1
|
Liu Z, Rouhier N, Couturier J. Dual Roles of Reducing Systems in Protein Persulfidation and Depersulfidation. Antioxidants (Basel) 2025; 14:101. [PMID: 39857435 PMCID: PMC11763069 DOI: 10.3390/antiox14010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The oxidative modification of specific cysteine residues to persulfides is thought to be the main way by which hydrogen sulfide (H2S) exerts its biological and signaling functions. Therefore, protein persulfidation represents an important thiol-switching mechanism as other reversible redox post-translational modifications. Considering their reductase activity but also their connections with proteins that generate H2S and its related molecules, the glutaredoxin (GRX) and thioredoxin (TRX)-reducing systems have potential dual roles in both protein persulfidation and depersulfidation. In this review, we will first focus on recent advances describing the physiological pathways leading to protein persulfidation before discussing the dual roles of the physiological TRX and glutathione/GRX-reducing systems in protein persulfidation/depersulfidation.
Collapse
Affiliation(s)
- Zhichao Liu
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | - Nicolas Rouhier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
- Institut Universitaire de France, F-75000 Paris, France
| | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
- Institut Universitaire de France, F-75000 Paris, France
| |
Collapse
|
2
|
Jiménez A, Martí MC, Sevilla F. Oxidative post-translational modifications of plant antioxidant systems under environmental stress. PHYSIOLOGIA PLANTARUM 2025; 177:e70118. [PMID: 39968905 PMCID: PMC11837463 DOI: 10.1111/ppl.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
Plants are often subject to environmental challenges posed by abiotic and biotic stresses, which are increasing under the current climate change conditions, provoking a loss in crop yield worldwide. Plants must cope with adverse situations such as increasing temperatures, air pollution or loss of agricultural land due to salinity, drought, contamination, and pathogen attacks, among others. Plants under stress conditions increase the production of reactive oxygen-, nitrogen-, and sulphur species (ROS/RNS/RSS), whose concentrations must be tightly regulated. The enzymatic antioxidant system and metabolites are in charge of their control to avoid their deleterious effects on cellular components, allowing their participation in signalling events. As signalling molecules, reactive species are involved in plant responses to the environment through post-translational modifications (PTMs) of proteins, which, in turn, may regulate the structure, function, and location of the antioxidant proteins by oxidative/nitrosative/persulfure modifications of different amino acid residues. In this review, we examine the different effects of these post-translational modifications, which are emerging as a fine-tuned point of control of the antioxidant systems involved in plant responses to climate change, a growing threat to crop production.
Collapse
Affiliation(s)
- Ana Jiménez
- Department of Stress Biology and Plant PathologyCEBAS‐CSICMurciaSpain
| | | | - Francisca Sevilla
- Department of Stress Biology and Plant PathologyCEBAS‐CSICMurciaSpain
| |
Collapse
|
3
|
Fuchs H, Staszak AM, Vargas PA, Sahrawy M, Serrato AJ, Dyderski MK, Klupczyńska EA, Głodowicz P, Rolle K, Ratajczak E. Redox dynamics in seeds of Acer spp: unraveling adaptation strategies of different seed categories. FRONTIERS IN PLANT SCIENCE 2024; 15:1430695. [PMID: 39114470 PMCID: PMC11303208 DOI: 10.3389/fpls.2024.1430695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Background Seeds of woody plant species, such as those in the Acer genus like Norway maple (Acer platanoides L.) and sycamore (Acer pseudoplatanus L.), exhibit unique physiological traits and responses to environmental stress. Thioredoxins (Trxs) play a central role in the redox regulation of cells, interacting with other redox-active proteins such as peroxiredoxins (Prxs), and contributing to plant growth, development, and responses to biotic and abiotic stresses. However, there is limited understanding of potential variations in this system between seeds categorized as recalcitrant and orthodox, which could provide insights into adaptive strategies. Methods Using proteomic analysis and DDA methods we investigated the Trx-h1 target proteins in seed axes. We complemented the results of the proteomic analysis with gene expression analysis of the Trx-h1, 1-Cys-Prx, and TrxR NTRA genes in the embryonic axes of maturing, mature, and stored seeds from two Acer species. Results and discussion The expression of Trx-h1 and TrxR NTRA throughout seed maturation in both species was low. The expression of 1-Cys-Prx remained relatively stable throughout seed maturation. In stored seeds, the expression levels were minimal, with slightly higher levels in sycamore seeds, which may confirm that recalcitrant seeds remain metabolically active during storage. A library of 289 proteins interacting with Trx-h1 was constructed, comprising 68 from Norway maple and 221 from sycamore, with distinct profiles in each seed category. Recalcitrant seed axes displayed a wide array of metabolic, stress response, and signaling proteins, suggesting sustained metabolic activity during storage and the need to address oxidative stress. Conversely, the orthodox seed axes presented a protein profile, reflecting efficient metabolic shutdown, which contributes to their extended viability. The results of the study provide new insights into seed viability and storage longevity mechanisms. They enhance the understanding of seed biology and lay the foundation for further evolutionary research on seeds of different categories.
Collapse
Affiliation(s)
- Hanna Fuchs
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Aleksandra M. Staszak
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology Faculty of Biology, University of Białystok, Białystok, Poland
| | - Paola A. Vargas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Mariam Sahrawy
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Antonio J. Serrato
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | - Paweł Głodowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Katarzyna Rolle
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | |
Collapse
|
4
|
Timm S, Klaas N, Niemann J, Jahnke K, Alseekh S, Zhang Y, Souza PVL, Hou LY, Cosse M, Selinski J, Geigenberger P, Daloso DM, Fernie AR, Hagemann M. Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase-dependent pathways towards changing environments. PLANT, CELL & ENVIRONMENT 2024; 47:2542-2560. [PMID: 38518065 DOI: 10.1111/pce.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX-based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild-type and the glycine decarboxylase T-protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)-dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C-labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine-tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Nicole Klaas
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Janice Niemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Kathrin Jahnke
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Liang-Yu Hou
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Maike Cosse
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Hou LY, Sommer F, Poeker L, Dziubek D, Schroda M, Geigenberger P. The impact of light and thioredoxins on the plant thiol-disulfide proteome. PLANT PHYSIOLOGY 2024; 195:1536-1560. [PMID: 38214043 PMCID: PMC11142374 DOI: 10.1093/plphys/kiad669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
Thiol-based redox regulation is a crucial posttranslational mechanism to acclimate plants to changing light availability. Here, we conducted a biotin switch-based redox proteomics study in Arabidopsis (Arabidopsis thaliana) to systematically investigate dynamics of thiol-redox networks in response to temporal changes in light availability and across genotypes lacking parts of the thioredoxin (Trx) or NADPH-Trx-reductase C (NTRC) systems in the chloroplast. Time-resolved dynamics revealed light led to marked decreases in the oxidation states of many chloroplast proteins with photosynthetic functions during the first 10 min, followed by their partial reoxidation after 2 to 6 h into the photoperiod. This involved f, m, and x-type Trx proteins showing similar light-induced reduction-oxidation dynamics, while NTRC, 2-Cys peroxiredoxins, and Trx y2 showed an opposing pattern, being more oxidized in light than dark. In Arabidopsis trxf1f2, trxm1m2, or ntrc mutants, most proteins showed increased oxidation states in the light compared to wild type, suggesting their light-dependent dynamics were related to NTRC/Trx networks. While NTRC deficiency had a strong influence in all light conditions, deficiencies in f- or m-type Trxs showed differential impacts on the thiol-redox proteome depending on the light environment, being higher in constant or fluctuating light, respectively. The results indicate plant redox proteomes are subject to dynamic changes in reductive and oxidative pathways to cooperatively fine-tune photosynthetic and metabolic processes in the light. The importance of the individual elements of the NTRC/Trx networks mediating these responses depend on the extent of light variability, with NTRC playing a crucial role to balance protein-redox states in rapidly fluctuating light.
Collapse
Affiliation(s)
- Liang-Yu Hou
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Plant and Microbial Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Frederik Sommer
- Molekulare Biotechnologie und Systembiologie, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Louis Poeker
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Dejan Dziubek
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Michael Schroda
- Molekulare Biotechnologie und Systembiologie, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Peter Geigenberger
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Khan K, Tran HC, Mansuroglu B, Önsell P, Buratti S, Schwarzländer M, Costa A, Rasmusson AG, Van Aken O. Mitochondria-derived reactive oxygen species are the likely primary trigger of mitochondrial retrograde signaling in Arabidopsis. Curr Biol 2024; 34:327-342.e4. [PMID: 38176418 DOI: 10.1016/j.cub.2023.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/28/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Besides their central function in respiration, plant mitochondria play a crucial role in maintaining cellular homeostasis during stress by providing "retrograde" feedback to the nucleus. Despite the growing understanding of this signaling network, the nature of the signals that initiate mitochondrial retrograde regulation (MRR) in plants remains unknown. Here, we investigated the dynamics and causative relationship of a wide range of mitochondria-related parameters for MRR, using a combination of Arabidopsis fluorescent protein biosensor lines, in vitro assays, and genetic and pharmacological approaches. We show that previously linked physiological parameters, including changes in cytosolic ATP, NADH/NAD+ ratio, cytosolic reactive oxygen species (ROS), pH, free Ca2+, and mitochondrial membrane potential, may often be correlated with-but are not the primary drivers of-MRR induction in plants. However, we demonstrate that the induced production of mitochondrial ROS is the likely primary trigger for MRR induction in Arabidopsis. Furthermore, we demonstrate that mitochondrial ROS-mediated signaling uses the ER-localized ANAC017-pathway to induce MRR response. Finally, our data suggest that mitochondrially generated ROS can induce MRR without substantially leaking into other cellular compartments such as the cytosol or ER lumen, as previously proposed. Overall, our results offer compelling evidence that mitochondrial ROS elevation is the likely trigger of MRR.
