1
|
Cai X, Tang L, Wang H, Zhang S, Li X, Liu C, Zhang X, Zhang J. Identification of the cysteine-rich transmembrane module CYSTM family in upland cotton and functional analysis of GhCYSTM5_A in cold and drought stresses. Int J Biol Macromol 2024; 292:139058. [PMID: 39710036 DOI: 10.1016/j.ijbiomac.2024.139058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Abiotic stress poses adverse impacts on cotton production, raising demands for a better understanding of stress-response mechanisms and developing strategies to improve plant performance to cope with stress. CYSTM (Cysteine-rich transmembrane module) is a widely distributed and conserved family in eukaryotes that performs potential functions in stress tolerance. However, CYSTM genes and their role in stress response is uncharacterized in cotton. Herein, we identified a total of 23 CYSTM genes from upland cotton. They underwent mainly segmental duplications and experienced purifying selection during evolution. Expression profiles revealed GhCYSTMs were closely related to abiotic stress response. Furthermore, GhCYSTM5_A overexpression enhanced the cold and drought tolerance of cotton, while RNAi-mediated knockdown of GhCYSTM5_A decreased stress tolerance. Transcriptome analysis revealed GhCYSTM5_A may contribute to cold and drought tolerance by regulating the expression of oxidative stress-related genes through MAPK signaling. GhCYSTM5_A, localized in the nucleus and cytoplasm interacted with a secreted cysteine-rich peptide GhGASA14. Moreover, GhGASA14 silencing rendered cotton plants vulnerable to cold and drought. These results suggested the potential functions of GhCYSTM genes in abiotic stress and a positive role of GhCYSTM5_A in cold and drought tolerance. This study sheds light on comprehensive characteristics of GhCYSTM, and provides candidate genes for genetic breeding.
Collapse
Affiliation(s)
- Xiao Cai
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China
| | - Liyuan Tang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China
| | - Haitao Wang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China
| | - Sujun Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China
| | - Xinghe Li
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China
| | - Cunjing Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China
| | - Xiangyun Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China
| | - Jianhong Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China.
| |
Collapse
|
2
|
Li HH, Chen XW, Zhai FH, Li YT, Zhao HM, Mo CH, Luo Y, Xing B, Li H. Arbuscular Mycorrhizal Fungus Alleviates Charged Nanoplastic Stress in Host Plants via Enhanced Defense-Related Gene Expressions and Hyphal Capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6258-6273. [PMID: 38450439 DOI: 10.1021/acs.est.3c07850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Contamination of small-sized plastics is recognized as a factor of global change. Nanoplastics (NPs) can readily enter organisms and pose significant ecological risks. Arbuscular mycorrhizal (AM) fungi are the most ubiquitous and impactful plant symbiotic fungi, regulating essential ecological functions. Here, we first found that an AM fungus, Rhizophagus irregularis, increased lettuce shoot biomass by 25-100% when exposed to positively and negatively charged NPs vs control, although it did not increase that grown without NPs. The stress alleviation was attributed to the upregulation of gene expressions involving phytohormone signaling, cell wall metabolism, and oxidant scavenging. Using a root organ-fungus axenic growth system treated with fluorescence-labeled NPs, we subsequently revealed that the hyphae captured NPs and further delivered them to roots. NPs were observed at the hyphal cell walls, membranes, and spore walls. NPs mediated by the hyphae were localized at the root epidermis, cortex, and stele. Hyphal exudates aggregated positively charged NPs, thereby reducing their uptake due to NP aggregate formation (up to 5000 nm). This work demonstrates the critical roles of AM fungus in regulating NP behaviors and provides a potential strategy for NP risk mitigation in terrestrial ecosystems. Consequent NP-induced ecological impacts due to the affected AM fungi require further attention.
