1
|
Xing Y, Zhang X, Feng Z, Ni W, Xie H, Guan Y, Zhu Z, Ge S, Jiang Y. Optimizing 'Red Fuji' apple quality: Auxin-mediated calcium distribution via fruit-stalk in bagging practices. Food Chem 2025; 463:141126. [PMID: 39276559 DOI: 10.1016/j.foodchem.2024.141126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
In apples, a bottleneck effect in calcium (Ca) transport within fruit stalk has been observed. To elucidate that how auxin affects Ca forms and distribution in the apple fruit stalk, we investigated the effects of different concentrations of auxin treatment (0, 10, 20, and 30 mg·L-1) on Ca content, forms, distribution, and fruit quality during later stages of fruit expansion. The results showed that auxin treatment led to a dramatic reduction in total Ca content in stalk, while an approximately 30 % increase in fruit. Furthermore, auxin treatment effectively enhanced the functionality of xylem vessels in vascular bundles of the stalk in bagged apples. Finally, TOPSIS method was used to assess fruit quality, with treatments ranked as follows: IAA20 > NAA20 > IAA30 > IAA10 > CK > NPA. The findings lay a foundation for further studies on the bottleneck in Ca transport within stalk, uneven distribution of Ca in fruit, and provide insights into Ca utilization efficiency in bagged apples.
Collapse
Affiliation(s)
- Yue Xing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China
| | - Xin Zhang
- 421 Lab, Xinlianxin hemical Group Co., LTD, Henan, China
| | - Ziquan Feng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China
| | - Wei Ni
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China
| | - Hongmei Xie
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China
| | - Yafei Guan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China
| | - Zhanling Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China.
| | - Shunfeng Ge
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China.
| | - Yuanmao Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China.
| |
Collapse
|
2
|
Yuan Y, Ma X, Li C, Zhong X, Li Y, Zhao J, Zhang X, Zhou Z. Integration of transcriptome and metabolome reveals key regulatory defense pathways associated with high temperature stress in cucumber (Cucumis sativus L.). BMC PLANT BIOLOGY 2025; 25:6. [PMID: 39748295 PMCID: PMC11694469 DOI: 10.1186/s12870-024-05876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
High temperature stress seriously affects the quality and yield of vegetable crops, especially cucumber (Cucumis sativus L.). However, the metabolic dynamics and gene regulatory network of cucumber in response to high temperature stress remain poorly studied. In this study, we identified a heat-tolerant cucumber Gy14 and a heat-sensitive cucumber 32X. RNA-seq analysis of Gy14 and 32X under high temperature stress showed that some differentially expressed genes (DEGs) were related to the biosynthesis of secondary metabolites. Metabolomic analysis revealed that there were more phenylpropanoids and their downstream derivatives in Gy14 compared to that in 32X under Re_2d condition (2 normal days recovery after heat). Integrated analysis of transcriptome and metabolome revealed that these upregulated genes played a pivotal role in flavonoid biosynthesis. Moreover, high temperature stress significantly induced the expression of the gibberellin (GA) biosynthesis genes and exogenous application of GA3 alleviated the damage of high temperature to cucumber seedlings. Together, these findings provided new insights into the transcriptome response and metabolomic reprogramming of cucumber against high temperature stress.
Collapse
Affiliation(s)
- Yong Yuan
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xiao Ma
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Chuang Li
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xitong Zhong
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yuyan Li
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Jianyu Zhao
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Zhao J, Song W, Zhang X. Genetic and molecular regulation of fruit development in cucumber. THE NEW PHYTOLOGIST 2024; 244:1742-1749. [PMID: 39400327 DOI: 10.1111/nph.20192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Fruit development can be generally classified into a set of biologically sequential stages including fruit initiation, growth, and ripening. Cucumber, a globally important vegetable crop, displays two important features during fruit development: parthenocarpy at fruit initiation and prematurity at harvest for consumption. Therefore, fruit growth plays essential role for cucumber yield and quality formation, and has become the research hot spot in cucumber fruit development. Here, we describe recent advances in molecular mechanisms underlying fruit growth in cucumber, include key players and regulatory networks controlling fruit length variation, fruit neck elongation, and locule development. We also provide insights into future directions for scientific research and breeding strategies in cucumber.
Collapse
Affiliation(s)
- Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Weiyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Song W, Xie Y, Liu B, Huang Y, Cheng Z, Zhao Z, Tian D, Geng Y, Guo J, Li C, She D, Zhong Y, Li M, Liu L, Chen J, Sun C, Zhang X, Zhou Z, Lai J, Xin M, Yan L, Zhao J, Zhang X. Single nucleotide polymorphisms in SEPALLATA 2 underlie fruit length variation in cucurbits. THE PLANT CELL 2024; 36:4607-4621. [PMID: 39133577 PMCID: PMC11448892 DOI: 10.1093/plcell/koae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 10/05/2024]
Abstract
Complete disruption of critical genes is generally accompanied by severe growth and developmental defects, which dramatically hinder its utilization in crop breeding. Identifying subtle changes, such as single-nucleotide polymorphisms (SNPs), in critical genes that specifically modulate a favorable trait is a prerequisite to fulfill breeding potential. Here, we found 2 SNPs in the E-class floral organ identity gene cucumber (Cucumis sativus) SEPALLATA2 (CsSEP2) that specifically regulate fruit length. Haplotype (HAP) 1 (8G2667A) and HAP2 (8G2667T) exist in natural populations, whereas HAP3 (8A2667T) is induced by ethyl methanesulfonate mutagenesis. Phenotypic characterization of 4 near-isogenic lines and a mutant line showed that HAP2 fruits are significantly longer than those of HAP1, and those of HAP3 are 37.8% longer than HAP2 fruit. The increasing fruit length in HAP1-3 was caused by a decreasing inhibitory effect on CRABS CLAW (CsCRC) transcription (a reported positive regulator of fruit length), resulting in enhanced cell expansion. Moreover, a 7638G/A-SNP in melon (Cucumis melo) CmSEP2 modulates fruit length in a natural melon population via the conserved SEP2-CRC module. Our findings provide a strategy for utilizing essential regulators with pleiotropic effects during crop breeding.