Collapse
Affiliation(s)
- Kasim Khan
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Huy Cuong Tran
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Berivan Mansuroglu
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Pinar Önsell
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Stefano Buratti
- Department of Biosciences, University of Milan, Via G. Celoria 26, Milan 20133, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, Milan 20133, Italy; Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria 26, 20133 Milan, Italy
| | - Allan G Rasmusson
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden.
| |
Collapse
|
7
|
Sevilla F, Martí MC, De Brasi-Velasco S, Jiménez A. Redox regulation, thioredoxins, and glutaredoxins in retrograde signalling and gene transcription. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5955-5969. [PMID: 37453076 PMCID: PMC10575703 DOI: 10.1093/jxb/erad270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Integration of reactive oxygen species (ROS)-mediated signal transduction pathways via redox sensors and the thiol-dependent signalling network is of increasing interest in cell biology for their implications in plant growth and productivity. Redox regulation is an important point of control in protein structure, interactions, cellular location, and function, with thioredoxins (TRXs) and glutaredoxins (GRXs) being key players in the maintenance of cellular redox homeostasis. The crosstalk between second messengers, ROS, thiol redox signalling, and redox homeostasis-related genes controls almost every aspect of plant development and stress response. We review the emerging roles of TRXs and GRXs in redox-regulated processes interacting with other cell signalling systems such as organellar retrograde communication and gene expression, especially in plants during their development and under stressful environments. This approach will cast light on the specific role of these proteins as redox signalling components, and their importance in different developmental processes during abiotic stress.
Collapse
Affiliation(s)
- Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Maria Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Sabrina De Brasi-Velasco
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
8
|
Caubrière D, Moseler A, Rouhier N, Couturier J. Diversity and roles of cysteine desulfurases in photosynthetic organisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3345-3360. [PMID: 36861318 DOI: 10.1093/jxb/erad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/22/2023] [Indexed: 06/08/2023]
Abstract
As sulfur is part of many essential protein cofactors such as iron-sulfur clusters, molybdenum cofactors, or lipoic acid, its mobilization from cysteine represents a fundamental process. The abstraction of the sulfur atom from cysteine is catalysed by highly conserved pyridoxal 5'-phosphate-dependent enzymes called cysteine desulfurases. The desulfuration of cysteine leads to the formation of a persulfide group on a conserved catalytic cysteine and the concomitant release of alanine. Sulfur is then transferred from cysteine desulfurases to different targets. Numerous studies have focused on cysteine desulfurases as sulfur-extracting enzymes for iron-sulfur cluster synthesis in mitochondria and chloroplasts but also for molybdenum cofactor sulfuration in the cytosol. Despite this, knowledge about the involvement of cysteine desulfurases in other pathways is quite rudimentary, particularly in photosynthetic organisms. In this review, we summarize current understanding of the different groups of cysteine desulfurases and their characteristics in terms of primary sequence, protein domain architecture, and subcellular localization. In addition, we review the roles of cysteine desulfurases in different fundamental pathways and highlight the gaps in our knowledge to encourage future work on unresolved issues especially in photosynthetic organisms.
Collapse
Affiliation(s)
| | - Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
- Institut Universitaire de France, F-75000, Paris, France
| |
Collapse
|
9
|
Porto NP, Bret RSC, Souza PVL, Cândido-Sobrinho SA, Medeiros DB, Fernie AR, Daloso DM. Thioredoxins regulate the metabolic fluxes throughout the tricarboxylic acid cycle and associated pathways in a light-independent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:36-49. [PMID: 36323196 DOI: 10.1016/j.plaphy.2022.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The metabolic fluxes throughout the tricarboxylic acid cycle (TCAC) are inhibited in the light by the mitochondrial thioredoxin (TRX) system. However, it is unclear how this system orchestrates the fluxes throughout the TCAC and associated pathways in the dark. Here we carried out a13C-HCO3 labelling experiment in Arabidopsis leaves from wild type (WT) and mutants lacking TRX o1 (trxo1), TRX h2 (trxh2), or both NADPH-dependent TRX reductase A and B (ntra ntrb) exposed to 0, 30 and 60 min of dark or light conditions. No 13C-enrichment in TCAC metabolites in illuminated WT leaves was observed. However, increased succinate content was found in parallel to reductions in Ala in the light, suggesting the latter operates as an alternative carbon source for succinate synthesis. By contrast to WT, all mutants showed substantial changes in the content and 13C-enrichment in TCAC metabolites under both dark and light conditions. Increased 13C-enrichment in glutamine in illuminated trxo1 leaves was also observed, strengthening the idea that TRX o1 restricts in vivo carbon fluxes from glycolysis and the TCAC to glutamine. We further demonstrated that both photosynthetic and gluconeogenic fluxes toward glucose are increased in trxo1 and that the phosphoenolpyruvate carboxylase (PEPc)-mediated 13C-incorporation into malate is higher in trxh2 mutants, as compared to WT. Our results collectively provide evidence that TRX h2 and the mitochondrial NTR/TRX system regulate the metabolic fluxes throughout the TCAC and associated pathways, including glycolysis, gluconeogenesis and the synthesis of glutamine in a light-independent manner.
Collapse
Affiliation(s)
- Nicole P Porto
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Raissa S C Bret
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
10
|
Barreto P, Koltun A, Nonato J, Yassitepe J, Maia IDG, Arruda P. Metabolism and Signaling of Plant Mitochondria in Adaptation to Environmental Stresses. Int J Mol Sci 2022; 23:ijms231911176. [PMID: 36232478 PMCID: PMC9570015 DOI: 10.3390/ijms231911176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.
Collapse
Affiliation(s)
- Pedro Barreto
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Alessandra Koltun
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Nonato
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Embrapa Agricultura Digital, Campinas 13083-886, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Correspondence:
| |
Collapse
|
11
|
de Bont L, Donnay N, Couturier J, Rouhier N. Redox regulation of enzymes involved in sulfate assimilation and in the synthesis of sulfur-containing amino acids and glutathione in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:958490. [PMID: 36051294 PMCID: PMC9426629 DOI: 10.3389/fpls.2022.958490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Sulfur is essential in plants because of its presence in numerous molecules including the two amino acids, cysteine, and methionine. Cysteine serves also for the synthesis of glutathione and provides sulfur to many other molecules including protein cofactors or vitamins. Plants absorb sulfate from their environment and assimilate it via a reductive pathway which involves, respectively, a series of transporters and enzymes belonging to multigenic families. A tight control is needed to adjust each enzymatic step to the cellular requirements because the whole pathway consumes energy and produces toxic/reactive compounds, notably sulfite and sulfide. Glutathione is known to regulate the activity of some intermediate enzymes. In particular, it provides electrons to adenosine 5'-phosphosulfate reductases but also regulates the activity of glutamate-cysteine ligase by reducing a regulatory disulfide. Recent proteomic data suggest a more extended post-translational redox control of the sulfate assimilation pathway enzymes and of some associated reactions, including the synthesis of both sulfur-containing amino acids, cysteine and methionine, and of glutathione. We have summarized in this review the known oxidative modifications affecting cysteine residues of the enzymes involved. In particular, a prominent regulatory role of protein persulfidation seems apparent, perhaps because sulfide produced by this pathway may react with oxidized thiol groups. However, the effect of persulfidation has almost not yet been explored.
Collapse
Affiliation(s)
- Linda de Bont
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Natacha Donnay
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
- Institut Universitaire de France, F-75000, Paris, France
| | | |
Collapse
|
12
|
How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants. Int J Mol Sci 2022; 23:ijms23041995. [PMID: 35216108 PMCID: PMC8879091 DOI: 10.3390/ijms23041995] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
With the advent of human civilization and anthropogenic activities in the shade of urbanization and global climate change, plants are exposed to a complex set of abiotic stresses. These stresses affect plants’ growth, development, and yield and cause enormous crop losses worldwide. In this alarming scenario of global climate conditions, plants respond to such stresses through a highly balanced and finely tuned interaction between signaling molecules. The abiotic stresses initiate the quick release of reactive oxygen species (ROS) as toxic by-products of altered aerobic metabolism during different stress conditions at the cellular level. ROS includes both free oxygen radicals {superoxide (O2•−) and hydroxyl (OH−)} as well as non-radicals [hydrogen peroxide (H2O2) and singlet oxygen (1O2)]. ROS can be generated and scavenged in different cell organelles and cytoplasm depending on the type of stimulus. At high concentrations, ROS cause lipid peroxidation, DNA damage, protein oxidation, and necrosis, but at low to moderate concentrations, they play a crucial role as secondary messengers in intracellular signaling cascades. Because of their concentration-dependent dual role, a huge number of molecules tightly control the level of ROS in cells. The plants have evolved antioxidants and scavenging machinery equipped with different enzymes to maintain the equilibrium between the production and detoxification of ROS generated during stress. In this present article, we have focused on current insights on generation and scavenging of ROS during abiotic stresses. Moreover, the article will act as a knowledge base for new and pivotal studies on ROS generation and scavenging.
Collapse
|
13
|
Abstract
Biochemical analysis is crucial for determining protein functionality changes during various conditions, including oxidative stress conditions. In this chapter, after giving brief guidelines for experimental design, we provide step-by-step instructions to purify recombinant plant proteins from E. coli, to prepare reduced and oxidized proteins for activity assay, and to characterize the protein under reducing and oxidizing conditions, with a focus on thiol-based oxidative modifications, like S-sulfenylation and disulfide formations.
Collapse
Affiliation(s)
- Zeya Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
14
|
Zimmer D, Swart C, Graf A, Arrivault S, Tillich M, Proost S, Nikoloski Z, Stitt M, Bock R, Mühlhaus T, Boulouis A. Topology of the redox network during induction of photosynthesis as revealed by time-resolved proteomics in tobacco. SCIENCE ADVANCES 2021; 7:eabi8307. [PMID: 34919428 PMCID: PMC8682995 DOI: 10.1126/sciadv.abi8307] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/03/2021] [Indexed: 05/03/2023]
Abstract
Photosynthetically produced electrons provide energy for various metabolic pathways, including carbon reduction. Four Calvin-Benson cycle enzymes and several other plastid proteins are activated in the light by reduction of specific cysteines via thioredoxins, a family of electron transporters operating in redox regulation networks. How does this network link the photosynthetic chain with cellular metabolism? Using a time-resolved redox proteomic method, we have investigated the redox network in vivo during the dark–to–low light transition. We show that redox states of some thioredoxins follow the photosynthetic linear electron transport rate. While some redox targets have kinetics compatible with an equilibrium with one thioredoxin (TRXf), reduction of other proteins shows specific kinetic limitations, allowing fine-tuning of each redox-regulated step of chloroplast metabolism. We identified five new redox-regulated proteins, including proteins involved in Mg2+ transport and 1O2 signaling. Our results provide a system-level functional view of the photosynthetic redox regulation network.