Collapse
Affiliation(s)
- Han Hao Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xun Wen Chen
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Feng Hua Zhai
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yong Tao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hai Ming Zhao
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce Hui Mo
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yongming Luo
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hui Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Ren G, Zhang Y, Chen Z, Xue X, Fan H. Research Progress of Small Plant Peptides on the Regulation of Plant Growth, Development, and Abiotic Stress. Int J Mol Sci 2024; 25:4114. [PMID: 38612923 PMCID: PMC11012589 DOI: 10.3390/ijms25074114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Small peptides in plants are typically characterized as being shorter than 120 amino acids, with their biologically active variants comprising fewer than 20 amino acids. These peptides are instrumental in regulating plant growth, development, and physiological processes, even at minimal concentrations. They play a critical role in long-distance signal transduction within plants and act as primary responders to a range of stress conditions, including salinity, alkalinity, drought, high temperatures, and cold. This review highlights the crucial roles of various small peptides in plant growth and development, plant resistance to abiotic stress, and their involvement in long-distance transport. Furthermore, it elaborates their roles in the regulation of plant hormone biosynthesis. Special emphasis is given to the functions and mechanisms of small peptides in plants responding to abiotic stress conditions, aiming to provide valuable insights for researchers working on the comprehensive study and practical application of small peptides.
Collapse
Affiliation(s)
- Guocheng Ren
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China
| | - Yanling Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| | - Xin Xue
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| |
Collapse
|
4
|
Bai X, Zhang E, Wu J, Ma D, Zhang C, Zhang B, Liu Y, Zhang Z, Tian F, Zhao H, Wang B. Soil fungal community is more sensitive than bacterial community to modified materials application in saline-alkali land of Hetao Plain. Front Microbiol 2024; 15:1255536. [PMID: 38374915 PMCID: PMC10875129 DOI: 10.3389/fmicb.2024.1255536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024] Open
Abstract
Soil salinization has become a major challenge that severely threatens crop growth and influences the productivity of agriculture. It is urgent to develop effective management measures to improve saline-alkali soil. Thus, in this study, soil properties, microbial communities, and function under desulfurization gypsum (DE), soil amendment (SA), farm manure (FA), and co-application of desulfurization gypsum, soil amendment, and farm manure (TA) in a field experiment were examined by high-throughput sequencing. The results showed that the application of modified materials is an effective approach in improving saline-alkali soil, especially TA treatment significantly increased the content of available phosphorus (AP), available potassium (AK), soil organic matter (SOM), and alkaline hydrolysis nitrogen (AHN) and decreased pH, bulk density (BD), and electrical conductivity (EC). The application of modified materials resulted in notable enhancement in fungal diversity and altered the composition and structure of the fungal community. Conversely, the effect on the bacterial community was comparatively minor, with changes limited to the structure of the community. Regarding the fungal community composition, Ascomycota, Mortierellomycota, and Basidiomycota emerged as the dominant phyla across all treatments. At each taxonomic level, the community composition exhibited significant variations in response to different modified materials, resulting in divergent soil quality. The TA treatment led to a decrease in Mortierellomycota and an increase in Ascomycota, potentially enhancing the ability to decompose organic matter and facilitate soil nutrient cycling. Additionally, the sensitivity of fungal biomarkers to modified materials surpassed that of the bacterial community. The impact of modified materials on soil microbial communities primarily stemmed from alterations in soil EC, AP, AK, and SOM. FUNGuild analysis indicated that the saprotroph trophic mode group was the dominant component, and the application of modified materials notably increased the symbiotroph group. PICRUSt analysis revealed that metabolism was the most prevalent functional module observed at pathway level 1. Overall, the application of modified materials led to a decrease in soil EC and an increase in nutrient levels, resulting in more significant alterations in the soil fungal community, but it did not dramatically change the soil bacterial community. Our study provides new insights into the application of modified materials in increasing soil nutrients and altering soil microbial communities and functions and provides a better approach for improving saline-alkali soil of Hetao Plain.