Collapse
Affiliation(s)
- Weiyuan Song
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yang Xie
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Yuxiang Huang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zhihua Cheng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zilong Zhao
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Di Tian
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yan Geng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jingyu Guo
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chuang Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Daixi She
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yanting Zhong
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Min Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Liu Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jiacai Chen
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chengzhen Sun
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Xuejun Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Zhaoyang Zhou
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jinsheng Lai
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Ming Xin
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin 150030, P. R.China
| | - Liying Yan
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| |
Collapse
|
5
|
Wang C, Yao H, Wang C, Gao L, Chai X, Fang K, Du Y, Hao N, Cao J, Wu T. Transcription factor CsMYB36 regulates fruit neck length via mediating cell expansion in cucumber. PLANT PHYSIOLOGY 2024; 195:958-969. [PMID: 38447074 DOI: 10.1093/plphys/kiae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/08/2024]
Abstract
The fruit neck is an important agronomic trait of cucumber (Cucumis sativus). However, the underlying genes and regulatory mechanisms involved in fruit neck development are poorly understood. We previously identified a cucumber yellow-green peel (ygp) mutant, whose causal gene is MYB DOMAIN PROTEIN 36 (CsMYB36). This study showed that the ygp mutant exhibited a shortened fruit neck and repressed cell expansion in the fruit neck. Further functional analysis showed that CsMYB36 was also a target gene, and its expression was enriched in the fruit neck. Overexpression of CsMYB36 in the ygp mutant rescued shortened fruit necks. Furthermore, transcriptome analysis and reverse transcription quantitative PCR (RT-qPCR) assays revealed that CsMYB36 positively regulates the expression of an expansin-like A3 (CsEXLA3) in the fruit neck, which is essential for cell expansion. Yeast 1-hybrid and dual-luciferase assays revealed that CsMYB36 regulates fruit neck elongation by directly binding to the promoter of CsEXLA3. Collectively, these findings demonstrate that CsMYB36 is an important gene in the regulation of fruit neck length in cucumber plants.
Collapse
Affiliation(s)
- Chunhua Wang
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Hongxin Yao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Chen Wang
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Luyao Gao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Xingwen Chai
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Kai Fang
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Yalin Du
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Ning Hao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Jiajian Cao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Tao Wu
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| |
Collapse
|
6
|
Akram J, Siddique R, Shafiq M, Tabassum B, Manzoor MT, Javed MA, Anwar S, Nisa BU, Saleem MH, Javed B, Malik T, Mustafa AEZMA, Ali B. Genome-wide identification of CCO gene family in cucumber (Cucumis sativus) and its comparative analysis with A. thaliana. BMC PLANT BIOLOGY 2023; 23:640. [PMID: 38082240 PMCID: PMC10712067 DOI: 10.1186/s12870-023-04647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
Carotenoid cleavage oxygenase (CCO) is an enzyme capable of converting carotenoids into volatile, aromatic compounds and it plays an important role in the production of two significant plant hormones, i.e., abscisic acid (ABA) and strigolactone (SL). The cucumber plant genome has not been mined for genomewide identification of the CCO gene family. In the present study, we conducted a comprehensive genome-wide analysis to identify and thoroughly examine the CCO gene family within the genomic sequence of Cucumis sativus L. A Total of 10 CCO genes were identified and mostly localized in the cytoplasm and chloroplast. The CCO gene is divided into seven subfamilies i.e. 3 NCED, 3 CCD, and 1 CCD-like (CCDL) subfamily according to phylogenetic analysis. Cis-regulatory elements (CREs) analysis revealed the elements associated with growth and development as well as reactions to phytohormonal, biotic, and abiotic stress conditions. CCOs were involved in a variety of physiological and metabolic processes, according to Gene Ontology annotation. Additionally, 10 CCO genes were regulated by 84 miRNA. The CsCCO genes had substantial purifying selection acting upon them, according to the synteny block. In addition, RNAseq analysis indicated that CsCCO genes were expressed in response to phloem transportation and treatment of chitosan oligosaccharides. CsCCD7 and CsNCED2 showed the highest gene expression in response to the exogenous application of chitosan oligosaccharides to improve cold stress in cucumbers. We also found that these genes CsCCD4a and CsCCDL-a showed the highest expression in different plant organs with respect to phloem content. The cucumber CCO gene family was the subject of the first genome-wide report in this study, which may help us better understand cucumber CCO proteins and lay the groundwork for the gene family's future cloning and functional investigations.
Collapse
Affiliation(s)
- Jannat Akram
- Department of Botany, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Riffat Siddique
- Department of Botany, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Tariq Manzoor
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Samia Anwar
- Department of Botany, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Bader Un Nisa
- Department of Botany, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bilal Javed
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, 378, Jimma, Ethiopia.
| | - Abd El-Zaher M A Mustafa
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Baber Ali
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
7
|
Kułak K, Wojciechowska N, Samelak-Czajka A, Jackowiak P, Bagniewska-Zadworna A. How to explore what is hidden? A review of techniques for vascular tissue expression profile analysis. PLANT METHODS 2023; 19:129. [PMID: 37981669 PMCID: PMC10659056 DOI: 10.1186/s13007-023-01109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The evolution of plants to efficiently transport water and assimilates over long distances is a major evolutionary success that facilitated their growth and colonization of land. Vascular tissues, namely xylem and phloem, are characterized by high specialization, cell heterogeneity, and diverse cell components. During differentiation and maturation, these tissues undergo an irreversible sequence of events, leading to complete protoplast degradation in xylem or partial degradation in phloem, enabling their undisturbed conductive function. Due to the unique nature of vascular tissue, and the poorly understood processes involved in xylem and phloem development, studying the molecular basis of tissue differentiation is challenging. In this review, we focus on methods crucial for gene expression research in conductive tissues, emphasizing the importance of initial anatomical analysis and appropriate material selection. We trace the expansion of molecular techniques in vascular gene expression studies and discuss the application of single-cell RNA sequencing, a high-throughput technique that has revolutionized transcriptomic analysis. We explore how single-cell RNA sequencing will enhance our knowledge of gene expression in conductive tissues.
Collapse
Affiliation(s)
- Karolina Kułak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
8
|
Che G, Pan Y, Liu X, Li M, Zhao J, Yan S, He Y, Wang Z, Cheng Z, Song W, Zhou Z, Wu T, Weng Y, Zhang X. Natural variation in CRABS CLAW contributes to fruit length divergence in cucumber. THE PLANT CELL 2023; 35:738-755. [PMID: 36427253 PMCID: PMC9940877 DOI: 10.1093/plcell/koac335] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Fruit length is a key domestication trait that affects crop yield and appearance. Cucumber (Cucumis sativus) fruits vary from 5 to 60 cm in length. Despite the identification of several regulators and multiple quantitative trait loci (QTLs) underlying fruit length, the natural variation, and molecular mechanisms underlying differences in fruit length are poorly understood. Through map-based cloning, we identified a nonsynonymous polymorphism (G to A) in CRABS CLAW (CsCRC) as underlying the major-effect fruit size/shape QTL FS5.2 in cucumber. The short-fruit allele CsCRCA is a rare allele that has only been found in round-fruited semi-wild Xishuangbanna cucumbers. A near-isogenic line (NIL) homozygous for CsCRCA exhibited a 34∼39% reduction in fruit length. Introducing CsCRCG into this NIL rescued the short-fruit phenotype, and knockdown of CsCRCG resulted in shorter fruit and smaller cells. In natural cucumber populations, CsCRCG expression was positively correlated with fruit length. Further, CsCRCG, but not CsCRCA, targets the downstream auxin-responsive protein gene CsARP1 to regulate its expression. Knockout of CsARP1 produced shorter fruit with smaller cells. Hence, our work suggests that CsCRCG positively regulates fruit elongation through transcriptional activation of CsARP1 and thus enhances cell expansion. Using different CsCRC alleles provides a strategy to manipulate fruit length in cucumber breeding.
