1
|
Shah K, Zhu X, Zhang T, Chen J, Chen J, Qin Y. The poetry of nitrogen and carbon metabolic shifts: The role of C/N in pitaya phase change. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112240. [PMID: 39208994 DOI: 10.1016/j.plantsci.2024.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Pitaya, a desert plant, has an underexplored flowering mechanism due to a lack of functional validation assays. This study reveals that the transition from vegetative to generative growth in pitaya is regulated by significant metabolic shift, underscoring the importance of understanding and address the challenging issue pitaya's phase change. Lateral buds from 6-years-old 'Guanhuahong' pitaya (Hylocereus monacanthus) plants were collected on April 8th, 18th, and 28th 2023, representing early, middle, and late stages of phase transition, respectively. Results showed diminished nitrogen levels concurrent with increased carbon levels and carbon-to-nitrogen (C/N) ratios during pitaya phase transition. Transcriptomic analysis identified batches of differentially expressed genes (DEGs) involved in downregulating nitrogen metabolism and upregulating carbon metabolism. These batches of genes play a central role in the metabolic shifts that predominantly regulate the transition to the generative phase in pitaya. This study unveils the intricate regulatory network involving 6 sugar synthesis and transport, 11 photoperiod (e.g., PHY, CRY, PIF) and 6 vernalization (e.g., VIN3) pathways, alongside 11 structural flowering genes (FCA, FLK, LFY, AGL) out of a vast array of potential candidates in pitaya phase change. These findings provide insights into the metabolic pathways involved in pitaya's phase transition, offering a theoretical framework for managing flowering, guiding breeding strategies to optimize flowering timing and improve crop yields under varied nitrogen conditions.
Collapse
Affiliation(s)
- Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyue Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Tiantian Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
An ZS, Zuo CW, Mao J, Ma ZH, Li WF, Chen BH. Integration of mRNA-miRNA Reveals the Possible Role of PyCYCD3 in Increasing Branches Through Bud-Notching in Pear ( Pyrus bretschneideri Rehd.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2928. [PMID: 39458875 PMCID: PMC11511176 DOI: 10.3390/plants13202928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Bud-notching in pear varieties with weak-branches enhances branch development, hormone distribution, and germination, promoting healthier growth and improving early yield. To examine the regulatory mechanisms of endogenous hormones on lateral bud germination in Pyrus spp. (cv. 'Huangguan') (Pyrus bretschneideri Rehd.), juvenile buds were collected from 2-year-old pear trees. Then, a comprehensive study, including assessments of endogenous hormones, germination and branching rates, RNA-seq analysis, and gene function analysis in these lateral buds was conducted. The results showed that there was no significant difference in germination rate between the control and bud-notching pear trees, but the long branch rate was significantly increased in bud-notching pear trees compared to the control (p < 0.05). After bud-notching, there was a remarkable increase in IAA and BR levels in the pruned section of shoots, specifically by 141% and 93%, respectively. However, the content of ABA in the lateral buds after bud-notching was not significantly different from the control. Based on RNA-seq analysis, a notable proportion of the differentially expressed genes (DEGs) were linked to the plant hormone signal transduction pathway. Notably, the brassinosteroid signaling pathway seemed to have the closest connection with the branching ability of pear with the related genes encoding BRI1 and CYCD3, which showed significant differences between lateral buds. Finally, the heterologous expression of PyCYCD3 has a positive regulatory effect on the increased Arabidopsis growth and branching numbers. Therefore, the PyCYCD3 was identified as an up-regulated gene that is induced via brassinosteroid (BR) and could act as a conduit, transforming bud-notching cues into proliferative signals, thereby governing lateral branching mechanisms in pear trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China (Z.-H.M.)
| |
Collapse
|
3
|
Luo S, Sun M, Liang W, Zhang W, Wang T, Xie Y. Morphological and physiological investigations reveal the regulatory effect of exogenous paclobutrazol on flowering promotion by winter warming in Chaenomeles speciosa 'Changshouguan'. Sci Rep 2024; 14:17694. [PMID: 39085421 PMCID: PMC11291738 DOI: 10.1038/s41598-024-68847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
The application of exogenous paclobutrazol (PP333) can improve the ability of winter warming to promote flowering in Chaenomeles speciosa, but the underlying mechanism is unclear. In this study, the cultivar 'Changshouguan' was sprayed with different concentrations of PP333 during flower bud differentiation, and the changes in the anatomical structures and physiological characteristics of the flower buds during the differentiation process, as well as the growth state of the flower buds and the effect on flowering promotion after winter warming treatment, were comprehensively investigated. The results showed that different concentrations of PP333 could advance the flowering time of 'Changshouguan' by 15-24 d under the warming treatment and increase the flowering duration to 17 d compared with those under the warming treatment alone (CK), and 1000 mg/L was the best treatment. Compared with the CK treatment, the PP333 treatment decreased the contents of indole acetic acid (IAA) and gibberellic acid (GAs) and increased the contents of zeatin ribosides (ZRs) and abscisic acid (ABA), thus changing the balance of hormones during flower bud differentiation. The inflection point (low point) of the curve shapes of the ZRs/GAs and ZRs/IAA ratios appeared significantly earlier, which showed a pattern consistent with soluble sugar and protein content and antioxidant activity. Interestingly, the above changes also corresponded to earlier flowering times during the warming process. Taken together, these results indicate that spraying an appropriate concentration of PP333 in the early stage of 'Changshouguan' flower bud differentiation promotes the early differentiation of flower buds and early flowering under winter warming treatment by altering their endogenous hormone content and homeostasis and changing their physiological state. The key to maintaining a relatively long flowering period in plants in the PP333 treatment group after flowering promotion was the increased accumulation of sugars and proteins.
Collapse
Affiliation(s)
- Siqian Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Meng Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenchao Liang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Wangxiang Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Tao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| | - Yinfeng Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
4
|
Ma Y, Fu W, Wan S, Li Y, Mao H, Khalid E, Zhang W, Ming R. Gene Regulatory Network Controlling Flower Development in Spinach ( Spinacia oleracea L.). Int J Mol Sci 2024; 25:6127. [PMID: 38892313 PMCID: PMC11173220 DOI: 10.3390/ijms25116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Spinach (Spinacia oleracea L.) is a dioecious, diploid, wind-pollinated crop cultivated worldwide. Sex determination plays an important role in spinach breeding. Hence, this study aimed to understand the differences in sexual differentiation and floral organ development of dioecious flowers, as well as the differences in the regulatory mechanisms of floral organ development of dioecious and monoecious flowers. We compared transcriptional-level differences between different genders and identified differentially expressed genes (DEGs) related to spinach floral development, as well as sex-biased genes to investigate the flower development mechanisms in spinach. In this study, 9189 DEGs were identified among the different genders. DEG analysis showed the participation of four main transcription factor families, MIKC_MADS, MYB, NAC, and bHLH, in spinach flower development. In our key findings, abscisic acid (ABA) and gibberellic acid (GA) signal transduction pathways play major roles in male flower development, while auxin regulates both male and female flower development. By constructing a gene regulatory network (GRN) for floral organ development, core transcription factors (TFs) controlling organ initiation and growth were discovered. This analysis of the development of female, male, and monoecious flowers in spinach provides new insights into the molecular mechanisms of floral organ development and sexual differentiation in dioecious and monoecious plants in spinach.
Collapse
Affiliation(s)
- Yaying Ma
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.M.); (W.F.)
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Wenhui Fu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.M.); (W.F.)
| | - Suyan Wan
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Yikai Li
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Haoming Mao
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Ehsan Khalid
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Wenping Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Ray Ming
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| |
Collapse
|
5
|
Kumar A, Mushtaq M, Kumar P, Sharma DP, Gahlaut V. Insights into flowering mechanisms in apple (Malus × domestica Borkh.) amidst climate change: An exploration of genetic and epigenetic factors. Biochim Biophys Acta Gen Subj 2024; 1868:130593. [PMID: 38408683 DOI: 10.1016/j.bbagen.2024.130593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Apple (Malus × domestica Borkh.) holds a prominent position among global temperate fruit crops, with flowering playing a crucial role in both production and breeding. This review delves into the intricate mechanisms governing apple flowering amidst the backdrop of climate change, acknowledging the profound influence of external and internal factors on biennial bearing, flower bud quality, and ultimately, fruit quality. Notably, the challenge faced in major apple production regions is not an inadequacy of flowers but an excess, leading to compromised fruit quality necessitating thinning practices. Climate change exacerbates these challenges, rendering apple trees more susceptible to crop failure due to unusual weather events, such as reduced winter snowfall, early spring cold weather, and hailstorms during flowering and fruit setting. Altered climatic conditions, exemplified by increased spring warming coupled with sub-freezing temperatures, negatively impact developing flower buds and decrease overall crop production. Furthermore, changing winter conditions affect chilling accumulation, disrupting flower development and synchronicity. Although the physiological perception of apple flowering has been reviewed in the past, the genetic, epigenetic, and multi-omics regulatory mechanisms governing floral induction and flowering are still rarely discussed in the case of apple flowering. This article comprehensively reviews the latest literature encompassing all aspects of apple flowering, aiming to broaden our understanding and address flowering challenges while also laying a solid foundation for future research in developing cultivars that are ideally adapted to climate change.
Collapse
Affiliation(s)
- Anshul Kumar
- MS Swaminathan School of Agriculture, Shoolini University, Bhajol, Solan, Himachal Pradesh 173229, India
| | - Muntazir Mushtaq
- MS Swaminathan School of Agriculture, Shoolini University, Bhajol, Solan, Himachal Pradesh 173229, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. YS Parmar University of Horticulture and Forestry Nauni Solan, Himachal Pradesh 173230, India.
| | - Dharam Paul Sharma
- Department of Fruit Science, Dr. YS Parmar University of Horticulture and Forestry Nauni Solan, Himachal Pradesh 173230, India
| | - Vijay Gahlaut
- University Centre for Research & Development, Chandigarh University, Punjab 140413, India.
| |
Collapse
|
6
|
Liu J, Miao P, Qin W, Hu W, Wei Z, Ding W, Zhang H, Wang Z. A novel single nucleotide mutation of TFL1 alters the plant architecture of Gossypium arboreum through changing the pre-mRNA splicing. PLANT CELL REPORTS 2023; 43:26. [PMID: 38155318 PMCID: PMC10754752 DOI: 10.1007/s00299-023-03086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 12/30/2023]
Abstract
KEY MESSAGE A single nucleotide mutation from G to A at the 201st position changed the 5' splice site and deleted 31 amino acids in the first exon of GaTFL1. Growth habit is an important agronomic trait that plays a decisive role in the plant architecture and crop yield. Cotton (Gossypium) tends to indeterminate growth, which is unsuitable for the once-over mechanical harvest system. Here, we identified a determinate growth mutant (dt1) in Gossypium arboreum by EMS mutagenesis, in which the main axis was terminated with the shoot apical meristem (SAM) converted into flowers. The map-based cloning of the dt1 locus showed a single nucleotide mutation from G to A at the 201st positions in TERMINAL FLOWER 1 (GaTFL1), which changed the alternative RNA 5' splice site and resulted in 31 amino acids deletion and loss of function of GaTFL1. Comparative transcriptomic RNA-Seq analysis identified many transporters responsible for the phytohormones, auxin, sugar, and flavonoids, which may function downstream of GaTFL1 to involve the plant architecture regulation. These findings indicate a novel alternative splicing mechanism involved in the post-transcriptional modification and TFL1 may function upstream of the auxin and sugar pathways through mediating their transport to determine the SAM fate and coordinate the vegetative and reproductive development from the SAM of the plant, which provides clues for the TFL1 mechanism in plant development regulation and provide research strategies for plant architecture improvement.
Collapse
Affiliation(s)
- Ji Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Pengfei Miao
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenqiang Qin
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhenzhen Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wusi Ding
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Huan Zhang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
7
|
Yu JJ, Cui J, Huang H, Cen DC, Liu F, Xu ZF, Wang Y. Identification of flowering genes in Camellia perpetua by comparative transcriptome analysis. Funct Integr Genomics 2023; 24:2. [PMID: 38066213 DOI: 10.1007/s10142-023-01267-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Camellia perpetua has the excellent characteristic of flowering multiple times throughout the year, which is of great importance to solve the problem of "short flowering period" and "low fresh flower yield" in the yellow Camellia industry at present. Observations of flowering phenology have demonstrated that most floral buds of C. perpetua were formed by the differentiation of axillary buds in the scales at the base of the terminal buds of annual branches. However, the molecular mechanism of flowering in C. perpetua is still unclear. In this study, we conducted a comparative transcriptomic study of the terminal buds and their basal flower buds in March (spring) and September (autumn) using RNA-seq and found that a total of 11,067 genes were significantly differentially expressed in these two periods. We identified 27 genes related to gibberellin acid (GA) synthesis, catabolism, and signal transduction during floral bud differentiation. However, treatment of the terminal buds and axillary buds of C. perpetua on annual branch with GA3 did not induce floral buds at the reproductive growth season (in August) but promoted shoot sprouting. Moreover, 203 flowering genes were identified from the C. perpetua transcriptome library through homology alignment, including flowering integrators LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO), as well as MADS-box, SQUAMOSA PROMOTER BINDING PROTEIN-box (SBP-box), and TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) genes, which were specifically upregulated in floral buds and were likely involved in flowering in C. perpetua. The floral inhibitor CperTFL1b was identified and cloned from C. perpetua, and its expression level was specifically regulated in terminal buds in autumn. Ectopic overexpression of CperTFL1b delayed flowering time and produced abnormal inflorescence and floral organs in Arabidopsis, suggesting that CperTFL1b inhibits flowering. In conclusion, this study deepens our understanding of the molecular mechanism of blooms throughout the year in C. perpetua and provides a helpful reference for cultivating new varieties of yellow Camellia with improved flowering traits.
