1
|
Kitashova A, Brodsky V, Chaturvedi P, Pierides I, Ghatak A, Weckwerth W, Nägele T. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154116. [PMID: 37839392 DOI: 10.1016/j.jplph.2023.154116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
Collapse
Affiliation(s)
- Anastasia Kitashova
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Vladimir Brodsky
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Palak Chaturvedi
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Iro Pierides
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Arindam Ghatak
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Wolfram Weckwerth
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| |
Collapse
|
2
|
Van den Ende W. Different evolutionary pathways to generate plant fructan exohydrolases. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4620-4623. [PMID: 35950463 PMCID: PMC9366321 DOI: 10.1093/jxb/erac305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article comments on: Oku S, Ueno K, Sawazaki Y, Maeda T, Jitsuyama Y, Suzuki T, Onodera S, Fujino K, Shimura H. 2022. Functional characterization and vacuolar localization of fructan exohydrolase derived from onion (Allium cepa). Journal of Experimental Botany 73,4908–4922.
Collapse
|
3
|
Morin A, Kadi F, Porcheron B, Vriet C, Maurousset L, Lemoine R, Pourtau N, Doidy J. Genome-wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought. PHYSIOLOGIA PLANTARUM 2022; 174:e13673. [PMID: 35307852 DOI: 10.1111/ppl.13673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 05/11/2023]
Abstract
Invertases are key enzymes for carbon metabolism, cleaving sucrose into energy-rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene families is critically scarce in legumes. Here, we performed a systematic search for invertase families in 16 Fabaceae genomes. For instance, we identified 19 invertase genes in the model plant Medicago and 17 accessions in the agronomic crop Pisum sativum. Our comprehensive phylogenetic analysis sets a milestone for the scientific community as we propose a new nomenclature to correctly name plant invertases. Thus, neutral invertases were classified into four clades of cytosolic invertase (CINV). Acid invertases were classified into two cell wall invertase clades (CWINV) and two vacuolar invertase clades (VINV). Then, we explored transcriptional regulation of the pea invertase family, focusing on seed development and water stress. Invertase expression decreased sharply from embryogenesis to seed-filling stages, consistent with higher sucrose and lower monosaccharide contents. The vacuolar invertase PsVINV1.1 clearly marked the transition between both developmental stages. We hypothesize that the predominantly expressed cell wall invertase, PsCWINV1.2, may drive sucrose unloading towards developing seeds. The same candidates, PsVINV1.1 and PsCWINV1.2, were also regulated by water deficit during embryonic stage. We suggest that PsVINV1.1 along with vacuolar sugar transporters maintain cellular osmotic pressure and PsCWINV1.2 control hexose provision, thereby ensuring embryo survival in drought conditions. Altogether, our findings provide novel insights into the regulation of plant carbon metabolism in a challenging environment.
Collapse
Affiliation(s)
- Amélie Morin
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Fadia Kadi
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Benoit Porcheron
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Cécile Vriet
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Laurence Maurousset
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Rémi Lemoine
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Nathalie Pourtau
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Joan Doidy
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| |
Collapse
|
4
|
De Caroli M, Barozzi F, Renna L, Piro G, Di Sansebastiano GP. Actin and Microtubules Differently Contribute to Vacuolar Targeting Specificity during the Export from the ER. MEMBRANES 2021; 11:membranes11040299. [PMID: 33924184 PMCID: PMC8074374 DOI: 10.3390/membranes11040299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Plants rely on both actin and microtubule cytoskeletons to fine-tune sorting and spatial targeting of membranes during cell growth and stress adaptation. Considerable advances have been made in recent years in the comprehension of the relationship between the trans-Golgi network/early endosome (TGN/EE) and cytoskeletons, but studies have mainly focused on the transport to and from the plasma membrane. We address here the relationship of the cytoskeleton with different endoplasmic reticulum (ER) export mechanisms toward vacuoles. These emergent features of the plant endomembrane traffic are explored with an in vivo approach, providing clues on the traffic regulation at different levels beyond known proteins’ functions and interactions. We show how traffic of vacuolar markers, characterized by different vacuolar sorting determinants, diverges at the export from the ER, clearly involving different components of the cytoskeleton.