Collapse
Affiliation(s)
- Gen Che
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
- School of Life Science, Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot 010070, China
| | - Yupeng Pan
- Horticulture Department, University of Wisconsin-Madison, 1575 Linden Drive, Madison, Wisconsin 53706, USA
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Min Li
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jianyu Zhao
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shuangshuang Yan
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yuting He
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin-Madison, 1575 Linden Drive, Madison, Wisconsin 53706, USA
- USDA-ARS, Vegetable Crops Research Unit, 1575 Linden Drive, Madison, Wisconsin 53706, USA
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Bologna M, Tenconi C, Corino VDA, Annunziata G, Orlandi E, Calareso G, Pignoli E, Valdagni R, Mainardi LT, Rancati T. Repeatability and reproducibility of MRI-radiomic features: A phantom experiment on a 1.5 T scanner. Med Phys 2023; 50:750-762. [PMID: 36310346 DOI: 10.1002/mp.16054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Aim of this study is to assess the repeatability of radiomic features on magnetic resonance images (MRI) and their stability to variations in time of repetition (TR), time of echo (TE), slice thickness (ST), and pixel spacing (PS) using vegetable phantoms. METHODS The organic phantom was realized using two cucumbers placed inside a cylindrical container, and the analysis was performed using T1-weighted (T1w), T2-weighted (T2w), and diffusion-weighted images. One dataset was used to test the repeatability of the radiomic features, whereas other four datasets were used to test the sensitivity of the different MRI sequences to image acquisition parameters (TR, TE, ST, and PS). Four regions of interest (ROIs) were segmented: two for the central part of each cucumber and two for the external parts. Radiomic features were extracted from each ROI using Pyradiomics. To assess the effect of preprocessing on the reduction of variability, features were extracted both before and after the preprocessing. The coefficient of variation (CV) and intra-class correlation coefficient (ICC) were used to evaluate variability. RESULTS The use of intensity standardization increased the stability for the first-order statistics features. Shape and size features were always stable for all the analyses. Textural features were particularly sensitive to changes in ST and PS, although some increase in stability could be obtained by voxel size resampling. When images underwent image preprocessing, the number of stable features (ICC > 0.75 and mean absolute CV < 0.3) was 33 for apparent diffusion coefficient (ADC), 52 for T1w, and 73 for T2w. CONCLUSIONS The most critical source of variability is related to changes in voxel size (either caused by changes in ST or PS). Preprocessing increases features stability to both test-retest and variation of the image acquisition parameters for all the types of analyzed MRI (T1w, T2w, and ADC), except for ST.
Collapse
Affiliation(s)
- Marco Bologna
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Chiara Tenconi
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.,Department of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valentina D A Corino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Gaetano Annunziata
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ester Orlandi
- Radiation Oncology 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppina Calareso
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emanuele Pignoli
- Department of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Valdagni
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.,Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.,Department of Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca T Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
10
|
Grumet R, Lin YC, Rett-Cadman S, Malik A. Morphological and Genetic Diversity of Cucumber ( Cucumis sativus L.) Fruit Development. PLANTS (BASEL, SWITZERLAND) 2022; 12:23. [PMID: 36616152 PMCID: PMC9824707 DOI: 10.3390/plants12010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/03/2023]
Abstract
Cucumber (Cucumis sativus L.) fruits, which are eaten at an immature stage of development, can vary extensively in morphological features such as size, shape, waxiness, spines, warts, and flesh thickness. Different types of cucumbers that vary in these morphological traits are preferred throughout the world. Numerous studies in recent years have added greatly to our understanding of cucumber fruit development and have identified a variety of genetic factors leading to extensive diversity. Candidate genes influencing floral organ establishment, cell division and cell cycle regulation, hormone biosynthesis and response, sugar transport, trichome development, and cutin, wax, and pigment biosynthesis have all been identified as factors influencing cucumber fruit morphology. The identified genes demonstrate complex interplay between structural genes, transcription factors, and hormone signaling. Identification of genetic factors controlling these traits will facilitate breeding for desired characteristics to increase productivity, improve shipping, handling, and storage traits, and enhance consumer-desired qualities. The following review examines our current understanding of developmental and genetic factors driving diversity of cucumber fruit morphology.
Collapse
Affiliation(s)
- Rebecca Grumet
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ying-Chen Lin
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Stephanie Rett-Cadman
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ajaz Malik
- Department of Horticulture-Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190 025, India
| |
Collapse
|
11
|
Fan L, Zhang W, Xu Z, Li S, Liu D, Wang L, Zhou X. A Comparative Characterization and Expression Profiling Analysis of Fructokinase and Fructokinase-like Genes: Exploring Their Roles in Cucumber Development and Chlorophyll Biosynthesis. Int J Mol Sci 2022; 23:ijms232214260. [PMID: 36430739 PMCID: PMC9698557 DOI: 10.3390/ijms232214260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Fructokinase (FRK) and fructokinase-like (FLN), belonging to the phosphofructokinase B type subfamily, share substantial sequence similarity, and are crucial in various plant physiological processes. However, there is limited information regarding what functionally differentiates plant FRKs from FLNs. Here, a total of three CsFRKs and two CsFLNs were identified from the cucumber genome. Their significant difference lay in the structure of their G/AXGD motif, which existed as GAGD in CsFRKs, but as G/ASGD in CsFLNs. Comparative phylogenetic analysis classified CsFRKs and CsFLNs into five sub-branches consistent with their quite different exon/intron organizations. Both transcriptome data and RT-qPCR analyses revealed that CsFRK3 was the most active gene, with the highest expression in the majority of tissues tested. Moreover, the expression levels of two putative plastidic genes, CsFRK1 and CsFLN2, were significantly positively associated with chlorophyll accumulation in the chlorophyll-reduced cucumber mutant. Briefly, both CsFRK and CsFLN genes were involved in the development of sink tissues, especially CsFRK3. CsFRK1 and CsFLN2 were recognized as candidates in the chlorophyll biosynthesis pathway of cucumber. These results would greatly assist in further investigation on functional characterization of FRKs and FLNs, especially in the development and chlorophyll biosynthesis of cucumber.