Collapse
Affiliation(s)
- David Zimmer
- Computational Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Corné Swart
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alexander Graf
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Michael Tillich
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sebastian Proost
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Alix Boulouis
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
- Laboratory of Chloroplast Biology and Light-sensing in Microalgae, UMR7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, 75005 Paris, France
| |
Collapse
|
15
|
Doron S, Lampl N, Savidor A, Katina C, Gabashvili A, Levin Y, Rosenwasser S. SPEAR: A proteomics approach for simultaneous protein expression and redox analysis. Free Radic Biol Med 2021; 176:366-377. [PMID: 34619326 DOI: 10.1016/j.freeradbiomed.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/02/2023]
Abstract
Oxidation and reduction of protein cysteinyl thiols serve as molecular switches, which is considered the most central mechanism for redox regulation of biological processes, altering protein structure, biochemical activity, subcellular localization, and binding affinity. Redox proteomics allows global identification of redox-modified cysteine (Cys) sites and quantification of their reversible oxidation/reduction responses, serving as a hypothesis-generating platform to stimulate redox biology mechanistic research. Here, we developed Simultaneous Protein Expression and Redox (SPEAR) analysis, a new redox-proteomics approach based on differential labeling of reversibly oxidized and reduced cysteines with light and heavy isotopic forms of commercially available isotopically-labeled N-ethylmaleimide (NEM). The presented method does not require enrichment for labeled peptides, thus enabling simultaneous quantification of Cys reversible oxidation state and protein abundance. Using SPEAR, we were able to quantify the in-vivo reversible oxidation state of thousands of cysteines across the Arabidopsis proteome under steady-state and oxidative stress conditions. Functional assignment of the identified redox-sensitive proteins demonstrated the widespread effect of oxidative conditions on various cellular functions and highlighted the enrichment of chloroplastic proteins. SPEAR provides a simple, straightforward, and cost-effective means of studying redox proteome dynamics. The presented data provide a global quantitative view of the reversible oxidation of well-known redox-regulated active sites and many novel redox-sensitive sites whose role in plant acclimation to stress conditions remains to be further explored.
Collapse
Affiliation(s)
- Shani Doron
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Nardy Lampl
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Corine Katina
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alexandra Gabashvili
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel.
| | - Shilo Rosenwasser
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel.
| |
Collapse
|
16
|
da Fonseca-Pereira P, Souza PVL, Fernie AR, Timm S, Daloso DM, Araújo WL. Thioredoxin-mediated regulation of (photo)respiration and central metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5987-6002. [PMID: 33649770 DOI: 10.1093/jxb/erab098] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Thioredoxins (TRXs) are ubiquitous proteins engaged in the redox regulation of plant metabolism. Whilst the light-dependent TRX-mediated activation of Calvin-Benson cycle enzymes is well documented, the role of extraplastidial TRXs in the control of the mitochondrial (photo)respiratory metabolism has been revealed relatively recently. Mitochondrially located TRX o1 has been identified as a regulator of alternative oxidase, enzymes of, or associated with, the tricarboxylic acid (TCA) cycle, and the mitochondrial dihydrolipoamide dehydrogenase (mtLPD) involved in photorespiration, the TCA cycle, and the degradation of branched chain amino acids. TRXs are seemingly a major point of metabolic regulation responsible for activating photosynthesis and adjusting mitochondrial photorespiratory metabolism according to the prevailing cellular redox status. Furthermore, TRX-mediated (de)activation of TCA cycle enzymes contributes to explain the non-cyclic flux mode of operation of this cycle in illuminated leaves. Here we provide an overview on the decisive role of TRXs in the coordination of mitochondrial metabolism in the light and provide in silico evidence for other redox-regulated photorespiratory enzymes. We further discuss the consequences of mtLPD regulation beyond photorespiration and provide outstanding questions that should be addressed in future studies to improve our understanding of the role of TRXs in the regulation of central metabolism.
Collapse
Affiliation(s)
| | - Paulo V L Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stefan Timm
- University of Rostock, Plant Physiology Department, Albert- Einstein-Str. 3, Rostock, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
17
|
Kondo K, Izumi M, Inabe K, Yoshida K, Imashimizu M, Suzuki T, Hisabori T. The phototroph-specific β-hairpin structure of the γ subunit of F oF 1-ATP synthase is important for efficient ATP synthesis of cyanobacteria. J Biol Chem 2021; 297:101027. [PMID: 34339736 PMCID: PMC8390522 DOI: 10.1016/j.jbc.2021.101027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/01/2022] Open
Abstract
The FoF1 synthase produces ATP from ADP and inorganic phosphate. The γ subunit of FoF1 ATP synthase in photosynthetic organisms, which is the rotor subunit of this enzyme, contains a characteristic β-hairpin structure. This structure is formed from an insertion sequence that has been conserved only in phototrophs. Using recombinant subcomplexes, we previously demonstrated that this region plays an essential role in the regulation of ATP hydrolysis activity, thereby functioning in controlling intracellular ATP levels in response to changes in the light environment. However, the role of this region in ATP synthesis has long remained an open question because its analysis requires the preparation of the whole FoF1 complex and a transmembrane proton-motive force. In this study, we successfully prepared proteoliposomes containing the entire FoF1 ATP synthase from a cyanobacterium, Synechocystis sp. PCC 6803, and measured ATP synthesis/hydrolysis and proton-translocating activities. The relatively simple genetic manipulation of Synechocystis enabled the biochemical investigation of the role of the β-hairpin structure of FoF1 ATP synthase and its activities. We further performed physiological analyses of Synechocystis mutant strains lacking the β-hairpin structure, which provided novel insights into the regulatory mechanisms of FoF1 ATP synthase in cyanobacteria via the phototroph-specific region of the γ subunit. Our results indicated that this structure critically contributes to ATP synthesis and suppresses ATP hydrolysis.
Collapse
Affiliation(s)
- Kumiko Kondo
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Masayuki Izumi
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Kosuke Inabe
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Mari Imashimizu
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Toshiharu Suzuki
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan.
| |
Collapse
|
18
|
Van Aken O. Mitochondrial redox systems as central hubs in plant metabolism and signaling. PLANT PHYSIOLOGY 2021; 186:36-52. [PMID: 33624829 PMCID: PMC8154082 DOI: 10.1093/plphys/kiab101] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/11/2021] [Indexed: 05/06/2023]
Abstract
Plant mitochondria are indispensable for plant metabolism and are tightly integrated into cellular homeostasis. This review provides an update on the latest research concerning the organization and operation of plant mitochondrial redox systems, and how they affect cellular metabolism and signaling, plant development, and stress responses. New insights into the organization and operation of mitochondrial energy systems such as the tricarboxylic acid cycle and mitochondrial electron transport chain (mtETC) are discussed. The mtETC produces reactive oxygen and nitrogen species, which can act as signals or lead to cellular damage, and are thus efficiently removed by mitochondrial antioxidant systems, including Mn-superoxide dismutase, ascorbate-glutathione cycle, and thioredoxin-dependent peroxidases. Plant mitochondria are tightly connected with photosynthesis, photorespiration, and cytosolic metabolism, thereby providing redox-balancing. Mitochondrial proteins are targets of extensive post-translational modifications, but their functional significance and how they are added or removed remains unclear. To operate in sync with the whole cell, mitochondria can communicate their functional status via mitochondrial retrograde signaling to change nuclear gene expression, and several recent breakthroughs here are discussed. At a whole organism level, plant mitochondria thus play crucial roles from the first minutes after seed imbibition, supporting meristem activity, growth, and fertility, until senescence of darkened and aged tissue. Finally, plant mitochondria are tightly integrated with cellular and organismal responses to environmental challenges such as drought, salinity, heat, and submergence, but also threats posed by pathogens. Both the major recent advances and outstanding questions are reviewed, which may help future research efforts on plant mitochondria.
Collapse
Affiliation(s)
- Olivier Van Aken
- Department of Biology, Lund University, Lund, Sweden
- Author for communication:
| |
Collapse
|
19
|
Thioredoxin h2 and o1 Show Different Subcellular Localizations and Redox-Active Functions, and Are Extrachloroplastic Factors Influencing Photosynthetic Performance in Fluctuating Light. Antioxidants (Basel) 2021; 10:antiox10050705. [PMID: 33946819 PMCID: PMC8147087 DOI: 10.3390/antiox10050705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Arabidopsis contains eight different h-type thioredoxins (Trx) being distributed in different cell organelles. Although Trx h2 is deemed to be confined to mitochondria, its subcellular localization and function are discussed controversially. Here, cell fractionation studies were used to clarify this question, showing Trx h2 protein to be exclusively localized in microsomes rather than mitochondria. Furthermore, Arabidopsis trxo1, trxh2 and trxo1h2 mutants were analyzed to compare the role of Trx h2 with mitochondrial Trx o1. Under medium light, trxo1 and trxo1h2 showed impaired growth, while trxh2 was similar to wild type. In line with this, trxo1 and trxo1h2 clustered differently from wild type with respect to nocturnal metabolite profiles, revealing a decrease in ascorbate and glutathione redox states. Under fluctuating light, these genotypic differences were attenuated. Instead, the trxo1h2 double mutant showed an improved NADPH redox balance, compared to wild type, accompanied by increased photosynthetic efficiency, specifically in the high-light phases. Conclusively, Trx h2 and Trx o1 are differentially localized in microsomes and mitochondria, respectively, which is associated with different redox-active functions and effects on plant growth in constant light, while there is a joint role of both Trxs in regulating NADPH redox balance and photosynthetic performance in fluctuating light.
Collapse
|
20
|
Biddau M, Santha Kumar TR, Henrich P, Laine LM, Blackburn GJ, Chokkathukalam A, Li T, Lee Sim K, King L, Hoffman SL, Barrett MP, Coombs GH, McFadden GI, Fidock DA, Müller S, Sheiner L. Plasmodium falciparum LipB mutants display altered redox and carbon metabolism in asexual stages and cannot complete sporogony in Anopheles mosquitoes. Int J Parasitol 2021; 51:441-453. [PMID: 33713652 PMCID: PMC8126644 DOI: 10.1016/j.ijpara.2020.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 11/06/2022]
Abstract
Apicoplast LipB deletion leads to changed antioxidant expression that precedes and coincides with accelerated differentiation. 3D7 Plasmodium exhibits changes in glycolysis and tricarboxylic acid cycle activity after deletion of apicoplast LipB. When LipB is deleted from NF54 Plasmodium, the resulting parasites cannot complete their development in mosquitoes.
