1
|
Shilpa, Thakur R, Prasad P. Epigenetic regulation of abiotic stress responses in plants. Biochim Biophys Acta Gen Subj 2024; 1868:130661. [PMID: 38885816 DOI: 10.1016/j.bbagen.2024.130661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/15/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Plants face a wide array of challenges in their environment, both from living organisms (biotic stresses) and non-living factors (abiotic stresses). Among the major abiotic stressors affecting crop plants, variations in temperature, water availability, salinity, and cold pose significant threats to crop yield and the quality of produce. Plants possess remarkable adaptability and resilience, and they employ a range of genetic and epigenetic mechanisms to respond and cope with abiotic stresses. A few crucial set of epigenetic mechanisms that support plants in their battle against these stresses includes DNA methylation and histone modifications. These mechanisms play a pivotal role in enabling plants to endure and thrive under challenging environmental conditions. The mechanisms of different epigenetic mechanisms in responding to the abiotic stresses vary. Each plant species and type of stress may trigger distinct epigenetic responses, highlighting the complexity of the plant's ability to adapt under stress conditions. This review focuses on the paramount importance of epigenetics in enhancing a plant's ability to survive and excel under various abiotic stresses. It highlights recent advancements in our understanding of the epigenetic mechanisms that contribute to abiotic stress tolerance in plants. This growing knowledge is pivotal for shaping future efforts aimed at mitigating the impact of abiotic stresses on diverse crop plants.
Collapse
Affiliation(s)
- Shilpa
- Department of Biotechnology, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Rajnikant Thakur
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla-2, Himachal Pradesh, India
| | - Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla-2, Himachal Pradesh, India.
| |
Collapse
|
2
|
Kovalchuk I. Role of Epigenetic Factors in Response to Stress and Establishment of Somatic Memory of Stress Exposure in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3667. [PMID: 37960024 PMCID: PMC10648063 DOI: 10.3390/plants12213667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
All species are well adapted to their environment. Stress causes a magnitude of biochemical and molecular responses in plants, leading to physiological or pathological changes. The response to various stresses is genetically predetermined, but is also controlled on the epigenetic level. Most plants are adapted to their environments through generations of exposure to all elements. Many plant species have the capacity to acclimate or adapt to certain stresses using the mechanism of priming. In most cases, priming is a somatic response allowing plants to deal with the same or similar stress more efficiently, with fewer resources diverted from growth and development. Priming likely relies on multiple mechanisms, but the differential expression of non-coding RNAs, changes in DNA methylation, histone modifications, and nucleosome repositioning play a crucial role. Specifically, we emphasize the role of BRM/CHR17, BRU1, FGT1, HFSA2, and H2A.Z proteins as positive regulators, and CAF-1, MOM1, DDM1, and SGS3 as potential negative regulators of somatic stress memory. In this review, we will discuss the role of epigenetic factors in response to stress, priming, and the somatic memory of stress exposures.
Collapse
Affiliation(s)
- Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
3
|
Kumar M, Rani K. Epigenomics in stress tolerance of plants under the climate change. Mol Biol Rep 2023:10.1007/s11033-023-08539-6. [PMID: 37294468 DOI: 10.1007/s11033-023-08539-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Climate change has had a tremendous impact on the environment in general as well as agricultural crops grown in these situations as time passed. Agricultural production of crops is less suited and of lower quality due to disturbances in plant metabolism brought on by sensitivity to environmental stresses, which are brought on by climate change. Abiotic stressors that are specific to climate change, including as drought, extremes in temperature, increasing CO2, waterlogging from heavy rain, metal toxicity, and pH changes, are known to negatively affect an array of species. Plants adapt to these challenges by undergoing genome-wide epigenetic changes, which are frequently accompanied by differences in transcriptional gene expression. The sum of a cell's biochemical modifications to its nuclear DNA, post-translational modifications to histones, and variations in the synthesis of non-coding RNAs is called an epigenome. These modifications frequently lead to variations in gene expression that occur without any alteration in the underlying base sequence. EPIGENETIC MECHANISMS AND MARKS The methylation of homologous loci by three different modifications-genomic (DNA methylation), chromatin (histone modifications), and RNA-directed DNA methylation (RdDM)-could be regarded as epigenetic mechanisms that control the regulation of differential gene expression. Stresses from the environment cause chromatin remodelling, which enables plant cells to adjust their expression patterns temporarily or permanently. EPIGENOMICS' CONSEQUENCES FOR GENOME STABILITY AND GENE EXPRESSION: DNA methylation affects gene expression in response to abiotic stressors by blocking or suppressing transcription. Environmental stimuli cause changes in DNA methylation levels, either upward in the case of hypermethylation or downward in the case of hypomethylation. The type of stress response that occurs as a result also affects the degree of DNA methylation alterations. Stress is also influenced by DRM2 and CMT3 methylating CNN, CNG, and CG. Both plant development and stress reactions depend on histone changes. Gene up-regulation is associated with histone tail phosphorylation, ubiquitination, and acetylation, while gene down-regulation is associated with de-acetylation and biotinylation. Plants undergo a variety of dynamic changes to histone tails in response to abiotic stressors. The relevance of these transcripts against stress is highlighted by the accumulation of numerous additional antisense transcripts, a source of siRNAs, caused by abiotic stresses. The study highlights the finding that plants can be protected from a range of abiotic stresses by epigenetic mechanisms such DNA methylation, histone modification, and RNA-directed DNA methylation. TRANSGENERATIONAL INHERITANCE AND SOURCES OF EPIGENETIC VARIATION: Stress results in the formation of epialleles, which are either transient or enduring epigenetic stress memory in plants. After the stress is gone, the stable memory is kept for the duration of the plant's remaining developmental cycles or passed on to the next generations, leading to plant evolution and adaptability. The bulk of epigenetic changes brought on by stress are temporary and return to normal after the stress has passed. Some of the modifications, however, might be long-lasting and transmitted across mitotic or even meiotic cell divisions. Epialleles often have genetic or non-genetic causes. Epialleles can arise spontaneously due to improper methylation state maintenance, short RNA off-target effects, or other non-genetic causes. Developmental or environmental variables that influence the stability of epigenetic states or direct chromatin modifications may also be non-genetic drivers of epigenetic variation. Transposon insertions that change local chromatin and structural rearrangements, such copy number changes that are genetically related or unrelated, are two genetic sources of epialleles. EPIGENOMICS IN CROP IMPROVEMENT To include epigenetics into crop breeding, it is necessary to create epigenetic variation as well as to identify and evaluate epialleles. Epigenome editing or epi-genomic selection may be required for epiallele creation and identification. In order to combat the challenges given by changing environments, these epigenetic mechanisms have generated novel epialleles that can be exploited to develop new crop types that are more climate-resilient. Numerous techniques can be used to alter the epigenome generally or at specific target loci in order to induce the epigenetic alterations necessary for crop development. Technologies like CRISPR/Cas9 and dCas, which have recently advanced, have opened up new avenues for the study of epigenetics. Epialleles could be employed in epigenomics-assisted breeding in addition to sequence-based markers for crop breeding. CONCLUSIONS AND FUTURE PROSPECTUS A few of the exciting questions that still need to be resolved in the area of heritable epigenetic variation include a better understanding of the epigenetic foundation of characteristics, the stability and heritability of epialleles, and the sources of epigenetic variation in crops. Investigating long intergenic non-coding RNAs (lincRNAs) as an epigenetic process might open up a new path to understanding crop plant's ability to withstand abiotic stress. For many of these technologies and approaches to be more applicable and deployable at a lower cost, technological breakthroughs will also be necessary. Breeders will probably need to pay closer attention to crop epialleles and how they can affect future responses to climate changes. The development of epialleles suitable for particular environmental circumstances may be made possible by creating targeted epigenetic changes in pertinent genes and by comprehending the molecular underpinnings of trans generational epigenetic inheritance. More research on a wider variety of plant species is required in order to fully comprehend the mechanisms that produce and stabilise epigenetic variation in crops. In addition to a collaborative and multidisciplinary effort by researchers in many fields of plant science, this will require a greater integration of the epigenomic data gathered in many crops. Before it may be applied generally, more study is required.