Collapse
Affiliation(s)
- Monica De Caroli
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
| | - Fabrizio Barozzi
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
- Department of Plant Physiology, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Luciana Renna
- Department of Biology, University of Florence, 50121 Firenze, Italy;
| | - Gabriella Piro
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
| | - Gian-Pietro Di Sansebastiano
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
- Correspondence: ; Tel.: +39-0832-298-714
| |
Collapse
|
5
|
Oh J, Wilson M, Hill K, Leftley N, Hodgman C, Bennett MJ, Swarup R. Arabidopsis antibody resources for functional studies in plants. Sci Rep 2020; 10:21945. [PMID: 33319797 PMCID: PMC7738516 DOI: 10.1038/s41598-020-78689-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/20/2020] [Indexed: 11/29/2022] Open
Abstract
Here we report creation of a unique and a very valuable resource for Plant Scientific community worldwide. In this era of post-genomics and modelling of multi-cellular systems using an integrative systems biology approach, better understanding of protein localization at sub-cellular, cellular and tissue levels is likely to result in better understanding of their function and role in cell and tissue dynamics, protein–protein interactions and protein regulatory networks. We have raised 94 antibodies against key Arabidopsis root proteins, using either small peptides or recombinant proteins. The success rate with the peptide antibodies was very low. We show that affinity purification of antibodies massively improved the detection rate. Of 70 protein antibodies, 38 (55%) antibodies could detect a signal with high confidence and 22 of these antibodies are of immunocytochemistry grade. The targets include key proteins involved in hormone synthesis, transport and perception, membrane trafficking related proteins and several sub cellular marker proteins. These antibodies are available from the Nottingham Arabidopsis Stock Centre.
Collapse
Affiliation(s)
- Jaesung Oh
- School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK.,Plasma Technology Research Center, National Fusion Research Institute, Gunsan, Jeollabuk-do, 573-540, Republic of Korea
| | - Michael Wilson
- School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK
| | - Kristine Hill
- School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK
| | - Nicola Leftley
- School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK
| | - Charlie Hodgman
- School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK
| | - Malcolm J Bennett
- School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK
| | - Ranjan Swarup
- School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
6
|
Kim S, Nie H, Jun B, Kim J, Lee J, Kim S, Kim E, Kim S. Functional genomics by integrated analysis of transcriptome of sweet potato (Ipomoea batatas (L.) Lam.) during root formation. Genes Genomics 2020; 42:581-596. [PMID: 32240514 DOI: 10.1007/s13258-020-00927-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Sweet potato is easily propagated by cuttings. But the molecular biological mechanism of adventitious root formation are not yet clear. OBJECTIVE To understand the molecular mechanisms of adventitious root formation from stem cuttings in sweet potato. METHODS RNA-seq analysis was performed using un-rooted stem (0 day) and rooted stem (3 days). Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, comparison with Arabidopsis transcription factors (TFs) of DEGs were conducted to investigate the characteristics of genes and TFs involved in root formation. In addition, qRT-PCR analysis using roots at 0, 3, 6, 9, and 12 days after planting was performed to confirm RNA-seq reliability and related genes expression. RESULTS 42,459 representative transcripts and 2092 DEGs were obtained through the RNA-seq analysis. The DEGs indicated the GO terms related to the single-organism metabolic process and cell periphery, and involved in the biosynthesis of secondary metabolites, and phenylpropanoid biosynthesis in KEGG pathways. The comparison with Arabidopsis thaliana TF database showed that 3 TFs (WRKY, NAC, bHLH) involved in root formation of sweet potato. qRT-PCR analysis, which was conducted to confirm the reliability of RNA-seq analysis, indicated that some metabolisms including oxidative stress and wounding, transport, hormone may be involved in adventitious root formation. CONCLUSIONS The detected genes related to secondary metabolism, some hormone (auxin, gibberellin), transports, etc. and 3 TFs (WRKY, NAC, bHLH) may have functions in adventitious roots formation. This results provide valuable resources for future research on the adventitious root formation of sweet potato.