Malaria is still one of the most important global infectious diseases. Emergence of drug resistance and a shortage of new efficient antimalarials continue to hamper a malaria eradication agenda. Malaria parasites are highly sensitive to changes in the redox environment. Understanding the mechanisms regulating parasite redox could contribute to the design of new drugs. Malaria parasites have a complex network of redox regulatory systems housed in their cytosol, in their mitochondrion and in their plastid (apicoplast). While the roles of enzymes of the thioredoxin and glutathione pathways in parasite survival have been explored, the antioxidant role of α-lipoic acid (LA) produced in the apicoplast has not been tested. To take a first step in teasing a putative role of LA in redox regulation, we analysed a mutant Plasmodium falciparum (3D7 strain) lacking the apicoplast lipoic acid protein ligase B (lipB) known to be depleted of LA. Our results showed a change in expression of redox regulators in the apicoplast and the cytosol. We further detected a change in parasite central carbon metabolism, with lipB deletion resulting in changes to glycolysis and tricarboxylic acid cycle activity. Further, in another Plasmodium cell line (NF54), deletion of lipB impacted development in the mosquito, preventing the detection of infectious sporozoite stages. While it is not clear at this point if the observed phenotypes are linked, these findings flag LA biosynthesis as an important subject for further study in the context of redox regulation in asexual stages, and point to LipB as a potential target for the development of new transmission drugs.
Collapse
Affiliation(s)
- Marco Biddau
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Philipp Henrich
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Larissa M Laine
- Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Gavin J Blackburn
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | - Tao Li
- Sanaria Inc., Rockville, MD 20850, USA
| | | | - Lewis King
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | | | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Graham H Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sylke Müller
- Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
21
|
Deschoenmaeker F, Mihara S, Niwa T, Taguchi H, Wakabayashi KI, Toyoshima M, Shimizu H, Hisabori T. Thioredoxin pathway in anabaena sp. PCC 7120: activity of NADPH-thioredoxin reductase C. J Biochem 2021; 169:709-719. [PMID: 33537746 DOI: 10.1093/jb/mvab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
To understand the physiological role of NADPH-thioredoxin reductase C (NTRC) in cyanobacteria, we investigated an NTRC-deficient mutant strain of Anabaena sp., PCC 7120, cultivated under different regimes of nitrogen supplementation and light exposure. The deletion of ntrC did not induce a change in the cell structure and metabolic pathways. However, time-dependent changes in the abundance of specific proteins and metabolites were observed. A decrease in chlorophyll a was correlated with a decrease in chlorophyll a biosynthesis enzymes and PSI subunits. The deletion of ntrC led to a deregulation of nitrogen metabolism, including the NtcA accumulation and heterocyst-specific proteins while nitrate ions were available in the culture medium. Interestingly, this deletion resulted in a redox imbalance, indicated by higher peroxide levels, higher catalase activity, and the induction of chaperones such as MsrA. Surprisingly, the antioxidant protein 2-Cys Prx was down-regulated. The deficiency in ntrC also resulted in the accumulation of metabolites such as 6-phosphogluconate, ADP, and ATP. Higher levels of NADP+ and NADPH partly correlated with higher G6PDH activity. Rather than impacting protein expression levels, NTRC appears to be involved in the direct regulation of enzymes, especially during the dark to light transition period.
Collapse
Affiliation(s)
- Frédéric Deschoenmaeker
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan
| | - Shoko Mihara
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan.,Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-S2-19, Midori-ku, Yokohama, 226-8503 Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-S2-19, Midori-ku, Yokohama, 226-8503 Japan
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan.,Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Masakazu Toyoshima
- Department of Bioinformatic Engeneering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engeneering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan.,Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
22
|
Dvořák P, Krasylenko Y, Zeiner A, Šamaj J, Takáč T. Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants. FRONTIERS IN PLANT SCIENCE 2021; 11:618835. [PMID: 33597960 PMCID: PMC7882706 DOI: 10.3389/fpls.2020.618835] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/11/2020] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) are signaling molecules essential for plant responses to abiotic and biotic stimuli as well as for multiple developmental processes. They are produced as byproducts of aerobic metabolism and are affected by adverse environmental conditions. The ROS content is controlled on the side of their production but also by scavenging machinery. Antioxidant enzymes represent a major ROS-scavenging force and are crucial for stress tolerance in plants. Enzymatic antioxidant defense occurs as a series of redox reactions for ROS elimination. Therefore, the deregulation of the antioxidant machinery may lead to the overaccumulation of ROS in plants, with negative consequences both in terms of plant development and resistance to environmental challenges. The transcriptional activation of antioxidant enzymes accompanies the long-term exposure of plants to unfavorable environmental conditions. Fast ROS production requires the immediate mobilization of the antioxidant defense system, which may occur via retrograde signaling, redox-based modifications, and the phosphorylation of ROS detoxifying enzymes. This review aimed to summarize the current knowledge on signaling processes regulating the enzymatic antioxidant capacity of plants.
Collapse
|
23
|
Eljebbawi A, Guerrero YDCR, Dunand C, Estevez JM. Highlighting reactive oxygen species as multitaskers in root development. iScience 2021; 24:101978. [PMID: 33490891 PMCID: PMC7808913 DOI: 10.1016/j.isci.2020.101978] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Reactive oxygen species (ROS) are naturally produced by several redox reactions during plant regular metabolism such as photosynthesis and respiration. Due to their chemical properties and high reactivity, ROS were initially described as detrimental for cells during oxidative stress. However, they have been further recognized as key players in numerous developmental and physiological processes throughout the plant life cycle. Recent studies report the important role of ROS as growth regulators during plant root developmental processes such as in meristem maintenance, in root elongation, and in lateral root, root hair, endodermis, and vascular tissue differentiation. All involve multifaceted interplays between steady-state levels of ROS with transcriptional regulators, phytohormones, and nutrients. In this review, we attempt to summarize recent findings about how ROS are involved in multiple stages of plant root development during cell proliferation, elongation, and differentiation.
Collapse
Affiliation(s)
- Ali Eljebbawi
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326 Castanet Tolosan, France
| | | | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326 Castanet Tolosan, France
| | - José Manuel Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida (FCsV), Universidad Andres Bello and Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
24
|
Oshanova D, Kurmanbayeva A, Bekturova A, Soltabayeva A, Nurbekova Z, Standing D, Dubey AK, Sagi M. Level of Sulfite Oxidase Activity Affects Sulfur and Carbon Metabolism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:690830. [PMID: 34249061 PMCID: PMC8264797 DOI: 10.3389/fpls.2021.690830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/26/2021] [Indexed: 05/05/2023]
Abstract
Molybdenum cofactor containing sulfite oxidase (SO) enzyme is an important player in protecting plants against exogenous toxic sulfite. It was also demonstrated that SO activity is essential to cope with rising dark-induced endogenous sulfite levels and maintain optimal carbon and sulfur metabolism in tomato plants exposed to extended dark stress. The response of SO and sulfite reductase to direct exposure of low and high levels of sulfate and carbon was rarely shown. By employing Arabidopsis wild-type, sulfite reductase, and SO-modulated plants supplied with excess or limited carbon or sulfur supply, the current study demonstrates the important role of SO in carbon and sulfur metabolism. Application of low and excess sucrose, or sulfate levels, led to lower biomass accumulation rates, followed by enhanced sulfite accumulation in SO impaired mutant compared with wild-type. SO-impairment resulted in the channeling of sulfite to the sulfate reduction pathway, resulting in an overflow of organic S accumulation. In addition, sulfite enhancement was followed by oxidative stress contributing as well to the lower biomass accumulation in SO-modulated plants. These results indicate that the role of SO is not limited to protection against elevated sulfite toxicity but to maintaining optimal carbon and sulfur metabolism in Arabidopsis plants.
Collapse
Affiliation(s)
- Dinara Oshanova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Assylay Kurmanbayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Aizat Bekturova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Aigerim Soltabayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Zhadyrassyn Nurbekova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Dominic Standing
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Arvind Kumar Dubey
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Moshe Sagi
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
- *Correspondence: Moshe Sagi
| |
Collapse
|
25
|
Meyer AJ, Dreyer A, Ugalde JM, Feitosa-Araujo E, Dietz KJ, Schwarzländer M. Shifting paradigms and novel players in Cys-based redox regulation and ROS signaling in plants - and where to go next. Biol Chem 2020; 402:399-423. [PMID: 33544501 DOI: 10.1515/hsz-2020-0291] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Cys-based redox regulation was long regarded a major adjustment mechanism of photosynthesis and metabolism in plants, but in the recent years, its scope has broadened to most fundamental processes of plant life. Drivers of the recent surge in new insights into plant redox regulation have been the availability of the genome-scale information combined with technological advances such as quantitative redox proteomics and in vivo biosensing. Several unexpected findings have started to shift paradigms of redox regulation. Here, we elaborate on a selection of recent advancements, and pinpoint emerging areas and questions of redox biology in plants. We highlight the significance of (1) proactive H2O2 generation, (2) the chloroplast as a unique redox site, (3) specificity in thioredoxin complexity, (4) how to oxidize redox switches, (5) governance principles of the redox network, (6) glutathione peroxidase-like proteins, (7) ferroptosis, (8) oxidative protein folding in the ER for phytohormonal regulation, (9) the apoplast as an unchartered redox frontier, (10) redox regulation of respiration, (11) redox transitions in seed germination and (12) the mitochondria as potential new players in reductive stress safeguarding. Our emerging understanding in plants may serve as a blueprint to scrutinize principles of reactive oxygen and Cys-based redox regulation across organisms.
Collapse
Affiliation(s)
- Andreas J Meyer
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113Bonn, Germany
| | - Anna Dreyer
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, D-33501Bielefeld, Germany
| | - José M Ugalde
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113Bonn, Germany
| | - Elias Feitosa-Araujo
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143Münster, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, D-33501Bielefeld, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143Münster, Germany
| |
Collapse
|
26
|
Wu F, Jiang G, Yan H, Xiao L, Liang H, Zhang D, Jiang Y, Duan X. Redox regulation of glutathione peroxidase by thioredoxin in longan fruit in relation to senescence and quality deterioration. Food Chem 2020; 345:128664. [PMID: 33340895 DOI: 10.1016/j.foodchem.2020.128664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 10/02/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
Thioredoxins (Trxs) are important redox regulators in organisms. However, their involvement in fruit senescence and quality deterioration remains unclear. In this study, one Trx (DlTrx1) and one NADPH-dependent Trx reductase (DlNRT1) cDNAs, were cloned from longan fruit. The DlTrx1 could be effectively reduced by the DlNTR1. Expression of DlTrx1 and DlNTR1 were up-regulated during fruit senescence and quality deterioration. We further identified 33 potential Trx target proteins in longan, including one glutathione peroxidase (DlGpx). DlTrx1 could physically interact with DlGpx. DlTrx1 in combination with DlNTR1 effectively activated DlGpx activity by regulating its redox state. Cys90 in DlGPx could form a disulfide bond with either Cys42 or Cys71, which were the sites of redox modulation. Furthermore, DlGpx exhibited a higher ratio of disulfide bonds to sulfhydryl groups in senescent or deteriorative fruit. We propose that Trx-mediated redox regulation of DlGpx is involved in senescence or quality deterioration of harvested longan fruit.