Collapse
Affiliation(s)
- Mithlesh Kumar
- AICRN On Potential Crops, ARS Mandor, Agriculture University, Jodhpur, 342 304, Rajasthan, India.
| | - Kirti Rani
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), Regional Station, Jodhpur, 342 003, Rajasthan, India
| |
Collapse
|
4
|
Hirakawa T, Tanno S, Ohara K. N-acetylglutamic acid alleviates oxidative stress based on histone acetylation in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1165646. [PMID: 37223787 PMCID: PMC10200918 DOI: 10.3389/fpls.2023.1165646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/19/2023] [Indexed: 05/25/2023]
Abstract
Oxidative stress causes cellular damage and genomic instability through the accumulation of reactive oxygen species (ROS) in plants, resulting in reduced crop production. Chemical priming, which can enhance plant tolerance to environmental stress using functional chemical compounds, is expected to improve agricultural yield in various plants without genetic engineering. In the present study, we revealed that non-proteogenic amino acid N-acetylglutamic acid (NAG) can alleviate oxidative stress damage in Arabidopsis thaliana (Arabidopsis) and Oryza sativa (rice). Exogenous treatment with NAG prevented chlorophyll reduction induced by oxidative stress. The expression levels of ZAT10 and ZAT12, which are regarded as master transcriptional regulators in response to oxidative stress, increased following NAG treatment. Additionally, Arabidopsis plants treated with NAG showed enhanced levels of histone H4 acetylation at ZAT10 and ZAT12 with the induction of histone acetyltransferases HAC1 and HAC12. The results suggest that NAG could enhance tolerance to oxidative stress through epigenetic modifications and contribute to the improvement of crop production in a wide variety of plants under environmental stress.
Collapse
|
5
|
Lepri A, Longo C, Messore A, Kazmi H, Madia VN, Di Santo R, Costi R, Vittorioso P. Plants and Small Molecules: An Up-and-Coming Synergy. PLANTS (BASEL, SWITZERLAND) 2023; 12:1729. [PMID: 37111951 PMCID: PMC10145415 DOI: 10.3390/plants12081729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The emergence of Arabidopsis thaliana as a model system has led to a rapid and wide improvement in molecular genetics techniques for studying gene function and regulation. However, there are still several drawbacks that cannot be easily solved with molecular genetic approaches, such as the study of unfriendly species, which are of increasing agronomic interest but are not easily transformed, thus are not prone to many molecular techniques. Chemical genetics represents a methodology able to fill this gap. Chemical genetics lies between chemistry and biology and relies on small molecules to phenocopy genetic mutations addressing specific targets. Advances in recent decades have greatly improved both target specificity and activity, expanding the application of this approach to any biological process. As for classical genetics, chemical genetics also proceeds with a forward or reverse approach depending on the nature of the study. In this review, we addressed this topic in the study of plant photomorphogenesis, stress responses and epigenetic processes. We have dealt with some cases of repurposing compounds whose activity has been previously proven in human cells and, conversely, studies where plants have been a tool for the characterization of small molecules. In addition, we delved into the chemical synthesis and improvement of some of the compounds described.
Collapse
Affiliation(s)
- A. Lepri
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - C. Longo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - A. Messore
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - H. Kazmi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - V. N. Madia
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Di Santo
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Costi
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - P. Vittorioso
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| |
Collapse
|
6
|
Insights into the molecular aspects of salt stress tolerance in mycorrhizal plants. World J Microbiol Biotechnol 2022; 38:253. [DOI: 10.1007/s11274-022-03440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
|
7
|
Xu Y, Miao Y, Cai B, Yi Q, Tian X, Wang Q, Ma D, Luo Q, Tan F, Hu Y. A histone deacetylase inhibitor enhances rice immunity by derepressing the expression of defense-related genes. FRONTIERS IN PLANT SCIENCE 2022; 13:1041095. [PMID: 36407628 PMCID: PMC9667192 DOI: 10.3389/fpls.2022.1041095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Histone deacetylase (HDAC) inhibitors (HDACis) have been widely used in plants to investigate the role of histone acetylation, particularly the function of HDACs, in the regulation of development and stress response. However, how histone acetylation is involved in rice (Oryza sativa L.) disease resistance has hardly been studied. In this paper, four HDACis including Sodium butyrate (NaBT), Suberoylanilide Hydroxamic Acid (SAHA), LBH-589 and Trichostatin A (TSA) were used to treat rice seedlings at different concentrations before inoculation of Magnaporthe oryzae. We found that only 10mM NaBT treatment can significantly enhanced rice blast resistance. However, treatment of the four HDACis all increased global histone acetylation but at different sites, suggesting that the inhibition selectivity of these HDACis is different. Notably, the global H3K9ac level was dramatically elevated after both NaBT and LBH589 treatment although LBH589 could not enhance rice blast resistance. This indicates that the HDACs they inhibit target different genes. In accordance with the phenotype, transcriptomic analysis showed that many defense-related genes were up-regulated by NaBT treatment. Up-regulation of the four genes bsr-d1, PR10B, OsNAC4, OsKS4 were confirmed by RT-qPCR. ChIP-qPCR results revealed that H3K9ac level on these genes was increased after NaBT treatment, suggesting that these defense-related genes were repressed by HDACs. In addition, by promoter motif analysis of the genes that induced by both NaBT treatment and rice blast infection, we found that the motifs bound by ERF and AHL transcription factors (TFs) were the most abundant, which demonstrates that ERF and AHL proteins may act as the candidate TFs that recruit HDACs to defense-related genes to repress their expression when plants are not infected by rice blast.
Collapse
Affiliation(s)
- Yan Xu
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Yuanxin Miao
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Botao Cai
- Center for Science Popularization Jingmen, Science and Technology Museum, Jingmen, China
| | - Qingping Yi
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Xuejun Tian
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Qihai Wang
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Dan Ma
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, China
| | - Feng Tan
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, China
| |
Collapse
|
8
|
Vu AT, Utsumi Y, Utsumi C, Tanaka M, Takahashi S, Todaka D, Kanno Y, Seo M, Ando E, Sako K, Bashir K, Kinoshita T, Pham XH, Seki M. Ethanol treatment enhances drought stress avoidance in cassava (Manihot esculenta Crantz). PLANT MOLECULAR BIOLOGY 2022; 110:269-285. [PMID: 35969295 DOI: 10.1007/s11103-022-01300-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
External application of ethanol enhances tolerance to high salinity, drought, and heat stress in various plant species. However, the effects of ethanol application on increased drought tolerance in woody plants, such as the tropical crop "cassava," remain unknown. In the present study, we analyzed the morphological, physiological, and molecular responses of cassava plants subjected to ethanol pretreatment and subsequent drought stress treatment. Ethanol pretreatment induced a slight accumulation of abscisic acid (ABA) and stomatal closure, resulting in a reduced transpiration rate, higher water content in the leaves during drought stress treatment and the starch accumulation in leaves. Transcriptomic analysis revealed that ethanol pretreatment upregulated the expression of ABA signaling-related genes, such as PP2Cs and AITRs, and stress response and protein-folding-related genes, such as heat shock proteins (HSPs). In addition, the upregulation of drought-inducible genes during drought treatment was delayed in ethanol-pretreated plants compared with that in water-pretreated control plants. These results suggest that ethanol pretreatment induces stomatal closure through activation of the ABA signaling pathway, protein folding-related response by activating the HSP/chaperone network and the changes in sugar and starch metabolism, resulting in increased drought avoidance in plants.