Collapse
Affiliation(s)
- Jing-Jing Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530000, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530000, China
| | - Jia Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530000, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530000, China
| | - Han Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530000, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530000, China
| | - Dong-Can Cen
- Guangxi Yuanzhiyuan Ecological Agriculture Investment Co., Ltd., Nanning, 530212, China
| | - Fang Liu
- Nanning Tree Garden, Nanning, 530031, China
| | - Zeng-Fu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530000, China.
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530000, China.
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530000, China.
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530000, China.
| |
Collapse
|
8
|
Lin W, Liu S, Xiao X, Sun W, Lu X, Gao Y, He J, Zhu Z, Wu Q, Zhang X. Integrative Analysis of Metabolome and Transcriptome Provides Insights into the Mechanism of Flower Induction in Pineapple ( Ananas comosus (L.) Merr.) by Ethephon. Int J Mol Sci 2023; 24:17133. [PMID: 38138962 PMCID: PMC10742410 DOI: 10.3390/ijms242417133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Exogenous ethylene is commonly utilized to initiate flower induction in pineapple (Ananas comosus (L.) Merr.). However, the molecular mechanisms and metabolic changes involved are not well understood. In this study, we explored the genetic network and metabolic shifts in the 'Comte de Paris' pineapple variety during ethylene-induced flowering. This was achieved through an integrative analysis of metabolome and transcriptome profiles at vegetative shoot apexes (0 d after ethephon treatment named BL_0d), the stage of bract primordia (8 d after ethephon treatment named BL_8d), stage of flower primordia (18 d after ethephon treatment named BL_18d), and the stage of stopped floret differentiation (34 d after ethephon treatment named BL_34d). We isolated and identified 804 metabolites in the pineapple shoot apex and inflorescence, categorized into 24 classes. Notably, 29, 31, and 46 metabolites showed significant changes from BL_0d to BL_8d, BL_8d to BL_18d, and BL_18d to BL_34d, respectively. A marked decrease in indole was observed, suggesting its role as a characteristic metabolite during flower induction. Transcriptomic analysis revealed 956, 1768, and 4483 differentially expressed genes (DEGs) for BL_0d vs. BL_8d, BL_8d vs. BL_18d, and BL_18d vs. BL_34d, respectively. These DEGs were significantly enriched in carbohydrate metabolism and hormone signaling pathways, indicating their potential involvement in flower induction. Integrating metabolomic and transcriptomic data, we identified several candidate genes, such as Agamous-Like9 (AGL9), Ethylene Insensitive 3-like (ETIL3), Apetala2 (AP2), AP2-like ethylene-responsive transcription factor ANT (ANT), and Sucrose synthase 2 (SS2), that play potentially crucial roles in ethylene-induced flower induction in pineapple. We also established a regulatory network for pineapple flower induction, correlating metabolites and DEGs, based on the Arabidopsis thaliana pathway as a reference. Overall, our findings offer a deeper understanding of the metabolomic and molecular mechanisms driving pineapple flowering.
Collapse
Affiliation(s)
- Wenqiu Lin
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Shenghui Liu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Xiou Xiao
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
| | - Weisheng Sun
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
| | - Xinhua Lu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Yuyao Gao
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Junjun He
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
| | - Zhuying Zhu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
| | - Qingsong Wu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Xiumei Zhang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| |
Collapse
|
9
|
Reig C, García-Lorca A, Martínez-Fuentes A, Mesejo C, Agustí M. Warm temperature during floral bud transition turns off EjTFL1 gene expression and promotes flowering in Loquat (Eriobotrya japonica Lindl.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111810. [PMID: 37500016 DOI: 10.1016/j.plantsci.2023.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
The Rosaceae family includes several deciduous woody species whose flower development extends over two consecutive growing seasons with a winter dormant period in between. Loquat (Eriobotrya japonica Lindl.) belongs to this family, but it is an evergreen species whose flower bud initiation and flowering occur within the same growing year. Vegetative growth dominates from spring to late summer when terminal buds bloom as panicles. Thus, its floral buds do not undergo winter dormancy until flowering, but a summer heat period of dormancy is required for floral bud differentiation, and that is why we used loquat to study the mechanism by which this summer rest period contributes to floral differentiation of Rosaceae species. As for the deciduous species, the bud transition to the generative stage is initiated by the floral integrator genes. There is evidence that combinations of environmental signals and internal cues (plant hormones) control the expression of TFL1, but the mechanism by which this gene regulates its expression in loquat needs to be clarified for a better understanding of its floral initiation and seasonal growth cycles. Under high temperatures (>25ºC) after floral bud inductive period, EjTFL1 expression decreases during meristem transition to the reproductive stage, and the promoters of flowering (EjAP1 and EjLFY) increase, indicating that the floral bud differentiation is affected by high temperatures. Monitoring the apical meristem of loquat in June-August of two consecutive years under ambient and thermal controlled conditions showed that under lower temperatures (<25ºC) during the same period, shoot apex did not stop growing and a higher EjTFL1 expression was recorded, preventing the bud to flower. Likewise, temperature directly affects ABA content in the meristem paralleling EjTFL1 expression, suggesting signaling cascades could converge to refine the expression of EjTFL1 under specific conditions (Tª<25ºC) during the floral transition stage.
Collapse
Affiliation(s)
- Carmina Reig
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain.
| | - Ana García-Lorca
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| | - Amparo Martínez-Fuentes
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| | - Carlos Mesejo
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| | - Manuel Agustí
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| |
Collapse
|
10
|
Li S, Chen H, Hong J, Ye X, Wang J, Chen Y, Zhang L, Su Z, Yang Z. Chlorate-induced molecular floral transition revealed by transcriptomes. Open Life Sci 2023; 18:20220612. [PMID: 37528883 PMCID: PMC10389677 DOI: 10.1515/biol-2022-0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/25/2023] [Accepted: 04/08/2023] [Indexed: 08/03/2023] Open
Abstract
Flowering in off-season longan (Dimocarpus longan L.) can be induced effectively by the application of potassium chlorate (KClO3), but the mechanism of the physiological induction is largely unknown to decipher its mechanism and identify genes potentially regulating the process, and comparative analysis via RNA-Seq was performed between vegetative and KClO3-induced floral buds. A total of 18,649 differentially expressed genes (DEGs) were identified between control and treated samples. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that DEGs related to plant hormone signal transduction, mitogen-activated protein kinase (MAPK) signaling pathway, starch and sucrose metabolism, and phenylpropanoid biosynthesis were enriched in our data. A total of 29 flowering-related DEGs were identified in our study, such as APETALA1 (AP1), APETALA2 (AP2), AUXIN RESPONSE FACTOR 3/ETTIN (ARF3), SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 8 (SPL8), AGAMOUS (AG), and others. The upregulation of AP2 and SPL genes indicates that the age-related pathway is activated and influences the floral induction in KClO3-induced longan floral buds by coordinated regulation of genes related to AP1, AG, and ARF3. This study provides a valuable resource for studying molecular mechanisms underlying chlorate-induced floral transition in off-season longan, which may benefit the development and production of off-season tropical/subtropical fruit trees.
Collapse
Affiliation(s)
- Songgang Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, Hainan, China
- College of Horticulture, South China Agricultural University, Guangzhou510642, Guangdong, China
| | - Houbin Chen
- College of Horticulture, South China Agricultural University, Guangzhou510642, Guangdong, China
| | - Jiwang Hong
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, Hainan, China
| | - Xiuxu Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, Hainan, China
| | - Jiabao Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, Hainan, China
| | - Yeyuan Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, Hainan, China
| | - Lei Zhang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, Hainan, China
| | - Zuanxian Su
- College of Horticulture, South China Agricultural University, Guangzhou510642, Guangdong, China
| | - Ziqin Yang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, Hainan, China
| |
Collapse
|
11
|
Xu HX, Meng D, Yang Q, Chen T, Qi M, Li XY, Ge H, Chen JW. Sorbitol induces flower bud formation via the MADS-box transcription factor EjCAL in loquat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1241-1261. [PMID: 36541724 DOI: 10.1111/jipb.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/19/2022] [Indexed: 05/13/2023]
Abstract
Sorbitol is an important signaling molecule in fruit trees. Here, we observed that sorbitol increased during flower bud differentiation (FBD) in loquat (Eriobotrya japonica Lindl.). Transcriptomic analysis suggested that bud formation was associated with the expression of the MADS-box transcription factor (TF) family gene, EjCAL. RNA fluorescence in situ hybridization showed that EjCAL was enriched in flower primordia but hardly detected in the shoot apical meristem. Heterologous expression of EjCAL in Nicotiana benthamiana plants resulted in early FBD. Yeast-one-hybrid analysis identified the ERF12 TF as a binding partner of the EjCAL promoter. Chromatin immunoprecipitation-PCR confirmed that EjERF12 binds to the EjCAL promoter, and β-glucuronidase activity assays indicated that EjERF12 regulates EjCAL expression. Spraying loquat trees with sorbitol promoted flower bud formation and was associated with increased expression of EjERF12 and EjCAL. Furthermore, we identified EjUF3GaT1 as a target gene of EjCAL and its expression was activated by EjCAL. Function characterization via overexpression and RNAi reveals that EjUF3GaT1 is a biosynthetic gene of flavonoid hyperoside. The concentration of the flavonoid hyperoside mirrored that of sorbitol during FBD and exogenous hyperoside treatment also promoted loquat bud formation. We identified a mechanism whereby EjCAL might regulate hyperoside biosynthesis and confirmed the involvement of EjCAL in flower bud formation in planta. Together, these results provide insight into bud formation in loquat and may be used in efforts to increase yield.
Collapse
Affiliation(s)
- Hong-Xia Xu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Dong Meng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100000, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Qing Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100000, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Ting Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100000, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Meng Qi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100000, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Xiao-Ying Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hang Ge
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jun-Wei Chen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
12
|
Liu Y, Lyu T, Lyu Y. Study on the Flower Induction Mechanism of Hydrangea macrophylla. Int J Mol Sci 2023; 24:ijms24097691. [PMID: 37175398 PMCID: PMC10178854 DOI: 10.3390/ijms24097691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The flower induction of Hydrangea macrophylla "Endless Summer" is regulated by a complex gene network that involves multiple signaling pathways to ensure continuous flowering throughout the growing season, but the molecular determinants of flower induction are not yet clear. In this study, genes potentially involved in signaling pathway mediating the regulatory mechanism of flower induction were identified through the transcriptomic profiles, and a hypothetical model for this regulatory mechanism was obtained by an analysis of the available transcriptomic data, suggesting that sugar-, hormone-, and flowering-related genes participated in the flower induction process of H. macrophylla "Endless Summer". The expression profiles of the genes involved in the biosynthesis and metabolism of sugar showed that the beta-amylase gene BAM1 displayed a high expression level at the BS2 stage and implied the hydrolysis of starch. It may be a signaling molecule that promotes the transition from vegetative growth to reproductive growth in H. macrophylla "Endless Summer". Complex hormone regulatory networks involved in abscisic acid (ABA), auxin (IAA), zeatin nucleoside (ZR), and gibberellin (GA) also induced flower formation in H. macrophylla. ABA participated in flower induction by regulating flowering genes. The high content of IAA and the high expression level of the auxin influx carrier gene LAX5 at the BS2 stage suggested that the flow of auxin between sources and sinks in H. macrophylla is involved in the regulation of floral induction as a signal. In addition, flowering-related genes were mainly involved in the photoperiodic pathway, the aging pathway, and the gibberellin pathway. As a result, multiple pathways, including the photoperiodic pathway, the aging pathway, and the gibberellin pathway, which were mainly mediated by crosstalk between sugar and hormone signals, regulated the molecular network involved in flower induction in H. macrophylla "Endless Summer".
Collapse
Affiliation(s)
- Yun Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tong Lyu
- Beijing Flower Engineering Technology Research Center, Plant Institute, China National Botanical Garden North Park, Beijing 100093, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
13
|
Xuan L, Wang Q, Liu Z, Xu B, Cheng S, Zhang Y, Lu D, Dong B, Zhang D, Zhang L, Ma J, Shen Y. Metabolic analysis of the regulatory mechanism of sugars on secondary flowering in Magnolia. BMC Mol Cell Biol 2022; 23:56. [DOI: 10.1186/s12860-022-00458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Magnolia, a traditional and important ornamental plant in urban greening, has been cultivated for about 2000 years in China for its elegant flower shape and gorgeous flower color. Most varieties of Magnolia bloom once a year in spring, whereas a few others, such as Magnolia liliiflora Desr. ‘Hongyuanbao’, also bloom for the second time in summer or early autumn. Such a twice flowering trait is desirable for its high ornamental value, while its underlying mechanism remains unclear.
Methods
Paraffin section was used to show the flowering time and phenotypic changes of M. liliiflora ‘Hongyuanbao’ during the twice flowering periods from March 28 to August 25, 2018. Gas chromatography-mass spectrometry (GC-MS) was then performed to explore the chemical metabolites through the twice flower bud differentiation process in ‘Hongyuanbao’, and the metabolites were screened and identified by orthogonal projection to latent structures discriminant analysis (OPLS-DA). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis (KEGG) was used to reveal the relationship between the sugar metabolites and twice-flowering characteristic. To further investigate the potential role of sucrose and trehalose on flowering regulation of ‘Hongyuanbao’, the plants once finished the spring flowering were regularly sprayed with sucrose and trehalose solutions at 30 mM, 60 mM, and 90 mM concentrations from April 22, 2019. The flower bud differentiation processes of sprayed plants were observed and the expression patterns of the genes involved in sucrose and trehalose metabolic pathways were studied by quantitative reverse transcription PCR (qRT-PCR).
