1
|
Neumann SA, Gaspin C, Sáez-Vásquez J. Plant ribosomes as a score to fathom the melody of 2'- O-methylation across evolution. RNA Biol 2024; 21:70-81. [PMID: 39508203 PMCID: PMC11542601 DOI: 10.1080/15476286.2024.2417152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
2'-O-ribose methylation (2'-O-Me) is one of the most common RNA modifications detected in ribosomal RNAs (rRNA) from bacteria to eukaryotic cells. 2'-O-Me favours a specific RNA conformation and protects RNA from hydrolysis. Moreover, rRNA 2'-O-Me might stabilize its interactions with messenger RNA (mRNA), transfer RNA (tRNA) or proteins. The extent of rRNA 2'-O-Me fluctuates between species from 3-4 sites in bacteria to tens of sites in archaea, yeast, algae, plants and human. Depending on the organism as well as the rRNA targeting site and position, the 2'-O-Me reaction can be carried out by several site-specific RNA methyltransferases (RMTase) or by a single RMTase associated to specific RNA guides. Here, we review current progresses in rRNA 2'-O-Me (sites/Nm and RMTases) in plants and compare the results with molecular clues from unicellular (bacteria, archaea, algae and yeast) as well as multicellular (human and plants) organisms.
Collapse
MESH Headings
- Methylation
- Ribosomes/metabolism
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/chemistry
- Plants/metabolism
- Plants/genetics
- Humans
- Evolution, Molecular
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Methyltransferases/chemistry
- RNA, Plant/metabolism
- RNA, Plant/genetics
- RNA, Plant/chemistry
- Archaea/genetics
- Archaea/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/chemistry
Collapse
Affiliation(s)
- Sara Alina Neumann
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, France
- University Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - Christine Gaspin
- Université Fédérale de Toulouse, INRAE, MIAT, Castanet-Tolosan, France
- Université Fédérale de Toulouse, INRAE, BioinfOmics, Genotoul Bioinformatics Facility, Castanet-Tolosan, France
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, France
- University Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| |
Collapse
|
2
|
Han A, Wang C, Li J, Xu L, Guo X, Li W, Zhou F, Liu R. Physiological mechanism of sodium salicylate and folcisteine on alleviating salt stress in wheat seedlings. Sci Rep 2023; 13:22869. [PMID: 38129459 PMCID: PMC10739812 DOI: 10.1038/s41598-023-49629-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Soil salinization substantially hampers the growth and development of wheat, potentially leading to plant death in severe cases, thus reducing grain yield and quality. This phenomenon poses a significant threat to food security in China. We investigated the effects of two exogenous plant growth regulators, sodium salicylate and folcisteine, on the wheat physiology and key characteristics under salt stress using hydroponics method. The results indicated that both regulators effectively mitigated the growth inhibition of wheat under salt stress. We assessed morphological and physiological indexes, including antioxidant enzyme activities (superoxide dismutase [SOD], catalase [CAT], peroxidase [POD]) and malondialdehyde (MDA) concentration in wheat after foliar application of sodium salicylate and folcisteine under salt stress. The findings revealed that sodium salicylate was more effective than folcisteine. However, folcisteine showed superior performance in reducing hydrogen peroxide (H2O2) content and superoxide anion (O2-) level compared to sodium salicylate. Simultaneously, Concurrent application of both regulators synergistically enhanced their efficacy, yielding the most favorable outcomes. In addition, this study noted that while the initial effects of these regulators were not pronounced, their sustained application significantly improved wheat growth in stressful condition and alleviated the detrimental impacts of salt stress. This approach could effectively guarantee the food security and production in China.