Collapse
Affiliation(s)
- Anh Thu Vu
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Chikako Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Daisuke Todaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Eigo Ando
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, 631-8505, Japan
| | - Khurram Bashir
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Life Sciences, Lahore University of Management Sciences, Lahore, Pakistan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Xuan Hoi Pham
- Agricultural Genetics Institute, Pham Van Dong Road, Bac Tu Lie District, Ha Noi, Vietnam
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
9
|
New Inhibitors of the Human p300/CBP Acetyltransferase Are Selectively Active against the Arabidopsis HAC Proteins. Int J Mol Sci 2022; 23:ijms231810446. [PMID: 36142359 PMCID: PMC9499386 DOI: 10.3390/ijms231810446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Histone acetyltransferases (HATs) are involved in the epigenetic positive control of gene expression in eukaryotes. CREB-binding proteins (CBP)/p300, a subfamily of highly conserved HATs, have been shown to function as acetylases on both histones and non-histone proteins. In the model plant Arabidopsis thaliana among the five CBP/p300 HATs, HAC1, HAC5 and HAC12 have been shown to be involved in the ethylene signaling pathway. In addition, HAC1 and HAC5 interact and cooperate with the Mediator complex, as in humans. Therefore, it is potentially difficult to discriminate the effect on plant development of the enzymatic activity with respect to their Mediator-related function. Taking advantage of the homology of the human HAC catalytic domain with that of the Arabidopsis, we set-up a phenotypic assay based on the hypocotyl length of Arabidopsis dark-grown seedlings to evaluate the effects of a compound previously described as human p300/CBP inhibitor, and to screen previously described cinnamoyl derivatives as well as newly synthesized analogues. We selected the most effective compounds, and we demonstrated their efficacy at phenotypic and molecular level. The in vitro inhibition of the enzymatic activity proved the specificity of the inhibitor on the catalytic domain of HAC1, thus substantiating this strategy as a useful tool in plant epigenetic studies.
Collapse
|
10
|
Singroha G, Kumar S, Gupta OP, Singh GP, Sharma P. Uncovering the Epigenetic Marks Involved in Mediating Salt Stress Tolerance in Plants. Front Genet 2022; 13:811732. [PMID: 35495170 PMCID: PMC9053670 DOI: 10.3389/fgene.2022.811732] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 12/29/2022] Open
Abstract
The toxic effects of salinity on agricultural productivity necessitate development of salt stress tolerance in food crops in order to meet the escalating demands. Plants use sophisticated epigenetic systems to fine-tune their responses to environmental cues. Epigenetics is the study of heritable, covalent modifications of DNA and histone proteins that regulate gene expression without altering the underlying nucleotide sequence and consequently modify the phenotype. Epigenetic processes such as covalent changes in DNA, histone modification, histone variants, and certain non-coding RNAs (ncRNA) influence chromatin architecture to regulate its accessibility to the transcriptional machinery. Under salt stress conditions, there is a high frequency of hypermethylation at promoter located CpG sites. Salt stress results in the accumulation of active histones marks like H3K9K14Ac and H3K4me3 and the downfall of repressive histone marks such as H3K9me2 and H3K27me3 on salt-tolerance genes. Similarly, the H2A.Z variant of H2A histone is reported to be down regulated under salt stress conditions. A thorough understanding of the plasticity provided by epigenetic regulation enables a modern approach to genetic modification of salt-resistant cultivars. In this review, we summarize recent developments in understanding the epigenetic mechanisms, particularly those that may play a governing role in the designing of climate smart crops in response to salt stress.
Collapse
|
11
|
Malakar P, Chattopadhyay D. Adaptation of plants to salt stress: the role of the ion transporters. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2021; 30:668-683. [PMID: 0 DOI: 10.1007/s13562-021-00741-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 05/27/2023]
|
12
|
Yung WS, Li MW, Sze CC, Wang Q, Lam HM. Histone modifications and chromatin remodelling in plants in response to salt stress. PHYSIOLOGIA PLANTARUM 2021; 173:1495-1513. [PMID: 34028035 DOI: 10.1111/ppl.13467] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
In the face of global food security crises, it is necessary to boost agricultural production. One factor hampering the attempts to increase food production is elevated soil salinity, which can be due to salt that is naturally present in the soil or a consequence of excessive or prolonged irrigation or application of fertiliser. In response to environmental stresses, plants activate multiple molecular mechanisms, including the timely activation of stress-responsive transcriptional networks. However, in the case of salt stress, the combined effects of the initial osmotic shock and the subsequent ion-specific stress increase the complexity in the selective regulation of gene expressions involved in restoring or maintaining osmotic balance, ion homeostasis and reactive oxygen species scavenging. Histone modifications and chromatin remodelling are important epigenetic processes that regulate gene expressions by modifying the chromatin status and recruiting transcription regulators. In this review, we have specifically summarised the currently available knowledge on histone modifications and chromatin remodelling in relation to plant responses to salt stress. Current findings have revealed the functional importance of chromatin modifiers in regulating salt tolerance and identified the effector genes affected by epigenetic modifications, although counteraction between modifiers within the same family may occur. Emerging evidence has also illustrated the crosstalk between epigenetic modifications and hormone signalling pathways which involves formation of protein complexes. With an improved understanding of these processes, plant breeders will be able to develop alternative strategies using genome editing technologies for crop improvement.
Collapse
Affiliation(s)
- Wai-Shing Yung
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Man-Wah Li
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ching-Ching Sze
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qianwen Wang
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
13
|
Zheng M, Lin J, Liu X, Chu W, Li J, Gao Y, An K, Song W, Xin M, Yao Y, Peng H, Ni Z, Sun Q, Hu Z. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. PLANT PHYSIOLOGY 2021; 186:1951-1969. [PMID: 33890670 PMCID: PMC8331135 DOI: 10.1093/plphys/kiab187] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/08/2021] [Indexed: 05/22/2023]
Abstract
Polyploidy occurs prevalently and plays an important role during plant speciation and evolution. This phenomenon suggests polyploidy could develop novel features that enable them to adapt wider range of environmental conditions compared with diploid progenitors. Bread wheat (Triticum aestivum L., BBAADD) is a typical allohexaploid species and generally exhibits greater salt tolerance than its tetraploid wheat progenitor (BBAA). However, little is known about the underlying molecular basis and the regulatory pathway of this trait. Here, we show that the histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Salinity-induced TaHAG1 expression was associated with tolerance variation in polyploidy wheat. Overexpression, silencing, and CRISPR-mediated knockout of TaHAG1 validated the role of TaHAG1 in salinity tolerance of wheat. TaHAG1 contributed to salt tolerance by modulating reactive oxygen species (ROS) production and signal specificity. Moreover, TaHAG1 directly targeted a subset of genes that are responsible for hydrogen peroxide production, and enrichment of TaHAG1 triggered increased H3 acetylation and transcriptional upregulation of these loci under salt stress. In addition, we found the salinity-induced TaHAG1-mediated ROS production pathway is involved in salt tolerance difference of wheat accessions with varying ploidy. Our findings provide insight into the molecular mechanism of how an epigenetic regulatory factor facilitates adaptability of polyploidy wheat and highlights this epigenetic modulator as a strategy for salt tolerance breeding in bread wheat.
Collapse
Affiliation(s)
- Mei Zheng
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Jingchen Lin
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Xingbei Liu
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Wei Chu
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Jinpeng Li
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Yujiao Gao
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Kexin An
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Wanjun Song
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
- Author for communication:
| |
Collapse
|
14
|
Lephatsi MM, Meyer V, Piater LA, Dubery IA, Tugizimana F. Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives. Metabolites 2021; 11:457. [PMID: 34357351 PMCID: PMC8305699 DOI: 10.3390/metabo11070457] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
In response to abiotic stresses, plants mount comprehensive stress-specific responses which mediate signal transduction cascades, transcription of relevant responsive genes and the accumulation of numerous different stress-specific transcripts and metabolites, as well as coordinated stress-specific biochemical and physiological readjustments. These natural mechanisms employed by plants are however not always sufficient to ensure plant survival under abiotic stress conditions. Biostimulants such as plant growth-promoting rhizobacteria (PGPR) formulation are emerging as novel strategies for improving crop quality, yield and resilience against adverse environmental conditions. However, to successfully formulate these microbial-based biostimulants and design efficient application programs, the understanding of molecular and physiological mechanisms that govern biostimulant-plant interactions is imperatively required. Systems biology approaches, such as metabolomics, can unravel insights on the complex network of plant-PGPR interactions allowing for the identification of molecular targets responsible for improved growth and crop quality. Thus, this review highlights the current models on plant defence responses to abiotic stresses, from perception to the activation of cellular and molecular events. It further highlights the current knowledge on the application of microbial biostimulants and the use of epigenetics and metabolomics approaches to elucidate mechanisms of action of microbial biostimulants.