Results
It showed that ‘Hongyuanbao’ could complete flower bud differentiation twice in a year and flowered in both spring and summer. The metabolites of flower bud differentiation had a significant variation between the first and second flower buds. Compared to the first flower bud differentiation process, the metabolites in the sucrose and trehalose metabolic pathways were significantly up-regulated during the second flower bud differentiation process. Besides that, the expression levels of a number of trehalose-6-phosphate synthase (TPS) genes including MlTPS1, MlTPS5, MlTPS6, MlTPS7 and MlTPS9 were substantially increased in the second flower differentiation process compared with the first process. Exogenous treatments indicated that compared to the control plants (sprayed with water, CK), all three concentrations of trehalose could accelerate flowering and the effect of 60 mM concentration was the most significant. For the sucrose foliar spray, only the 60 mM concentration accelerated flowering compared with CK. It suggested that different concentration of trehalose and sucrose might have different effects. Expression analysis showed that sucrose treatment increased the transcription levels of MlTPS5 and MlTPS6, whereas trehalose treatment increased MlTPS1, showing that different MlTPS genes took part in sucrose and trehalose metabolic pathways respectively. The expression levels of a number of flowering-related genes, such as MlFT, MlLFY, and MlSPL were also increased in response to the sprays of sucrose and trehalose.
Conclusions
We provide a novel insight into the effect of sucrose and trehalose on the flowering process in Magnolia. Under the different sugar contents treatments, the time of flower bud differentiation of Magnolia was advanced. Induced and accelerated flowering in response to sucrose and trehalose foliar spray, coupled with elevated expression of trehalose regulatory and response genes, suggests that secondary flower bud formation is a promoted by altered endogenous sucrose and trehalose levels. Those results give a new understanding of sucrose and trehalose on twice-flowering in Magnolia and provide a preliminary speculation for inducing and accelerating the flowering process in Magnolia.
Collapse
|
14
|
Liang F, Xu W, Wu H, Zheng B, Liang Q, Li Y, Wang S. Widely targeted metabolite profiling of mango stem apex during floral induction by compond of mepiquat chloride, prohexadione-calcium and uniconazole. PeerJ 2022; 10:e14458. [PMID: 36530389 PMCID: PMC9753738 DOI: 10.7717/peerj.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022] Open
Abstract
Background Insufficient low temperatures in winter and soil residues caused by paclobutrazol (PBZ) application pose a considerable challenge for mango floral induction (FI). Gibberellin inhibitors SPD (compound of mepiquat chloride, prohexadione-calcium and uniconazole) had a significant influence on enhancing the flowering rate and yield of mango for two consecutive years (2020-2021). Researchers have indicated that FI is regulated at the metabolic level; however, little is known about the metabolic changes during FI in response to SPD treatment. Methods Here, ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based widely targeted metabolomic analysis was carried out to assess the metabolic differences in the mango stem apex during different stage of mango FI (30, 80, 100 days after SPD/water treatment). Results A total of 582 compounds were annotated and 372 metabolites showed two-fold differences in abundance (variable importance in projection, VIP ≥ 1 and fold change, FC≥ 2 or≤ 0.5) between buds at 30, 80, 100 days after SPD/water treatment or between buds under different treatment. Lipids, phenolic acids, amino acids, carbohydrates, and vitamins were among metabolites showing significant differences over time after SPD treatment. Here, 18 out of 20 lipids, including the lysophosphatidylethanolamine (12, LPE), lysophosphatidylcholine (7, LPC), and free fatty acids (1, FA), were significantly upregulated from 80 to 100 days after SPD treatment comared to water treatment. Meanwhile, the dormancy release of mango buds from 80 to 100 days after SPD treatment was accompanied by the accumulation of proline, ascorbic acid, carbohydrates, and tannins. In addition, metabolites, such as L-homocysteine, L-histidine, and L-homomethionine, showed more than a ten-fold difference in relative abundance from 30 to 100 days after SPD treatment, however, there were no significant changes after water treatment. The present study reveals novel metabolites involved in mango FI in response to SPD, which would provide a theoretical basis for utilizing SPD to induce mango flowering.
Collapse
Affiliation(s)
- Fei Liang
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China,Binhai Agricultural College of Guangdong Ocean University, Zhanjiang, China
| | - Wentian Xu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Hongxia Wu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Bin Zheng
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Qingzhi Liang
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Yingzhi Li
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang, China
| | - Songbiao Wang
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
15
|
Cross-Talk between Transcriptome Analysis and Dynamic Changes of Carbohydrates Identifies Stage-Specific Genes during the Flower Bud Differentiation Process of Chinese Cherry ( Prunus pseudocerasus L.). Int J Mol Sci 2022; 23:ijms232415562. [PMID: 36555203 PMCID: PMC9778666 DOI: 10.3390/ijms232415562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Flower bud differentiation is crucial to reproductive success in plants. In the present study, RNA-Seq and nutrients quantification were used to identify the stage-specific genes for flower bud differentiation with buds which characterize the marked change during flower bud formation from a widely grown Chinese cherry (Prunus pseudocerasus L.) cultivar 'Manaohong'. A KEGG enrichment analysis revealed that the sugar metabolism pathways dynamically changed. The gradually decreasing trend in the contents of total sugar, soluble sugar and protein implies that the differentiation was an energy-consuming process. Changes in the contents of D-glucose and sorbitol were conformed with the gene expression trends of bglX and SORD, respectively, which at least partially reflects a key role of the two substances in the transition from physiological to morphological differentiation. Further, the WRKY and SBP families were also significantly differentially expressed during the vegetative-to-reproductive transition. In addition, floral meristem identity genes, e.g., AP1, AP3, PI, AGL6, SEP1, LFY, and UFO demonstrate involvement in the specification of the petal and stamen primordia, and FPF1 might promote the onset of morphological differentiation. Conclusively, the available evidence justifies the involvement of sugar metabolism in the flower bud differentiation of Chinese cherry, and the uncovered candidate genes are beneficial to further elucidate flower bud differentiation in cherries.
Collapse
|
16
|
Belhassine F, Pallas B, Pierru-Bluy S, Martinez S, Fumey D, Costes E. A genotype-specific architectural and physiological profile is involved in the flowering regularity of apple trees. TREE PHYSIOLOGY 2022; 42:2306-2318. [PMID: 35951430 DOI: 10.1093/treephys/tpac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
In polycarpic plants, meristem fate varies within individuals in a given year. In perennials, the proportion of floral induction (FI) in meristems also varies between consecutive years and among genotypes of a given species. Previous studies have suggested that FI of meristems could be determined by the within-plant competition for carbohydrates and by hormone signaling as key components of the flowering pathway. At the genotypic level, variability in FI was also associated with variability in architectural traits. However, the part of genotype-dependent variability in FI that can be explained by either tree architecture or tree physiology is still not fully understood. This study aimed at deciphering the respective effect of architectural and physiological traits on FI variability within apple trees by comparing six genotypes with contrasted architectures. Shoot type demography as well as the flowering and fruit production patterns were followed over 6 years and characterized by different indexes. Architectural morphotypes were then defined based on architectural traits using a clustering approach. For two successive years, non-structural starch content in leaf, stem and meristems, and hormonal contents (gibberellins, cytokinins, auxin and abscisic acid) in meristems were quantified and correlated to FI within-tree proportions. Based on a multi-step regression analysis, cytokinins and gibberellins content in meristem, starch content in leaves and the proportion of long shoots in tree annual growth were shown to contribute to FI. Although the predictive linear model of FI was common to all genotypes, each of the explicative variables had a different weight in FI determination, depending on the genotype. Our results therefore suggest both a common determination model and a genotype-specific architectural and physiological profile linked to its flowering behavior.
Collapse
Affiliation(s)
- Fares Belhassine
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, TA A-108/01 Avenue d'Agropolis, 34398 Montpellier Cedex 5, France
- ITK, 34830, Clapiers, France
| | - Benoît Pallas
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, TA A-108/01 Avenue d'Agropolis, 34398 Montpellier Cedex 5, France
| | - Sylvie Pierru-Bluy
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, TA A-108/01 Avenue d'Agropolis, 34398 Montpellier Cedex 5, France
| | - Sébastien Martinez
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, TA A-108/01 Avenue d'Agropolis, 34398 Montpellier Cedex 5, France
| | | | - Evelyne Costes
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, TA A-108/01 Avenue d'Agropolis, 34398 Montpellier Cedex 5, France
| |
Collapse
|
17
|
Milyaev A, Kofler J, Moya YAT, Lempe J, Stefanelli D, Hanke MV, Flachowsky H, von Wirén N, Wünsche JN. Profiling of phytohormones in apple fruit and buds regarding their role as potential regulators of flower bud formation. TREE PHYSIOLOGY 2022; 42:2319-2335. [PMID: 35867427 PMCID: PMC9912367 DOI: 10.1093/treephys/tpac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Apple (Malus × domestica Borkh.) cropping behavior, if not regulated, is often manifested by high yields of small-sized fruit in so called ON-years, which are usually followed by strongly reduced crop loads in OFF-years. Such cropping pattern is defined as biennial bearing and causes significant losses in apple production. The growth of apple fruit overlaps with the formation of flower buds, which remain dormant until the following spring. Earlier works proposed that some fruit-derived mobile compounds, as e.g., phytohormones, could suppress flower bud formation that thereby leads to biennial bearing. We addressed this hypothesis by analyzing 39 phytohormones in apple seeds, fruit flesh and by measuring phytohormone export from the fruits of the biennial bearing cultivar 'Fuji' and of the regular bearing cultivar 'Gala'. Moreover, we analyzed the same compounds in bourse buds from fruiting (ON-trees) and non-fruiting (OFF-trees) spurs of both apple cultivars over the period of flower bud formation. Our results showed that apple fruit exported at least 14 phytohormones including indole-3-acetic acid and gibberellin A3; however, their influence on flower bud formation was inconclusive. A gibberellin-like compound, which was detected exclusively in bourse buds, was significantly more abundant in bourse buds from ON-trees compared with OFF-trees. Cultivar differences were marked by the accumulation of trans-zeatin-O-glucoside in bourse buds of 'Gala' ON-trees, whereas the levels of this compound in 'Gala' OFF were significantly lower and comparable to those in 'Fuji' ON- and OFF-trees. Particular phytohormones including five cytokinin forms as well as abscisic acid and its degradation products had higher levels in bourse buds from OFF-trees compared with ON-trees and were therefore proposed as potential promotors of flower bud initiation. The work discusses regulatory roles of phytohormones in flower bud formation in apple based on the novel and to date most comprehensive phytohormone profiles of apple fruit and buds.
Collapse
Affiliation(s)
| | - Julian Kofler
- Institute of Crop Science, Section of Crop Physiology of Specialty Crops (340f), University of Hohenheim, Emil-Wolff-Street 25, 70599 Stuttgart, Germany
| | - Yudelsy Antonia Tandron Moya
- Department Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Janne Lempe
- Julius Kühn-Institute (JKI), Institute for Breeding Research on Fruit Crops, Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Dario Stefanelli
- Department of Primary Industries and Regional Development, Government of Western Australia, Locked Bag 7, 6258 Manjimup, Australia
| | - Magda-Viola Hanke
- Julius Kühn-Institute (JKI), Institute for Breeding Research on Fruit Crops, Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institute (JKI), Institute for Breeding Research on Fruit Crops, Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Nicolaus von Wirén
- Department Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Jens-Norbert Wünsche
- Institute of Crop Science, Section of Crop Physiology of Specialty Crops (340f), University of Hohenheim, Emil-Wolff-Street 25, 70599 Stuttgart, Germany
| |
Collapse
|
18
|
Shah K, Wang M, Li X, Shang W, Wang S, Han M, Ren X, Tian J, An N, Xing L. Transcriptome analysis reveals dual action of salicylic acid application in the induction of flowering in Malus domestica. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111433. [PMID: 36029897 DOI: 10.1016/j.plantsci.2022.111433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In the apple tree, insufficient flower bud production is an intractable challenge, and very little information is available in this field due to the fact that research done in this sector is very rare owing to its extended life cycles and low rate of genetic transformation. Here we display novel changes and events in spur buds of Malus × domestica trees after they were exposed to salicylic acid (SA) treatment during the flower induction period. We found a significant increase in morphological indexes, followed by a wider and well-defined shoot apical meristem in SA-treated spur buds. Additionally, we observed increased oxidative stress markers and enzymatic antioxidants in control-treated buds during the flower induction period, while non-enzymatic antioxidants were recorded higher in SA-treated buds. Maximum flowering was observed in SA-treated trees in the next year. Furthermore, ultra-high-performance liquid chromatography (u-HPLC) analysis displays that SA treatment enhances SA and indole acetic acid (IAA), while having an antagonistic effect on gibberellin (GA). At different time points, transcriptome analysis was conducted to analyze the transcriptional response of CK and SA treated buds. Pathway enrichment was detected in differentially expressed genes (DEGs). Agamous (AGL) and SQUAMOSA-promoter binding protein-like (SPL) family related flowering genes display a positive signal for the increased flowering in SA-treated trees, which confirms our findings. As far as we know, there is no report available on the response of spur buds to SA treatment during the flower induction period. This data provides a new theoretical reference for the management of apple tree flowering and also provides an essential basis for future analysis of the regulation and control of flowering in M. domestica.
Collapse
Affiliation(s)
- Kamran Shah
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Mengxue Wang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Xiaolong Li
- Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Sciences, PR China
| | - Wei Shang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Shujin Wang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Jianwen Tian
- Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Sciences, PR China.
| | - Na An
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China.