Collapse
Affiliation(s)
- Xiaolong Bai
- College of Agriculture, Ningxia University, Yinchuan, China
| | - En Zhang
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Jinmin Wu
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Donghai Ma
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Chaohui Zhang
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Bangyan Zhang
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Yunpeng Liu
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Zhi Zhang
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Feng Tian
- Tumote Right Banner Agricultural Technology Extension Center, Baotou, China
| | - Hui Zhao
- Tumote Right Banner Agricultural Technology Extension Center, Baotou, China
| | - Bin Wang
- College of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
5
|
Giolito ML, Bigliani G, Meinero R, Taubas JV. Palmitoylation of CYSTM (CYSPD) proteins in yeast. J Biol Chem 2024; 300:105609. [PMID: 38159851 PMCID: PMC10840359 DOI: 10.1016/j.jbc.2023.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
A superfamily of proteins called cysteine transmembrane is widely distributed across eukaryotes. These small proteins are characterized by the presence of a conserved motif at the C-terminal region, rich in cysteines, that has been annotated as a transmembrane domain. Orthologs of these proteins have been involved in resistance to pathogens and metal detoxification. The yeast members of the family are YBR016W, YDL012C, YDR034W-B, and YDR210W. Here, we begin the characterization of these proteins at the molecular level and show that Ybr016w, Ydr034w-b, and Ydr210w are palmitoylated proteins. Protein S-acylation or palmitoylation, is a posttranslational modification that consists of the addition of long-chain fatty acids to cysteine residues. We provide evidence that Ybr016w, Ydr210w, and Ydr034w-b are localized to the plasma membrane and exhibit varying degrees of polarity toward the daughter cell, which is dependent on endocytosis and recycling. We suggest the names CPP1, CPP2, and CPP3 (C terminally palmitoylated protein) for YBR016W, YDR210W, and YDR034W-B, respectively. We show that palmitoylation is responsible for the binding of these proteins to the membrane indicating that the cysteine transmembrane on these proteins is not a transmembrane domain. We propose renaming the C-terminal cysteine-rich domain as cysteine-rich palmitoylated domain. Loss of the palmitoyltransferase Erf2 leads to partial degradation of Ybr016w (Cpp1), whereas in the absence of the palmitoyltransferase Akr1, members of this family are completely degraded. For Cpp1, we show that this degradation occurs via the proteasome in an Rsp5-dependent manner, but is not exclusively due to a lack of Cpp1 palmitoylation.
Collapse
Affiliation(s)
- María Luz Giolito
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gonzalo Bigliani
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rocío Meinero
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Javier Valdez Taubas
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
6
|
Pinto VB, Vidigal PMP, Dal-Bianco M, Almeida-Silva F, Venancio TM, Viana JMS. Transcriptome-based strategies for identifying aluminum tolerance genes in popcorn (Zea mays L. var. everta). Sci Rep 2023; 13:19400. [PMID: 37938583 PMCID: PMC10632369 DOI: 10.1038/s41598-023-46810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023] Open
Abstract
Aluminum (Al) toxicity limits crop production worldwide. Although studies have identified genes associated with Al tolerance in crops, a large amount of data remains unexplored using other strategies. Here, we searched for single substitutions and InDels across differentially expressed genes (DEGs), linked DEGs to Al-tolerance QTLs reported in the literature for common maize, and investigated the alternative splicing regulated by Al3+ toxicity. We found 929 substitutions between DEGs in Al-tolerant and 464 in Al-sensitive inbred lines, of which 165 and 80 were non-synonymous, respectively. Only 12 NS variants had deleterious predicted effect on protein function in Al-tolerant and 13 in Al-sensitive. Moreover, 378 DEGs were mapped in Al-QTL regions for the Al-tolerant and 213 for the Al-sensitive. Furthermore, Al stress is primarily regulated at the transcriptional level in popcorn. Important genes identified, such as HDT1, SWEET4a, GSTs, SAD9, PIP2-2, CASP-like 5, and AGP, may benefit molecular assisted popcorn breeding or be useful in biotechnological approaches. These findings offer insights into the mechanisms of Al tolerance in popcorn and provide a 'hypothesis-free' strategy for identifying and prioritizing candidate genes that could be used to develop molecular markers or cultivars resilient to acidic soils.
Collapse
Affiliation(s)
- Vitor Batista Pinto
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-000, Brazil.