Collapse
Affiliation(s)
- Motseoa M. Lephatsi
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Vanessa Meyer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa;
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
- International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
| |
Collapse
|
15
|
Mladenov V, Fotopoulos V, Kaiserli E, Karalija E, Maury S, Baranek M, Segal N, Testillano PS, Vassileva V, Pinto G, Nagel M, Hoenicka H, Miladinović D, Gallusci P, Vergata C, Kapazoglou A, Abraham E, Tani E, Gerakari M, Sarri E, Avramidou E, Gašparović M, Martinelli F. Deciphering the Epigenetic Alphabet Involved in Transgenerational Stress Memory in Crops. Int J Mol Sci 2021; 22:7118. [PMID: 34281171 PMCID: PMC8268041 DOI: 10.3390/ijms22137118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Although epigenetic modifications have been intensely investigated over the last decade due to their role in crop adaptation to rapid climate change, it is unclear which epigenetic changes are heritable and therefore transmitted to their progeny. The identification of epigenetic marks that are transmitted to the next generations is of primary importance for their use in breeding and for the development of new cultivars with a broad-spectrum of tolerance/resistance to abiotic and biotic stresses. In this review, we discuss general aspects of plant responses to environmental stresses and provide an overview of recent findings on the role of transgenerational epigenetic modifications in crops. In addition, we take the opportunity to describe the aims of EPI-CATCH, an international COST action consortium composed by researchers from 28 countries. The aim of this COST action launched in 2020 is: (1) to define standardized pipelines and methods used in the study of epigenetic mechanisms in plants, (2) update, share, and exchange findings in epigenetic responses to environmental stresses in plants, (3) develop new concepts and frontiers in plant epigenetics and epigenomics, (4) enhance dissemination, communication, and transfer of knowledge in plant epigenetics and epigenomics.
Collapse
Affiliation(s)
- Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos 3036, Cyprus;
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Erna Karalija
- Laboratory for Plant Physiology, Department for Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Stephane Maury
- INRAe, EA1207 USC1328 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, 45067 Orléans, France;
| | - Miroslav Baranek
- Mendeleum—Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Naama Segal
- Israel Oceanographic and Limnological Research, The National Center for Mariculture (NCM), P.O.B. 1212, Eilat 88112, Israel;
| | - Pilar S. Testillano
- Center of Biological Research Margarita Salas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Biology Department, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Manuela Nagel
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany;
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany;
| | - Dragana Miladinović
- Laboratory for Biotechnology, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Philippe Gallusci
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—CS5000833882 Villenave d’Ornon, 33076 Bordeaux, France;
| | - Chiara Vergata
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-Dimitra (HAO-Dimitra), Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece;
| | - Eleni Abraham
- Laboratory of Range Science, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Evaggelia Avramidou
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Mateo Gašparović
- Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, 10000 Zagreb, Croatia;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
16
|
Sako K, Van Ha C, Matsui A, Tanaka M, Sato A, Seki M. Transcriptome Analysis of Arabidopsis thaliana Plants Treated with a New Compound Natolen128, Enhancing Salt Stress Tolerance. PLANTS 2021; 10:plants10050978. [PMID: 34068843 PMCID: PMC8153642 DOI: 10.3390/plants10050978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/06/2023]
Abstract
Salinity stress is a major threat to agriculture and global food security. Chemical priming is a promising approach to improving salinity stress tolerance in plants. To identify small molecules with the capacity to enhance salinity stress tolerance in plants, chemical screening was performed using Arabidopsis thaliana. We screened 6400 compounds from the Nagoya University Institute of Transformative Bio-Molecule (ITbM) chemical library and identified one compound, Natolen128, that enhanced salinity-stress tolerance. Furthermore, we isolated a negative compound of Natolen128, namely Necolen124, that did not enhance salinity stress tolerance, though it has a similar chemical structure to Natolen128. We conducted a transcriptomic analysis of Natolen128 and Necolen124 to investigate how Natolen128 enhances high-salinity stress tolerance. Our data indicated that the expression levels of 330 genes were upregulated by Natolen128 treatment compared with that of Necolen124. Treatment with Natolen128 increased expression of hypoxia-responsive genes including ethylene biosynthetic enzymes and PHYTOGLOBIN, which modulate accumulation of nitric oxide (NO) level. NO was slightly increased in plants treated with Natolen128. These results suggest that Natolen128 may regulate NO accumulation and thus, improve salinity stress tolerance in A. thaliana.
Collapse
Affiliation(s)
- Kaori Sako
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
- Correspondence: (K.S.); (M.S.)
| | - Chien Van Ha
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya 464-8601, Japan;
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Correspondence: (K.S.); (M.S.)
| |
Collapse
|
17
|
Sako K, Nguyen HM, Seki M. Advances in Chemical Priming to Enhance Abiotic Stress Tolerance in Plants. PLANT & CELL PHYSIOLOGY 2021; 61:1995-2003. [PMID: 32966567 DOI: 10.1093/pcp/pcaa119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/07/2020] [Indexed: 05/23/2023]
Abstract
Abiotic stress is considered a major factor limiting crop yield and quality. The development of effective strategies that mitigate abiotic stress is essential for sustainable agriculture and food security, especially with continuing global population growth. Recent studies have demonstrated that exogenous treatment of plants with chemical compounds can enhance abiotic stress tolerance by inducing molecular and physiological defense mechanisms, a process known as chemical priming. Chemical priming is believed to represent a promising strategy for mitigating abiotic stress in crop plants. Plants biosynthesize various compounds, such as phytohormones and other metabolites, to adapt to adverse environments. Research on artificially synthesized compounds has also resulted in the identification of novel compounds that improve abiotic stress tolerance. In this review, we summarize current knowledge of both naturally synthesized and artificial priming agents that have been shown to increase the abiotic stress tolerance of plants.
Collapse
Affiliation(s)
- Kaori Sako
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204, Nakamachi, Nara, 631-8505 Japan
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Huong Mai Nguyen
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813 Japan
| |
Collapse
|
18
|
Lee MH, Lee J, Choi SH, Jie EY, Jeong JC, Kim CY, Kim SW. The Effect of Sodium Butyrate on Adventitious Shoot Formation Varies among the Plant Species and the Explant Types. Int J Mol Sci 2020; 21:E8451. [PMID: 33182800 PMCID: PMC7696800 DOI: 10.3390/ijms21228451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/24/2022] Open
Abstract
Histone acetylation plays an important role in plant growth and development. Here, we investigated the effect of sodium butyrate (NaB), a histone deacetylase inhibitor, on adventitious shoot formation from protoplast-derived calli and cotyledon explants of tobacco (Nicotiana benthamiana) and tomato (Solanum lycopersicum). The frequency of adventitious shoot formation from protoplast-derived calli was higher in shoot induction medium (SIM) containing NaB than in the control. However, the frequency of adventitious shoot formation from cotyledon explants of tobacco under the 0.1 mM NaB treatment was similar to that in the control, but it decreased with increasing NaB concentration. Unlike in tobacco, NaB decreased adventitious shoot formation in tomato explants in a concentration-dependent manner, but it did not have any effect on adventitious shoot formation in calli. NaB inhibited or delayed the expression of D-type cyclin (CYCD3-1) and shoot-regeneration regulatory gene WUSCHEL (WUS) in cotyledon explants of tobacco and tomato. However, compared to that in control SIM, the expression of WUS was promoted more rapidly in tobacco calli cultured in NaB-containing SIM, but the expression of CYCD3-1 was inhibited. In conclusion, the effect of NaB on adventitious shoot formation and expression of CYCD3-1 and WUS genes depended on the plant species and whether the effects were tested on explants or protoplast-derived calli.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Suk Weon Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (M.H.L.); (J.L.); (S.H.C.); (E.Y.J.); (J.C.J.); (C.Y.K.)