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
19
|
Transcriptome Analysis Reveals Putative Induction of Floral Initiation by Old Leaves in Tea-Oil Tree (Camellia oleifera ‘changlin53’). Int J Mol Sci 2022; 23:ijms232113021. [PMID: 36361817 PMCID: PMC9655362 DOI: 10.3390/ijms232113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Floral initiation is a major phase change in the spermatophyte, where developmental programs switch from vegetative growth to reproductive growth. It is a key phase of flowering in tea-oil trees that can affect flowering time and yield, but very little is known about the molecular mechanism of floral initiation in tea-oil trees. A 12-year-old Camellia oleifera (cultivar ‘changlin53’) was the source of experimental materials in the current study. Scanning electron microscopy was used to identify the key stage of floral initiation, and transcriptome analysis was used to reveal the transcriptional regulatory network in old leaves involved in floral initiation. We mined 5 DEGs related to energy and 55 DEGs related to plant hormone signal transduction, and we found floral initiation induction required a high level of energy metabolism, and the phytohormones signals in the old leaves regulate floral initiation, which occurred at stage I and II. Twenty-seven rhythm-related DEGs and 107 genes associated with flowering were also identified, and the circadian rhythm interacted with photoperiod pathways to induce floral initiation. Unigene0017292 (PSEUDO-RESPONSE REGULATOR), Unigene0046809 (LATE ELONGATED HYPOCOTYL), Unigene0009932 (GIGANTEA), Unigene0001842 (CONSTANS), and Unigene0084708 (FLOWER LOCUS T) were the key genes in the circadian rhythm-photoperiod regulatory network. In conjunction with morphological observations and transcriptomic analysis, we concluded that the induction of floral initiation by old leaves in C. oleifera ‘changlin53’ mainly occurred during stages I and II, floral initiation was completed during stage III, and rhythm–photoperiod interactions may be the source of the main signals in floral initiation induced by old leaves.
Collapse
|
20
|
Jue D, Liu L, Sang X, Shi S. A comparative proteomic analysis provides insight into the molecular mechanism of bud break in longan. BMC PLANT BIOLOGY 2022; 22:486. [PMID: 36224553 PMCID: PMC9558362 DOI: 10.1186/s12870-022-03868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The timing of bud break is very important for the flowering and fruiting of longan. To obtain new insights into the underlying regulatory mechanism of bud break in longan, a comparative analysis was conducted in three flower induction stages of two longan varieties with opposite flowering phenotypes by using isobaric tags for relative and absolute quantification (iTRAQ). RESULTS In total, 3180 unique proteins were identified in 18 samples, and 1101 differentially abundant proteins (DAPs) were identified. "SX" ("Shixia"), a common longan cultivated variety that needs an appropriate period of low temperatures to accumulate energy and nutrients for flower induction, had a strong primary inflorescence, had a strong axillary inflorescence, and contained high contents of sugars, and most DAPs during the bud break process were enriched in assimilates and energy metabolism. Combined with our previous transcriptome data, it was observed that sucrose synthase 6 (SS6) and granule-bound starch synthase 1 (GBSSI) might be the key DAPs for "SX" bud break. Compared to those of "SX", the primary inflorescence, axillary inflorescence, floral primordium, bract, and prophyll of "SJ" ("Sijimi") were weaker. In addition, light, rather than a high sugar content or chilling duration, might act as the key signal for triggering bud break. In addition, catalase isozyme 1, an important enzyme in the redox cycle, and RuBisCO, a key enzyme in the Calvin cycle of photosynthetic carbon assimilation, might be the key DAPs for SJ bud break. CONCLUSION Our results present a dynamic picture of the bud break of longan, not only revealing the temporal specific expression of key candidate genes and proteins but also providing a scientific basis for the genetic improvement of this fruit tree species.
Collapse
Affiliation(s)
- Dengwei Jue
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400715, Beibei, Chongqing, China
| | - Liqin Liu
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091, Zhanjiang, China
| | - Xuelian Sang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China.
| | - Shengyou Shi
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091, Zhanjiang, China.
| |
Collapse
|
21
|
Zhang C, An N, Jia P, Zhang W, Liang J, Zhou H, Zhang D, Ma J, Zhao C, Han M, Ren X, Xing L. MdNup62 interactions with MdHSFs involved in flowering and heat-stress tolerance in apple. BMC PLANT BIOLOGY 2022; 22:317. [PMID: 35786201 PMCID: PMC9251929 DOI: 10.1186/s12870-022-03698-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Because of global warming, the apple flowering period is occurring significantly earlier, increasing the probability and degree of freezing injury. Moreover, extreme hot weather has also seriously affected the development of apple industry. Nuclear pore complexes (NPCs) are main channels controlling nucleocytoplasmic transport, but their roles in regulating plant development and stress responses are still unknown. Here, we analysed the components of the apple NPC and found that MdNup62 interacts with MdNup54, forming the central NPC channel. MdNup62 was localized to the nuclear pore, and its expression was significantly up-regulated in 'Nagafu No. 2' tissue-cultured seedlings subjected to heat treatments. To determine MdNup62's function, we obtained MdNup62-overexpressed (OE) Arabidopsis and tomato lines that showed significantly reduced high-temperature resistance. Additionally, OE-MdNup62 Arabidopsis lines showed significantly earlier flowering compared with wild-type. Furthermore, we identified 62 putative MdNup62-interacting proteins and confirmed MdNup62 interactions with multiple MdHSFs. The OE-MdHSFA1d and OE-MdHSFA9b Arabidopsis lines also showed significantly earlier flowering phenotypes than wild-type, but had enhanced high-temperature resistance levels. Thus, MdNUP62 interacts with multiple MdHSFs during nucleocytoplasmic transport to regulate flowering and heat resistance in apple. The data provide a new theoretical reference for managing the impact of global warming on the apple industry.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Na An
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Peng Jia
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wei Zhang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jiayan Liang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Hua Zhou
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
22
|
Transcriptomic and Metabolomic Analysis of Quality Changes during Sweet Cherry Fruit Development and Mining of Related Genes. Int J Mol Sci 2022; 23:ijms23137402. [PMID: 35806406 PMCID: PMC9266358 DOI: 10.3390/ijms23137402] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
Sweet cherries are economically important fruit trees, and their quality changes during development need to be determined. The mechanism of fruit quality changes in sweet cherries were determined by analyzing sweet cherry fruits at 12 developmental stages. The results showed that the soluble sugar, anthocyanin content, and hormones of sweet cherries all changed drastically during the color transition. Therefore, the fruits at the beginning of color conversion, at the end of color conversion, and at the ripening state were selected for the comprehensive analysis of their metabolome and transcriptome. Different sugars, such as D-glucose, sucrose, and trehalose, were identified in the metabolome. Dihydroquercetin, delphinidin-3-glucoside, cyanidin-3-rutincoside, and other flavonoid species were also identified. D-glucose and cyanidin-3-rutinoside were among the most important components of sweet cherry soluble sugars and anthocyanins, respectively. The transcriptional analysis identified key structural genes and nine transcription factors involved in the ABA, sugar, organic acid, and anthocyanin synthesis pathways, with the following specific regulatory patterns. NAC71, WRKY57, and WRKY3 regulate fruit sugar accumulation mainly by acting on INV, SPS, and SUS. MYC2 is involved in the synthesis of anthocyanin precursors by activating PAL and C4H, whereas TCP7 mainly regulates CHI and F3H. WRKY3, NAC71, and WRKY57 have important positive regulatory significance on anthocyanin accumulation, mainly by activating the expression of DFR, ANS, and 3GT.
Collapse
|
23
|
Transcriptome Analysis of Lycoris chinensis Bulbs Reveals Flowering in the Age-Mediated Pathway. Biomolecules 2022; 12:biom12070899. [PMID: 35883454 PMCID: PMC9312979 DOI: 10.3390/biom12070899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Lycoris is a summer bulbous flower that commonly needs to go through a long period of vegetative growth for 3 to 5 years before flowering. Plant flowering is regulated by a complex genetic network. Compared with most perennial flowers, knowledge on the molecular mechanism responsible for floral transition in bulbous flowers is lacking, and only a few genes that regulate flowering have been identified with few reports on the floral transition in Lycoris. In this study, we identified many differentially expressed genes (DEGs) and transcription factors (TFs) by RNA-Seq in L. chinensis bulbs of different ages, including one- to four-year-old nonflowering bulbs and four-year-old flowering bulbs. Some DEGs were enriched in Gene Ontology (GO) terms between the three- and four-year-old bulbs, and there most genes were enriched in terms of metabolic process and catalytic activity. In the four-year old bulbs, most of the DEGs that may be involved in flowering were classified under the GO term biological process, which was a totally different result from the vegetative bulbs. Some DEGs between flowering and nonflowering bulbs were enriched in plant hormone signal transduction, including the hormones auxin, cytokinin, abscisic acid, and ethylene, but no DEGs were enriched in the gibberellin pathway. Auxin is the main endogenous phytohormone involved in bulb growth and development, but cytokinin, abscisic acid, and ethylene were shown to increase in flowering bulbs. In addition, energy-metabolism-related genes maintain a high expression level in large bulbs, and some positive regulators (SPL, COL, and AP1) and early flowering genes were also shown to be highly expressed in the meristems of flowering bulbs. It suggested that sugar molecules may be the energy source that regulates the signal transduction of flowering by connecting with phytohormone signaling in Lycoris. A total of 1911 TFs were identified and classified into 89 categories, where the top six families with the largest gene numbers were C2H2, NAC, AP2/ERF-ERF, C3H, MYB-related, and WRKY. Most DEGs were in the AP2/ERF-ERF family, and most of them were downregulated in 4-year-old flowering bulbs. A number of families were reported to be involved in plant flowering, including NAC, AP2/ERF, MYB, WRKY, bZIP, MADS, and NF-Y. These results can act as a genetic resource to aid in the explanation of the genetic mechanism responsible for the flowering of Lycoris and other bulbous flowers.
Collapse
|
24
|
Liang F, Zhang Y, Wang X, Yang S, Fang T, Zheng S, Zeng L. Integrative mRNA and Long Noncoding RNA Analysis Reveals the Regulatory Network of Floral Bud Induction in Longan ( Dimocarpus longan Lour.). FRONTIERS IN PLANT SCIENCE 2022; 13:923183. [PMID: 35774802 PMCID: PMC9237614 DOI: 10.3389/fpls.2022.923183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 05/27/2023]
Abstract
Longan (Dimocarpus longan Lour.) is a tropical/subtropical fruit tree of significant economic importance. Floral induction is an essential process for longan flowering and plays decisive effects on the longan yield. Due to the instability of flowering, it is necessary to understand the molecular mechanisms of floral induction in longan. In this study, mRNA and long noncoding RNA (lncRNA) transcriptome sequencing were performed using the apical buds of fruiting branches as materials. A total of 7,221 differential expressions of mRNAs (DEmRNAs) and 3,238 differential expressions of lncRNAs (DElncRNAs) were identified, respectively. KEGG enrichment analysis of DEmRNAs highlighted the importance of starch and sucrose metabolic, circadian rhythms, and plant hormone signal transduction pathways during floral induction. Combining the analysis of weighted gene co-expression network (WGCNA) and expression pattern of DEmRNAs in the three pathways, specific transcriptional characteristics at each stage during floral induction and regulatory network involving co-expressed genes were investigated. The results showed that sucrose metabolism and auxin signal transduction may be crucial for the growth and maturity of autumn shoots in September and October (B1-B2 stage); starch and sucrose metabolic, circadian rhythms, and plant hormone signal transduction pathways participated in the regulation of floral bud physiological differentiation together in November and December (B3-B4 stage) and the crosstalk among three pathways was also found. Hub genes in the co-expression network and key DEmRNAs in three pathways were identified. The circadian rhythm genes FKF1 and GI were found to activate SOC1gene through the photoperiod core factor COL genes, and they were co-expressed with auxin, gibberellin, abscisic acid, ethylene signaling genes, and sucrose biosynthesis genes at B4 stage. A total of 12 hub-DElncRNAs had potential for positively affecting their distant target genes in three putative key pathways, predominantly in a co-transcriptional manner. A hypothetical model of regulatory pathways and key genes and lncRNAs during floral bud induction in longan was proposed finally. Our studies will provide valuable clues and information to help elucidate the potential molecular mechanisms of floral initiation in longan and woody fruit trees.
