we performed interploidy crosses to identify components of the post-hybridization barrier in the endosperm of rice. We performed an intra-cultivar cross of autotetraploid (4n) × diploid (2n) rice, and found precocious cellularization and a decreased rate of nuclear division in the syncytial endosperm. By contrast, seeds from the reciprocal cross showed delayed cellularization and an increased rate of nuclear division. This differential effect on nuclear division rates contrasts with the outcome of rice interspecific crosses, which were previously shown to have altered timing of cellularization without any change in nuclear division rates. Thus, we propose that the post-zygotic hybridization barrier in rice endosperm has two separable components, namely control of the timing of cellularization and control of the nuclear division rates in the syncytial stage of endosperm development.
Collapse
Affiliation(s)
- Daisuke Sekine
- Graduate School of Biological Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan; Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Funayama K, Kojima S, Tabuchi-Kobayashi M, Sawa Y, Nakayama Y, Hayakawa T, Yamaya T. Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots. PLANT & CELL PHYSIOLOGY 2013; 54:934-43. [PMID: 23509111 DOI: 10.1093/pcp/pct046] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Among three genes for cytosolic glutamine synthetase (OsGS1;1, OsGS1;2 and OsGS1;3) in rice (Oryza sativa L.) plants, the OsGS1;2 gene is known to be mainly expressed in surface cells of roots, but its function was not clearly understood. We characterized knock-out mutants caused by the insertion of an endogenous retrotransposon Tos17 into exon 2 of OsGS1;2. Homozygously inserted mutants showed severe reduction in active tiller number and hence panicle number at harvest. Other yield components, such as spikelet number per panicle, 1,000-spikelet weight and proportion of well ripened grains, were nearly identical between the mutants and wild-type plants. When the contents of free amino acids in roots were compared between the mutants and the wild type, there were marked reductions in contents of glutamine, glutamate, asparagine and aspartate, but a remarkable increase in free ammonium ions in the mutants. Concentrations of amino acids and ammonium ions in xylem sap behaved in a similar fashion. Re-introduction of OsGS1;2 cDNA under the control of its own promoter into the knock-out mutants successfully restored yield components to wild-type levels as well as ammonium concentration in xylem sap. The results indicate that GS1;2 is important in the primary assimilation of ammonium ions taken up by rice roots, with GS1;1 in the roots unable to compensate for GS1;2 functions.
Collapse
Affiliation(s)
- Kazuhiro Funayama
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Tsuji H, Nakamura H, Taoka KI, Shimamoto K. Functional diversification of FD transcription factors in rice, components of florigen activation complexes. PLANT & CELL PHYSIOLOGY 2013; 54:385-97. [PMID: 23324168 PMCID: PMC3589828 DOI: 10.1093/pcp/pct005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Florigen, a protein encoded by the FLOWERING LOCUS T (FT) in Arabidopsis and Heading date 3a (Hd3a) in rice, is the universal flowering hormone in plants. Florigen is transported from leaves to the shoot apical meristem and initiates floral evocation. In shoot apical cells, conserved cytoplasmic 14-3-3 proteins act as florigen receptors. A hexameric florigen activation complex (FAC) composed of Hd3a, 14-3-3 proteins, and OsFD1, a transcription factor, activates OsMADS15, a rice homolog of Arabidopsis APETALA1, leading to flowering. Because FD is a key component of the FAC, we characterized the FD gene family and their functions. Phylogenetic analysis of FD genes indicated that this family is divided into two groups: (i) canonical FD genes that are conserved among eudicots and non-Poaceae monocots; and (ii) Poaceae-specific FD genes that are organized into three subgroups: Poaceae FD1, FD2 and FD3. The Poaceae FD1 group shares a small sequence motif, T(A/V)LSLNS, with FDs of eudicots and non-Poaceae monocots. Overexpression of OsFD2, a member of the Poaceae FD2 group, produced smaller leaves with shorter plastochrons, suggesting that OsFD2 controls leaf development. In vivo subcellular localization of Hd3a, 14-3-3 and OsFD2 suggested that in contrast to OsFD1, OsFD2 is restricted to the cytoplasm through its interaction with the cytoplasmic 14-3-3 proteins, and interaction of Hd3a with 14-3-3 facilitates nuclear translocation of the FAC containing OsFD2. These results suggest that FD function has diverged between OsFD1 and OsFD2, but formation of a FAC is essential for their function.
Collapse
Affiliation(s)
| | | | | | - Ko Shimamoto
- *Corresponding author: E-mail: ; Fax, +81-743-72-5502
| |
Collapse
|
28
|
Hakata M, Kuroda M, Miyashita T, Yamaguchi T, Kojima M, Sakakibara H, Mitsui T, Yamakawa H. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1110-7. [PMID: 22967050 DOI: 10.1111/j.1467-7652.2012.00741.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 07/23/2012] [Accepted: 08/07/2012] [Indexed: 05/05/2023]
Abstract
High temperature impairs rice (Oryza sativa) grain filling by inhibiting the deposition of storage materials such as starch, resulting in mature grains with a chalky appearance, currently a major problem for rice farming in Asian countries. Such deterioration of grain quality is accompanied by the altered expression of starch metabolism-related genes. Here we report the involvement of a starch-hydrolyzing enzyme, α-amylase, in high temperature-triggered grain chalkiness. In developing seeds, high temperature induced the expression of α-amylase genes, namely Amy1A, Amy1C, Amy3A, Amy3D and Amy3E, as well as α-amylase activity, while it decreased an α-amylase-repressing plant hormone, ABA, suggesting starch to be degraded by α-amylase in developing grains under elevated temperature. Furthermore, RNAi-mediated suppression of α-amylase genes in ripening seeds resulted in fewer chalky grains under high-temperature conditions. As the extent of the decrease in chalky grains was highly correlated to decreases in the expression of Amy1A, Amy1C, Amy3A and Amy3B, these genes would be involved in the chalkiness through degradation of starch accumulating in the developing grains. The results show that activation of α-amylase by high temperature is a crucial trigger for grain chalkiness and that its suppression is a potential strategy for ameliorating grain damage from global warming.
Collapse
Affiliation(s)
- Makoto Hakata
- National Agricultural Research Center, Joetsu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|