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | | | - Maximiller Dal-Bianco
- Laboratório de Bioquímica Genética de Plantas/BIOAGRO. UFV, Viçosa, MG, 36570-000, Brazil
| | - Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, CBB. UENF, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, CBB. UENF, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | | |
Collapse
|
7
|
Feng YZ, Zhu QF, Xue J, Chen P, Yu Y. Shining in the dark: the big world of small peptides in plants. ABIOTECH 2023; 4:238-256. [PMID: 37970469 PMCID: PMC10638237 DOI: 10.1007/s42994-023-00100-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/24/2023] [Indexed: 11/17/2023]
Abstract
Small peptides represent a subset of dark matter in plant proteomes. Through differential expression patterns and modes of action, small peptides act as important regulators of plant growth and development. Over the past 20 years, many small peptides have been identified due to technical advances in genome sequencing, bioinformatics, and chemical biology. In this article, we summarize the classification of plant small peptides and experimental strategies used to identify them as well as their potential use in agronomic breeding. We review the biological functions and molecular mechanisms of small peptides in plants, discuss current problems in small peptide research and highlight future research directions in this field. Our review provides crucial insight into small peptides in plants and will contribute to a better understanding of their potential roles in biotechnology and agriculture.
Collapse
Affiliation(s)
- Yan-Zhao Feng
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Qing-Feng Zhu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jiao Xue
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Pei Chen
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| |
Collapse
|
8
|
Ding Q, Liu H, Lin R, Wang Z, Jian S, Zhang M. Genome-wide functional characterization of Canavalia rosea cysteine-rich trans-membrane module (CrCYSTM) genes to reveal their potential protective roles under extreme abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107786. [PMID: 37257408 DOI: 10.1016/j.plaphy.2023.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Cysteine-rich transmembrane module (CYSTM) proteins constitute small molecular protein families and have been identified across eukaryotes, including yeast, humans, and several plant species. Plant CYSTMs play vital roles in growth regulation, development, phytohormone signal transduction, pathogen defense, environmental stress response, and even heavy metal binding and detoxification. Canavalia rosea (Sw.) DC is a perennial halophyte with great semi-arid and saline-alkali tolerance. In this study, the CrCYSTM family including 10 members were identified in the C. rosea genome, with the purpose of clarifying the possible roles of CrCYSTMs in C. rosea plants development and stress resistance. The phylogenetic relationships, exon-intron structure, domain structure, chromosomal localization, and putative cis-acting elements in promoter regions were predicted and analyzed. Transcriptome analysis combined with quantitative reverse transcription PCR showed that different CrCYSTM members exhibited varied expression patterns in different tissues and under different abiotic stress challenges. In addition, several CrCYSTMs were cloned and functionally characterized for their roles in abiotic stress tolerance with yeast expression system. Overall, these findings provide a foundation for functionally characterizing plant CYSTMs to unravel their possible roles in the adaptation of C. rosea to tropical coral reefs. Our results also lay the foundation for further research on the roles of plant CYSTM genes in abiotic stress signaling, especially for heavy metal detoxification.
Collapse
Affiliation(s)
- Qianqian Ding
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Hao Liu
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Ruoyi Lin
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100039, China; Dongguan Research Institute of Forestry/Forest Ecosystem Research Station in City Cluster of the Pearl River Estuary, Dongguan, 523106, China
| | - Zhengfeng Wang
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems&Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems&Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
9
|
Zvonarev A, Ledova L, Ryazanova L, Valiakhmetov A, Farofonova V, Kulakovskaya T. The YBR056W-A and Its Ortholog YDR034W-B of S. cerevisiae Belonging to CYSTM Family Participate in Manganese Stress Overcoming. Genes (Basel) 2023; 14:genes14050987. [PMID: 37239347 DOI: 10.3390/genes14050987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The CYSTM (cysteine-rich transmembrane module) protein family comprises small molecular cysteine-rich tail-anchored membrane proteins found in many eukaryotes. The Saccharomyces cerevisiae strains carrying the CYSTM genes YDRO34W-B and YBR056W-A (MNC1) fused with GFP were used to test the expression of these genes under different stresses. The YBR056W-A (MNC1) and YDR034W-B genes are expressed under stress conditions caused by the toxic concentrations of heavy metal ions, such as manganese, cobalt, nickel, zinc, cuprum, and 2.4-dinitrophenol uncoupler. The expression level of YDR034W-B was higher than that of YBR056W-A under alkali and cadmium stresses. The Ydr034w-b-GFP and Ybr056w-a-GFP proteins differ in the cellular localization: Ydr034w-b-GFP was mainly observed in the plasma membrane and vacuolar membrane, while Ybr056w-a-GFP was observed in the cytoplasm, probably in intracellular membranes. The null-mutants in both genes demonstrated decreased cell concentration and lytic phenotype when cultivated in the presence of excess manganese. This allows for speculations about the involvement of Mnc1 and Ydr034w-b proteins in manganese stress overcoming.