Collapse
Affiliation(s)
- Lianxue Fan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenshuo Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhuo Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shengnan Li
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Dong Liu
- Division of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lili Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiuyan Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence:
| |
Collapse
|
12
|
The CsHEC1-CsOVATE module contributes to fruit neck length variation via modulating auxin biosynthesis in cucumber. Proc Natl Acad Sci U S A 2022; 119:e2209717119. [PMID: 36122223 PMCID: PMC9522363 DOI: 10.1073/pnas.2209717119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fruit neck is the proximal portion of the fruit with undesirable taste that has detrimental effects on fruit shape and commercial value in cucumber. Despite the dramatic variations in fruit neck length of cucumber germplasms, the genes and regulatory mechanisms underlying fruit neck elongation remain mysterious. In this study, we found that Cucumis sativus HECATE1 (CsHEC1) was highly expressed in fruit neck. Knockout of CsHEC1 resulted in shortened fruit neck and decreased auxin accumulation, whereas overexpression of CsHEC1 displayed the opposite effects, suggesting that CsHEC1 positively regulated fruit neck length by modulating local auxin level. Further analysis showed that CsHEC1 directly bound to the promoter of the auxin biosynthesis gene YUCCA4 (CsYUC4) and activated its expression. Enhanced expression of CsYUC4 resulted in elongated fruit neck and elevated auxin content. Moreover, knockout of CsOVATE resulted in longer fruit neck and higher auxin. Genetic and biochemical data showed that CsOVATE physically interacted with CsHEC1 to antagonize its function by attenuating the CsHEC1-mediated CsYUC4 transcriptional activation. In cucumber germplasms, the expression of CsHEC1 and CsYUC4 positively correlated with fruit neck length, while that of CsOVATE showed a negative correlation. Together, our results revealed a CsHEC1-CsOVATE regulatory module that confers fruit neck length variation via CsYUC4-mediated auxin biosynthesis in cucumber.
Collapse
|
13
|
Amanullah S, Osae BA, Yang T, Li S, Abbas F, Liu S, Liu S, Song Z, Wang X, Gao P, Luan F. Development of Whole Genome SNP-CAPS Markers and Preliminary QTL Mapping of Fruit Pedicel Traits in Watermelon. FRONTIERS IN PLANT SCIENCE 2022; 13:879919. [PMID: 35620678 PMCID: PMC9128861 DOI: 10.3389/fpls.2022.879919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Fruit pedicel (FP) is an important determinant of premium fruit quality that directly affects commercial market value. However, in-depth molecular and genetic basis of pedicel-related traits has not been identified in watermelon. Herein, a quantitative trait locus (QTL) mapping strategy was used to identify the potential genetic regions controlling FP traits based on newly derived whole-genome single nucleotide polymorphism based cleaved amplified polymorphism sequence (SNP-CAPS) markers. Next-generation sequencing based whole-genome re-sequencing of two watermelon parent lines revealed 98.30 and 98.40% of average coverage, 4,989,869 SNP variants, and 182,949 CAPS loci pairs across the reference genome, respectively. A total of 221 sets of codominant markers exhibited 46.42% polymorphism rate and were effectively genotyped within 100-F2:3 derived mapping population. The developed linkage map covered a total of 2,630.49 cM genetic length with averaged 11.90 cM, and depicted a valid marker-trait association. In total, 6 QTLs (qFPL4.1, qFPW4.1, qFPD2.1, qFPD2.2, qFPD8.1, qFPD10.1) were mapped with five major effects and one minor effect between the whole genome adjacent markers positioned over distinct chromosomes (02, 04, 08, 10), based on the ICIM-ADD mapping approach. These significant QTLs were similarly mapped in delimited flanking regions of 675.10, 751.38, 859.24, 948.39, and 947.51 kb, which collectively explained 8.64-13.60% PVE, respectively. A highly significant and positive correlation was found among the observed variables. To our knowledge, we first time reported the mapped QTLs/genes affecting FP traits of watermelon, and our illustrated outcomes will deliver the potential insights for fine genetic mapping as well as functional gene analysis through MAS-based breeding approaches.
Collapse
Affiliation(s)
- Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Benjamin Agyei Osae
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Tiantian Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Shenglong Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Farhat Abbas
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shi Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Shusen Liu
- Shouguang Sanmu Seed & Seedling Co., Ltd., Shouguang, China
| | - Zhengfeng Song
- Shouguang Sanmu Seed & Seedling Co., Ltd., Shouguang, China
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Peng Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
14
|
Zhang C, Cui L, Fang J. Genome-wide association study of the candidate genes for grape berry shape-related traits. BMC PLANT BIOLOGY 2022; 22:42. [PMID: 35057757 PMCID: PMC8772106 DOI: 10.1186/s12870-022-03434-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In the breeding of new horticultural crops, fruit shape is an important selection characteristic. A variety of fruit shapes appeared during the gradual process of selection and domestication. However, few studies have been conducted on grape berry shape, especially studies related to mining candidate genes. To discover candidate genes related to grape berry shape, the present study first took the berry shape parameters analyzed by Tomato Analyzer as the target traits and used a genome-wide association analysis to analyze candidate genes. RESULTS In total, 122 single-nucleotide polymorphism (SNP) loci had significant correlations with multiple berry shape traits in both years, and some candidate genes were further mined. These genes were mainly related to LRR receptor-like serine/threonine-protein kinase (At1g05700 and At1g07650), transcription factors (GATA transcription factor 23-like, transcription factor VIP1, transcription initiation factor TFIID, and MADS-box transcription factor 6), ubiquitin ligases (F-box protein SKIP19 and RING finger protein 44), and plant hormones (indole-3-acetic acid-amido synthetase GH3.6 and ethylene-responsive transcription factor ERF061). In addition, some important SNP loci were associated with multiple berry-shape traits. The study further revealed some genes that control multiple traits simultaneously, indicating that these berry shape traits are subject to the coordinated regulation of some genes in controlling berry shape. CONCLUSIONS In the present work, we identified interesting genetic determinants of grape berry shape-related traits. The identification of molecular markers that are closely related to these berry-shape traits is of great significance for breeding specific berry-shaped grape varieties.