| |
Collapse
|
19
|
Cadavid IC, da Fonseca GC, Margis R. HDAC inhibitor affects soybean miRNA482bd expression under salt and osmotic stress. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153261. [PMID: 32947244 DOI: 10.1016/j.jplph.2020.153261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding molecules that modulate gene expression through targeting mRNA by specific-sequence cleavage, translation inhibition, or transcriptional regulation. miRNAs are key molecules in regulatory networks in abiotic stresses such as salt stress and water deficit in plants. Throughout the world, soybean is a critical crop, the production of which is affected by environmental stress conditions. In this study, RNA-Seq libraries from leaves of soybean under salt treatment were analyzed. 17 miRNAs and 31 putative target genes were identified with inverse differential expression patterns, indicating miRNA-target interaction. The differential expression of six miRNAs, including miR482bd-5p, and their potential targets, were confirmed by RT-qPCR. The miR482bd-5p expression was repressed, while its potential HEC1 and BAK1 targets were increased. Polyethylene glycol experiment was used to simulate drought stress, and miR482bd-5p, HEC1, and BAK1 presented a similar expression pattern, as found in salt stress. Histone modifications occur in response to abiotic stress, where histone deacetylases (HDACs) can lead to gene repression and silencing. The miR482bd-5p epigenetic regulation by histone deacetylation was evaluated by using the SAHA-HDAC inhibitor. The miR482bd-5p was up-regulated, and HEC1 was down-regulated under SAHA-salt treatment. It suggests an epigenetic regulation, where the miRNA gene is repressed by HDAC under salt stress, reducing its transcription, with an associated increase in the HEC1 target expression.
Collapse
Affiliation(s)
- Isabel Cristina Cadavid
- Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Rogerio Margis
- Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
20
|
He S, Hao Y, Zhang Q, Zhang P, Ji F, Cheng H, Lv D, Sun Y, Hao F, Miao C. Histone Deacetylase Inhibitor SAHA Improves High Salinity Tolerance Associated with Hyperacetylation-Enhancing Expression of Ion Homeostasis-Related Genes in Cotton. Int J Mol Sci 2020; 21:E7105. [PMID: 32993126 PMCID: PMC7582796 DOI: 10.3390/ijms21197105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023] Open
Abstract
Histone acetylation plays an important role in regulation of chromatin structure and gene expression in terms of responding to abiotic stresses. Histone acetylation is modulated by histone deacetylases (HDACs) and histone acetyltransferases. Recently, the effectiveness of HDAC inhibitors (HDACis) for conferring plant salt tolerance has been reported. However, the role of HDACis in cotton has not been elucidated. In the present study, we assessed the effects of the HDACi suberoylanilide hydroxamic acid (SAHA) during high salinity stress in cotton. We demonstrated that 10 μM SAHA pretreatment could rescue of cotton from 250 mM NaCl stress, accompanied with reduced Na+ accumulation and a strong expression of the ion homeostasis-related genes. Western blotting and immunostaining results revealed that SAHA pretreatment could induce global hyperacetylation of histone H3 at lysine 9 (H3K9) and histone H4 at lysine 5 (H4K5) under 250 mM NaCl stress, indicating that SAHA could act as the HDACi in cotton. Chromatin immunoprecipitation and chromatin accessibility coupled with real time quantitative PCR analyses showed that the upregulation of the ion homeostasis-related genes was associated with the elevated acetylation levels of H3K9 and H4K5 and increased chromatin accessibility on the promoter regions of these genes. Our results could provide a theoretical basis for analyzing the mechanism of HDACi application on salt tolerance in plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chen Miao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China; (S.H.); (Y.H.); (Q.Z.); (P.Z.); (F.J.); (H.C.); (D.L.); (Y.S.); (F.H.)
| |
Collapse
|
21
|
Sako K, Futamura Y, Shimizu T, Matsui A, Hirano H, Kondoh Y, Muroi M, Aono H, Tanaka M, Honda K, Shimizu K, Kawatani M, Nakano T, Osada H, Noguchi K, Seki M. Inhibition of mitochondrial complex I by the novel compound FSL0260 enhances high salinity-stress tolerance in Arabidopsis thaliana. Sci Rep 2020; 10:8691. [PMID: 32457324 PMCID: PMC7250896 DOI: 10.1038/s41598-020-65614-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022] Open
Abstract
Chemical priming is an attractive and promising approach to improve abiotic stress tolerance in a broad variety of plant species. We screened the RIKEN Natural Products Depository (NPDepo) chemical library and identified a novel compound, FSL0260, enhancing salinity-stress tolerance in Arabidopsis thaliana and rice. Through transcriptome analysis using A. thaliana seedlings, treatment of FSL0260 elevated an alternative respiration pathway in mitochondria that modulates accumulation of reactive oxygen species (ROS). From comparison analysis, we realized that the alternative respiration pathway was induced by treatment of known mitochondrial inhibitors. We confirmed that known inhibitors of mitochondrial complex I, such as rotenone and piericidin A, also enhanced salt-stress tolerance in Arabidopsis. We demonstrated that FSL0260 binds to complex I of the mitochondrial electron transport chain and inhibits its activity, suggesting that inhibition of mitochondrial complex I activates an alternative respiration pathway resulting in reduction of ROS accumulation and enhancement of tolerance to salinity in plants. Furthermore, FSL0260 preferentially inhibited plant mitochondrial complex I rather than a mammalian complex, implying that FSL0260 has a potential to be an agent for improving salt-stress tolerance in agriculture that is low toxicity to humans.
Collapse
Affiliation(s)
- Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan. .,Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, 631-8505, Japan. .,CREST, JST, Kawaguchi, Saitama, 332-0012, Japan.
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Takeshi Shimizu
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan.,Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Makoto Muroi
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Harumi Aono
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
| | - Kaori Honda
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Kenshirou Shimizu
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Makoto Kawatani
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Takeshi Nakano
- Gene Discovery Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan.,Graduate School of Biotsudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan.,Chemical Resource Development Research Unit, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan. .,Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan. .,CREST, JST, Kawaguchi, Saitama, 332-0012, Japan. .,Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
22
|
Ueda M, Matsui A, Watanabe S, Kobayashi M, Saito K, Tanaka M, Ishida J, Kusano M, Seo M, Seki M. Transcriptome Analysis of the Hierarchical Response of Histone Deacetylase Proteins That Respond in an Antagonistic Manner to Salinity Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1323. [PMID: 31681394 PMCID: PMC6813852 DOI: 10.3389/fpls.2019.01323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/23/2019] [Indexed: 05/29/2023]
Abstract
Acetylation in histone and non-histone proteins is balanced by histone acetyltransferase and histone deacetylase (HDAC) enzymatic activity, an essential aspect of fine-tuning plant response to environmental stresses. HDACs in Arabidopsis are composed of three families (RPD3-like, SIRT, and HD-tuins). A previous study indicated that class I (HDA19) and class II (HDA5/14/15/18) RPD3-like family HDACs control positive and negative responses to salinity stress, respectively. Furthermore, quintuple hda5/14/15/18/19 mutants (quint) exhibit salinity stress tolerance, suggesting that hda19 suppresses the sensitivity to salinity stress present in quadruple hda5/14/15/18 mutants (quad). In the present study, transcriptome analysis of the quint mutant was conducted to elucidate the hierarchical control of salinity stress response operated by RPD3-like family HDACs (HDA5/14/15/18/19). The analysis identified 4,832 salt-responsive genes in wild-type (Col-0), hda19-3, quad, and quint plants and revealed that 56.7% of the salt-responsive genes exhibited a similar expression pattern in both the hda19-3 and quint plants. These results indicate that deficiency in HDA19 has a bigger impact on salinity stress response than in class II HDACs. Furthermore, the expression pattern of genes encoding enzymes that metabolize phytohormones raises the possibility that a drastic change in the homeostasis of phytohormones, such as abscisic acid, brassinosteroid, and gibberellin, may contribute to increasing stress tolerance in hda19-3 and quint plants. Among these phytohormones, abscisic acid accumulation actually increased in hda19-3 and quint plants, and decreased in quad, compared with wild-type plants. Importantly, 7.8% of the salt-responsive genes in quint plants exhibited a similar expression pattern in quad plants, suggesting that some gene sets are regulated in an HDA5/14/15/18-dependent manner. The transcriptome analysis conducted in the present study revealed the hierarchical and independent regulation of salt stress response that is mediated through HDA19 and class II HDACs.