Collapse
Affiliation(s)
- Anton Zvonarev
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia
| | - Larisa Ledova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia
| | - Lubov Ryazanova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia
| | - Airat Valiakhmetov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia
| | - Vasilina Farofonova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Tatiana Kulakovskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia
| |
Collapse
|
10
|
Deb S, Della Lucia MC, Ravi S, Bertoldo G, Stevanato P. Transcriptome-Assisted SNP Marker Discovery for Phytophthora infestans Resistance in Solanum lycopersicum L. Int J Mol Sci 2023; 24:ijms24076798. [PMID: 37047771 PMCID: PMC10095378 DOI: 10.3390/ijms24076798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Late blight, caused by oomycetes Phytophthora infestans is one of the most challenging fungal diseases to manage in tomato plants (Solanum lycopersicum L.). Toward managing the disease, conventional breeding has successfully introgressed genetic loci conferring disease resistance from various wild relatives of tomato into commercial varieties. The cataloging of disease-associated SNP markers and a deeper understanding of disease-resistance mechanisms are needed to keep up with the demand for commercial varieties resistant against emerging pathogen strains. To this end, we performed transcriptome sequencing to evaluate the gene expression dynamics of tomato varieties, resistant and susceptible to Phytophthora infection. Further integrating the transcriptome dataset with large-scale public genomic data of varieties with known disease phenotypes, a panel of single nucleotide polymorphism (SNP) markers correlated with disease resistance was identified. These SNPs were then validated on 31 lines with contrasting phenotypes for late blight. The identified SNPs are located on genes coding for a putative cysteine-rich transmembrane module (CYSTM), Solyc09g098310, and a nucleotide-binding site-leucine-rich repeat protein, Solyc09g098100, close to the well-studied Ph-3 resistance locus known to have a role in plant immunity against fungal infections. The panel of SNPs generated by this study using transcriptome sequencing showing correlation with disease resistance across a broad set of plant material can be used as markers for molecular screening in tomato breeding.
Collapse
Affiliation(s)
- Saptarathi Deb
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Maria Cristina Della Lucia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Samathmika Ravi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Giovanni Bertoldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| |
Collapse
|
11
|
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic Stress in Crop Production. Int J Mol Sci 2023; 24:ijms24076603. [PMID: 37047573 PMCID: PMC10095105 DOI: 10.3390/ijms24076603] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors—drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants—wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
Collapse
Affiliation(s)
- Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
12
|
Szabó Z, Balogh M, Domonkos Á, Csányi M, Kaló P, Kiss GB. The bs5 allele of the susceptibility gene Bs5 of pepper (Capsicum annuum L.) encoding a natural deletion variant of a CYSTM protein conditions resistance to bacterial spot disease caused by Xanthomonas species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:64. [PMID: 36943531 PMCID: PMC10030403 DOI: 10.1007/s00122-023-04340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/02/2023] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE The bs5 resistance gene against bacterial spot was identified by map-based cloning. The recessive bs5 gene of pepper (Capsicum annuum L.) conditions a non-hypersensitive resistance trait, characterized by a slightly swollen, pale green, photosynthetically active leaf tissue, following Xanthomonas euvesicatoria infection. The isolation of the bs5 gene by map-based cloning revealed that the bs5 protein was shorter by 2 amino acids as compared to the wild type Bs5 protein. The natural 2 amino acid deletion occurred in the cysteine-rich transmembrane domain of the tail-anchored (TA) protein, Ca_CYSTM1. The protein products of the wild type Bs5 and mutant bs5 genes were shown to be located in the cell membrane, indicating an unknown function in this membrane compartment. Successful infection of the Bs5 pepper lines was abolished by the 6 bp deletion in the TM encoding domain of the Ca_CYSTM1 gene in bs5 homozygotes, suggesting, that the resulting resistance might be explained by the lack of entry of the Xanthomonas specific effector molecules into the plant cells.