Collapse
Affiliation(s)
- Sujung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Hualin Nie
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Byungki Jun
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea.,NH Seed Research Development Center, Nonghyup Agribusiness Group Incorporation, Anseong, 17558, Korea
| | - Jiseong Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Jeongeun Lee
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Ekyune Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Gyeongbuk, 38430, Korea
| | - Sunhyung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea.
| |
Collapse
|
7
|
Shen LB, Qin YL, Qi ZQ, Niu Y, Liu ZJ, Liu WX, He H, Cao ZM, Yang Y. Genome-Wide Analysis, Expression Profile, and Characterization of the Acid Invertase Gene Family in Pepper. Int J Mol Sci 2018; 20:ijms20010015. [PMID: 30577540 PMCID: PMC6337152 DOI: 10.3390/ijms20010015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023] Open
Abstract
Catalytic decomposition of sucrose by acid invertases (AINVs) under acidic conditions plays an important role in the development of sink organs in plants. To reveal the function of AINVs in the development of pepper fruits, nine AINV genes of pepper were identified. Protein sequencing and phylogenetic analysis revealed that the CaAINV family may be divided into cell wall invertases (CaCWINV1⁻7) and vacuolar invertases (CaVINV1⁻2). CaAINVs contain conserved regions and protein structures typical of the AINVs in other plants. Gene expression profiling indicated that CaCWINV2 and CaVINV1 were highly expressed in reproductive organs but differed in expression pattern. CaCWINV2 was mainly expressed in buds and flowers, while CaVINV1 was expressed in developmental stages, such as the post-breaker stage. Furthermore, invertase activity of CaCWINV2 and CaVINV1 was identified via functional complementation in an invertase-deficient yeast. Optimum pH for CaCWINV2 and CaVINV1 was found to be 4.0 and 4.5, respectively. Gene expression and enzymatic activity of CaCWINV2 and CaVINV1 indicate that these AINV enzymes may be pivotal for sucrose hydrolysis in the reproductive organs of pepper.
Collapse
Affiliation(s)
- Long-Bin Shen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Yu-Ling Qin
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Zhi-Qiang Qi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Yu Niu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Zi-Ji Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Wei-Xia Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Huang He
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Zhen-Mu Cao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| | - Yan Yang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou 571737, China.
| |
Collapse
|
8
|
Slugina MA, Shchennikova AV, Kochieva EZ. TAI vacuolar invertase orthologs: the interspecific variability in tomato plants (Solanum section Lycopersicon). Mol Genet Genomics 2017. [PMID: 28634826 DOI: 10.1007/s00438-017-1336-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the genetic mechanisms underlying carbohydrate metabolism can promote the development of biotechnological advances in fruit plants. The flesh tomato fruit represents an ideal system for examining the role of sucrose cleavage enzymes in fruit development, and wild tomato species differing in storage sugars serve as an excellent research material for this purpose. Plant vacuolar invertase is a key enzyme of sucrose metabolism in the sink organs. In the present study, we identified complete gene sequences encoding the TAI vacuolar invertase in 11 wild and one cultivated tomato accessions of the Solanum section Lycopersicon. The average level of interspecific polymorphism in TAI genes was 8.58%; however, in the green-fruited tomatoes, the TAI genes contained 100 times more SNPs than those in the red-fruited accessions. The TAI proteins demonstrated 8% variability, whereas the red-fruited species had none. A TAI-based phylogenetic tree revealed two main clusters containing self-compatible and self-incompatible species, which concurs with the previous crossability-based division and demonstrates that the TAI genes reflect the evolutionary relationships between the red- and green-fruited tomatoes. Furthermore, we detected differential expression patterns of the TAI genes in the fruits of wild and cultivated tomatoes, which corresponded to sugar composition. The polymorphism analysis of the TAI acid invertases of Solanum section Lycopersicon species will contribute to the understanding of the genetic potential of TAI genes to impact tomato breeding through genetic engineering of the carbohydrate composition in the fruit.
Collapse
Affiliation(s)
- M A Slugina
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russia. .,Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia.
| | - A V Shchennikova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russia
| | - E Z Kochieva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russia.,Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
| |
Collapse
|
9
|
Farci D, Collu G, Kirkpatrick J, Esposito F, Piano D. RhVI1 is a membrane-anchored vacuolar invertase highly expressed in Rosa hybrida L. petals. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3303-12. [PMID: 27083698 PMCID: PMC4892724 DOI: 10.1093/jxb/erw148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Invertases are a widespread group of enzymes that catalyse the conversion of sucrose into fructose and glucose. Plants invertases and their substrates are essential factors that play an active role in primary metabolism and in cellular differentiation and by these activities they sustain development and growth. Being naturally present in multiple isoforms, invertases are known to be highly differentiated and tissue specific in such a way that every isoform is characteristic of a specific part of the plant. In this work, we report the identification of the invertase RhVI1 that was found to be highly expressed in rose petals. A characterization of this protein revealed that RhVI1 is a glycosylated membrane-anchored protein associated with the cytosolic side of the vacuolar membrane which occurs in vivo in a monomeric form. Purification yields have shown that the levels of expression decreased during the passage of petals from buds to mature and pre-senescent flowers. Moreover, the activity assay indicates RhVI1 to be an acidic vacuolar invertase. The physiological implications of these findings are discussed, suggesting a possible role of this protein during anthesis.