Collapse
Affiliation(s)
- Fan Liang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiyong Zhang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaodan Wang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuo Yang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Fang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoquan Zheng
- Fujian Breeding Engineering Technology Research Center for Longan & Loquat, Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzho, China
| | - Lihui Zeng
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
25
|
Cheng H, Zha S, Luo Y, Li L, Wang S, Wu S, Cheng S, Li L. JAZ1-3 and MYC2-1 Synergistically Regulate the Transformation from Completely Mixed Flower Buds to Female Flower Buds in Castanea mollisima. Int J Mol Sci 2022; 23:ijms23126452. [PMID: 35742894 PMCID: PMC9224291 DOI: 10.3390/ijms23126452] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Chestnut (Castanea mollisima) is an important woody food crop, but its yield has been low in cultivation, mainly due to the problems of fewer female flowers and more male flowers. Therefore, regulating the transition of chestnut flowers and effectively balancing the proportion of male and female to improve the yield are key factor to be solved in production. In this study, the chestnut floral buds in pre- and post-winter were used as materials. The data of metabolites, hormones, and gene expression during flower bud differentiation of chestnut were analyzed by transcriptomics and metabolomics to preliminarily reveal the possible reason of male and female flower bud transformation in pre- and post-winter. The analysis of Differentially Expressed Genes (DEGs) showed that there were 6323 DEGs in the Complete mixed flower bud (CMF) group in pre- and post-winter, of which 3448 genes were up-regulated and 2875 genes were down-regulated. There were 8037 DEGs in the Incomplete mixed flower bud (IMF) in pre- and post-winter, of which 4546 genes were up-regulated and 3491 genes were down-regulated. A total of 726 genes from the two flower buds were enriched into 251 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in post winter, of which plant hormone signal transduction accounted for 4.13%. The analysis results of differential metabolites showed that the differential metabolites of the two flower buds were mainly concentrated in the secondary metabolic synthesis pathway. The difference of hormone content showed that the content of Gibberellin 9 (GA9) and GA19 in CMF was higher than that in IMF in pre-winter, but the opposite in post-winter. Methyl jasmonate (MeJA) content was only very high in CMF in pre-winter, while Jasmonoyl-(l)-Isoleucine (JA-ILE) showed high content in CMF in post-winter. In post-winter, higher concentration of JA-ILE was positively correlated with the expression of Flowering Locus T (CmFT), and CmFT gene was significantly positively correlated with the expression levels of MYC2-1, MYC2-2 and LFY 3 (LEAFY 3). The higher concentration of JA-ILE was negatively correlated with the transcription level of JAZ1-3. In vitro experiments further verified that Jasmonate-Zim 1–3 (JAZ 1–3) combined with MYC2-1 inhibited the transcription of CmFT gene, while MYC2-1 alone promoted the expression of FT. The results suggested that a higher concentration of GA is conducive to breaking the dormancy of flower buds and promoting the development of male flower buds, while a lower concentration of GA and a higher concentration of JA-ILE are conducive to the differentiation and formation of female flower buds in post-winter, in which JAZ1-3 and MYC2-1 play a key role in the differentiation of female flower buds of chestnut.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linling Li
- Correspondence: ; Tel.: +86-180-6284-3199
| |
Collapse
|
26
|
Jiang L, Shen W, Liu C, Tahir MM, Li X, Zhou S, Ma F, Guan Q. Engineering drought-tolerant apple by knocking down six GH3 genes and potential application of transgenic apple as a rootstock. HORTICULTURE RESEARCH 2022; 9:uhac122. [PMID: 35937857 PMCID: PMC9347023 DOI: 10.1093/hr/uhac122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/15/2022] [Indexed: 06/01/2023]
Abstract
Drought poses a major threat to apple fruit production and quality. Because of the apple's long juvenile phase, developing varieties with improved drought tolerance using biotechnology approaches is needed. Here, we used the RNAi approach to knock down six GH3 genes in the apple. Under prolonged drought stress, the MdGH3 RNAi plants performed better than wild-type plants and had stronger root systems, higher root-to-shoot ratio, greater hydraulic conductivity, increased photosynthetic capacity, and increased water use efficiency. Moreover, MdGH3 RNAi plants promoted the drought tolerance of the scion when they were used as rootstock, compared with wild-type and M9-T337 rootstocks. Scions grafted onto MdGH3 RNAi plants showed increased plant height, stem diameter, photosynthetic capacity, specific leaf weight, and water use efficiency. The use of MdGH3 RNAi plants as rootstocks can also increase the C/N ratio of the scion and achieve the same effect as the M9-T337 rootstock in promoting the flowering and fruiting of the scion. Notably, using MdGH3 RNAi plants as rootstocks did not reduce fruit weight and scion quality compared with using M9-T337 rootstock. Our research provides candidate genes and demonstrates a general approach that could be used to improve the drought tolerance of fruit trees without sacrificing the yield and quality of scion fruits.
Collapse
Affiliation(s)
| | | | - Chen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuangxi Zhou
- The New Zealand Institute for Plant and Food Research Ltd, Hawke’s Bay 4130, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | |
Collapse
|
27
|
Li Y, Huang H, Abid M, Gu H, Cheng Z, Fang J, Qi X. Novel Role of AaMYBC1 in Regulating Actinidia arguta Vine Architecture by Elongating Internode Based on Multi-Omics Analysis of Transgenic Tobacco. Genes (Basel) 2022; 13:817. [PMID: 35627204 PMCID: PMC9140693 DOI: 10.3390/genes13050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
The internode length affects the status of fruiting branches and shapes the vine architecture. MYB TFs (transcription factors) have been widely studied and reported to control many biological processes including secondary metabolism, abiotic stresses, growth and development, etc. However, the roles of MYB TFs in regulating internode length remain poorly understood. Here, we demonstrated that a secondary metabolism-related R2R3-MYB TF AaMYBC1 from Actinidia arguta was involved in the regulation of internode length by combined analysis of transcriptome and metabolome of transgenic tobacco plants. The metabolome analysis of OE (over-expressed tobacco) and WT (wild-typed tobacco) showed that there were a total of 1000 metabolites, 176 of which had significant differences. A key metabolite pme1651 annotated as indole 3-acetic acid belonged to phytohormone that was involved in internode length regulation. The RNA-seq analysis presented 446 differentially expressed genes (DEGs) between OE and WT, 14 of which were common DEGs in KEGG and GO enrichment. Through the combined analysis of metabolome and transcriptome in transgenic and wild-type tobacco, three key genes including two SAUR and a GH3 gene were possibly involved in internode elongation. Finally, a regulatory module was deduced to show the role of AaMYBC1 in internode elongation. Our results proposed a molecular mechanism of AaMYBC1 regulating internode length by mediated auxin signaling, implying the potential role in regulating the vine architecture.
Collapse
Affiliation(s)
- Yukuo Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Y.L.); (H.H.); (H.G.); (J.F.)
| | - Hailei Huang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Y.L.); (H.H.); (H.G.); (J.F.)
| | - Muhammad Abid
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China;
| | - Hong Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Y.L.); (H.H.); (H.G.); (J.F.)
| | - Zhongping Cheng
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Jinbao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Y.L.); (H.H.); (H.G.); (J.F.)
| | - Xiujuan Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Y.L.); (H.H.); (H.G.); (J.F.)
| |
Collapse
|
28
|
Mao J, Ma D, Niu C, Ma X, Li K, Tahir MM, Chen S, Liu X, Zhang D. Transcriptome analysis reveals the regulatory mechanism by which MdWOX11 suppresses adventitious shoot formation in apple. HORTICULTURE RESEARCH 2022; 9:uhac080. [PMID: 35669707 PMCID: PMC9160730 DOI: 10.1093/hr/uhac080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 03/18/2022] [Indexed: 05/27/2023]
Abstract
Adventitious shoot (AS) regeneration accelerates plant reproduction and genetic transformation. WOX11 is involved in many biological processes, but its regulation of AS regeneration has not been reported. Here, we showed that the genotype and CK/IAA ratio of apple leaves were the key factors that affected their capacity for AS formation. Moreover, the expression level of MdWOX11 was negatively correlated with the capacity for AS formation. Phenotypic analysis of MdWOX11 transgenic plants showed that overexpression of MdWOX11 inhibited AS formation. Endogenous hormone analysis demonstrated that the contents of auxin (IAA), cytokinin (CK), and abscisic acid (ABA) were higher in MdWOX11-RNAi plants than in MdWOX11-OE transgenic plants. We used RNA sequencing to examine the transcriptional responses of genes in MdWOX11-RNAi and MdWOX11-OE transgenic apple plants at different AS stages. We identified 8066 differentially expressed genes and focused our analysis on those involved in the IAA, CK, ABA, and gibberellin (GA) hormone signaling pathways. The expression of genes related to the CK signaling pathway and shoot development was higher in GL-3 than in MdWOX11-OE transgenic plants during the callus and AS emergence stages. However, the expression of MdCKX5 was higher in MdWOX11-OE transgenic plants than in GL3 and MdWOX11-RNAi transgenic plants. Yeast one-hybrid (Y1H) assays, dual-luciferase reporter assays, and ChIP-qPCR showed that MdWOX11 binds to the promoter of MdCKX5, and a dual-luciferase reporter assay showed that MdWOX11 enhanced the promoter activity of MdCKX5. We concluded that MdCKX5 acts downstream of MdWOX11 to control AS formation, and we built a regulatory model of the suppression of AS formation by MdWOX11 in apple.
Collapse
|
29
|
Identification, Analysis and Gene Cloning of the SWEET Gene Family Provide Insights into Sugar Transport in Pomegranate ( Punica granatum). Int J Mol Sci 2022; 23:ijms23052471. [PMID: 35269614 PMCID: PMC8909982 DOI: 10.3390/ijms23052471] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
Members of the sugars will eventually be exported transporter (SWEET) family regulate the transport of different sugars through the cell membrane and control the distribution of sugars inside and outside the cell. The SWEET gene family also plays important roles in plant growth and development and physiological processes. So far, there are no reports on the SWEET family in pomegranate. Meanwhile, pomegranate is rich in sugar, and three published pomegranate genome sequences provide resources for the study of the SWEET gene family. 20 PgSWEETs from pomegranate and the known Arabidopsis and grape SWEETs were divided into four clades (Ⅰ, Ⅱ, Ⅲ and Ⅳ) according to the phylogenetic relationships. PgSWEETs of the same clade share similar gene structures, predicting their similar biological functions. RNA-Seq data suggested that PgSWEET genes have a tissue-specific expression pattern. Foliar application of tripotassium phosphate significantly increased the total soluble sugar content of pomegranate fruits and leaves and significantly affected the expression levels of PgSWEETs. The plant growth hormone regulator assay also significantly affected the PgSWEETs expression both in buds of bisexual and functional male flowers. Among them, we selected PgSWEET17a as a candidate gene that plays a role in fructose transport in leaves. The 798 bp CDS sequence of PgSWEET17a was cloned, which encodes 265 amino acids. The subcellular localization of PgSWEET17a showed that it was localized to the cell membrane, indicating its involvement in sugar transport. Transient expression results showed that tobacco fructose content was significantly increased with the up-regulation of PgSWEET17a, while both sucrose and glucose contents were significantly down-regulated. The integration of the PgSWEET phylogenetic tree, gene structure and RNA-Seq data provide a genome-wide trait and expression pattern. Our findings suggest that tripotassium phosphate and plant exogenous hormone treatments could alter PgSWEET expression patterns. These provide a reference for further functional verification and sugar metabolism pathway regulation of PgSWEETs.
Collapse
|
30
|
Khan FS, Gan ZM, Li EQ, Ren MK, Hu CG, Zhang JZ. Transcriptomic and physiological analysis reveals interplay between salicylic acid and drought stress in citrus tree floral initiation. PLANTA 2021; 255:24. [PMID: 34928452 DOI: 10.1007/s00425-021-03801-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Salicylic acid (SA) and drought stress promote more flowering in sweet orange. The physiological response and molecular mechanism underlying stress-induced floral initiation were discovered by transcriptome profiling. Numerous flowering-regulated genes were identified, and ectopically expressed CsLIP2A promotes early flowering in Arabidopsis. Floral initiation is a critical developmental mechanism associated with external factors, and citrus flowering is mainly regulated by drought stress. However, little is known about the intricate regulatory network involved in stress-induced flowering in citrus. To understand the molecular mechanism of floral initiation in citrus, flower induction was performed on potted Citrus sinensis trees under the combined treatment of salicylic acid (SA) and drought (DR). Physiological analysis revealed that SA treatment significantly normalized the drastic effect of drought stress by increasing antioxidant enzyme activities (SOD, POD, and CAT), relative leaf water content, total chlorophyll, and proline contents and promoting more flowering than drought treatment. Analysis of transcriptome changes in leaves from different treatments showed that 1135, 2728 and 957 differentially expressed genes (DEGs) were revealed in response to DR, SD (SA + DR), and SA (SA + well water) treatments in comparison with the well watered plants, respectively. A total of 2415, 2318 and 1933 DEGs were expressed in DR, SD, and SA in comparison with water recovery, respectively. Some key flowering genes were more highly expressed in SA-treated drought plants than in DR-treated plants. GO enrichment revealed that SA treatment enhances the regulation and growth of meristem activity under drought conditions, but no such a pathway was found to be highly enriched in the control. Furthermore, we focused on various hormones, sugars, starch metabolism, and biosynthesis-related genes. The KEGG analysis demonstrated that DEGs enriched in starch sucrose metabolism and hormonal signal transduction pathways probably account for stress-induced floral initiation in citrus. In addition, a citrus LIPOYLTRANSFERSAE 2A homologous (LIP2A) gene was upregulated by SD treatment. Ectopic expression of CsLIP2A exhibited early flowering in transgenic Arabidopsis. Taken together, this study provides new insight that contributes to citrus tree floral initiation under the SA-drought scenario as well as an excellent reference for stress-induced floral initiation in woody trees.