Collapse
Affiliation(s)
- Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Cuiling Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jingchong Li
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Li Xu
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaoyan Guo
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Weiguo Li
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Feng Zhou
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Saputro TB, Jakada BH, Chutimanukul P, Comai L, Buaboocha T, Chadchawan S. OsBTBZ1 Confers Salt Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:14483. [PMID: 37833931 PMCID: PMC10572369 DOI: 10.3390/ijms241914483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Rice (Oryza sativa L.), one of the most important commodities and a primary food source worldwide, can be affected by adverse environmental factors. The chromosome segment substitution line 16 (CSSL16) of rice is considered salt-tolerant. A comparison of the transcriptomic data of the CSSL16 line under normal and salt stress conditions revealed 511 differentially expressed sequence (DEseq) genes at the seedling stage, 520 DEseq genes in the secondary leaves, and 584 DEseq genes in the flag leaves at the booting stage. Four BTB genes, OsBTBZ1, OsBTBZ2, OsBTBN3, and OsBTBN7, were differentially expressed under salt stress. Interestingly, only OsBTBZ1 was differentially expressed at the seedling stage, whereas the other genes were differentially expressed at the booting stage. Based on the STRING database, OsBTBZ1 was more closely associated with other abiotic stress-related proteins than other BTB genes. The highest expression of OsBTBZ1 was observed in the sheaths of young leaves. The OsBTBZ1-GFP fusion protein was localized to the nucleus, supporting the hypothesis of a transcriptionally regulatory role for this protein. The bt3 Arabidopsis mutant line exhibited susceptibility to NaCl and abscisic acid (ABA) but not to mannitol. NaCl and ABA decreased the germination rate and growth of the mutant lines. Moreover, the ectopic expression of OsBTBZ1 rescued the phenotypes of the bt3 mutant line and enhanced the growth of wild-type Arabidopsis under stress conditions. These results suggest that OsBTBZ1 is a salt-tolerant gene functioning in ABA-dependent pathways.
Collapse
Affiliation(s)
- Triono B. Saputro
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.S.); (B.H.J.)
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bello H. Jakada
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.S.); (B.H.J.)
| | - Panita Chutimanukul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathumthani, Bangkok 12120, Thailand;
| | - Luca Comai
- Genome Center and Department of Plant Biology, UC Davis, Davis, CA 95616, USA;
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.S.); (B.H.J.)
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Zhang J, Zhang M, Zhang J, Wang F, Wang Y, Zheng L. Overexpression of RtSYP121 confers cadmium colerance by promoting vesicle trafficking, maintaining ion homeostasis, and alleviating photosynthetic inhibition in Arabidopsis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114620. [PMID: 36773437 DOI: 10.1016/j.ecoenv.2023.114620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/22/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal in soil that seriously threatens crop production, food security, and human health. Syntaxins, a prototype family of Soluble N-ethyl-maleimide-associated protein receptors (SNAREs) involved in vesicle trafficking, are implicated in resistance to abiotic stresses, including Cd stress, but the molecular mechanisms underlying the involvement of syntaxins in Cd tolerance in plants are unclear. In this study, we isolated and functionally characterized the syntaxin gene RtSYP121 from Reaumuria trigyna to evaluate its potential for phytoremediation. RtSYP121 resides in the plasma membrane. The transcriptional level of RtSYP121 was strongly increased by salt, drought, and Cd stress. Overexpression of RtSYP121 significantly enhanced the Cd tolerance of transgenic Arabidopsis. The Cd tolerance of transgenic plants mainly depended on elevated vesicle trafficking, which increased the content of K+ and Ca2+ and thus decreased the accumulation of Cd2+ by regulating the delivery or activity of ion transporters, channels, and pumps. Moreover, overexpression of RtSYP121 in Arabidopsis ameliorated Cd stress-induced phytotoxic effects, including growth inhibition, ROS burst, photosynthetic impairment, and cell death. Therefore, we suggest that RtSYP121 plays multiple roles in the plant response to Cd stress by promoting vesicle trafficking, maintaining ion homeostasis, and alleviating photosynthetic inhibition.