Collapse
Affiliation(s)
- Chuan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liwen Cui
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
15
|
CsAGA1 and CsAGA2 Mediate RFO Hydrolysis in Partially Distinct Manner in Cucumber Fruits. Int J Mol Sci 2021; 22:ijms222413285. [PMID: 34948084 PMCID: PMC8706097 DOI: 10.3390/ijms222413285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/05/2022] Open
Abstract
A Raffinose family oligosaccharides (RFOs) is one of the major translocated sugars in the vascular bundle of cucumber, but little RFOs can be detected in fruits. Alpha-galactosidases (α-Gals) catalyze the first catabolism step of RFOs. Six α-Gal genes exist in a cucumber genome, but their spatial functions in fruits remain unclear. Here, we found that RFOs were highly accumulated in vascular tissues. In phloem sap, the stachyose and raffinose content was gradually decreased, whereas the content of sucrose, glucose and fructose was increased from pedicel to fruit top. Three alkaline forms instead of acid forms of α-Gals were preferentially expressed in fruit vascular tissues and alkaline forms have stronger RFO-hydrolysing activity than acid forms. By inducible gene silencing of three alkaline forms of α-Gals, stachyose was highly accumulated in RNAi-CsAGA2 plants, while raffinose and stachyose were highly accumulated in RNAi-CsAGA1 plants. The content of sucrose, glucose and fructose was decreased in both RNAi-CsAGA1 and RNAi-CsAGA2 plants after β-estradiol treatment. In addition, the fresh- and dry-weight of fruits were significantly decreased in RNAi-CsAGA1 and RNAi-CsAGA2 plants. In cucurbitaceous plants, the non-sweet motif within the promoter of ClAGA2 is widely distributed in the promoter of its homologous genes. Taken together, we found RFOs hydrolysis occurred in the vascular tissues of fruits. CsAGA1 and CsAGA2 played key but partly distinct roles in the hydrolysis of RFOs.
Collapse
|
16
|
Shen J, Ge D, Song X, Xiao J, Liu X, Che G, Gu R, Wang Z, Cheng Z, Song W, Liu L, Chen J, Han L, Yan L, Liu R, Zhou Z, Zhang X. Roles of CsBRC1-like in leaf and lateral branch development in cucumber. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110681. [PMID: 33288003 DOI: 10.1016/j.plantsci.2020.110681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/28/2020] [Accepted: 09/12/2020] [Indexed: 05/24/2023]
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) family genes, as plant-specific transcription factors, play vital roles in flower pattern, leaf development and plant architecture. Our recent study shows that the TCP gene BRANCHED1 (CsBRC1) specifically regulates shoot branching in cucumber. Here, we found CsBRC1 had a closely related paralogous gene CsBRC1-like. The synteny analysis revealed that these two genes originated from a segmental duplication. CsBRC1-like displayed different expression patterns in cucumber compared with CsBRC1, indicating that they may have functional differentiation. Ectopic expression of CsBRC1-like in Arabidopsis brc1-1 mutant resulted in reduced rosette branches and rosette leaves, whereas silencing CsBRC1-like in cucumber only led to a deformed true leaf of seedling rather than affecting the shoot branching. RNA-seq analysis of wild-type and CsBRC1-like-RNAi plants implicated that CsBRC1-like might regulate early leaf development through affecting the transcripts of auxin and cytokinin related genes in cucumber. Moreover, CsBRC1-like directly interacts with CsTCP10a and CsBRC1 in vivo. Our results demonstrated that CsBRC1-like has a specific role in regulating leaf development, and CsBRC1-like and CsBRC1 may have overlapping roles in shoot branching.
Collapse
Affiliation(s)
- Junjun Shen
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Danfeng Ge
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaofei Song
- Analysis and Testing Centre, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Jiajing Xiao
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Gen Che
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Ran Gu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Liu Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jiacai Chen
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Lijie Han
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Liying Yan
- College of Horticulture Science and Technology, Hebei Normal University of Science& Technology, Qinhuangdao 066004, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Xu X, Wei C, Liu Q, Qu W, Qi X, Xu Q, Chen X. The major-effect quantitative trait locus Fnl7.1 encodes a late embryogenesis abundant protein associated with fruit neck length in cucumber. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1598-1609. [PMID: 31916321 PMCID: PMC7292543 DOI: 10.1111/pbi.13326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 12/06/2019] [Indexed: 06/03/2023]
Abstract
Fruit neck length (FNL) is an important quality trait in cucumber because it directly affects its market value. However, its genetic basis remains largely unknown. We identified a candidate gene for FNL in cucumber using a next-generation sequencing-based bulked segregant analysis in F2 populations, derived from a cross between Jin5-508 (long necked) and YN (short necked). A quantitative trait locus (QTL) on chromosome 7, Fnl7.1, was identified through a genome-wide comparison of single nucleotide polymorphisms between long and short FNL F2 pools, and it was confirmed by traditional QTL mapping in multiple environments. Fine genetic mapping, sequences alignment and gene expression analysis revealed that CsFnl7.1 was the most likely candidate Fnl7.1 locus, which encodes a late embryogenesis abundant protein. The increased expression of CsFnl7.1 in long-necked Jin5-508 may be attributed to mutations in the promoter region upstream of the gene body. The function of CsFnl7.1 in FNL control was confirmed by its overexpression in transgenic cucumbers. CsFnl7.1 regulates fruit neck development by modulating cell expansion. Probably, this is achieved through the direct protein-protein interactions between CsFnl7.1 and a dynamin-related protein CsDRP6 and a germin-like protein CsGLP1. Geographical distribution differences of the FNL phenotype were found among the different cucumber types. The East Asian and Eurasian cucumber accessions were highly enriched with the long-necked and short-necked phenotypes, respectively. A further phylogenetic analysis revealed that the Fnl7.1 locus might have originated from India. Thus, these data support that the CsFnl7.1 has an important role in increasing cucumber FNL.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhouJiangsuChina
| | - Chenxi Wei
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Qianya Liu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Wenqing Qu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Xiaohua Qi
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Qiang Xu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Xuehao Chen
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|
18
|
Che G, Gu R, Zhao J, Liu X, Song X, Zi H, Cheng Z, Shen J, Wang Z, Liu R, Yan L, Weng Y, Zhang X. Gene regulatory network controlling carpel number variation in cucumber. Development 2020; 147:dev.184788. [PMID: 32165491 DOI: 10.1242/dev.184788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/26/2020] [Indexed: 01/09/2023]
Abstract
The WUSCHEL-CLAVATA3 pathway genes play an essential role in shoot apical meristem maintenance and floral organ development, and under intense selection during crop domestication. The carpel number is an important fruit trait that affects fruit shape, size and internal quality in cucumber, but the molecular mechanism remains elusive. Here, we found that CsCLV3 expression was negatively correlated with carpel number in cucumber cultivars. CsCLV3-RNAi led to increased number of petals and carpels, whereas overexpression of CsWUS resulted in more sepals, petals and carpels, suggesting that CsCLV3 and CsWUS function as a negative and a positive regulator for carpel number variation, respectively. Biochemical analyses indicated that CsWUS directly bound to the promoter of CsCLV3 and activated its expression. Overexpression of CsFUL1A , a FRUITFULL-like MADS-box gene, resulted in more petals and carpels. CsFUL1A can directly bind to the CsWUS promoter to stimulate its expression. Furthermore, we found that auxin participated in carpel number variation in cucumber through interaction of CsARF14 with CsWUS. Therefore, we have identified a gene regulatory pathway involving CsCLV3, CsWUS, CsFUL1A and CsARF14 in determining carpel number variation in an important vegetable crop - cucumber.