Collapse
Affiliation(s)
- Faiza Shafique Khan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - En-Qing Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Ke Ren
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
31
|
Qin B, Lu X, Sun X, Cui J, Deng J, Zhang L. Transcriptome-based analysis of the hormone regulation mechanism of gender differentiation in Juglans mandshurica Maxim. PeerJ 2021; 9:e12328. [PMID: 34820167 PMCID: PMC8588858 DOI: 10.7717/peerj.12328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/27/2021] [Indexed: 12/03/2022] Open
Abstract
Juglans mandshurica Maxim is a hermaphroditic plant belonging to the genus Juglans in the family Juglandaceae. The pollination period of female flowers is different from the loose powder period of male flowers on the same tree. In several trees, female flowers bloom first, whereas in others, male flowers bloom first. In this study, male and female flower buds of J. mandshurica at the physiological differentiation stage were used. Illumina-based transcriptome sequencing was performed, and the quality of the sequencing results was evaluated and analyzed. A total of 138,138 unigenes with an average length of 788 bp were obtained. There were 8,116 differentially expressed genes (DEGs); 2,840 genes were upregulated, and 5,276 genes were downregulated. The DEGs were classified by Gene Ontology and analyzed by Kyoto Encyclopedia of Genes and Genomes. The signal transduction factors involved in phytohormone synthesis were selected. The results displayed that ARF and SAUR were expressed differently in the auxin signaling pathway. Additionally, DELLA protein (a negative regulator of gibberellin), the cytokinin synthesis pathway, and A-ARR were downregulated. On April 2nd, the contents of IAA, GA, CTK, ETH and SA in male and female flower buds of two types of J. mandshurica were opposite, and there were obvious genes regulating gender differentiation. Overall, we found that the sex differentiation of J. mandshurica was related to various hormone signal transduction pathways, and hormone signal transduction plays a leading role in regulation.
Collapse
Affiliation(s)
- Baiting Qin
- College of Forestry, Shenyang Agricultural University, Shenyang, China.,Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Xiujun Lu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Xiaomei Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Jianguo Cui
- College of Forestry, Shenyang Agricultural University, Shenyang, China.,Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Jifeng Deng
- College of Forestry, Shenyang Agricultural University, Shenyang, China.,Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Lijie Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, China.,Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| |
Collapse
|
32
|
Song X, Liu H, Bu D, Xu H, Ma Q, Pei D. Rejuvenation remodels transcriptional network to improve rhizogenesis in mature Juglans tree. TREE PHYSIOLOGY 2021; 41:1938-1952. [PMID: 34014320 DOI: 10.1093/treephys/tpab038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Adventitious rooting of walnut species (Juglans L.) is known to be rather difficult, especially for mature trees. The adventitious root formation (ARF) capacities of mature trees can be significantly improved by rejuvenation. However, the underlying gene regulatory networks (GRNs) of rejuvenation remain largely unknown. To characterize such regulatory networks, we carried out the transcriptomic study using RNA samples of the cambia and peripheral tissues on the bottom of rejuvenated and mature walnut (Juglans hindsii × J. regia) cuttings during the ARF. The RNA sequencing data suggested that zeatin biosynthesis, energy metabolism and substance metabolism were activated by rejuvenation, whereas photosynthesis, fatty acid biosynthesis and the synthesis pathways for secondary metabolites were inhibited. The inter- and intra-module GRNs were constructed using differentially expressed genes. We identified 35 hub genes involved in five modules associated with ARF. Among these hub genes, particularly, beta-glucosidase-like (BGLs) family members involved in auxin metabolism were overexpressed at the early stage of the ARF. Furthermore, BGL12 from the cuttings of Juglans was overexpressed in Populus alba × P. glandulosa. Accelerated ARF and increased number of ARs were observed in the transgenic poplars. These results provide a high-resolution atlas of gene activity during ARF and help to uncover the regulatory modules associated with the ARF promoted by rejuvenation.
Collapse
Affiliation(s)
- Xiaobo Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China
| | - Hao Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China
| | - Dechao Bu
- Institute of Computing Technology, Chinese Academy of Sciences, No.6 Kexueyuan South Road Zhongguancun, Haidian District, Beijing 100190, China
| | - Huzhi Xu
- Forestry Bureau of Luoning County, Luoning County, Luoyang City, Henan Province 471700, China
| | - Qingguo Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China
| |
Collapse
|
33
|
Gao Y, Yang X, Yang X, Zhao T, An X, Chen Z. Characterization and expression pattern of the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase gene families in Populus. Int J Biol Macromol 2021; 187:9-23. [PMID: 34298047 DOI: 10.1016/j.ijbiomac.2021.07.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Trehalose plays an important role in plant metabolism, growth development, and stress tolerance. Trehalose-6-phosphate synthase gene (TPS) and trehalose-6-phosphate phosphatase gene (TPP) are vital for the synthesis of trehalose. Populus is a prominent perennial woody plant, in which systematic genome-wide analysis of the TPS and TPP family is limited. In this study, 13 PtTPS and 10 PtTPP genes were identified in the Populus genome. Phylogenetic analysis indicated PtTPS and PtTPP genes were both divided into two subfamilies, and gene members of each subfamily have highly conserved intron structures. Analysis of cis-acting elements showed that PtTPS and PtTPP genes were involved in plant hormones and environmental stress responses. Expression profiles also found PtTPSs and PtTPPs expressed differently in response to salt stress, cold, mechanical damage, salicylic acid, and methyl jasmonate treatment. Furthermore, reverse transcription quantitative real-time PCR results found PtTPSs and PtTPPs displayed a specific expression pattern in the seven developmental stages of Populus male and female floral buds. This work will not only lead a foundation on reveal the functions of PtTPS and PtTPP gene families in trehalose regulation of poplar but also provide references to related trehalose research in other perennial plants.
Collapse
Affiliation(s)
- Yuhan Gao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; National Energy R&D Center for Non-food Biamass, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyu Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiong Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Tianyun Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xinmin An
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Zhong Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; National Energy R&D Center for Non-food Biamass, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
34
|
Tian Z, Jahn M, Qin X, Obel HO, Yang F, Li J, Chen J. Genetic and Transcriptomic Analysis Reveal the Molecular Basis of Photoperiod-Regulated Flowering in Xishuangbanna Cucumber ( Cucumis sativus L. var. xishuangbannesis Qi et Yuan). Genes (Basel) 2021; 12:genes12071064. [PMID: 34356080 PMCID: PMC8304308 DOI: 10.3390/genes12071064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Xishuangbanna (XIS) cucumber (Cucumis sativus L. var. xishuangbannesis Qi et Yuan), is a botanical variety of cucumber cultivars native to southwest China that possesses excellent agronomic traits for cucumber improvement. However, breeding utilization of XIS cucumber is limited due to the current poor understanding of its photoperiod-sensitive flowering characteristics. In this study, genetic and transcriptomic analysis were conducted to reveal the molecular basis of photoperiod-regulated flowering in XIS cucumber. A major-effect QTL locus DFF1.1 was identified that controls the days to first flowering (DFF) of XIS cucumbers with a span of 1.38 Mb. Whole-genome re-sequencing data of 9 cucumber varieties with different flowering characteristics in response to photoperiod suggested that CsaNFYA1 was the candidate gene of DFF1.1, which harbored a single non-synonymous mutation in its fifth exon. Transcriptomic analysis revealed the positive roles of auxin and ethylene in accelerating flowering under short-day (SD) light-dark cycles when compared with equal-day/night treatment. Carbohydrate storage and high expression levels of related genes were important reasons explaining early flowering of XIS cucumber under SD conditions. By combining with the RNA-Seq data, the co-expression network suggested that CsaNFYA1 integrated multiple types of genes to regulate the flowering of XIS cucumber. Our findings explain the internal regulatory mechanisms of a photoperiodic flowering pathway. These findings may guide the use of photoperiod shifts to promote flowering of photoperiod-sensitive crops.
Collapse
Affiliation(s)
- Zhen Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Molly Jahn
- Jahn Research Group, USDA/FPL, Madison, WI 53726, USA;
| | - Xiaodong Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Hesbon Ochieng Obel
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Fan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
- Correspondence: ; Tel.: +86-25-8439-6279
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| |
Collapse
|
35
|
Zhou X, Wang L, Yan J, Ye J, Cheng S, Xu F, Wang G, Zhang W, Liao Y, Liu X. Functional Characterization of the EMBRYONIC FLOWER 2 Gene Involved in Flowering in Ginkgo biloba. FRONTIERS IN PLANT SCIENCE 2021; 12:681166. [PMID: 34552601 PMCID: PMC8451716 DOI: 10.3389/fpls.2021.681166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 05/19/2023]
Abstract
Ginkgo biloba has edible, medicinal, and ornamental value. However, the long juvenile phase prevents the development of the G. biloba industry, and there are few reports on the identification and functional analysis of genes regulating the flowering time of G. biloba. EMBRYONIC FLOWER 2 (EMF), an important protein in flower development, functions to promote vegetative growth and repress flowering. In this study, a novel EMF gene (GbEMF2) was cloned and characterized from G. biloba. GbEMF2 contains a 2,193 bp open reading frame (ORF) encoding 730 amino acids. GbEMF2 harbors conserved VEFS-Box domain by the plant EMF protein. The phylogenic analysis showed that GbEMF2 originated from a polycomb-group (Pc-G) protein ancestor and was a member of the EMF2 protein. The quantitative real-time PCR (qRT-PCR) analysis revealed that GbEMF2 was expressed in all detected organs, and it showed a significantly higher level in ovulating strobilus and microstrobilus than in other organs. Compared with emf2 mutant plants, overexpression of GbEMF2 driven by the CaMV 35S promoter in emf2 mutant Arabidopsis plants delayed flowering but earlier than wild-type (WT) plants. This result indicated that GbEMF2 repressed flowering in G. biloba. Moreover, the RNA-seq analysis of GbEMF2 transgenic Arabidopsis plants (GbEMF2-OE/emf2), WT plants, and emf2 mutants screened out 227 differentially expressed genes (DEGs). Among these DEGs, FLC, MAF5, and MAF5-1 genes were related to flower organ development and regulated by GbEMF2. In addition, some genes participating in sugar metabolism, such as Alpha-amylase 1 (AMY1), BAM1, and Sucrose synthase 3 (SUS3) genes, were also controlled by GbEMF2. Overall, our results suggested that GbEMF2 negatively regulates flowering development in G. biloba. This finding provided a foundation and target gene for shortening the Ginkgo juvenile period by genetic engineering technology.
Collapse
Affiliation(s)
- Xian Zhou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Lanlan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Janping Yan
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Guiyuan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
36
|
A Complex Gene Network Mediated by Ethylene Signal Transduction TFs Defines the Flower Induction and Differentiation in Olea europaea L. Genes (Basel) 2021; 12:genes12040545. [PMID: 33918715 PMCID: PMC8070190 DOI: 10.3390/genes12040545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
The olive tree (Olea europaea L.) is a typical Mediterranean crop, important for olive and oil production. The high tendency to bear fruits in an uneven manner, defined as irregular or alternate bearing, results in a significant economic impact for the high losses in olives and oil production. Buds from heavy loaded (‘ON’) and unloaded (‘OFF’) branches of a unique olive tree were collected in July and the next March to compare the transcriptomic profiles and get deep insight into the molecular mechanisms regulating floral induction and differentiation. A wide set of DEGs related to ethylene TFs and to hormonal, sugar, and phenylpropanoid pathways was identified in buds collected from ‘OFF’ branches. These genes could directly and indirectly modulate different pathways, suggesting their key role during the lateral bud transition to flowering stage. Interestingly, several genes related to the flowering process appeared as over-expressed in buds from March ‘OFF’ branches and they could address the buds towards flower differentiation. By this approach, interesting candidate genes related to the switch from vegetative to reproductive stages were detected and analyzed. The functional analysis of these genes will provide tools for developing breeding programs to obtain olive trees characterized by more constant productivity over the years.
Collapse
|
37
|
Milyaev A, Kofler J, Klaiber I, Czemmel S, Pfannstiel J, Flachowsky H, Stefanelli D, Hanke MV, Wünsche JN. Toward Systematic Understanding of Flower Bud Induction in Apple: A Multi-Omics Approach. FRONTIERS IN PLANT SCIENCE 2021; 12:604810. [PMID: 33841452 PMCID: PMC8030266 DOI: 10.3389/fpls.2021.604810] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The induction of flower buds in apple (Malus × domestica Borkh.) is tightly connected to biennial bearing, which is characterized by alternating years with high (ON) and low or no (OFF) crop loads. In order to study this irregular cropping behavior, spur buds from ON- and OFF-trees of the biennial-bearing cultivar 'Fuji' and the regular bearing cultivar 'Gala' were collected. First, the time of flower bud initiation was precisely determined for both cultivars by histological analysis. Moreover, for a systematic understanding of flower bud induction in apple, the physiological and molecular mechanisms within the bud tissue were evaluated over four weeks prior to flower bud initiation by employing a multi-omics approach, including RNA sequencing, proteomic and metabolic profiling. Gene and protein enrichment analysis detected physiological pathways promoting and inhibiting early flower bud development. Metabolic profiles from the cropping treatments revealed a greater abundance of thiamine, chlorogenic acid, and an adenine derivative in spur buds from OFF-trees, whereas tryptophan was more abundant in the buds collected from ON-trees. Cultivar comparison indicated that chlorogenic acid was more abundant in 'Gala' than in 'Fuji' spur buds, whereas the opposite effect was found for tryptophan. Genes controlling tryptophan biosynthesis were not affected by ON- and OFF-treatments, but genes assigned to the metabolism of tryptophan into indoleacetate were differentially expressed between cultivars and treatments. The multi-omics approach permitted analyzing complex plant metabolic processes involved in early flower bud development and more specifically presumably in flower bud induction by tracing some pathways from gene to product level.