Collapse
Affiliation(s)
- Fuwang Wu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Foshan University, Foshan 528225, China
| | - Guoxiang Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huiling Yan
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Xiao
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hanzhi Liang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Zhang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuewu Duan
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
27
|
Yoshida K, Ohtaka K, Hirai MY, Hisabori T. Biochemical insight into redox regulation of plastidial 3-phosphoglycerate dehydrogenase from Arabidopsis thaliana. J Biol Chem 2020; 295:14906-14915. [PMID: 32848019 PMCID: PMC7606689 DOI: 10.1074/jbc.ra120.014263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/22/2020] [Indexed: 12/22/2022] Open
Abstract
Thiol-based redox regulation is a post-translational protein modification for controlling enzyme activity by switching oxidation/reduction states of Cys residues. In plant cells, numerous proteins involved in a wide range of biological systems have been suggested as the target of redox regulation; however, our knowledge on this issue is still incomplete. Here we report that 3-phosphoglycerate dehydrogenase (PGDH) is a novel redox-regulated protein. PGDH catalyzes the first committed step of Ser biosynthetic pathway in plastids. Using an affinity chromatography-based method, we found that PGDH physically interacts with thioredoxin (Trx), a key factor of redox regulation. The in vitro studies using recombinant proteins from Arabidopsis thaliana showed that a specific PGDH isoform, PGDH1, forms the intramolecular disulfide bond under nonreducing conditions, which lowers PGDH enzyme activity. MS and site-directed mutagenesis analyses allowed us to identify the redox-active Cys pair that is mainly involved in disulfide bond formation in PGDH1; this Cys pair is uniquely found in land plant PGDH. Furthermore, we revealed that some plastidial Trx subtypes support the reductive activation of PGDH1. The present data show previously uncharacterized regulatory mechanisms of PGDH and expand our understanding of the Trx-mediated redox-regulatory network in plants.
Collapse
Affiliation(s)
- Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| | - Kinuka Ohtaka
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan; Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | | | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
28
|
Sako K, Futamura Y, Shimizu T, Matsui A, Hirano H, Kondoh Y, Muroi M, Aono H, Tanaka M, Honda K, Shimizu K, Kawatani M, Nakano T, Osada H, Noguchi K, Seki M. Inhibition of mitochondrial complex I by the novel compound FSL0260 enhances high salinity-stress tolerance in Arabidopsis thaliana. Sci Rep 2020; 10:8691. [PMID: 32457324 PMCID: PMC7250896 DOI: 10.1038/s41598-020-65614-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022] Open
Abstract
Chemical priming is an attractive and promising approach to improve abiotic stress tolerance in a broad variety of plant species. We screened the RIKEN Natural Products Depository (NPDepo) chemical library and identified a novel compound, FSL0260, enhancing salinity-stress tolerance in Arabidopsis thaliana and rice. Through transcriptome analysis using A. thaliana seedlings, treatment of FSL0260 elevated an alternative respiration pathway in mitochondria that modulates accumulation of reactive oxygen species (ROS). From comparison analysis, we realized that the alternative respiration pathway was induced by treatment of known mitochondrial inhibitors. We confirmed that known inhibitors of mitochondrial complex I, such as rotenone and piericidin A, also enhanced salt-stress tolerance in Arabidopsis. We demonstrated that FSL0260 binds to complex I of the mitochondrial electron transport chain and inhibits its activity, suggesting that inhibition of mitochondrial complex I activates an alternative respiration pathway resulting in reduction of ROS accumulation and enhancement of tolerance to salinity in plants. Furthermore, FSL0260 preferentially inhibited plant mitochondrial complex I rather than a mammalian complex, implying that FSL0260 has a potential to be an agent for improving salt-stress tolerance in agriculture that is low toxicity to humans.
Collapse
Affiliation(s)
- Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan. .,Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, 631-8505, Japan. .,CREST, JST, Kawaguchi, Saitama, 332-0012, Japan.
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Takeshi Shimizu
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan.,Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Makoto Muroi
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Harumi Aono
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
| | - Kaori Honda
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Kenshirou Shimizu
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Makoto Kawatani
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Takeshi Nakano
- Gene Discovery Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan.,Graduate School of Biotsudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan.,Chemical Resource Development Research Unit, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan. .,Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan. .,CREST, JST, Kawaguchi, Saitama, 332-0012, Japan. .,Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
29
|
Dourmap C, Roque S, Morin A, Caubrière D, Kerdiles M, Béguin K, Perdoux R, Reynoud N, Bourdet L, Audebert PA, Moullec JL, Couée I. Stress signalling dynamics of the mitochondrial electron transport chain and oxidative phosphorylation system in higher plants. ANNALS OF BOTANY 2020; 125:721-736. [PMID: 31711195 PMCID: PMC7182585 DOI: 10.1093/aob/mcz184] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/07/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Mitochondria play a diversity of physiological and metabolic roles under conditions of abiotic or biotic stress. They may be directly subjected to physico-chemical constraints, and they are also involved in integrative responses to environmental stresses through their central position in cell nutrition, respiration, energy balance and biosyntheses. In plant cells, mitochondria present various biochemical peculiarities, such as cyanide-insensitive alternative respiration, and, besides integration with ubiquitous eukaryotic compartments, their functioning must be coupled with plastid functioning. Moreover, given the sessile lifestyle of plants, their relative lack of protective barriers and present threats of climate change, the plant cell is an attractive model to understand the mechanisms of stress/organelle/cell integration in the context of environmental stress responses. SCOPE The involvement of mitochondria in this integration entails a complex network of signalling, which has not been fully elucidated, because of the great diversity of mitochondrial constituents (metabolites, reactive molecular species and structural and regulatory biomolecules) that are linked to stress signalling pathways. The present review analyses the complexity of stress signalling connexions that are related to the mitochondrial electron transport chain and oxidative phosphorylation system, and how they can be involved in stress perception and transduction, signal amplification or cell stress response modulation. CONCLUSIONS Plant mitochondria are endowed with a diversity of multi-directional hubs of stress signalling that lead to regulatory loops and regulatory rheostats, whose functioning can amplify and diversify some signals or, conversely, dampen and reduce other signals. Involvement in a wide range of abiotic and biotic responses also implies that mitochondrial stress signalling could result in synergistic or conflicting outcomes during acclimation to multiple and complex stresses, such as those arising from climate change.
Collapse
Affiliation(s)
- Corentin Dourmap
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Solène Roque
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Amélie Morin
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Damien Caubrière
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Margaux Kerdiles
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| | - Kyllian Béguin
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| | - Romain Perdoux
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Nicolas Reynoud
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Lucile Bourdet
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Pierre-Alexandre Audebert
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Julien Le Moullec
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Ivan Couée
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| |
Collapse
|
30
|
Hindy MEL, Conway ME. Redox-Regulated, Targeted Affinity Isolation of NADH-Dependent Protein Interactions with the Branched Chain Aminotransferase Proteins. Methods Mol Biol 2020; 1990:151-163. [PMID: 31148070 DOI: 10.1007/978-1-4939-9463-2_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Isolation and identification of protein targets for redox-active proteins is challenging. The human branched chain aminotransferase (hBCAT) proteins are redox active transaminases that can be regulated through oxidation, S-nitrosation and S-glutathionylation. This metabolic protein was shown to associate with the E1 decarboxylase component of the branched-chain α-keto acid dehydrogenase complex in a NADH-dependent manner, where mutation of the CXXC center was shown to prevent complex formation. To determine if the redox state of the CXXC motif can influence other NADH-dependent protein-protein interactions, proteins were extracted from neuronal cells treated under reduced and oxidized conditions and then isolated using targeted affinity chromatography, resolved using 2D electrophoresis. Select proteins spots were excised and identified using a quadrupole time of flight mass spectrometer (Thermo) with a precursor tolerance of 10 ppm and subsequently analyzed using Proteome Discoverer 2.1 with Swiss-Prot human DB. Mass tolerances for precursor/product were set to 10 ppm/0.6 Da and data were filtered by peptide confidence with PD2.1. It was determined that the protein profile considerably altered in both number and abundance dependent on the redox state of the cell and also on the availability of the redox active thiol groups. The biological relevance of the newly identified partners was determined using DAVID, the bioinformatics database, which indicated that proteins important to cytoskeletal function, protein transport, protein synthesis, chaperone activity, and cell signaling.
Collapse
Affiliation(s)
- Maya E L Hindy
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Myra E Conway
- Department of Applied Sciences, University of the West of England, Bristol, UK.
| |
Collapse
|
31
|
Martí MC, Jiménez A, Sevilla F. Thioredoxin Network in Plant Mitochondria: Cysteine S-Posttranslational Modifications and Stress Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:571288. [PMID: 33072147 PMCID: PMC7539121 DOI: 10.3389/fpls.2020.571288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
Plants are sessile organisms presenting different adaptation mechanisms that allow their survival under adverse situations. Among them, reactive oxygen and nitrogen species (ROS, RNS) and H2S are emerging as components not only of cell development and differentiation but of signaling pathways involved in the response to both biotic and abiotic attacks. The study of the posttranslational modifications (PTMs) of proteins produced by those signaling molecules is revealing a modulation on specific targets that are involved in many metabolic pathways in the different cell compartments. These modifications are able to translate the imbalance of the redox state caused by exposure to the stress situation in a cascade of responses that finally allow the plant to cope with the adverse condition. In this review we give a generalized vision of the production of ROS, RNS, and H2S in plant mitochondria. We focus on how the principal mitochondrial processes mainly the electron transport chain, the tricarboxylic acid cycle and photorespiration are affected by PTMs on cysteine residues that are produced by the previously mentioned signaling molecules in the respiratory organelle. These PTMs include S-oxidation, S-glutathionylation, S-nitrosation, and persulfidation under normal and stress conditions. We pay special attention to the mitochondrial Thioredoxin/Peroxiredoxin system in terms of its oxidation-reduction posttranslational targets and its response to environmental stress.