Collapse
Affiliation(s)
- Gen Che
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Ran Gu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Jianyu Zhao
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaofei Song
- Analysis and Testing Centre, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Hailing Zi
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Junjun Shen
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liying Yan
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Yan S, Ning K, Wang Z, Liu X, Zhong Y, Ding L, Zi H, Cheng Z, Li X, Shan H, Lv Q, Luo L, Liu R, Yan L, Zhou Z, Lucas WJ, Zhang X. CsIVP functions in vasculature development and downy mildew resistance in cucumber. PLoS Biol 2020; 18:e3000671. [PMID: 32203514 PMCID: PMC7117775 DOI: 10.1371/journal.pbio.3000671] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/02/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023] Open
Abstract
Domesticated crops with high yield and quality are frequently susceptible to pathogen attack, whereas enhancement of disease resistance generally compromises crop yield. The underlying mechanisms of how plant development and disease resistance are coordinately programed remain elusive. Here, we showed that the basic Helix-Loop-Helix (bHLH) transcription factor Cucumis sativus Irregular Vasculature Patterning (CsIVP) was highly expressed in cucumber vascular tissues. Knockdown of CsIVP caused severe vasculature disorganization and abnormal organ morphogenesis. CsIVP directly binds to vascular-related regulators YABBY5 (CsYAB5), BREVIPEDICELLUS (CsBP), and AUXIN/INDOLEACETIC ACIDS4 (CsAUX4) and promotes their expression. Knockdown of CsYAB5 resulted in similar phenotypes as CsIVP-RNA interference (RNAi) plants, including disturbed vascular configuration and abnormal organ morphology. Meanwhile, CsIVP-RNAi plants were more resistant to downy mildew and accumulated more salicylic acid (SA). CsIVP physically interacts with NIM1-INTERACTING1 (CsNIMIN1), a negative regulator in the SA signaling pathway. Thus, CsIVP is a novel vasculature regulator functioning in CsYAB5-mediated organ morphogenesis and SA-mediated downy mildew resistance in cucumber.
Collapse
Affiliation(s)
- Shuangshuang Yan
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Kang Ning
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Yanting Zhong
- Department of Plant Nutrition, the Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing, China
| | - Lian Ding
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Hailing Zi
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Xuexian Li
- Department of Plant Nutrition, the Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qingyang Lv
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Renyi Liu
- College of Horticulture, and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liying Yan
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - William John Lucas
- Department of Plant Biology, University of California, Davis, California, United States of America
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Elucidating Escherichia Coli O157:H7 Colonization and Internalization in Cucumbers Using an Inverted Fluorescence Microscope and Hyperspectral Microscopy. Microorganisms 2019; 7:microorganisms7110499. [PMID: 31661860 PMCID: PMC6920880 DOI: 10.3390/microorganisms7110499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022] Open
Abstract
Contamination of fresh cucumbers (Cucumis sativus L.) with Escherichia coli O157:H7 can impact the health of consumers. Despite this, the pertinent mechanisms underlying E. coli O157:H7 colonization and internalization remain poorly documented. Herein we aimed to elucidate these mechanisms in cucumbers using an inverted fluorescence microscope and hyperspectral microscopy. We observed that E. coli O157:H7 primarily colonized around the stomata on cucumber epidermis without invading the internal tissues of intact cucumbers. Once the bacterial cells had infiltrated into the internal tissues, they colonized the cucumber placenta and vascular bundles (xylem vessels, in particular), and also migrated along the xylem vessels. Moreover, the movement rate of E. coli O157:H7 from the stalk to the flower bud was faster than that from the flower bud to the stalk. We then used hyperspectral microscope imaging to categorize the infiltrated and uninfiltrated areas with high accuracy using the spectral angle mapper (SAM) classification method, which confirmed the results obtained upon using the inverted fluorescence microscope. We believe that our results are pivotal for developing science-based food safety practices, interventions for controlling E. coli O157:H7 internalization, and new methods for detecting E. coli O157:H7-plant interactions.
Collapse
|
21
|
Sun J, Xiao T, Nie J, Chen Y, Lv D, Pan M, Gao Q, Guo C, Zhang L, He HL, Lian H, Pan J, Cai R, Wang G. Mapping and identification of CsUp, a gene encoding an Auxilin-like protein, as a putative candidate gene for the upward-pedicel mutation (up) in cucumber. BMC PLANT BIOLOGY 2019; 19:157. [PMID: 31023214 PMCID: PMC6485165 DOI: 10.1186/s12870-019-1772-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/11/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Pedicel orientation can affect the female flower orientation and seed yield in cucumber. A spontaneous mutant possessing upward growth of pedicels was identified in the wild type inbred strain 9930 and named upward-pedicel (up). The morphological and genetic analyses of up were performed in this study. In order to clone the up gene, 933 F2 individuals and 524 BC1 individuals derived from C-8-6 (WT) and up were used for map-based cloning. RESULTS up was mapped to a 35.2 kb physical interval on chromosome 1, which contains three predicted genes. Sequencing analysis revealed that a 5-bp deletion was found in the second exon of Csa1G535800, and it led to a frameshift mutation resulting in a premature stop codon. The candidate gene of CsUp (Csa1G535800) was further confirmed via genomic and cDNA sequencing in biparental and natural cucumber populations. Sequencing data showed that a 4-bp deletion was found in the sixth exon of Csa1G535800 in CGN19839, another inbred line, and there was also a mutation of an amino acid in Csa1G535800 that could contribute to the upward growth of pedicels in CGN19839. Moreover, it was found that Csa1G535800 exhibited strong expression in the pedicel of WT, suggesting its important role in development of pedicel orientation. Thus, Csa1G535800 was considered to be the candidate gene of CsUp. CONCLUSIONS CsUp encodes an Auxilin-like protein and controls pedicel orientation in cucumber. The identification of CsUp may help us to understand the mechanism of pedicel orientation development and allow for investigation of novel functions of Auxilin-like proteins in cucumber.