Collapse
Affiliation(s)
- Anton Milyaev
- Section of Crop Physiology of Specialty Crops (340f), Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Julian Kofler
- Section of Crop Physiology of Specialty Crops (340f), Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Iris Klaiber
- Mass Spectrometry Unit, Core Facility Hohenheim (640), University of Hohenheim, Stuttgart, Germany
| | - Stefan Czemmel
- Quantitative Biology Center (QBiC) Tübingen, University of Tübingen, Tübingen, Germany
| | - Jens Pfannstiel
- Mass Spectrometry Unit, Core Facility Hohenheim (640), University of Hohenheim, Stuttgart, Germany
| | - Henryk Flachowsky
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Dresden, Germany
| | - Dario Stefanelli
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC, Australia
| | - Magda-Viola Hanke
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Dresden, Germany
| | - Jens-Norbert Wünsche
- Section of Crop Physiology of Specialty Crops (340f), Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
38
|
Zuo X, Wang S, Xiang W, Yang H, Tahir MM, Zheng S, An N, Han M, Zhao C, Zhang D. Genome-wide identification of the 14-3-3 gene family and its participation in floral transition by interacting with TFL1/FT in apple. BMC Genomics 2021; 22:41. [PMID: 33419402 PMCID: PMC7796649 DOI: 10.1186/s12864-020-07330-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 12/15/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Apple (Malus domestica Borkh.) is a popular cultivated fruit crop with high economic value in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple. RESULTS In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14-3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus. CONCLUSION We identified the Md14-3-3 s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3 s in floral transition.
Collapse
Affiliation(s)
- Xiya Zuo
- College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Shixiang Wang
- College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Wen Xiang
- College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Huiru Yang
- College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | | | - Shangong Zheng
- College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Na An
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Mingyu Han
- College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
39
|
Xia Y, Xue B, Shi M, Zhan F, Wu D, Jing D, Wang S, Guo Q, Liang G, He Q. Comparative transcriptome analysis of flower bud transition and functional characterization of EjAGL17 involved in regulating floral initiation in loquat. PLoS One 2020; 15:e0239382. [PMID: 33031442 PMCID: PMC7544058 DOI: 10.1371/journal.pone.0239382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022] Open
Abstract
Floral initiation plays a critical role for reproductive success in plants, especially fruit trees. However, little information is known on the mechanism of the initiation in loquat (Eriobotrya japonica Lindl.). Here, we used transcriptomic, expression and functional analysis to investigate the candidate genes in floral initiation in loquat. Comparative transcriptome analysis showed differentially expressed genes (DEGs) were mainly enriched in the metabolic pathways of plant hormone signal transduction. The DEGs were mainly involved in the gibberellin, auxin, cytokinin, abscisic acid, salicylic acid and ethylene signaling pathways. Meanwhile, some transcription factors, including MADS-box (MCM1, AGAMOUS, DEFICIENS and SRF), MYB (Myeloblastosis), TCP (TEOSINTE BRANCHED 1, CYCLOIDEA and PCF1), WOX (WUSCHEL-related homeobox) and WRKY (WRKY DNA-binding protein), were significantly differentially expressed. Among these key DEGs, we confirmed that an AGL17 ortholog EjAGL17 was significantly upregulated at the flower bud transition stage. Phylogenetic tree analysis revealed that EjAGL17 was grouped into an AGL17 clade of MADS-box transcription factors. Protein sequence alignment showed that EjAGL17 included a distinctive C-terminal domain. Subcellular localization of EjAGL17 was found only in the nucleus. Expression levels of EjAGL17 reached the highest at the development stage of flower bud transition. Moreover, ectopic expression of EjAGL17 in Arabidopsis significantly exhibited early flowering. Our study provides abundant resources of candidate genes for studying the mechanisms underlying the floral initiation in loquat and other Rosaceae species.
Collapse
Affiliation(s)
- Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
| | - Baogui Xue
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
| | - Min Shi
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
| | - Feng Zhan
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
| | - Danlong Jing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
| | - Shuming Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
- * E-mail: (GL); (QH)
| | - Qiao He
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
- * E-mail: (GL); (QH)
| |
Collapse
|
40
|
Chen Y, An X, Zhao D, Li E, Ma R, Li Z, Cheng C. Transcription profiles reveal sugar and hormone signaling pathways mediating tree branch architecture in apple (Malus domestica Borkh.) grafted on different rootstocks. PLoS One 2020; 15:e0236530. [PMID: 32706831 PMCID: PMC7380599 DOI: 10.1371/journal.pone.0236530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022] Open
Abstract
Apple trees grafted on different rootstock types, including vigorous rootstock (VR), dwarfing interstock (DIR), and dwarfing self-rootstock (DSR), are widely planted in production, but the molecular determinants of tree branch architecture growth regulation induced by rootstocks are still not well known. In this study, the branch growth phenotypes of three combinations of ‘Fuji’ apple trees grafted on different rootstocks (VR: Malus baccata; DIR: Malus baccata/T337; DSR: T337) were investigated. The VR trees presented the biggest branch architecture. The results showed that the sugar content, sugar metabolism-related enzyme activities, and hormone content all presented obvious differences in the tender leaves and buds of apple trees grafted on these rootstocks. Transcriptomic profiles of the tender leaves adjacent to the top buds allowed us to identify genes that were potentially involved in signaling pathways that mediate the regulatory mechanisms underlying growth differences. In total, 3610 differentially expressed genes (DEGs) were identified through pairwise comparisons. The screened data suggested that sugar metabolism-related genes and complex hormone regulatory networks involved the auxin (IAA), cytokinin (CK), abscisic acid (ABA) and gibberellic acid (GA) pathways, as well as several transcription factors, participated in the complicated growth induction process. Overall, this study provides a framework for analysis of the molecular mechanisms underlying differential tree branch growth of apple trees grafted on different rootstocks.
Collapse
Affiliation(s)
- Yanhui Chen
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Institute of Pomology, Chinese Academy of Agricultrual Sciences, Xingcheng, Liaoning, P. R. China
| | - Xiuhong An
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Institute of Pomology, Chinese Academy of Agricultrual Sciences, Xingcheng, Liaoning, P. R. China
| | - Deying Zhao
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Institute of Pomology, Chinese Academy of Agricultrual Sciences, Xingcheng, Liaoning, P. R. China
| | - Enmao Li
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Institute of Pomology, Chinese Academy of Agricultrual Sciences, Xingcheng, Liaoning, P. R. China
| | - Renpeng Ma
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Institute of Pomology, Chinese Academy of Agricultrual Sciences, Xingcheng, Liaoning, P. R. China
| | - Zhuang Li
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Institute of Pomology, Chinese Academy of Agricultrual Sciences, Xingcheng, Liaoning, P. R. China
| | - Cungang Cheng
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Institute of Pomology, Chinese Academy of Agricultrual Sciences, Xingcheng, Liaoning, P. R. China
- * E-mail:
| |
Collapse
|
41
|
Hu J, Liu Y, Tang X, Rao H, Ren C, Chen J, Wu Q, Jiang Y, Geng F, Pei J. Transcriptome profiling of the flowering transition in saffron (Crocus sativus L.). Sci Rep 2020; 10:9680. [PMID: 32541892 PMCID: PMC7295807 DOI: 10.1038/s41598-020-66675-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 02/19/2020] [Indexed: 01/08/2023] Open
Abstract
Saffron, derived from the stigma of Crocus sativus, is not only a valuable traditional Chinese medicine but also the expensive spice and dye. Its yield and quality are seriously influenced by its flowering transition. However, the molecular regulatory mechanism of the flowering transition in C. sativus is still unknown. In this study, we performed morphological, physiological and transcriptomic analyses using apical bud samples from C. sativus during the floral transition process. Morphological results indicated that the flowering transition process could be divided into three stages: an undifferentiated period, the early flower bud differentiation period, and the late flower bud differentiation period. Sugar, gibberellin (GA3), auxin (IAA) and zeatin (ZT) levels were steadily upregulated, while starch and abscisic acid (ABA) levels were gradually downregulated. Transcriptomic analysis showed that a total of 60 203 unigenes were identified, among which 19 490 were significantly differentially expressed. Of these, 165 unigenes were involved in flowering and were significantly enriched in the sugar metabolism, hormone signal transduction, cell cycle regulatory, photoperiod and autonomous pathways. Based on the above analysis, a hypothetical model for the regulatory networks of the saffron flowering transition was proposed. This study lays a theoretical basis for the genetic regulation of flowering in C. sativus.
Collapse
Affiliation(s)
- Jing Hu
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuping Liu
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaohui Tang
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huajing Rao
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chaoxiang Ren
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiang Chen
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qinghua Wu
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Jiang
- New Zealand Academy of Chinese Medicine Science, Christchurch, 8014, New Zealand
| | - Fuchang Geng
- The Good Doctor Pharmaceutical group co. LTD, Mianyang, 622650, China
| | - Jin Pei
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
42
|
Xing L, Qi S, Zhou H, Zhang W, Zhang C, Ma W, Zhang Q, Shah K, Han M, Zhao J. Epigenomic Regulatory Mechanism in Vegetative Phase Transition of Malus hupehensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4812-4829. [PMID: 32227940 DOI: 10.1021/acs.jafc.0c00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In woody plants, phase transitions substantially affect growth and development. Although there has been considerable interest in the regulatory mechanisms underlying phase changes, the associated epigenetic modifications remain relatively uncharacterized. We examined the DNA methylation changes and the transcriptional responses in adult and juvenile Malus hupehensis leaves. The DNA methylations were 66.61% and 68.3% in the CG context, 49.12% and 52.44% in the CHG context, and 7.02% and 8.22% in the CHH context for the adult and juvenile leaves, respectively. The number of differentially methylated regions in all contexts distributed in the genic regions varied. Additionally, inhibited DNA methylation in adult leaves activated the transcription of indole-3-acetic acid related genes in the signaling, response, and transport pathways. Moreover, the opposite methylation and expression patterns were observed for the SPL and AP2 family genes between the adult and juvenile leaves. Both gene families contribute to the M. hupehensis vegetative phase transition. Furthermore, the hyper-/hypomethylation of the gene body or promoter of transcription factor genes may lead to up-/downregulated gene expression. The methylation levels of the WRKY (22), NAC (21), ERF (8), WOX (2), KNAT (6), EIN3 (2), SCL (7), ZAT (7), and HSF (4) genes were higher in the adult leaves than in the juvenile leaves, whereas the opposite pattern was observed for the TCP (2), MADS-box (11), and DOF (3) genes. An analysis of the correlation between methylation and transcription indicated the methylation of the gene body in all contexts and the methylation of the promoter in the CG and CHG contexts are negatively correlated with gene expression. However, the methylation of the promoter in the CHH context is positively correlated with gene expression. These findings reflect the diversity in the epigenetic regulation of gene expression and may be useful for elucidating the epigenetic regulatory mechanism underlying the M. hupehensis vegetative phase transition.
Collapse
Affiliation(s)
- Libo Xing
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Yangling, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Yangling, Shaanxi, People's Republic of China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Hua Zhou
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Wei Zhang
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Chenguang Zhang
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Wenchun Ma
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Qingwei Zhang
- College of Life Science, Southwest University, Chongqing, People's Republic of China
| | - Kamran Shah
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Juan Zhao
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Yangling, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Yangling, Shaanxi, People's Republic of China
- College of Mechanical and Electronic Engineering, Northwest A & F University, 712100 Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
43
|
Zhao J, Quan P, Liu H, Li L, Qi S, Zhang M, Zhang B, Li H, Zhao Y, Ma B, Han M, Zhang H, Xing L. Transcriptomic and Metabolic Analyses Provide New Insights into the Apple Fruit Quality Decline during Long-Term Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4699-4716. [PMID: 32078318 DOI: 10.1021/acs.jafc.9b07107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Long-term low-temperature conditioning (LT-LTC) decreases apple fruit quality, but the underlying physiological and molecular basis is relatively uncharacterized. We identified 12 clusters of differentially expressed genes (DEGs) involved in multiple biological processes (i.e., sugar, malic acid, fatty acid, lipid, complex phytohormone, and stress-response pathways). The expression levels of genes in sugar pathways were correlated with decreasing starch levels during LT-LTC. Specifically, starch-synthesis-related genes (e.g., BE, SBE, and GBSS genes) exhibited downregulated expression, whereas sucrose-metabolism-related gene expression levels were up- or downregulated. The expression levels of genes in the malic acid pathway (ALMT9, AATP1, and AHA2) were upregulated, as well as the content of malic acid in apple fruit during LT-LTC. A total of 151 metabolites, mainly related to amino acids and their isoforms, amines, organic acids, fatty acids, sugars, and polyols, were identified during LT-LTC. Additionally, 35 organic-acid-related metabolites grouped into three clusters, I (3), II (22), and III (10), increased in abundance during LT-LTC. Multiple phytohormones regulated the apple fruit chilling injury response. The ethylene (ET) and abscisic acid (ABA) levels increased at CS2 and CS3, and jasmonate (JA) levels also increased during LT-LTC. Furthermore, the expression levels of genes involved in ET, ABA, and JA synthesis and response pathways were upregulated. Finally, some key transcription factor genes (MYB, bHLH, ERF, NAC, and bZIP genes) related to the apple fruit cold acclimation response were differentially expressed. Our results suggest that the multilayered mechanism underlying apple fruit deterioration during LT-LTC is a complex, transcriptionally regulated process involving cell structures, sugars, lipids, hormones, and transcription factors.
Collapse
Affiliation(s)
- Juan Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Pengkun Quan
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hangkong Liu
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Lei Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mengsheng Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Bo Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hao Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Yanru Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Baiquan Ma
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Haihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| |
Collapse
|
44
|
High crop load and low temperature delay the onset of bud initiation in apple. Sci Rep 2019; 9:17986. [PMID: 31784602 PMCID: PMC6884464 DOI: 10.1038/s41598-019-54381-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 11/14/2019] [Indexed: 11/08/2022] Open
Abstract
The reproductive cycle of apple (Malus × domestica Borkh.) starts with the induction of floral development, however, first morphological changes within the bud appear during the following period of bud initiation. This study identifies the onset and duration of bud initiation in the apple cultivars 'Fuji' and 'Gala', characterized by biennial and non-biennial bearing behaviour, respectively, and describes the effect of crop load and heat accumulation on the temporal pattern of floral development. The onset of flower bud initiation in heavy cropping 'Gala' trees was delayed for 20 days compared to trees with no crop load, but the rate of initiation was not affected by crop load. Bud initiation on heavy cropping 'Fuji' trees was minor, whereas trees with no crop load started initiating buds 19 days earlier than those of 'Gala' despite the same cropping status and growing degree hours in a given year. The onset of bud initiation in 'Fuji' 'off' trees was 5 and 20 days after summer solstice, respectively, in two consecutive growing seasons, suggesting that this process is driven by heat accumulation rather than by daylength. The results indicate, that the genetic make-up of the cultivar determines the onset of bud initiation. This can be delayed by increasing crop loads and low temperatures at the beginning of the flower formation process.