Collapse
Affiliation(s)
- Jiayuan Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| | - Miao Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| | - Jian Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| | - Fang Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| | - Yingchun Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| | - Linlin Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| |
Collapse
|
5
|
Hong J, Jia S, Wang C, Li Y, He F, Gardea-Torresdey JL. Transcriptome reveals the exposure effects of CeO 2 nanoparticles on pakchoi (Brassica chinensis L.) photosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130427. [PMID: 36410248 DOI: 10.1016/j.jhazmat.2022.130427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
In this study, soil-grown pakchoi after 2 weeks seedling cultivation were exposed to CeO2 nanoparticles (CeO2 NPs) at 0.7, 7, 70, and 350 mg kg-1 for 30 days. Results showed that chlorophyll content and photosynthetic assimilation rate were decreased significantly under all treatments with the largest decrease of 34.16% (0.7 mg kg-1 CeO2 NPs), however, sub-stomatal CO2 was increased dramatically under low dose of CeO2 NPs (0.7 mg kg-1). There were 4576, 3548, 2787, and 2514 genes up/down regulated significantly by 0.7, 7, 70, and 350 mg kg-1 CeO2 NPs, respectively, and 767 genes affected under all treatments. In addition, 0.7 mg kg-1 CeO2 NPs up-regulated 10 chlorophyll synthesis genes, 20 photosynthesis genes, and 10 carbon fixation enzyme genes; while 350 mg kg-1 CeO2 NPs down-regulated 5 photosynthesis genes and 28 auxin-activated genes. Among the key genes of photosynthesis, Ferredoxin-NADP reductase (PetH) was upregulated in 0.7, 7 and 70 mg kg-1 treatments, while Photosystem II lipoprotein (Psb27) was downregulated under 7, 70 and 350 mg kg-1 treatments. Top 20 metabolic pathways affected by CeO2 NPs including plant hormone, amino acids, and glutathione, and carbon metabolism These results provide information about utilizing CeO2 NPs more safely and effectively in the future.
Collapse
Affiliation(s)
- Jie Hong
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Siying Jia
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chao Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yi Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jorge L Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas, El Paso, TX 79968, United States
| |
Collapse
|
6
|
Dai L, Li P, Li Q, Leng Y, Zeng D, Qian Q. Integrated Multi-Omics Perspective to Strengthen the Understanding of Salt Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23095236. [PMID: 35563627 PMCID: PMC9105537 DOI: 10.3390/ijms23095236] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Salt stress is one of the major constraints to rice cultivation worldwide. Thus, the development of salt-tolerant rice cultivars becomes a hotspot of current rice breeding. Achieving this goal depends in part on understanding how rice responds to salt stress and uncovering the molecular mechanism underlying this trait. Over the past decade, great efforts have been made to understand the mechanism of salt tolerance in rice through genomics, transcriptomics, proteomics, metabolomics, and epigenetics. However, there are few reviews on this aspect. Therefore, we review the research progress of omics related to salt tolerance in rice and discuss how these advances will promote the innovations of salt-tolerant rice breeding. In the future, we expect that the integration of multi-omics salt tolerance data can accelerate the solution of the response mechanism of rice to salt stress, and lay a molecular foundation for precise breeding of salt tolerance.
Collapse
Affiliation(s)
- Liping Dai
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Peiyuan Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Qing Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Yujia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.L.); (Q.Q.)
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- Correspondence: (Y.L.); (Q.Q.)
| |
Collapse
|
7
|
Zahra N, Al Hinai MS, Hafeez MB, Rehman A, Wahid A, Siddique KHM, Farooq M. Regulation of photosynthesis under salt stress and associated tolerance mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:55-69. [PMID: 35276596 DOI: 10.1016/j.plaphy.2022.03.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 05/24/2023]
Abstract
Photosynthesis is crucial for the survival of all living biota, playing a key role in plant productivity by generating the carbon skeleton that is the primary component of all biomolecules. Salinity stress is a major threat to agricultural productivity and sustainability as it can cause irreversible damage to photosynthetic apparatus at any developmental stage. However, the capacity of plants to become photosynthetically active under adverse saline conditions remains largely untapped. This study addresses this discrepancy by exploring the current knowledge on the impact of salinity on chloroplast operation, metabolism, chloroplast ultrastructure, and leaf anatomy, and highlights the dire consequences for photosynthetic machinery and stomatal conductance. We also discuss enhancing photosynthetic capacity by modifying and redistributing electron transport between photosystems and improving photosystem stability using genetic approaches, beneficial microbial inoculations, and root architecture changes to improve salt stress tolerance under field conditions. Understanding chloroplast operations and molecular engineering of photosynthetic genes under salinity stress will pave the way for developing salt-tolerant germplasm to ensure future sustainability by rehabilitating saline areas.