Collapse
Affiliation(s)
- Jingxian Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 201100, China
| | - Tingting Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 201100, China
| | - Jingtao Nie
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 201100, China
| | - Yue Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 201100, China
| | - Duo Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 201100, China
| | - Ming Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 201100, China
| | - Qifan Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 201100, China
| | - Chunli Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 201100, China
| | - Leyu Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 201100, China
| | - Huan-Le He
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 201100, China
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 201100, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 201100, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 201100, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 201100, China.
| |
Collapse
|
22
|
Che G, Zhang X. Molecular basis of cucumber fruit domestication. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:38-46. [PMID: 30253288 DOI: 10.1016/j.pbi.2018.08.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 05/10/2023]
Abstract
Cucumber (Cucumis sativus L.) is an economically important vegetable crop that is cultivated worldwide. Compared to the wild ancestor bearing small, bitter and seedy fruit, domesticated cucumbers exhibit significant variation in fruit appearance, size and flavor. Understanding the molecular basis of domestication related traits can provide insights into fruit evolution and make crop breeding more efficient. Here we review recent advances in relating to the genetic basis of fruit morphological traits (femaleness, fruit spine, wart, size, color and carpel development) and organoleptic features (bitterness) during cucumber domestication.
Collapse
Affiliation(s)
- Gen Che
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Sui X, Nie J, Li X, Scanlon MJ, Zhang C, Zheng Y, Ma S, Shan N, Fei Z, Turgeon R, Zhang Z. Transcriptomic and functional analysis of cucumber (Cucumis sativus L.) fruit phloem during early development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:982-996. [PMID: 30194881 DOI: 10.1111/tpj.14084] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 08/26/2018] [Accepted: 08/31/2018] [Indexed: 05/17/2023]
Abstract
The phloem of the Cucurbitaceae has long been a subject of interest due to its complex nature and the economic importance of the family. As in a limited number of other families, cucurbit phloem is bicollateral, i.e. with sieve tubes on both sides of the xylem. To date little is known about the specialized functions of the internal phloem (IP) and external phloem (EP). Here, a combination of microscopy, fluorescent dye transport analysis, micro-computed tomography, laser capture microdissection and RNA-sequencing (RNA-Seq) were used to study the functions of IP and EP in the vascular bundles (VBs) of cucumber fruit. There is one type of VB in the peduncle, but four in the fruit: peripheral (PeVB), main (MVB), carpel (CVB) and placental (PlVB). The VBs are bicollateral, except for the CVB and PlVB. Phloem mobile tracers and 14 C applied to leaves are transported primarily in the EP, and to a lesser extent in the IP. RNA-Seq data indicate preferential gene transcription in the IP related to differentiation/development, hormone transport, RNA or protein modification/processing/transport, and nitrogen compound metabolism and transport. The EP preferentially expresses genes for stimulus/stress, defense, ion transport and secondary metabolite biosynthesis. The MVB phloem is preferentially involved in photoassimilate transport, unloading and long-distance signaling, while the PeVB plays a more substantial role in morphogenesis and/or development and defense response. CVB and PlVB transcripts are biased toward development of reproductive organs. These findings provide an integrated view of the differentiated structure and function of the vascular tissue in cucumber fruit.
Collapse
Affiliation(s)
- Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jing Nie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Michael J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Cankui Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yi Zheng
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Nan Shan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Robert Turgeon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Zhenxian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
24
|
Meng D, Zhao J, Zhao C, Luo H, Xie M, Liu R, Lai J, Zhang X, Jin W. Sequential gene activation and gene imprinting during early embryo development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:445-459. [PMID: 29172230 DOI: 10.1111/tpj.13786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 05/05/2023]
Abstract
Gene imprinting is a widely observed epigenetic phenomenon in maize endosperm; however, whether it also occurs in the maize embryo remains controversial. Here, we used high-throughput RNA sequencing on laser capture microdissected and manually dissected maize embryos from reciprocal crosses between inbred lines B73 and Mo17 at six time points (3-13 days after pollination, DAP) to analyze allelic gene expression patterns. Co-expression analysis revealed sequential gene activation during maize embryo development. Gene imprinting was observed in maize embryos, and a greater number of imprinted genes were identified at early embryo stages. Sixty-four strongly imprinted genes were identified (at the threshold of 9:1) on manually dissected embryos 5-13 DAP (more imprinted genes at 5 DAP). Forty-one strongly imprinted genes were identified from laser capture microdissected embryos at 3 and 5 DAP (more imprinted genes at 3 DAP). Furthermore, of the 56 genes that were completely imprinted (at the threshold of 99:1), 36 were not previously identified as imprinted genes in endosperm or embryos. In situ hybridization demonstrated that most of the imprinted genes were expressed abundantly in maize embryonic tissue. Our results shed lights on early maize embryo development and provide evidence to support that gene imprinting occurs in maize embryos.
Collapse
Affiliation(s)
- Dexuan Meng
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Cheng Zhao
- Shanghai Centre for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haishan Luo
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Mujiao Xie
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Renyi Liu
- Shanghai Centre for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jinsheng Lai
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
25
|
Xu Q, Xu X, Shi Y, Qi X, Chen X. Elucidation of the molecular responses of a cucumber segment substitution line carrying Pm5.1 and its recurrent parent triggered by powdery mildew by comparative transcriptome profiling. BMC Genomics 2017; 18:21. [PMID: 28056792 PMCID: PMC5217421 DOI: 10.1186/s12864-016-3438-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Powdery mildew (PM) is one of the most severe fungal diseases of cucurbits, but the molecular mechanisms underlying PM resistance in cucumber remain elusive. In this study, we developed a PM resistant segment substitution line SSL508-28 that carried a segment on chromosome five representing the Pm5.1 locus from PM resistant donor Jin5-508 using marker-assisted backcrossing of an elite PM susceptible cucumber inbred line D8. RESULTS Whole-genome resequencing of SSL508-28, Jin5-508 and D8 was performed to identify the exact boundaries of the breakpoints for this introgression because of the low density of available single sequence repeat markers. This led to the identification of a ~6.8 Mb substituted segment predicted to contain 856 genes. RNA-seq was used to study gene expression differences in PM treated (plants harvested 48 h after inoculation) and untreated (control) SSL508-28 and D8 lines. Exactly 1,248 and 1,325 differentially expressed genes (DEGs) were identified in SSL508-28 and D8, respectively. Of those, 88 DEGs were located in the ~6.8 Mb segment interval. Based on expression data and annotation, we identified 8 potential candidate genes that may participate in PM resistance afforded by Pm5.1, including two tandemly arrayed genes encoding receptor protein kinases, two transcription factors, two genes encoding remorin proteins, one gene encoding a P-type ATPase and one gene encoding a 70 kDa heat shock protein. The transcriptome data also revealed a complex regulatory network for Pm5.1-mediated PM resistance that may involve multiple signal regulators and transducers, cell wall modifications and the salicylic acid signaling pathway. CONCLUSION These findings shed light on the cucumber PM defense mechanisms mediated by Pm5.1 and provided valuable information for the fine mapping of Pm5.1 and breeding of cucumber with enhanced resistance to PM.