Collapse
|
32
|
Zafar SA, Patil SB, Uzair M, Fang J, Zhao J, Guo T, Yuan S, Uzair M, Luo Q, Shi J, Schreiber L, Li X. DEGENERATED PANICLE AND PARTIAL STERILITY 1 (DPS1) encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. THE NEW PHYTOLOGIST 2020; 225:356-375. [PMID: 31433495 DOI: 10.1111/nph.16133] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/13/2019] [Indexed: 05/25/2023]
Abstract
Degeneration of apical spikelets and reduced panicle fertility are common reasons for low seed-setting rate in rice (Oryza sativa). However, little is known about the underlying molecular mechanisms. Here, we report a novel degenerated panicle and partial sterility 1 (dps1) mutant that showed panicle apical degeneration and reduced fertility in middle spikelets. dps1 plants were characterized by small whitish anthers with altered cuticle morphology and absence of pollen grains. Amounts of cuticular wax and cutin were significantly reduced in dps1 anthers. Panicles of dps1 plants showed an accumulation of reactive oxygen species (ROS), lower antioxidant activity, and increased programmed cell death. Map-based cloning revealed that DPS1 encodes a mitochondrial-localized protein containing a cystathionine β-synthase domain that showed the highest expression in panicles and anthers. DPS1 physically interacted with mitochondrial thioredoxin proteins Trx1 and Trx20, and it participated in ROS scavenging. Global gene expression analysis in dps1 revealed that biological processes related to fatty acid metabolism and ROS homeostasis were significantly affected, and the expression of key genes involved in wax and cutin biosynthesis were downregulated. These results suggest that DPS1 plays a vital role in regulating ROS homeostasis, anther cuticle formation, and panicle development in rice.
Collapse
Affiliation(s)
- Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Muhammad Uzair
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tingting Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Muhammad Uzair
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Luo
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, D-53115, Germany
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
33
|
da Fonseca-Pereira P, Souza PVL, Hou LY, Schwab S, Geigenberger P, Nunes-Nesi A, Timm S, Fernie AR, Thormählen I, Araújo WL, Daloso DM. Thioredoxin h2 contributes to the redox regulation of mitochondrial photorespiratory metabolism. PLANT, CELL & ENVIRONMENT 2020; 43:188-208. [PMID: 31378951 DOI: 10.1111/pce.13640] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 05/18/2023]
Abstract
Thioredoxins (TRXs) are important proteins involved in redox regulation of metabolism. In plants, it has been shown that the mitochondrial metabolism is regulated by the mitochondrial TRX system. However, the functional significance of TRX h2, which is found at both cytosol and mitochondria, remains unclear. Arabidopsis plants lacking TRX h2 showed delayed seed germination and reduced respiration alongside impaired stomatal and mesophyll conductance, without impacting photosynthesis under ambient O2 conditions. However, an increase in the stoichiometry of photorespiratory CO2 release was found during O2 -dependent gas exchange measurements in trxh2 mutants. Metabolite profiling of trxh2 leaves revealed alterations in key metabolites of photorespiration and in several metabolites involved in respiration and amino acid metabolism. Decreased abundance of serine hydroxymethyltransferase and glycine decarboxylase (GDC) H and L subunits as well as reduced NADH/NAD+ ratios were also observed in trxh2 mutants. We further demonstrated that the redox status of GDC-L is altered in trxh2 mutants in vivo and that recombinant TRX h2 can deactivate GDC-L in vitro, indicating that this protein is redox regulated by the TRX system. Collectively, our results demonstrate that TRX h2 plays an important role in the redox regulation of mitochondrial photorespiratory metabolism.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Paulo V L Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, 60451-970, Brazil
| | - Liang-Yu Hou
- Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Saskia Schwab
- Plant Physiology Department, University of Rostock, Rostock, D-18051, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Adriano Nunes-Nesi
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, D-18051, Germany
| | - Alisdair R Fernie
- Department Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Ina Thormählen
- Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, 60451-970, Brazil
| |
Collapse
|
34
|
Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination. Proc Natl Acad Sci U S A 2019; 117:741-751. [PMID: 31871212 DOI: 10.1073/pnas.1910501117] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Seeds preserve a far developed plant embryo in a quiescent state. Seed metabolism relies on stored resources and is reactivated to drive germination when the external conditions are favorable. Since the switchover from quiescence to reactivation provides a remarkable case of a cell physiological transition we investigated the earliest events in energy and redox metabolism of Arabidopsis seeds at imbibition. By developing fluorescent protein biosensing in intact seeds, we observed ATP accumulation and oxygen uptake within minutes, indicating rapid activation of mitochondrial respiration, which coincided with a sharp transition from an oxidizing to a more reducing thiol redox environment in the mitochondrial matrix. To identify individual operational protein thiol switches, we captured the fast release of metabolic quiescence in organello and devised quantitative iodoacetyl tandem mass tag (iodoTMT)-based thiol redox proteomics. The redox state across all Cys peptides was shifted toward reduction from 27.1% down to 13.0% oxidized thiol. A large number of Cys peptides (412) were redox switched, representing central pathways of mitochondrial energy metabolism, including the respiratory chain and each enzymatic step of the tricarboxylic acid (TCA) cycle. Active site Cys peptides of glutathione reductase 2, NADPH-thioredoxin reductase a/b, and thioredoxin-o1 showed the strongest responses. Germination of seeds lacking those redox proteins was associated with markedly enhanced respiration and deregulated TCA cycle dynamics suggesting decreased resource efficiency of energy metabolism. Germination in aged seeds was strongly impaired. We identify a global operation of thiol redox switches that is required for optimal usage of energy stores by the mitochondria to drive efficient germination.
Collapse
|
35
|
Schwarzlï Nder M, Fuchs P. Keeping Mitochondrial Alternative Oxidase Reduced and Active In Vivo Does Not Require Thioredoxin o1. PLANT & CELL PHYSIOLOGY 2019; 60:2357-2359. [PMID: 31504877 DOI: 10.1093/pcp/pcz173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Markus Schwarzlï Nder
- Institute of Plant Biology and Biotechnology (IBBP), Plant Energy Biology, University of M�nster, Schlossplatz 8, D M�nster, Germany
| | - Philippe Fuchs
- Institute of Plant Biology and Biotechnology (IBBP), Plant Energy Biology, University of M�nster, Schlossplatz 8, D M�nster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D Bonn, Germany
| |
Collapse
|
36
|
Florez-Sarasa I, Obata T, Del-Saz NSFN, Reichheld JP, Meyer EH, Rodriguez-Concepcion M, Ribas-Carbo M, Fernie AR. The Lack of Mitochondrial Thioredoxin TRXo1 Affects In Vivo Alternative Oxidase Activity and Carbon Metabolism under Different Light Conditions. PLANT & CELL PHYSIOLOGY 2019; 60:2369-2381. [PMID: 31318380 DOI: 10.1093/pcp/pcz123] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/17/2019] [Indexed: 05/04/2023]
Abstract
The alternative oxidase (AOX) constitutes a nonphosphorylating pathway of electron transport in the mitochondrial respiratory chain that provides flexibility to energy and carbon primary metabolism. Its activity is regulated in vitro by the mitochondrial thioredoxin (TRX) system which reduces conserved cysteines residues of AOX. However, in vivo evidence for redox regulation of the AOX activity is still scarce. In the present study, the redox state, protein levels and in vivo activity of the AOX in parallel to photosynthetic parameters were determined in Arabidopsis knockout mutants lacking mitochondrial trxo1 under moderate (ML) and high light (HL) conditions, known to induce in vivo AOX activity. In addition, 13C- and 14C-labeling experiments together with metabolite profiling were performed to better understand the metabolic coordination between energy and carbon metabolism in the trxo1 mutants. Our results show that the in vivo AOX activity is higher in the trxo1 mutants at ML while the AOX redox state is apparently unaltered. These results suggest that mitochondrial thiol redox systems are responsible for maintaining AOX in its reduced form rather than regulating its activity in vivo. Moreover, the negative regulation of the tricarboxylic acid cycle by the TRX system is coordinated with the increased input of electrons into the AOX pathway. Under HL conditions, while AOX and photosynthesis displayed similar patterns in the mutants, photorespiration is restricted at the level of glycine decarboxylation most likely as a consequence of redox imbalance.
Collapse
Affiliation(s)
- Igor Florez-Sarasa
- Max-Planck-Institut f�r Molekulare Pflanzenphysiologie, Am M�hlenberg 1, Potsdam-Golm, Germany
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Toshihiro Obata
- Max-Planck-Institut f�r Molekulare Pflanzenphysiologie, Am M�hlenberg 1, Potsdam-Golm, Germany
- University of Nebraska Lincoln, 1901 Vine Street, Lincoln, NE, USA
| | - Nï Stor Fernï Ndez Del-Saz
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Spain
- Departamento de Bot�nica, Facultad de Ciencias Naturales y Oceanogr�ficas, Universidad de Concepci�n, Concepci�n, Chile
| | | | - Etienne H Meyer
- Max-Planck-Institut f�r Molekulare Pflanzenphysiologie, Am M�hlenberg 1, Potsdam-Golm, Germany
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Miquel Ribas-Carbo
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Spain
| | - Alisdair R Fernie
- Max-Planck-Institut f�r Molekulare Pflanzenphysiologie, Am M�hlenberg 1, Potsdam-Golm, Germany
| |
Collapse
|
37
|
Selles B, Moseler A, Rouhier N, Couturier J. Rhodanese domain-containing sulfurtransferases: multifaceted proteins involved in sulfur trafficking in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4139-4154. [PMID: 31055601 DOI: 10.1093/jxb/erz213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 05/25/2023]
Abstract
Sulfur is an essential element for the growth and development of plants, which synthesize cysteine and methionine from the reductive assimilation of sulfate. Besides its incorporation into proteins, cysteine is the building block for the biosynthesis of numerous sulfur-containing molecules and cofactors. The required sulfur atoms are extracted either directly from cysteine by cysteine desulfurases or indirectly after its catabolic transformation to 3-mercaptopyruvate, a substrate for sulfurtransferases (STRs). Both enzymes are transiently persulfidated in their reaction cycle, i.e. the abstracted sulfur atom is bound to a reactive cysteine residue in the form of a persulfide group. Trans-persulfidation reactions occur when sulfur atoms are transferred to nucleophilic acceptors such as glutathione, proteins, or small metabolites. STRs form a ubiquitous, multigenic protein family. They are characterized by the presence of at least one rhodanese homology domain (Rhd), which usually contains the catalytic, persulfidated cysteine. In this review, we focus on Arabidopsis STRs, presenting the sequence characteristics of all family members as well as their biochemical and structural features. The physiological functions of particular STRs in the biosynthesis of molybdenum cofactor, thio-modification of cytosolic tRNAs, arsenate tolerance, cysteine catabolism, and hydrogen sulfide formation are also discussed.