Collapse
Affiliation(s)
- Domenica Farci
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, Viale S. Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Gabriella Collu
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, Viale S. Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Joanna Kirkpatrick
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Francesca Esposito
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari,Cittadella Universitaria di Monserrato, SS554, 09042 Monserrato, Cagliari, Italy
| | - Dario Piano
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, Viale S. Ignazio da Laconi 13, 09123 Cagliari, Italy
| |
Collapse
|
10
|
Palaniswamy H, Syamaladevi DP, Mohan C, Philip A, Petchiyappan A, Narayanan S. Vacuolar targeting of r-proteins in sugarcane leads to higher levels of purifiable commercially equivalent recombinant proteins in cane juice. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:791-807. [PMID: 26183462 PMCID: PMC11389112 DOI: 10.1111/pbi.12430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 05/07/2023]
Abstract
Sugarcane is an ideal candidate for biofarming applications because of its large biomass, rapid growth rate, efficient carbon fixation pathway and a well-developed storage tissue system. Vacuoles occupy a large proportion of the storage parenchyma cells in the sugarcane stem, and the stored products can be harvested as juice by crushing the cane. Hence, for the production of any high-value protein, it could be targeted to the lytic vacuoles so as to extract and purify the protein of interest from the juice. There is no consensus vacuolar-targeting sequence so far to target any heterologous proteins to sugarcane vacuole. Hence, in this study, we identified an N-terminal 78-bp-long putative vacuolar-targeting sequence from the N-terminal domain of unknown function (DUF) in Triticum aestivum 6-SFT (sucrose: fructan 6-fructosyl transferase). In this study, we have generated sugarcane transgenics with gene coding for the green fluorescent protein (GFP) fused with the vacuolar-targeting determinants at the N-terminal driven by a strong constitutive promoter (Port ubi882) and demonstrated the targeting of GFP to the vacuoles. In addition, we have also generated transgenics with His-tagged β-glucuronidase (GUS) and aprotinin targeted to the lytic vacuole, and these two proteins were isolated and purified from the transgenic sugarcane and compared with commercially available protein samples. Our studies have demonstrated that the novel vacuolar-targeting determinant could localize recombinant proteins (r-proteins) to the vacuole in high concentrations and such targeted r-proteins can be purified from the juice with a few simple steps.
Collapse
Affiliation(s)
| | - Divya P Syamaladevi
- Sugarcane Breeding Institute (ICAR-SBI), Coimbatore, Tamilnadu, India
- Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, Telangana, India
| | | | - Anna Philip
- Sugarcane Breeding Institute (ICAR-SBI), Coimbatore, Tamilnadu, India
| | | | | |
Collapse
|
11
|
Cloning, 3D modeling and expression analysis of three vacuolar invertase genes from cassava (Manihot Esculenta Crantz). Molecules 2014; 19:6228-45. [PMID: 24838076 PMCID: PMC6270675 DOI: 10.3390/molecules19056228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 11/23/2022] Open
Abstract
Vacuolar invertase is one of the key enzymes in sucrose metabolism that irreversibly catalyzes the hydrolysis of sucrose to glucose and fructose in plants. In this research, three vacuolar invertase genes, named MeVINV1-3, and with 653, 660 and 639 amino acids, respectively, were cloned from cassava. The motifs of NDPNG (β-fructosidase motif), RDP and WECVD, which are conserved and essential for catalytic activity in the vacuolar invertase family, were found in MeVINV1 and MeVINV2. Meanwhile, in MeVINV3, instead of NDPNG we found the motif NGPDG, in which the three amino acids GPD are different from those in other vacuolar invertases (DPN) that might result in MeVINV3 being an inactivated protein. The N-terminal leader sequence of MeVINVs contains a signal anchor, which is associated with the sorting of vacuolar invertase to vacuole. The overall predicted 3D structure of the MeVINVs consists of a five bladed β-propeller module at N-terminus domain, and forms a β-sandwich module at the C-terminus domain. The active site of the protein is situated in the β-propeller module. MeVINVs are classified in two subfamilies, α and β groups, in which α group members of MeVINV1 and 2 are highly expressed in reproductive organs and tuber roots (considered as sink organs), while β group members of MeVINV3 are highly expressed in leaves (source organs). All MeVINVs are highly expressed in leaves, while only MeVINV1 and 2 are highly expressed in tubers at cassava tuber maturity stage. Thus, MeVINV1 and 2 play an important role in sucrose unloading and starch accumulation, as well in buffering the pools of sucrose, hexoses and sugar phosphates in leaves, specifically at later stages of plant development.