Collapse
Affiliation(s)
- Qiang Xu
- Department of horticulture, School of horticulture and plant protection, Yangzhou University, 48 east wenhui road, Yangzhou, Jiangsu 225009 China
| | - Xuewen Xu
- Department of horticulture, School of horticulture and plant protection, Yangzhou University, 48 east wenhui road, Yangzhou, Jiangsu 225009 China
| | - Yang Shi
- Department of horticulture, School of horticulture and plant protection, Yangzhou University, 48 east wenhui road, Yangzhou, Jiangsu 225009 China
| | - Xiaohua Qi
- Department of horticulture, School of horticulture and plant protection, Yangzhou University, 48 east wenhui road, Yangzhou, Jiangsu 225009 China
| | - Xuehao Chen
- Department of horticulture, School of horticulture and plant protection, Yangzhou University, 48 east wenhui road, Yangzhou, Jiangsu 225009 China
| |
Collapse
|
26
|
Dogra V, Duan J, Lee KP, Lv S, Liu R, Kim C. FtsH2-Dependent Proteolysis of EXECUTER1 Is Essential in Mediating Singlet Oxygen-Triggered Retrograde Signaling in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1145. [PMID: 28706530 PMCID: PMC5489589 DOI: 10.3389/fpls.2017.01145] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/15/2017] [Indexed: 05/18/2023]
Abstract
Photosystem II reaction center (PSII RC) and light-harvesting complex inevitably generate highly reactive singlet oxygen (1O2) that can impose photo-oxidative damage, especially when the rate of generation exceeds the rate of detoxification. Besides being toxic, 1O2 has also been ascribed to trigger retrograde signaling, which leads to nuclear gene expression changes. Two distinctive molecular components appear to regulate 1O2 signaling: a volatile signaling molecule β-cyclocitral (β-CC) generated upon oxidation of β-carotene by 1O2 in PSII RC assembled in grana core, and a thylakoid membrane-bound FtsH2 metalloprotease that promotes 1O2-triggered signaling through the proteolysis of EXECUTER1 (EX1) proteins associated with PSII in grana margin. The role of FtsH2 protease in 1O2 signaling was established recently in the conditional fluorescent (flu) mutant of Arabidopsis thaliana that generates 1O2 upon dark-to-light shift. The flu mutant lacking functional FtsH2 significantly impairs 1O2-triggered and EX1-mediated cell death. In the present study, the role of FtsH2 in the induction of 1O2 signaling was further clarified by analyzing the FtsH2-dependent nuclear gene expression changes in the flu mutant. Genome-wide transcriptome analysis showed that the inactivation of FtsH2 repressed the majority (85%) of the EX1-dependent 1O2-responsive genes (SORGs), providing direct connection between FtsH2-mediated EX1 degradation and 1O2-triggered gene expression changes. Furthermore, the overlap between β-CC-induced genes and EX1-FtsH2-dependent genes was very limited, further supporting the coexistence of two distinctive 1O2 signaling pathways.
Collapse
Affiliation(s)
- Vivek Dogra
- Laboratory of Photosynthesis and Stress Signaling, Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of SciencesShanghai, China
| | - Jianli Duan
- Laboratory of Photosynthesis and Stress Signaling, Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of SciencesShanghai, China
| | - Keun Pyo Lee
- Laboratory of Photosynthesis and Stress Signaling, Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of SciencesShanghai, China
| | - Shanshan Lv
- Shanghai Center for Plant Stress Biology, Chinese Academy of SciencesShanghai, China
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology, Chinese Academy of SciencesShanghai, China
| | - Chanhong Kim
- Laboratory of Photosynthesis and Stress Signaling, Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of SciencesShanghai, China
- *Correspondence: Chanhong Kim,
| |
Collapse
|
27
|
Sun C, Li Y, Zhao W, Song X, Lu M, Li X, Li X, Liu R, Yan L, Zhang X. Integration of Hormonal and Nutritional Cues Orchestrates Progressive Corolla Opening. PLANT PHYSIOLOGY 2016; 171:1209-29. [PMID: 27208289 PMCID: PMC4902604 DOI: 10.1104/pp.16.00209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/24/2016] [Indexed: 05/19/2023]
Abstract
Flower opening is essential for pollination and thus successful sexual reproduction; however, the underlying mechanisms of its timing control remain largely elusive. We identify a unique cucumber (Cucumis sativus) line '6457' that produces normal ovaries when nutrients are under-supplied, and super ovaries (87%) with delayed corolla opening when nutrients are oversupplied. Corolla opening in both normal and super ovaries is divided into four distinct phases, namely the green bud, green-yellow bud, yellow bud, and flowering stages, along with progressive color transition, cytological tuning, and differential expression of 14,282 genes. In the super ovary, cell division and cell expansion persisted for a significantly longer period of time; the expressions of genes related to photosynthesis, protein degradation, and signaling kinases were dramatically up-regulated, whereas the activities of most transcription factors and stress-related genes were significantly down-regulated; concentrations of cytokinins (CKs) and gibberellins were higher in accordance with reduced cytokinin conjugation and degradation and increased expression of gibberellin biosynthesis genes. Exogenous CK application was sufficient for the genesis of super ovaries, suggesting a decisive role of CKs in controlling the timing of corolla opening. Furthermore, 194 out of 11,127 differentially expressed genes identified in pairwise comparisons, including critical developmental, signaling, and cytological regulators, contained all three types of cis-elements for CK, nitrate, and phosphorus responses in their promoter regions, indicating that the integration of hormone modulation and nutritional regulation orchestrated the precise control of corolla opening in cucumber. Our findings provide a valuable framework for dissecting the regulatory pathways for flower opening in plants.
Collapse
Affiliation(s)
- Chengzhen Sun
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Yanqiang Li
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Wensheng Zhao
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xiaofei Song
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Man Lu
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xiaoli Li
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xuexian Li
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Renyi Liu
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Liying Yan
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xiaolan Zhang
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| |
Collapse
|