Collapse
Affiliation(s)
| | - Anna Moseler
- Université de Lorraine, Inra, IAM, Nancy, France
| | | | | |
Collapse
|
38
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
39
|
Deschoenmaeker FDR, Mihara S, Niwa T, Taguchi H, Nomata J, Wakabayashi KI, Hisabori T. Disruption of the Gene trx-m1 Impedes the Growth of Anabaena sp. PCC 7120 under Nitrogen Starvation. PLANT & CELL PHYSIOLOGY 2019; 60:1504-1513. [PMID: 31038682 DOI: 10.1093/pcp/pcz056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
Cyanobacteria possess a sophisticated photosynthesis-based metabolism with admirable plasticity. This plasticity is possible via the deep regulation network, the thiol-redox regulations operated by thioredoxin (hereafter, Trx). In this context, we characterized the Trx-m1-deficient mutant strain of Anabaena sp., PCC 7120 (shortly named A.7120), cultivated under nitrogen limitation. Trx-m1 appears to coordinate the nitrogen response and its absence induces large changes in the proteome. Our data clearly indicate that Trx-m1 is crucial for the diazotrophic growth of A.7120. The lack of Trx-m1 resulted in a large differentiation of heterocysts (>20% of total cells), which were barely functional probably due to a weak expression of nitrogenase. In addition, heterocysts of the mutant strain did not display the usual cellular structure of nitrogen-fixative cells. This unveiled why the mutant strain was not able to grow under nitrogen starvation.
Collapse
Affiliation(s)
- Frï Dï Ric Deschoenmaeker
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama, Japan
| | - Shoko Mihara
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama, Japan
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Tokyo Institute of Technology, Nagatsuta-cho, 4259-S2-19 Midori-ku Yokohama, Japan
| | - Hideki Taguchi
- Cell Biology Center, Tokyo Institute of Technology, Nagatsuta-cho, 4259-S2-19 Midori-ku Yokohama, Japan
| | - Jiro Nomata
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama, Japan
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama, Japan
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama, Japan
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
| |
Collapse
|
40
|
Bunik VI. Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance. Antioxid Redox Signal 2019; 30:1911-1947. [PMID: 30187773 DOI: 10.1089/ars.2017.7311] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE This article develops a holistic view on production of reactive oxygen species (ROS) by 2-oxo acid dehydrogenase complexes. Recent Advances: Catalytic and structural properties of the complexes and their components evolved to minimize damaging effects of side reactions, including ROS generation, simultaneously exploiting the reactions for homeostatic signaling. CRITICAL ISSUES Side reactions of the complexes, characterized in vitro, are analyzed in view of protein interactions and conditions in vivo. Quantitative data support prevalence of the forward 2-oxo acid oxidation over the backward NADH oxidation in feeding physiologically significant ROS production by the complexes. Special focus on interactions between the active sites within 2-oxo acid dehydrogenase complexes highlights the central relevance of the complex-bound thiyl radicals in regulation of and signaling by complex-generated ROS. The thiyl radicals arise when dihydrolipoyl residues of the complexes regenerate FADH2 from the flavin semiquinone coproduced with superoxide anion radical in 1e- oxidation of FADH2 by molecular oxygen. FUTURE DIRECTIONS Interaction of 2-oxo acid dehydrogenase complexes with thioredoxins (TRXs), peroxiredoxins, and glutaredoxins mediates scavenging of the thiyl radicals and ROS generated by the complexes, underlying signaling of disproportional availability of 2-oxo acids, CoA, and NAD+ in key metabolic branch points through thiol/disulfide exchange and medically important hypoxia-inducible factor, mammalian target of rapamycin (mTOR), poly (ADP-ribose) polymerase, and sirtuins. High reactivity of the coproduced ROS and thiyl radicals to iron/sulfur clusters and nitric oxide, peroxynitrite reductase activity of peroxiredoxins and transnitrosylating function of thioredoxin, implicate the side reactions of 2-oxo acid dehydrogenase complexes in nitric oxide-dependent signaling and damage.
Collapse
Affiliation(s)
- Victoria I Bunik
- 1 Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,2 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
41
|
Ratajczak E, Małecka A, Ciereszko I, Staszak AM. Mitochondria Are Important Determinants of the Aging of Seeds. Int J Mol Sci 2019; 20:E1568. [PMID: 30925807 PMCID: PMC6479606 DOI: 10.3390/ijms20071568] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022] Open
Abstract
Seeds enable plant survival in harsh environmental conditions, and via seeds, genetic information is transferred from parents to the new generation; this stage provides an opportunity for sessile plants to settle in new territories. However, seed viability decreases over long-term storage due to seed aging. For the effective conservation of gene resources, e.g., in gene banks, it is necessary to understand the causes of decreases in seed viability, not only where the aging process is initiated in seeds but also the sequence of events of this process. Mitochondria are the main source of reactive oxygen species (ROS) production, so they are more quickly and strongly exposed to oxidative damage than other organelles. The mitochondrial antioxidant system is also less active than the antioxidant systems of other organelles, thus such mitochondrial 'defects' can strongly affect various cell processes, including seed aging, which we discuss in this paper.
Collapse
Affiliation(s)
- Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| | - Arleta Małecka
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznań, Poland.
| | - Iwona Ciereszko
- Plant Physiology Department, Institute of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland.
| | - Aleksandra M Staszak
- Plant Physiology Department, Institute of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland.
| |
Collapse
|
42
|
Da Fonseca-Pereira P, Daloso DM, Gago J, Nunes-Nesi A, Araújo WL. On the role of the plant mitochondrial thioredoxin system during abiotic stress. PLANT SIGNALING & BEHAVIOR 2019; 14:1592536. [PMID: 30885041 PMCID: PMC6546141 DOI: 10.1080/15592324.2019.1592536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 05/26/2023]
Abstract
Thiol-disulfide redox exchanges are widely distributed modifications of great importance for metabolic regulation in living cells. In general, the formation of disulfide bonds is controlled by thioredoxins (TRXs), ubiquitous proteins with two redox-active cysteine residues separated by a pair of amino acids. While the function of plastidial TRXs has been extensively studied, the role of the mitochondrial TRX system is much less well understood. Recent studies have demonstrated that the mitochondrial TRXs are required for the proper functioning of the major metabolic pathways, including stomatal function and antioxidant metabolism under sub-optimal conditions including drought and salinity. Furthermore, inactivation of mitochondrial TRX system leads to metabolite adjustments of both primary and secondary metabolism following drought episodes in arabidopsis, and makes the plants more resistant to salt stress. Here we discuss the implications of these findings, which clearly open up several research avenues to achieve a full understanding of the redox control of metabolism under environmental constraining conditions.
Collapse
Affiliation(s)
- Paula Da Fonseca-Pereira
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Danilo M. Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, University of the Balearic Islands, Universitat de les Illes Balears/Institute of Agro-Environmental and Water Economy Research – INAGEA Carretera de Valldemossa, Palma de Mallorca, Spain
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L. Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
43
|
De Smet B, Willems P, Fernandez-Fernandez AD, Alseekh S, Fernie AR, Messens J, Van Breusegem F. In vivo detection of protein cysteine sulfenylation in plastids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:765-778. [PMID: 30394608 DOI: 10.1111/tpj.14146] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 05/04/2023]
Abstract
Protein cysteine thiols are post-translationally modified under oxidative stress conditions. Illuminated chloroplasts are one of the important sources of hydrogen peroxide (H2 O2 ) and are highly sensitive to environmental stimuli, yet a comprehensive view of the oxidation-sensitive chloroplast proteome is still missing. By targeting the sulfenic acid YAP1C-trapping technology to the plastids of light-grown Arabidopsis cells, we identified 132 putatively sulfenylated plastid proteins upon H2 O2 pulse treatment. Almost half of the sulfenylated proteins are enzymes of the amino acid metabolism. Using metabolomics, we observed a reversible decrease in the levels of the amino acids Ala, Asn, Cys, Gln, Glu, His, Ile, Leu, Lys, Phe, Ser, Thr and Val after H2 O2 treatment, which is in line with an anticipated decrease in the levels of the glycolysis and tricarboxylic acid metabolites. Through the identification of an organelle-tailored proteome, we demonstrated that the subcellular targeting of the YAP1C probe enables us to study in vivo cysteine sulfenylation at the organellar level. All in all, the identification of these oxidation events in plastids revealed that several enzymes of the amino acid metabolism rapidly undergo cysteine oxidation upon oxidative stress.
Collapse
Affiliation(s)
- Barbara De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- VIB-VUB Center for Structural Biology, VIB, 1050, Brussels, Belgium
- Brussels Center for Redox Biology, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000, Ghent, Belgium
- Center for Medical Biotechnology, VIB, 9000, Ghent, Belgium
| | - Alvaro D Fernandez-Fernandez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
- Centre of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
- Centre of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Joris Messens
- VIB-VUB Center for Structural Biology, VIB, 1050, Brussels, Belgium
- Brussels Center for Redox Biology, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| |
Collapse
|
44
|
Mata-Pérez C, Spoel SH. Thioredoxin-mediated redox signalling in plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:27-33. [PMID: 30709489 DOI: 10.1016/j.plantsci.2018.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/16/2018] [Accepted: 05/01/2018] [Indexed: 05/26/2023]
Abstract
Activation of plant immune responses is associated with rapid production of vast amounts of reactive oxygen and nitrogen species (ROS/RNS) that dramatically alter cellular redox homeostasis. Even though excessive ROS/RNS accumulation can cause widespread cellular damage and thus constitute a major risk, plant cells have evolved to utilise these molecules as important signalling cues. Particularly their ability to modify redox-sensitive cysteine residues has emerged as a key mechanism to control the activity, conformation, protein-protein interaction and localisation of a growing number of immune signalling proteins. Regulated reversal of cysteine oxidation is dependent on activities of the conserved superfamily of Thioredoxin (TRX) enzymes that function as cysteine reductases. The plant immune system recruits specific TRX enzymes that have the potential to functionally regulate numerous immune signalling proteins. Although our knowledge of different TRX immune targets is now expanding, little remains known about how these enzymes select their substrates, what range of oxidized residues they target, and if they function selectively in different redox-mediated immune signalling pathways. In this review we discuss these questions by examining evidence showing TRX enzymes exhibit novel activities that play important roles in diverse aspects of plant immune signalling.