Collapse
|
12
|
Gershlick DC, de Marcos Lousa C, Foresti O, Lee AJ, Pereira EA, daSilva LL, Bottanelli F, Denecke J. Golgi-dependent transport of vacuolar sorting receptors is regulated by COPII, AP1, and AP4 protein complexes in tobacco. THE PLANT CELL 2014; 26:1308-29. [PMID: 24642936 PMCID: PMC4001386 DOI: 10.1105/tpc.113.122226] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/10/2014] [Accepted: 02/18/2014] [Indexed: 05/02/2023]
Abstract
The cycling of vacuolar sorting receptors (VSRs) between early and late secretory pathway compartments is regulated by signals in the cytosolic tail, but the exact pathway is controversial. Here, we show that receptor targeting in tobacco (Nicotiana tabacum) initially involves a canonical coat protein complex II-dependent endoplasmic reticulum-to-Golgi bulk flow route and that VSR-ligand interactions in the cis-Golgi play an important role in vacuolar sorting. We also show that a conserved Glu is required but not sufficient for rate-limiting YXX-mediated receptor trafficking. Protein-protein interaction studies show that the VSR tail interacts with the μ-subunits of plant or mammalian clathrin adaptor complex AP1 and plant AP4 but not that of plant and mammalian AP2. Mutants causing a detour of full-length receptors via the cell surface invariantly cause the secretion of VSR ligands. Therefore, we propose that cycling via the plasma membrane is unlikely to play a role in biosynthetic vacuolar sorting under normal physiological conditions and that the conserved Ile-Met motif is mainly used to recover mistargeted receptors. This occurs via a fundamentally different pathway from the prevacuolar compartment that does not mediate recycling. The role of clathrin and clathrin-independent pathways in vacuolar targeting is discussed.
Collapse
Affiliation(s)
- David C. Gershlick
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Carine de Marcos Lousa
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Andrew J. Lee
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | - Jurgen Denecke
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
13
|
Functional characterization of a vacuolar invertase from Solanum lycopersicum: post-translational regulation by N-glycosylation and a proteinaceous inhibitor. Biochimie 2013; 101:39-49. [PMID: 24374160 DOI: 10.1016/j.biochi.2013.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/13/2013] [Indexed: 11/22/2022]
Abstract
Plant vacuolar invertases, which belong to family 32 of glycoside hydrolases (GH32), are key enzymes in sugar metabolism. They hydrolyse sucrose into glucose and fructose. The cDNA encoding a vacuolar invertase from Solanum lycopersicum (TIV-1) was cloned and heterologously expressed in Pichia pastoris. The functional role of four N-glycosylation sites in TIV-1 has been investigated by site-directed mutagenesis. Single mutations to Asp of residues Asn52, Asn119 and Asn184, as well as the triple mutant (Asn52, Asn119 and Asn184), lead to enzymes with reduced specific invertase activity and thermostability. Expression of the N516D mutant, as well as of the quadruple mutant (N52D, N119D, N184D and N516D) could not be detected, indicating that these mutations dramatically affected the folding of the protein. Our data indicate that N-glycosylation is important for TIV-1 activity and that glycosylation of N516 is crucial for recombinant enzyme stability. Using a functional genomics approach a new vacuolar invertase inhibitor of S. lycopersicum (SolyVIF) has been identified. SolyVIF cDNA was cloned and heterologously expressed in Escherichia coli. Specific interactions between SolyVIF and TIV-1 were investigated by an enzymatic approach and surface plasmon resonance (SPR). Finally, qRT-PCR analysis of TIV-1 and SolyVIF transcript levels showed a specific tissue and developmental expression. TIV-1 was mainly expressed in flowers and both genes were expressed in senescent leaves.
Collapse
|