Collapse
|
45
|
Shalmani A, Muhammad I, Sharif R, Zhao C, Ullah U, Zhang D, Jing XQ, Amin B, Jia P, Mobeen Tahir M, Xu Z, Chen KM, An N. Zinc Finger-Homeodomain Genes: Evolution, Functional Differentiation, and Expression Profiling Under Flowering-Related Treatments and Abiotic Stresses in Plants. Evol Bioinform Online 2019; 15:1176934319867930. [PMID: 31523124 PMCID: PMC6728664 DOI: 10.1177/1176934319867930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/11/2019] [Indexed: 11/15/2022] Open
Abstract
Zinc finger-homeodomain (ZHD) proteins constitute a plant-specific transcription factor family that play important roles in plant growth, development, and stress responses. In this study, we investigated a total of 10, 17, and 31 ZHD gene members in the peach, Arabidopsis, and apple genome, respectively. The phylogenetic tree divided the identified ZHD genes into 4 subfamilies based on their domain organization, gene structure, and motif distribution with minor variations. The ZHD gene family members were unevenly distributed throughout in apple, peach, and Arabidopsis genomes. Segmental duplication was observed for 14 pairs of genes in apple. Transcript analysis found that ZHD genes mostly expressed in various tissues, particularly in leaves and flowers. Moreover, the transcript of most ZHD genes was significantly affected at different time points in response to various flowering-related exogenous hormones (sugar, gibberellin [GA], and 6-benzylaminopurine [6-BA]), signifying their possible role in the flowering induction in apple. Furthermore, the transcripts of CaZHD6, CaZHD7, CaZHD3, and CaZHD8 have induced in response to abiotic stresses including heat, drought, salt, and cold, indicating their possible involvement in response to abiotic stresses. Our research work systemically presents the different roles of ZHD genes. We believe that this study will provide a platform for future functional characterization of ZHD genes and to deeply unfold their roles in the regulation of flowering induction in plants.
Collapse
Affiliation(s)
- Abdullah Shalmani
- College of Horticulture, Northwest
A&F University, Yangling, China
- State Key Laboratory of Crop Stress
Biology in Arid Areas, College of Life Sciences, Northwest A&F University,
Yangling, China
| | - Izhar Muhammad
- State Key Laboratory of Crop Stress
Biology in Arid Areas, College of Life Sciences, Northwest A&F University,
Yangling, China
| | - Rahat Sharif
- College of Horticulture, Northwest
A&F University, Yangling, China
| | - CaiPing Zhao
- College of Horticulture, Northwest
A&F University, Yangling, China
| | - Uzair Ullah
- Department of Agriculture, Hazara
University, Mansehra, KPK, Pakistan
| | - Dong Zhang
- College of Horticulture, Northwest
A&F University, Yangling, China
| | - Xiu-Qing Jing
- State Key Laboratory of Crop Stress
Biology in Arid Areas, College of Life Sciences, Northwest A&F University,
Yangling, China
| | - Bakht Amin
- College of Horticulture, Northwest
A&F University, Yangling, China
| | - Peng Jia
- College of Horticulture, Northwest
A&F University, Yangling, China
| | | | - Ze Xu
- College of Horticulture, Northwest
A&F University, Yangling, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress
Biology in Arid Areas, College of Life Sciences, Northwest A&F University,
Yangling, China
| | - Na An
- College of Horticulture, Northwest
A&F University, Yangling, China
- State Key Laboratory of Crop Stress
Biology in Arid Areas, College of Life Sciences, Northwest A&F University,
Yangling, China
| |
Collapse
|
46
|
Qin L, Zhang X, Yan J, Fan L, Rong C, Mo C, Zhang M. Effect of exogenous spermidine on floral induction, endogenous polyamine and hormone production, and expression of related genes in 'Fuji' apple (Malus domestica Borkh.). Sci Rep 2019; 9:12777. [PMID: 31484948 PMCID: PMC6726604 DOI: 10.1038/s41598-019-49280-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Flower bud formation in ‘Fuji’ apple (Malus domestica Borkh.) is difficult, which severely constrains commercial production. Spermidine (Spd) plays an important role in floral induction, but the mechanism of its action is incompletely understood. To investigate the effect of Spd on flowering, 6-year-old ‘Fuji’ apple trees were treated with 1 × 10−5 mol L−1 Spd to study the responses of polyamines [putrescine (Put), Spd and spermine (Spm)], hormones [gibberellins (GA3) and abscisic acid (ABA)], and polyamine-, hormone- and flowering-related genes. Spd application promoted flowering during floral induction by increasing MdGA2ox2 (gibberellin 2-oxidase) through GA3 reduction and increasing MdNCED1 and MdNCED3 (9-cis-epoxycarotenoid dioxygenase) through ABA enrichment during 60 to 80 days after full bloom. The flowering rate as well as the expressions of flower-related genes, except for MdLEY (LEAFY), also increased, thereby promoting flowering. In addition, spraying with Spd significantly increased the contents of endogenous polyamines except for Spm in terminal buds by increasing the expressions of polyamine-associated genes. We hypothesize that the contribution of Spd to flowering is related to crosstalk among polyamines, hormone signals, and related gene expressions, which suggests that Spd participates in the apple floral induction process.
Collapse
Affiliation(s)
- Ling Qin
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Yan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lu Fan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunxiao Rong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chuanyuan Mo
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Manrang Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
47
|
Xing L, Li Y, Qi S, Zhang C, Ma W, Zuo X, Liang J, Gao C, Jia P, Shah K, Zhang D, An N, Zhao C, Han M, Zhao J. Comparative RNA-Sequencing and DNA Methylation Analyses of Apple (Malus domestica Borkh.) Buds with Diverse Flowering Capabilities Reveal Novel Insights into the Regulatory Mechanisms of Flower Bud Formation. PLANT & CELL PHYSIOLOGY 2019; 60:1702-1721. [PMID: 31077318 DOI: 10.1093/pcp/pcz080] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
In plants, DNA methylation (i.e. chromatin modification) is important for various biological processes, including growth, development and flowering. Because 'Fuji' apple trees are alternate bearing and have a long ripening period and poor-quality flower buds, we used bud types with diverse flowering capabilities to investigate the epigenetic regulatory mechanisms influencing flower bud formation. We examined the DNA methylation changes and the transcriptional responses in the selected apple bud types. We observed that in the apple genome, approximately 79.5%, 67.4% and 23.7% of the CG, CHG and CHH sequences are methylated, respectively. For each sequence context, differentially methylated regions exhibited distinct methylation patterns among the analyzed apple bud types. Global methylation and transcriptional analyses revealed that nonexpressed genes or genes expressed at low levels were highly methylated in the gene-body regions, suggesting that gene-body methylation is negatively correlated with gene expression. Moreover, genes with methylated promoters were more highly expressed than genes with unmethylated promoters, implying promoter methylation and gene expression are positively correlated. Additionally, flowering-related genes (e.g. SOC1, AP1 and SPLs) and some transcription factor genes (e.g. GATA, bHLH, bZIP and WOX) were highly expressed in spur buds (highest flowering rate), but were associated with low methylation levels in the gene-body regions. Our findings indicate a potential correlation between DNA methylation and gene expression in apple buds with diverse flowering capabilities, suggesting an epigenetic regulatory mechanism influences apple flower bud formation.
Collapse
Affiliation(s)
- Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
- Ministry of Agriculture Rural Affairs, Key Laboratory of Agricultural Internet of Things, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, Yangling, Shaanxi, P. R. China
| | - Youmei Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Chenguang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Wenchun Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiya Zuo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jiayan Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Cai Gao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Pen Jia
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Kamran Shah
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Juan Zhao
- Ministry of Agriculture Rural Affairs, Key Laboratory of Agricultural Internet of Things, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, Yangling, Shaanxi, P. R. China
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
48
|
Quantitative trait loci analysis of hormone levels in Arabidopsis roots. PLoS One 2019; 14:e0219008. [PMID: 31251768 PMCID: PMC6599112 DOI: 10.1371/journal.pone.0219008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/14/2019] [Indexed: 11/30/2022] Open
Abstract
Quantitative trait loci (QTL) analyses for five groups of hormones, including cytokinins in Arabidopsis roots were performed using recombinant inbred lines (Ler×Cvi). Significant QTLs were detected for cytokinins, jasmonic acid and salicylic acid. Separate analysis of two sub-populations, viz., vegetative and flowering plants revealed that many of the QTLs were development-specific. Using near-isogenic lines, several significant QTLs were confirmed; three co-localized QTL regions were responsible for determining several cytokinin metabolites. Using a knock-out plant, a functional role of zeatin N-glucosyltransferase gene (UGT76C2) underlying a large-effect QTL for levels of tZ-N-glucosides and tZRMP was evaluated in the metabolism of cytokinins. Pleotropic effects of this gene were found for cytokinin levels in both roots and leaves, but significant changes of morphological traits were observed only in roots. Hormone QTL analysis reveals development-specific and organ-dependent aspects of the regulation of plant hormone content and metabolism.
Collapse
|
49
|
Transcriptome analysis provides insights into the stress response crosstalk in apple (Malus × domestica) subjected to drought, cold and high salinity. Sci Rep 2019; 9:9071. [PMID: 31227734 PMCID: PMC6588687 DOI: 10.1038/s41598-019-45266-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Drought, cold, and high salinity are three major abiotic stresses effecting apple tree growth and fruit production. Understanding the genetic mechanisms of crosstalk between stress responses signalling networks and identifying the genes involved in apple has potential importance for crop improvement and breeding strategies. Here, the transcriptome profiling analysis of in vitro-grown apple plants subjected to drought, cold and high salinity stress, showed a total of 377 upregulated and 211 downregulated common differentially expressed genes (DEGs) to all 3 stress treatments compared with the control. Gene Ontology (GO) analysis indicated that these common DEGs were enriched in ‘metabolic process’ under the ‘biological process’ category, as well as in ‘binding’ and ‘catalytic activity’ under the ‘molecular function’ category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that common DEGs were mainly belong to the ‘biological functions’ category and 17 DEGs were identified in ‘environmental information processing’ sub-category which may act as signal transduction components in response crosstalk regulation. Overexpression of 5 upregulated genes individually, out of these 17 common DEGs in apple calli promoted the consistent upregulation of DREB6, CBF1 and ZAT10 and increased the mass weight and antioxidase ability, implying these five common DEGs involved in multiple pathways and improved comprehensive resistance to stress.
Collapse
|
50
|
Tan M, Li G, Chen X, Xing L, Ma J, Zhang D, Ge H, Han M, Sha G, An N. Role of Cytokinin, Strigolactone, and Auxin Export on Outgrowth of Axillary Buds in Apple. FRONTIERS IN PLANT SCIENCE 2019; 10:616. [PMID: 31156679 PMCID: PMC6530649 DOI: 10.3389/fpls.2019.00616] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Shoot branching is regulated by phytohormones, including cytokinin (CK), strigolactone (SL), and auxin in axillary buds. The correlative importance of these phytohormones in the outgrowth of apple axillary buds remains unclear. In this study, the outgrowth dynamics of axillary buds of a more-branching mutant (MB) and its wild-type (WT) of Malus spectabilis were assessed using exogenous chemical treatments, transcriptome analysis, paraffin section, and reverse transcription-quantitative PCR analysis (RT-qPCR). High contents of CK and abscisic acid coincided in MB axillary buds. Exogenous CK promoted axillary bud outgrowth in the WT but not in MB, whereas exogenous gibberellic had no significant effect on bud outgrowth in the WT. Functional analysis of transcriptome data and RT-qPCR analysis of gene transcripts revealed that MB branching were associated with CK signaling, auxin transport, and SL signaling. Transcription of the SL-related genes MsMAX1, MsD14, and MsMAX2 in the axillary buds of MB was generally upregulated during bud outgrowth, whereas MsBRC1/2 were generally downregulated both in WT and MB. Exogenous SL inhibited outgrowth of axillary buds in the WT and the apple varieties T337, M26, and Nagafu 2, whereas axillary buds of the MB were insensitive to SL treatment. Treatment with N-1-naphthylphalamic acid (NPA; an auxin transport inhibitor) inhibited bud outgrowth in plants of the WT and MB. The transcript abundance of MsPIN1 was generally decreased in response to NPA and SL treatments, and increased in CK and decapitation treatments, whereas no consistent pattern was observed for MsD14 and MsMAX2. Collectively, the present results suggest that in apple auxin transport from the axillary bud to the stem may be essential for the outgrowth of axillary buds, and at least, is involved in the process of bud outgrowth.
Collapse
Affiliation(s)
- Ming Tan
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Guofang Li
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xilong Chen
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - HongJuan Ge
- Institute of Agricultural Science, Qingdao, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Guangli Sha
- Institute of Agricultural Science, Qingdao, China
| | - Na An
- College of Life Science, Northwest A&F University, Yangling, China
| |
Collapse
|