Collapse
Affiliation(s)
- Noreen Zahra
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Marwa Sulaiman Al Hinai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | | | - Abdul Rehman
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Abdul Wahid
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| |
Collapse
|
8
|
Bano N, Fakhrah S, Mohanty CS, Bag SK. Transcriptome Meta-Analysis Associated Targeting Hub Genes and Pathways of Drought and Salt Stress Responses in Cotton ( Gossypium hirsutum): A Network Biology Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:818472. [PMID: 35548277 PMCID: PMC9083274 DOI: 10.3389/fpls.2022.818472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/21/2022] [Indexed: 06/12/2023]
Abstract
Abiotic stress tolerance is an intricate feature controlled through several genes and networks in the plant system. In abiotic stress, salt, and drought are well known to limit cotton productivity. Transcriptomics meta-analysis has arisen as a robust method to unravel the stress-responsive molecular network in crops. In order to understand drought and salt stress tolerance mechanisms, a meta-analysis of transcriptome studies is crucial. To confront these issues, here, we have given details of genes and networks associated with significant differential expression in response to salt and drought stress. The key regulatory hub genes of drought and salt stress conditions have notable associations with functional drought and salt stress-responsive (DSSR) genes. In the network study, nodulation signaling pathways 2 (NSP2), Dehydration-responsive element1 D (DRE1D), ethylene response factor (ERF61), cycling DOF factor 1 (CDF1), and tubby like protein 3 (TLP3) genes in drought and tubby like protein 1 (TLP1), thaumatin-like proteins (TLP), ethylene-responsive transcription factor ERF109 (EF109), ETS-Related transcription Factor (ELF4), and Arabidopsis thaliana homeodomain leucine-zipper gene (ATHB7) genes in salt showed the significant putative functions and pathways related to providing tolerance against drought and salt stress conditions along with the significant expression values. These outcomes provide potential candidate genes for further in-depth functional studies in cotton, which could be useful for the selection of an improved genotype of Gossypium hirsutum against drought and salt stress conditions.
Collapse
Affiliation(s)
- Nasreen Bano
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shafquat Fakhrah
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Chandra Sekhar Mohanty
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumit Kumar Bag
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Sonsungsan P, Chantanakool P, Suratanee A, Buaboocha T, Comai L, Chadchawan S, Plaimas K. Identification of Key Genes in 'Luang Pratahn', Thai Salt-Tolerant Rice, Based on Time-Course Data and Weighted Co-expression Networks. FRONTIERS IN PLANT SCIENCE 2021; 12:744654. [PMID: 34925399 PMCID: PMC8675607 DOI: 10.3389/fpls.2021.744654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/01/2021] [Indexed: 05/13/2023]
Abstract
Salinity is an important environmental factor causing a negative effect on rice production. To prevent salinity effects on rice yields, genetic diversity concerning salt tolerance must be evaluated. In this study, we investigated the salinity responses of rice (Oryza sativa) to determine the critical genes. The transcriptomes of 'Luang Pratahn' rice, a local Thai rice variety with high salt tolerance, were used as a model for analyzing and identifying the key genes responsible for salt-stress tolerance. Based on 3' Tag-Seq data from the time course of salt-stress treatment, weighted gene co-expression network analysis was used to identify key genes in gene modules. We obtained 1,386 significantly differentially expressed genes in eight modules. Among them, six modules indicated a significant correlation within 6, 12, or 48h after salt stress. Functional and pathway enrichment analysis was performed on the co-expressed genes of interesting modules to reveal which genes were mainly enriched within important functions for salt-stress responses. To identify the key genes in salt-stress responses, we considered the two-state co-expression networks, normal growth conditions, and salt stress to investigate which genes were less important in a normal situation but gained more impact under stress. We identified key genes for the response to biotic and abiotic stimuli and tolerance to salt stress. Thus, these novel genes may play important roles in salinity tolerance and serve as potential biomarkers to improve salt tolerance cultivars.