Collapse
Affiliation(s)
- Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Shunsuke Watanabe
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Makoto Kobayashi
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Junko Ishida
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Miyako Kusano
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
23
|
Molecular characterization of class I histone deacetylases and their expression in response to thermal and oxidative stresses in the red flour beetle, Tribolium castaneum. Genetica 2019; 147:281-290. [DOI: 10.1007/s10709-019-00065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
|
24
|
Utsumi Y, Utsumi C, Tanaka M, Ha CV, Takahashi S, Matsui A, Matsunaga TM, Matsunaga S, Kanno Y, Seo M, Okamoto Y, Moriya E, Seki M. Acetic Acid Treatment Enhances Drought Avoidance in Cassava ( Manihot esculenta Crantz). FRONTIERS IN PLANT SCIENCE 2019; 10:521. [PMID: 31105723 PMCID: PMC6492040 DOI: 10.3389/fpls.2019.00521] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/04/2019] [Indexed: 05/24/2023]
Abstract
The external application of acetic acid has recently been reported to enhance survival of drought in plants such as Arabidopsis, rapeseed, maize, rice, and wheat, but the effects of acetic acid application on increased drought tolerance in woody plants such as a tropical crop "cassava" remain elusive. A molecular understanding of acetic acid-induced drought avoidance in cassava will contribute to the development of technology that can be used to enhance drought tolerance, without resorting to transgenic technology or advancements in cassava cultivation. In the present study, morphological, physiological, and molecular responses to drought were analyzed in cassava after treatment with acetic acid. Results indicated that the acetic acid-treated cassava plants had a higher level of drought avoidance than water-treated, control plants. Specifically, higher leaf relative water content, and chlorophyll and carotenoid levels were observed as soils dried out during the drought treatment. Leaf temperatures in acetic acid-treated cassava plants were higher relative to leaves on plants pretreated with water and an increase of ABA content was observed in leaves of acetic acid-treated plants, suggesting that stomatal conductance and the transpiration rate in leaves of acetic acid-treated plants decreased to maintain relative water contents and to avoid drought. Transcriptome analysis revealed that acetic acid treatment increased the expression of ABA signaling-related genes, such as OPEN STOMATA 1 (OST1) and protein phosphatase 2C; as well as the drought response and tolerance-related genes, such as the outer membrane tryptophan-rich sensory protein (TSPO), and the heat shock proteins. Collectively, the external application of acetic acid enhances drought avoidance in cassava through the upregulation of ABA signaling pathway genes and several stress responses- and tolerance-related genes. These data support the idea that adjustments of the acetic acid application to plants is useful to enhance drought tolerance, to minimize the growth inhibition in the agricultural field.
Collapse
Affiliation(s)
| | - Chikako Utsumi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Chien Van Ha
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
| | - Satoshi Takahashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Akihiro Matsui
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Tomoko M. Matsunaga
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan
| | - Sachihiro Matsunaga
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yoshie Okamoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Erika Moriya
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
25
|
Hossain MS, Hasanuzzaman M, Sohag MMH, Bhuyan MHMB, Fujita M. Acetate-induced modulation of ascorbate: glutathione cycle and restriction of sodium accumulation in shoot confer salt tolerance in Lens culinaris Medik. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:443-455. [PMID: 30956427 PMCID: PMC6419701 DOI: 10.1007/s12298-018-00640-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 05/07/2023]
Abstract
Physiological and biochemical changes in six-day-old hydroponically grown lentil seedlings exposed to 100 mM salinity stress with or without 5 and 10 mM Na-acetate were studied. Results showed that salt stress reduced recovery percentage, fresh weight (FW), chlorophyll (chl) content, disturbed water balance, disrupted antioxidant defense pathway by decreasing reduced ascorbate content, and caused ion toxicity resulting from increased Na+ accumulation, severe K+ loss from roots in hydroponic culture. However, exogenous application of Na-acetate improved the seedling growth by maintaining water balance and increasing chl content. Furthermore, Na-acetate application reduced oxidative damage by modulating antioxidant defense pathway, and sustained ion homeostasis by reducing Na+ uptake and K+ loss. In the second experiment in glass house, we investigated the role of Na-acetate on lentil for long-term salinity. Acetate application increased FW and dry weight, reduced oxidative and membrane damage, and lowered the accumulation of Na+ in shoot compared with salt stressed seedlings alone. From the results of both experiments, it is clear that the exogenous application of Na-acetate enhanced salt tolerance in lentil seedlings.
Collapse
Affiliation(s)
- Md. Shahadat Hossain
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Md. Mahmodul Hasan Sohag
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| | - M. H. M. Borhannuddin Bhuyan
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| |
Collapse
|
26
|
Pagano A, de Sousa Araújo S, Macovei A, Dondi D, Lazzaroni S, Balestrazzi A. Metabolic and gene expression hallmarks of seed germination uncovered by sodium butyrate in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2019; 42:259-269. [PMID: 29756644 DOI: 10.1111/pce.13342] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 05/20/2023]
Abstract
Because high-quality seeds are essential for successful crop production in challenging environments, understanding the molecular bases of seed vigour will lead to advances in seed technology. Histone deacetylase inhibitors, promoting histone hyperacetylation, are used as tools to explore aspects still uncovered of the abiotic stress response in plants. The aim of this work was to investigate novel signatures of seed germination in Medicago truncatula, using the histone deacetylase inhibitor sodium butyrate (NaB) as stress agent. NaB-treated and untreated seeds collected at 2 and 8 hr of imbibition and at the radicle protrusion stage underwent molecular phenotyping and nontargeted metabolome profiling. Quantitative enrichment analysis revealed the influence of NaB on seed nucleotide, amino acid, lipid, and carbohydrate metabolism. Up-regulation of antioxidant and polyamine biosynthesis genes occurred in response to NaB. DNA damage evidenced in NaB-treated seeds correlated with up-regulation of base-excision repair genes. Changes in N1 -methyladenosine and N1 -methylguanine were associated with up-regulation of MtALKBH1 (alkylation repair homolog) gene. N2 ,N2 -dimethylguanosine and 5-methylcytidine, tRNA modifications involved in the post-transcriptional regulation of DNA damage response, were also accumulated in NaB-treated seeds at the radicle protrusion stage. The observed changes in seed metabolism can provide novel potential metabolic hallmarks of germination.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, Pavia, 27100, Italy
| | - Susana de Sousa Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Avenida da República, Estação Agronómica Nacional, Oeiras, 2780-157, Portugal
| | - Anca Macovei
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, Pavia, 27100, Italy
| | - Daniele Dondi
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Simone Lazzaroni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, Pavia, 27100, Italy
| |
Collapse
|
27
|
Hu Y, Lu Y, Zhao Y, Zhou DX. Histone Acetylation Dynamics Integrates Metabolic Activity to Regulate Plant Response to Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1236. [PMID: 31636650 PMCID: PMC6788390 DOI: 10.3389/fpls.2019.01236] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/05/2019] [Indexed: 05/20/2023]
Abstract
Histone lysine acetylation is an essential chromatin modification for epigenetic regulation of gene expression during plant response to stress. On the other hand, enzymes involved in histone acetylation homeostasis require primary metabolites as substrates or cofactors whose levels are greatly influenced by stress and growth conditions in plants. In addition, histone lysine acylation that requires similar enzymes for deposition and removal as histone acetylation has been recently characterized in plant. Results on understanding the intrinsic relationship between histone acetylation/acylation, metabolism and stress response in plants are accumulating. In this review, we summarize recent advance in the field and propose a model of interplay between metabolism and epigenetic regulation of genes expression in plant adaptation to stress.