Collapse
Affiliation(s)
- Capilla Mata-Pérez
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
45
|
Umekawa Y, Ito K. Thioredoxin o-mediated reduction of mitochondrial alternative oxidase in the thermogenic skunk cabbage Symplocarpus renifolius. J Biochem 2019; 165:57-65. [PMID: 30289493 PMCID: PMC6299270 DOI: 10.1093/jb/mvy082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/04/2018] [Indexed: 11/21/2022] Open
Abstract
Thermogenesis in plants involves significant increases in their cyanide-resistant mitochondrial alternative oxidase (AOX) capacity. Because AOX is a non-proton-motive ubiquinol oxidase, the dramatic drop in free energy between ubiquinol and oxygen is dissipated as heat. In the thermogenic skunk cabbage (Symplocarpus renifolius), SrAOX is specifically expressed in the florets. Although SrAOX harbours conserved cysteine residues, the details of the mechanisms underlying its redox regulation are poorly understood. In our present study, the two mitochondrial thioredoxin o cDNAs SrTrxo1 and SrTrxo2, were isolated from the thermogenic florets of S. renifolius. The deduced amino acid sequences of the protein products revealed that SrTrxo2 specifically lacks the region corresponding to the α3-helix in SrTrxo1. Expression analysis of thermogenic and non-thermogenic S. renifolius tissues indicated that the SrTrxo1 and SrAOX transcripts are predominantly expressed together in thermogenic florets, whereas SrTrxo2 transcripts are almost undetectable in any tissue. Finally, functional in vitro analysis of recombinant SrTrxo1 and mitochondrial membrane fractions of thermogenic florets indicated its reducing activity on SrAOX proteins. Taken together, these results indicate that SrTrxo1 is likely to play a role in the redox regulation of SrAOX in S. renifolius thermogenic florets.
Collapse
Affiliation(s)
- Yui Umekawa
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| | - Kikukatsu Ito
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.,Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.,Agri-Innovation Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| |
Collapse
|
46
|
da Fonseca-Pereira P, Daloso DM, Gago J, de Oliveira Silva FM, Condori-Apfata JA, Florez-Sarasa I, Tohge T, Reichheld JP, Nunes-Nesi A, Fernie AR, Araújo WL. The Mitochondrial Thioredoxin System Contributes to the Metabolic Responses Under Drought Episodes in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:213-229. [PMID: 30329109 DOI: 10.1093/pcp/pcy194] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 05/04/2023]
Abstract
Thioredoxins (Trxs) modulate metabolic responses during stress conditions; however, the mechanisms governing the responses of plants subjected to multiple drought events and the role of Trxs under these conditions are not well understood. Here we explored the significance of the mitochondrial Trx system in Arabidopsis following exposure to single and repeated drought events. We analyzed the previously characterized NADPH-dependent Trx reductase A and B double mutant (ntra ntrb) and two independent mitochondrial thioredoxin o1 (trxo1) mutant lines. Following similar reductions in relative water content (∼50%), Trx mutants subjected to two drought cycles displayed a significantly higher maximum quantum efficiency (Fv/Fm) and were less sensitive to drought than their wild-type counterparts and than all genotypes subjected to a single drought event. Trx mutant plants displayed a faster recovery after two cycles of drought, as observed by the higher accumulation of secondary metabolites and higher stomatal conductance. Our results indicate that plants exposed to multiple drought cycles are able to modulate their subsequent metabolic and physiological response, suggesting the occurrence of an exquisite acclimation in stressed Arabidopsis plants. Moreover, this differential acclimation involves the participation of a set of metabolic changes as well as redox poise alteration following stress recovery.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Danilo M Daloso
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Jorge Gago
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
| | | | - Jorge A Condori-Apfata
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Igor Florez-Sarasa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | - Adriano Nunes-Nesi
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
47
|
Dumont S, Rivoal J. Consequences of Oxidative Stress on Plant Glycolytic and Respiratory Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:166. [PMID: 30833954 PMCID: PMC6387960 DOI: 10.3389/fpls.2019.00166] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/31/2019] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are present at low and controlled levels under normal conditions. These reactive molecules can increase to high levels under various biotic and abiotic conditions, resulting in perturbation of the cellular redox state that can ultimately lead to oxidative or nitrosative stress. In this review, we analyze the various effects that result from alterations of redox homeostasis on plant glycolytic pathway and tricarboxylic acid (TCA) cycle. Most documented modifications caused by ROS or RNS are due to the presence of redox-sensitive cysteine thiol groups in proteins. Redox modifications include Cys oxidation, disulfide bond formation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. A growing number of proteomic surveys and biochemical studies document the occurrence of ROS- or RNS-mediated modification in enzymes of glycolysis and the TCA cycle. In a few cases, these modifications have been shown to affect enzyme activity, suggesting an operational regulatory mechanism in vivo. Further changes induced by oxidative stress conditions include the proposed redox-dependent modifications in the subcellular distribution of a putative redox sensor, NAD-glyceraldehyde-3P dehydrogenase and the micro-compartmentation of cytosolic glycolytic enzymes. Data from the literature indicate that oxidative stress may induce complex changes in metabolite pools in central carbon metabolism. This information is discussed in the context of our understanding of plant metabolic response to oxidative stress.
Collapse
|
48
|
Deschoenmaeker F, Mihara S, Niwa T, Taguchi H, Wakabayashi KI, Hisabori T. The Absence of Thioredoxin m1 and Thioredoxin C in Anabaena sp. PCC 7120 Leads to Oxidative Stress. PLANT & CELL PHYSIOLOGY 2018; 59:2432-2441. [PMID: 30101290 DOI: 10.1093/pcp/pcy163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Thioredoxin (Trx) family proteins perform redox regulation in cells, and they are involved in several other biological processes (e.g. oxidative stress tolerance). In the filamentous cyanobacterium Anabaena sp. PCC7120 (A. 7120), eight Trx isoforms have been identified via genomic analysis. Among these Trx isoforms, the absence of Trx-m1 and TrxC appears to result in oxidative stress in A. 7120 together with alterations of the thylakoid membrane structure and phycobiliprotein composition. To analyze the physiological changes in these Trx disruptants thoroughly, quantitative proteomics was applied. Certainly, the mutants exhibited similar alterations in the proteome including decreased relative abundance of phycobiliproteins and an increased level of proteins involved in amino acid and carbohydrate metabolism. Nevertheless, the results also indicated that the mutants exhibited changes in the relative abundance of different sets of proteins participating in reactive oxygen species detoxification, such as Fe-SOD in Δtrx-m1 and PrxQ in ΔtrxC, suggesting distinct functions of Trx-m1 and TrxC.
Collapse
Affiliation(s)
- Frédéric Deschoenmaeker
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, Japan
| | - Shoko Mihara
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, Japan
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Tokyo Institute of Technology, Nagatsuta 4259-S2-19, Midori-ku, Yokohama, Japan
| | - Hideki Taguchi
- Cell Biology Center, Tokyo Institute of Technology, Nagatsuta 4259-S2-19, Midori-ku, Yokohama, Japan
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, Japan
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, Japan
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| |
Collapse
|
49
|
Calderón A, Sánchez-Guerrero A, Ortiz-Espín A, Martínez-Alcalá I, Camejo D, Jiménez A, Sevilla F. Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants. PHYSIOLOGIA PLANTARUM 2018; 164:251-267. [PMID: 29446456 DOI: 10.1111/ppl.12708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 05/26/2023]
Abstract
In a changing environment, plants are able to acclimate to new conditions by regulating their metabolism through the antioxidant and redox systems involved in the stress response. Here, we studied a mitochondrial thioredoxin in wild-type (WT) Arabidopis thaliana and two Attrxo1 mutant lines grown in the absence or presence of 100 mM NaCl. Compared to WT plants, no evident phenotype was observed in the mutant plants under control condition, although they had higher number of stomata, loss of water, nitric oxide and carbonyl protein contents as well as higher activity of superoxide dismutase (SOD) and catalase enzymes than WT plants. Under salinity, the mutants presented lower water loss and higher stomatal closure, H2 O2 and lipid peroxidation levels accompanied by higher enzymatic activity of catalase and the different SOD isoenzymes compared to WT plants. These inductions may collaborate in the maintenance of plant integrity and growth observed under saline conditions, possibly as a way to compensate the lack of TRXo1. We discuss the potential of TRXo1 to influence the development of the whole plant under saline conditions, which have great value for the agronomy of plants growing under unfavorable environment.
Collapse
Affiliation(s)
- Aingeru Calderón
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Antonio Sánchez-Guerrero
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Ana Ortiz-Espín
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Isabel Martínez-Alcalá
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Daymi Camejo
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| |
Collapse
|
50
|
Zannini F, Roret T, Przybyla-Toscano J, Dhalleine T, Rouhier N, Couturier J. Mitochondrial Arabidopsis thaliana TRXo Isoforms Bind an Iron⁻Sulfur Cluster and Reduce NFU Proteins In Vitro. Antioxidants (Basel) 2018; 7:E142. [PMID: 30322144 PMCID: PMC6210436 DOI: 10.3390/antiox7100142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
In plants, the mitochondrial thioredoxin (TRX) system generally comprises only one or two isoforms belonging to the TRX h or o classes, being less well developed compared to the numerous isoforms found in chloroplasts. Unlike most other plant species, Arabidopsis thaliana possesses two TRXo isoforms whose physiological functions remain unclear. Here, we performed a structure⁻function analysis to unravel the respective properties of the duplicated TRXo1 and TRXo2 isoforms. Surprisingly, when expressed in Escherichia coli, both recombinant proteins existed in an apo-monomeric form and in a homodimeric iron⁻sulfur (Fe-S) cluster-bridged form. In TRXo2, the [4Fe-4S] cluster is likely ligated in by the usual catalytic cysteines present in the conserved Trp-Cys-Gly-Pro-Cys signature. Solving the three-dimensional structure of both TRXo apo-forms pointed to marked differences in the surface charge distribution, notably in some area usually participating to protein⁻protein interactions with partners. However, we could not detect a difference in their capacity to reduce nitrogen-fixation-subunit-U (NFU)-like proteins, NFU4 or NFU5, two proteins participating in the maturation of certain mitochondrial Fe-S proteins and previously isolated as putative TRXo1 partners. Altogether, these results suggest that a novel regulation mechanism may prevail for mitochondrial TRXs o, possibly existing as a redox-inactive Fe-S cluster-bound form that could be rapidly converted in a redox-active form upon cluster degradation in specific physiological conditions.
Collapse
Affiliation(s)
| | - Thomas Roret
- Université de Lorraine, Inra, IAM, F-54000 Nancy, France.
- CNRS, LBI2M, Sorbonne Universités, F-29680 Roscoff, France.
| | - Jonathan Przybyla-Toscano
- Université de Lorraine, Inra, IAM, F-54000 Nancy, France.
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden.
| | | | | | | |
Collapse
|