Collapse
Affiliation(s)
- Pajaree Sonsungsan
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Pheerawat Chantanakool
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Luca Comai
- Department of Plant Biology, College of Biological Sciences, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kitiporn Plaimas
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Yu H, Du Q, Campbell M, Yu B, Walia H, Zhang C. Genome-wide discovery of natural variation in pre-mRNA splicing and prioritising causal alternative splicing to salt stress response in rice. THE NEW PHYTOLOGIST 2021; 230:1273-1287. [PMID: 33453070 PMCID: PMC8048671 DOI: 10.1111/nph.17189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 05/14/2023]
Abstract
Pre-mRNA splicing is an essential step for the regulation of gene expression. In order to specifically capture splicing variants in plants for genome-wide association studies (GWAS), we developed a software tool to quantify and visualise Variations of Splicing in Population (VaSP). VaSP can quantify splicing variants from short-read RNA-seq datasets and discover genotype-specific splicing (GSS) events, which can be used to prioritise causal pre-mRNA splicing events in GWAS. We applied our method to an RNA-seq dataset with 328 samples from 82 genotypes from a rice diversity panel exposed to optimal and saline growing conditions. In total, 764 significant GSS events were identified in salt stress conditions. GSS events were used as markers for a GWAS with the shoot Na+ accumulation, which identified six GSS events in five genes significantly associated with the shoot Na+ content. Two of these genes, OsNUC1 and OsRAD23 emerged as top candidate genes with splice variants that exhibited significant divergence between the variants for shoot growth under salt stress conditions. VaSP is a versatile tool for alternative splicing analysis in plants and a powerful tool for prioritising candidate causal pre-mRNA splicing and corresponding genomic variations in GWAS.
Collapse
Affiliation(s)
- Huihui Yu
- School of Biological SciencesUniversity of NebraskaLincolnNE68588USA
| | - Qian Du
- School of Biological SciencesUniversity of NebraskaLincolnNE68588USA
| | - Malachy Campbell
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNE68583USA
- Department of Plant BiologyCornell UniversityIthacaNY14850USA
| | - Bin Yu
- School of Biological SciencesUniversity of NebraskaLincolnNE68588USA
- Center for Plant Science and InnovationUniversity of NebraskaLincolnNE68588USA
| | - Harkamal Walia
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNE68583USA
- Center for Plant Science and InnovationUniversity of NebraskaLincolnNE68588USA
| | - Chi Zhang
- School of Biological SciencesUniversity of NebraskaLincolnNE68588USA
- Center for Plant Science and InnovationUniversity of NebraskaLincolnNE68588USA
| |
Collapse
|
11
|
Zhang L, Wang Y, Zhang Q, Jiang Y, Zhang H, Li R. Overexpression of HbMBF1a, encoding multiprotein bridging factor 1 from the halophyte Hordeum brevisubulatum, confers salinity tolerance and ABA insensitivity to transgenic Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2020; 102:1-17. [PMID: 31655970 PMCID: PMC6976555 DOI: 10.1007/s11103-019-00926-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/13/2019] [Indexed: 05/11/2023]
Abstract
HbMBF1a was isolated and characterized in H. brevisubulatum, and overexpressed HbMBF1a could enhance the salt tolerance and ABA insensitivity in Arabidopsis thaliana. The transcript levels of stress-responsive genes were significantly increased in the transgenic lines under salt and ABA conditions. Salinity is an abiotic stress that considerably affects plant growth, yield, and distribution. Hordeum brevisubulatum is a halophyte that evolved to become highly tolerant to salinity. Multiprotein bridging factor 1 (MBF1) is a transcriptional coactivator and an important regulator of stress tolerance. In this study, we isolated and characterized HbMBF1a based on the transcriptome data of H. brevisubulatum grown under saline conditions. We overexpressed HbMBF1a in Arabidopsis thaliana and compared the phenotypes of the transgenic lines and the wild-type in response to stresses. The results indicated that HbMBF1a expression was induced by salt and ABA treatments during the middle and late stages. The overexpression of HbMBF1a in A. thaliana resulted in enhanced salt tolerance and ABA insensitivity. More specifically, the enhanced salt tolerance manifested as the increased seed germination and seedling growth and development. Similarly, under ABA treatments, the cotyledon greening rate and seedling root length were higher in the HbMBF1a-overexpressing lines, suggesting the transgenic plants were better adapted to high exogenous ABA levels. Furthermore, the transcript levels of stress-responsive genes were significantly increased in the transgenic lines under salt and ABA conditions. Thus, HbMBF1a is a positive regulator of salt and ABA responses, and the corresponding gene may be useful for producing transgenic plants that are salt tolerant and/or ABA insensitive, with few adverse effects. This study involved a comprehensive analysis of HbMBF1a. The results may provide the basis and insight for the application of MBF1 family genes for developing stress-tolerant crops.