Collapse
Affiliation(s)
- Yongfeng Hu
- College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Yue Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Institute of Plant Science of Paris-Saclay (IPS2), CNRS, INRA, University Paris-sud 11, University Paris-Saclay, Orsay, France
- *Correspondence: Dao-Xiu Zhou,
| |
Collapse
|
28
|
Nguyen HM, Sako K, Matsui A, Ueda M, Tanaka M, Ito A, Nishino N, Yoshida M, Seki M. Transcriptomic analysis of Arabidopsis thaliana plants treated with the Ky-9 and Ky-72 histone deacetylase inhibitors. PLANT SIGNALING & BEHAVIOR 2018; 13:e1448333. [PMID: 29517946 PMCID: PMC5927655 DOI: 10.1080/15592324.2018.1448333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 05/30/2023]
Abstract
Histone acetylation plays a pivotal role in plant growth and development, and is regulated by the antagonistic relationship between histone acetyltransferase (HAT) and histone deacetylase (HDAC). We previously revealed that some HDAC inhibitors confer high-salinity stress tolerance in plants. In this study, we identified two HDAC inhibitors, namely Ky-9 and Ky-72, which enhanced the high-salinity stress tolerance of Arabidopsis thaliana. Ky-9 and Ky-72 are structurally similar chlamydocin analogs. However, the in vitro inhibitory activity of Ky-9 against mammalian HDAC is greater than that of Ky-72. A western blot indicated that Ky-9 and Ky-72 increased the acetylation levels of histone H3, suggesting they exhibit HDAC inhibitory activities in plants. We conducted a transcriptomic analysis to investigate how Ky-9 and Ky-72 enhance high-salinity stress tolerance. Although Ky-9 upregulated the expression of more genes than Ky-72, similar gene expression patterns were induced by both HDAC inhibitors. Additionally, the expression of high-salinity stress tolerance-related genes, such as anthocyanin-related genes and a small peptide-encoding gene, increased by Ky-9 and Ky-72. These data suggest that slight structural differences in chemical side chain between HDAC inhibitors can alter inhibitory effect on HDAC protein leading to influence gene expression, thereby enhancing high-salinity stress tolerance in different extent.
Collapse
Affiliation(s)
- Huong Mai Nguyen
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Akihiro Ito
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences 1432-1, Horinouchi, Hachioji, Tokyo, Japan
| | - Norikazu Nishino
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| |
Collapse
|
29
|
Sudan J, Raina M, Singh R. Plant epigenetic mechanisms: role in abiotic stress and their generational heritability. 3 Biotech 2018; 8:172. [PMID: 29556426 PMCID: PMC5845050 DOI: 10.1007/s13205-018-1202-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/07/2018] [Indexed: 10/17/2022] Open
Abstract
Plants have evolved various defense mechanisms including morphological adaptations, cellular pathways, specific signalling molecules and inherent immunity to endure various abiotic stresses during different growth stages. Most of the defense mechanisms are controlled by stress-responsive genes by transcribing and translating specific genes. However, certain modifications of DNA and chromatin along with small RNA-based mechanisms have also been reported to regulate the expression of stress-responsive genes and constitute another line of defense for plants in their struggle against stresses. More recently, studies have suggested that these modifications are heritable to the future generations as well, thereby indicating their possible role in the evolutionary mechanisms related to abiotic stresses.
Collapse
Affiliation(s)
- Jebi Sudan
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu and Kashmir India
| | - Meenakshi Raina
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu and Kashmir India
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu and Kashmir India
| |
Collapse
|
30
|
Meng X, Lv Y, Mujahid H, Edelmann MJ, Zhao H, Peng X, Peng Z. Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:451-463. [PMID: 29313810 DOI: 10.1016/j.bbapap.2017.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/20/2017] [Accepted: 12/03/2017] [Indexed: 12/31/2022]
Abstract
Protein lysine acetylation is a highly conserved post-translational modification with various biological functions. However, only a limited number of acetylation sites have been reported in plants, especially in cereals, and the function of non-histone protein acetylation is still largely unknown. In this report, we identified 1003 lysine acetylation sites in 692 proteins of developing rice seeds, which greatly extended the number of known acetylated sites in plants. Seven distinguished motifs were detected flanking acetylated lysines. Functional annotation analyses indicated diverse biological processes and pathways engaged in lysine acetylation. Remarkably, we found that several key enzymes in storage starch synthesis pathway and the main storage proteins were heavily acetylated. A comprehensive comparison of the rice acetylome, succinylome, ubiquitome and phosphorylome with available published data was conducted. A large number of proteins carrying multiple kinds of modifications were identified and many of these proteins are known to be key enzymes of vital metabolic pathways. Our study provides extending knowledge of protein acetylation. It will have critical reference value for understanding the mechanisms underlying PTM mediated multiple signal integration in the regulation of metabolism and development in plants.
Collapse
Affiliation(s)
- Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Yuanda Lv
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States; Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Hana Mujahid
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Han Zhao
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xiaojun Peng
- Department of Bioinformatics, Jingjie PTM Biolab Co. Ltd, Hangzhou, Zhejiang, China
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States.
| |
Collapse
|
31
|
Ismail AM, Horie T. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:405-434. [PMID: 28226230 DOI: 10.1146/annurev-arplant-042916-040936] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salt stress reduces land and water productivity and contributes to poverty and food insecurity. Increased salinization caused by human practices and climate change is progressively reducing agriculture productivity despite escalating calls for more food. Plant responses to salt stress are well understood, involving numerous critical processes that are each controlled by multiple genes. Knowledge of the critical mechanisms controlling salt uptake and exclusion from functioning tissues, signaling of salt stress, and the arsenal of protective metabolites is advancing. However, little progress has been made in developing salt-tolerant varieties of crop species using standard (but slow) breeding approaches. The genetic diversity available within cultivated crops and their wild relatives provides rich sources for trait and gene discovery that has yet to be sufficiently utilized. Transforming this knowledge into modern approaches using genomics and molecular tools for precision breeding will accelerate the development of tolerant cultivars and help sustain food production.
Collapse
Affiliation(s)
- Abdelbagi M Ismail
- Genetics and Biotechnology Division, International Rice Research Institute, Manila 1301, Philippines;
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan;
| |
Collapse
|
32
|
Kurita K, Sakamoto T, Yagi N, Sakamoto Y, Ito A, Nishino N, Sako K, Yoshida M, Kimura H, Seki M, Matsunaga S. Live imaging of H3K9 acetylation in plant cells. Sci Rep 2017; 7:45894. [PMID: 28418019 PMCID: PMC5394682 DOI: 10.1038/srep45894] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/07/2017] [Indexed: 12/23/2022] Open
Abstract
Proper regulation of histone acetylation is important in development and cellular responses to environmental stimuli. However, the dynamics of histone acetylation at the single-cell level remains poorly understood. Here we established a transgenic plant cell line to track histone H3 lysine 9 acetylation (H3K9ac) with a modification-specific intracellular antibody (mintbody). The H3K9ac-specific mintbody fused to the enhanced green fluorescent protein (H3K9ac-mintbody-GFP) was introduced into tobacco BY-2 cells. We successfully demonstrated that H3K9ac-mintbody-GFP interacted with H3K9ac in vivo. The ratio of nuclear/cytoplasmic H3K9ac-mintbody-GFP detected in quantitative analysis reflected the endogenous H3K9ac levels. Under chemically induced hyperacetylation conditions with histone deacetylase inhibitors including trichostatin A, Ky-2 and Ky-14, significant enhancement of H3K9ac was detected by H3K9ac-mintbody-GFP dependent on the strength of inhibitors. Conversely, treatment with a histone acetyltransferase inhibitor, C646 caused a reduction in the nuclear to cytoplasmic ratio of H3K9ac-mintbody-GFP. Using this system, we assessed the environmental responses of H3K9ac and found that cold and salt stresses enhanced H3K9ac in tobacco BY-2 cells. In addition, a combination of H3K9ac-mintbody-GFP with 5-ethynyl-2'-deoxyuridine labelling confirmed that H3K9ac level is constant during interphase.