Collapse
Affiliation(s)
- Lili Zhang
- Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing, 100097 China
| | - Yunxiao Wang
- Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing, 100097 China
| | - Qike Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024 China
| | - Ying Jiang
- Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing, 100097 China
| | - Haiwen Zhang
- Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing, 100097 China
| | - Ruifen Li
- Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing, 100097 China
| |
Collapse
|
12
|
Rice Overexpressing OsNUC1-S Reveals Differential Gene Expression Leading to Yield Loss Reduction after Salt Stress at the Booting Stage. Int J Mol Sci 2018; 19:ijms19123936. [PMID: 30544581 PMCID: PMC6320848 DOI: 10.3390/ijms19123936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 11/17/2022] Open
Abstract
Rice nucleolin (OsNUC1), consisting of two isoforms, OsNUC1-L and OsNUC1-S, is a multifunctional protein involved in salt-stress tolerance. Here, OsNUC1-S’s function was investigated using transgenic rice lines overexpressing OsNUC1-S. Under non-stress conditions, the transgenic lines showed a lower yield, but higher net photosynthesis rates, stomatal conductance, and transpiration rates than wild type only in the second leaves, while in the flag leaves, these parameters were similar among the lines. However, under salt-stress conditions at the booting stage, the higher yields in transgenic lines were detected. Moreover, the gas exchange parameters of the transgenic lines were higher in both flag and second leaves, suggesting a role for OsNUC1-S overexpression in photosynthesis adaptation under salt-stress conditions. Moreover, the overexpression lines could maintain light-saturation points under salt-stress conditions, while a decrease in the light-saturation point owing to salt stress was found in wild type. Based on a transcriptome comparison between wild type and a transgenic line, after 3 and 9 days of salt stress, the significantly differentially expressed genes were enriched in the metabolic process of nucleic acid and macromolecule, photosynthesis, water transport, and cellular homeostasis processes, leading to the better performance of photosynthetic processes under salt-stress conditions at the booting stage.
Collapse
|
13
|
Suratanee A, Chokrathok C, Chutimanukul P, Khrueasan N, Buaboocha T, Chadchawan S, Plaimas K. Two-State Co-Expression Network Analysis to Identify Genes Related to Salt Tolerance in Thai rice. Genes (Basel) 2018; 9:E594. [PMID: 30501128 PMCID: PMC6316690 DOI: 10.3390/genes9120594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Khao Dawk Mali 105 (KDML105) rice is one of the most important crops of Thailand. It is a challenging task to identify the genes responding to salinity in KDML105 rice. The analysis of the gene co-expression network has been widely performed to prioritize significant genes, in order to select the key genes in a specific condition. In this work, we analyzed the two-state co-expression networks of KDML105 rice under salt-stress and normal grown conditions. The clustering coefficient was applied to both networks and exhibited significantly different structures between the salt-stress state network and the original (normal-grown) network. With higher clustering coefficients, the genes that responded to the salt stress formed a dense cluster. To prioritize and select the genes responding to the salinity, we investigated genes with small partners under normal conditions that were highly expressed and were co-working with many more partners under salt-stress conditions. The results showed that the genes responding to the abiotic stimulus and relating to the generation of the precursor metabolites and energy were the great candidates, as salt tolerant marker genes. In conclusion, in the case of the complexity of the environmental conditions, gaining more information in order to deal with the co-expression network provides better candidates for further analysis.
Collapse
Affiliation(s)
- Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok 10800, Thailand.
| | - Chidchanok Chokrathok
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Panita Chutimanukul
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Teerapong Buaboocha
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Supachitra Chadchawan
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
14
|
Li C, Li B, Zhang N, Wei N, Wang Q, Wang W, Xie Y, Zou H. Salt stress increases carotenoid production of Sporidiobolus pararoseus NGR via torulene biosynthetic pathway. J GEN APPL MICROBIOL 2018; 65:111-120. [PMID: 30487371 DOI: 10.2323/jgam.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carotenoids represent a diverse class of aliphatic C40 molecules with a variety of applications in the food and pharmaceutical industries. Sporidiobolus pararoseus NGR produces various carotenoids, including torulene, torularhodin and β-carotene. Salt stress significantly increases the torulene accumulation of S. pararoseus NGR. However, little is known, about the molecular mechanisms underlying the increased torulene biosynthesis. In this work, we investigated the effects of NaCl treatment on the contents of carotenoids (both qualitatively and quantitatively) and transcriptome. A total of 12.3 Gb of clean bases were generated in six cDNA libraries. These bases were de novo assembled into 9,533 unigenes with an average length of 1,654 nt and N50 of 2,371 nt. Transcriptome analysis revealed that of 3,849 differential expressed genes (DEGs) in response to salt stress, 2,019 were up-regulated, and 1,830 were down-regulated. Among these DEGs, we identified three carotenogenic genes crtE, crtYB, and crtI. In addition, fourteen candidate genes were predicted to participate in the conversion from torulene to torularhodin. Our findings should provide insights into the mechanisms of carotenoid biosynthesis and salt-tolerance of S. pararoseus NGR.
Collapse
Affiliation(s)
- Chunji Li
- College of Land and Environment, Shenyang Agricultural University
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University
| | - Na Wei
- College of Land and Environment, Shenyang Agricultural University
| | - Qifan Wang
- College of Land and Environment, Shenyang Agricultural University
| | - Wenjing Wang
- College of Land and Environment, Shenyang Agricultural University
| | - Yiwei Xie
- College of Bioscience and Biotechnology, Shenyang Agricultural University
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University
| |
Collapse
|
15
|
Huang KC, Lin WC, Cheng WH. Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:40. [PMID: 29490615 PMCID: PMC5831739 DOI: 10.1186/s12870-018-1255-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/21/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Although the nucleolus involves two major functions: pre-rRNA processing and ribosome biogenesis/assembly, increasing evidence indicates that it also plays important roles in response to abiotic stress. However, the possible regulatory mechanisms underlying the nucleolar proteins responsive to abiotic stress are largely unknown. High salinity is one of the major abiotic stresses, which hinders plant growth and productivity. Here, genetic screening approach was used to identify a salt hypersensitive mutant 9 (sahy9) mutant, also known as apum23, in Arabidopsis thaliana. Functional characterization of SAHY9/APUM23 through analyses of gene/protein expression profiles and metabolites was performed to decipher the possible regulatory mechanisms of the nucleolar protein SAHY9/APUM23 in response to salt stress. RESULTS Seedlings of the sahy9/apum23 mutant displayed postgermination developmental arrest and then became bleached after prolonged culture under various salt stresses. Transcriptomic and proteomic analyses of salt-treated sahy9/apum23 and wild-type seedlings revealed differential expression of genes/proteins that have similar functional categories of biological processes, primarily those involved in cellular and metabolic processes as well as abiotic and biotic stress responses. However, the consistency of differential gene expression at both the transcript and protein levels was low (~ 12%), which suggests the involvement of posttranscriptional processing during the salt response. Furthermore, the altered expression of genes and proteins mediated by SAHY9/APUM23 regarding salt sensitivity involves abscisic acid (ABA) biosynthesis and signaling, abiotic stress responses, and ribosome biogenesis-related genes. Importantly, NCED3, ABI2, PP2CA, and major ABA-responsive marker genes, such as RD20 and RD29B, were down-regulated at both the transcript and protein levels in conjunction with lower contents of ABA and changes in the expression of a subset of LEA proteins in sahy9/apum23 mutants under salt stress. Moreover, the salt hypersensitivity of the sahy9/apum23 mutant was largely rescued by the exogenous application of ABA during salt stress. CONCLUSION Our results revealed that SAHY9/APUM23 regulated the expression of ribosome biogenesis-related genes and proteins, which further affected the ribosome composition and abundance, and potential posttranscriptional regulation. The salt hypersensitivity of sahy9/apum23 is associated with the ABA-mediated signaling pathway and the downstream stress-responsive network of this pathway.
Collapse
Affiliation(s)
- Kai-Chau Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chih Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|