Collapse
Affiliation(s)
- Kazuki Kurita
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Noriyoshi Yagi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuki Sakamoto
- Imaging Frontier Center, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akihiro Ito
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Norikazu Nishino
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, 808-0196, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Imaging Frontier Center, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
33
|
Nguyen HM, Sako K, Matsui A, Suzuki Y, Mostofa MG, Ha CV, Tanaka M, Tran LSP, Habu Y, Seki M. Ethanol Enhances High-Salinity Stress Tolerance by Detoxifying Reactive Oxygen Species in Arabidopsis thaliana and Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1001. [PMID: 28717360 PMCID: PMC5494288 DOI: 10.3389/fpls.2017.01001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/26/2017] [Indexed: 05/04/2023]
Abstract
High-salinity stress considerably affects plant growth and crop yield. Thus, developing techniques to enhance high-salinity stress tolerance in plants is important. In this study, we revealed that ethanol enhances high-salinity stress tolerance in Arabidopsis thaliana and rice. To elucidate the molecular mechanism underlying the ethanol-induced tolerance, we performed microarray analyses using A. thaliana seedlings. Our data indicated that the expression levels of 1,323 and 1,293 genes were upregulated by ethanol in the presence and absence of NaCl, respectively. The expression of reactive oxygen species (ROS) signaling-related genes associated with high-salinity tolerance was upregulated by ethanol under salt stress condition. Some of these genes encode ROS scavengers and transcription factors (e.g., AtZAT10 and AtZAT12). A RT-qPCR analysis confirmed that the expression levels of AtZAT10 and AtZAT12 as well as AtAPX1 and AtAPX2, which encode cytosolic ascorbate peroxidases (APX), were higher in ethanol-treated plants than in untreated control plants, when exposure to high-salinity stress. Additionally, A. thaliana cytosolic APX activity increased by ethanol in response to salinity stress. Moreover, histochemical analyses with 3,3'-diaminobenzidine (DAB) and nitro blue tetrazolium (NBT) revealed that ROS accumulation was inhibited by ethanol under salt stress condition in A. thaliana and rice, in which DAB staining data was further confirmed by Hydrogen peroxide (H2O2) content. These results suggest that ethanol enhances high-salinity stress tolerance by detoxifying ROS. Our findings may have implications for improving salt-stress tolerance of agriculturally important field-grown crops.
Collapse
Affiliation(s)
- Huong Mai Nguyen
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS)Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City UniversityYokohama, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS)Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS)Yokohama, Japan
| | - Yuya Suzuki
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Mohammad Golam Mostofa
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science (CSRS)Yokohama, Japan
| | - Chien Van Ha
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science (CSRS)Yokohama, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS)Yokohama, Japan
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science (CSRS)Yokohama, Japan
| | - Yoshiki Habu
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS)Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City UniversityYokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
- *Correspondence: Motoaki Seki
| |
Collapse
|
34
|
Hashiguchi A, Komatsu S. Posttranslational Modifications and Plant-Environment Interaction. Methods Enzymol 2016; 586:97-113. [PMID: 28137579 DOI: 10.1016/bs.mie.2016.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Posttranslational modifications (PTMs) of proteins such as phosphorylation and ubiquitination are crucial for controlling protein stability, localization, and conformation. Genetic information encoded in DNA is transcribed, translated, and increases its complexity by multiple PTMs. Conformational change introduced by PTMs affects interacting partners of each proteins and their downstream signaling; therefore, PTMs are the major level of modulations of total outcome of living cells. Plants are living in harsh environment that requires unremitting physiological modulation to survive, and the plant response to various environment stresses is regulated by PTMs of proteins. This review deals with the novel knowledge of PTM-focused proteomic studies on various life conditions. PTMs are focused that mediate plant-environment interaction such as stress perception, protein homeostasis, control of energy shift, and defense by immune system. Integration of diverse signals on a protein via multiple PTMs is discussed as well, considering current situation where signal integration became an emerging area approached by systems biology into account.
Collapse
Affiliation(s)
- A Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - S Komatsu
- National Institute of Crop Science, NARO, Tsukuba, Japan.
| |
Collapse
|
35
|
Ingram GC, Fujiwara T. Special Focus Issue on Plant Responses to the Environment. PLANT & CELL PHYSIOLOGY 2016; 57:657-659. [PMID: 27091852 DOI: 10.1093/pcp/pcw058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Gwyneth C Ingram
- Laboratoire de Reproduction et Devéloppement des Plantes, École Normale Supérieure de Lyon, CNRS UMR 5667, Lyon, France
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
36
|
Patanun O, Ueda M, Itouga M, Kato Y, Utsumi Y, Matsui A, Tanaka M, Utsumi C, Sakakibara H, Yoshida M, Narangajavana J, Seki M. The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Alleviates Salinity Stress in Cassava. FRONTIERS IN PLANT SCIENCE 2016; 7:2039. [PMID: 28119717 PMCID: PMC5220070 DOI: 10.3389/fpls.2016.02039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 12/20/2016] [Indexed: 05/20/2023]
Abstract
Cassava (Manihot esculenta Crantz) demand has been rising because of its various applications. High salinity stress is a major environmental factor that interferes with normal plant growth and limits crop productivity. As well as genetic engineering to enhance stress tolerance, the use of small molecules is considered as an alternative methodology to modify plants with desired traits. The effectiveness of histone deacetylase (HDAC) inhibitors for increasing tolerance to salinity stress has recently been reported. Here we use the HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), to enhance tolerance to high salinity in cassava. Immunoblotting analysis reveals that SAHA treatment induces strong hyper-acetylation of histones H3 and H4 in roots, suggesting that SAHA functions as the HDAC inhibitor in cassava. Consistent with increased tolerance to salt stress under SAHA treatment, reduced Na+ content and increased K+/Na+ ratio were detected in SAHA-treated plants. Transcriptome analysis to discover mechanisms underlying salinity stress tolerance mediated through SAHA treatment reveals that SAHA enhances the expression of 421 genes in roots under normal condition, and 745 genes at 2 h and 268 genes at 24 h under both SAHA and NaCl treatment. The mRNA expression of genes, involved in phytohormone [abscisic acid (ABA), jasmonic acid (JA), ethylene, and gibberellin] biosynthesis pathways, is up-regulated after high salinity treatment in SAHA-pretreated roots. Among them, an allene oxide cyclase (MeAOC4) involved in a crucial step of JA biosynthesis is strongly up-regulated by SAHA treatment under salinity stress conditions, implying that JA pathway might contribute to increasing salinity tolerance by SAHA treatment. Our results suggest that epigenetic manipulation might enhance tolerance to high salinity stress in cassava.
Collapse
Affiliation(s)
- Onsaya Patanun
- Plant Biochemistry and Molecular Genetics Laboratory, Department of Biotechnology, Faculty of Science, Mahidol UniversityBangkok, Thailand
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- CREST, Japan Science and Technology AgencySaitama, Japan
| | - Misao Itouga
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Yukari Kato
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Chikako Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- CREST, Japan Science and Technology AgencySaitama, Japan
| | - Hitoshi Sakakibara
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource ScienceSaitama, Japan
| | - Jarunya Narangajavana
- Plant Biochemistry and Molecular Genetics Laboratory, Department of Biotechnology, Faculty of Science, Mahidol UniversityBangkok, Thailand
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- CREST, Japan Science and Technology AgencySaitama, Japan
- Plant Genomic Network Science Division, Kihara Institute for Biological Research, Yokohama City UniversityYokohama, Japan
- *Correspondence: Motoaki Seki
| |
Collapse
|