Collapse
Affiliation(s)
- Zoltán Szabó
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary.
| | - Márta Balogh
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Ágota Domonkos
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Márta Csányi
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Péter Kaló
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
- Institute of Plant Biology, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
| | - György B Kiss
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
- AMBIS Biotechnology Research and Development Ltd., Budapest, Hungary
| |
Collapse
|
13
|
Xiao S, Wan Y, Guo S, Fan J, Lin Q, Zheng C, Wu C. Transcription Factor SiDi19-3 Enhances Salt Tolerance of Foxtail Millet and Arabidopsis. Int J Mol Sci 2023; 24:2592. [PMID: 36768932 PMCID: PMC9917086 DOI: 10.3390/ijms24032592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Salt stress is an important limiting factor of crop production. Foxtail millet (Setaria italica L.) is an important model crop for studying tolerance to various abiotic stressors. Therefore, examining the response of foxtail millet to salt stress at the molecular level is critical. Herein, we discovered that SiDi19-3 interacts with SiPLATZ12 to control salt tolerance in transgenic Arabidopsis and foxtail millet seedlings. SiDi19-3 overexpression increased the transcript levels of most Na+/H+ antiporter (NHX), salt overly sensitive (SOS), and calcineurin B-like protein (CBL) genes and improved the salt tolerance of foxtail millet and Arabidopsis. Six SiDi19 genes were isolated from foxtail millet. Compared with roots, stems, and leaves, panicles and seeds had higher transcript levels of SiDi19 genes. All of them responded to salt, alkaline, polyethylene glycol, and/or abscisic acid treatments with enhanced expression levels. These findings indicate that SiDi19-3 and other SiDi19 members regulate salt tolerance and other abiotic stress response in foxtail millet.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
14
|
Secretomic Insights into the Pathophysiology of Venturia inaequalis: The Causative Agent of Scab, a Devastating Apple Tree Disease. Pathogens 2022; 12:pathogens12010066. [PMID: 36678413 PMCID: PMC9860705 DOI: 10.3390/pathogens12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/10/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Apple scab, caused by Venturia inaequalis, is one of the world's most commercially significant apple diseases. The fungi have a catastrophic impact on apples, causing considerable losses in fruit quality and productivity in many apple-growing locations despite numerous control agents. Fungi secrete various effectors and other virulence-associated proteins that suppress or alter the host's immune system, and several such proteins were discovered in this work. Using state-of-the-art bioinformatics techniques, we examined the V. inaequalis reference genome (EU-B04), resulting in the identification of 647 secreted proteins, of which 328 were classified as small secreted proteins (SSPs), with 76.52% of SSPs identified as anticipated effector proteins. The more prevalent CAZyme proteins were the enzymes engaged in plant cell wall disintegration (targeting pectin and xylanase), adhesion and penetration (Cutinases/acetyl xylan esterase), and reactive oxygen species formation (multicopper oxidases). Furthermore, members of the S9 prolyl oligopeptidase family were identified as the most abundant host defense peptidases. Several known effector proteins were discovered to be expressed during the V. inaequalis infection process on apple leaves. The present study provides valuable data that can be used to develop new strategies for controlling apple scab.
Collapse
|
15
|
Ginanjar EF, Teh OK, Fujita T. Characterisation of rapid alkalinisation factors in Physcomitrium patens reveals functional conservation in tip growth. THE NEW PHYTOLOGIST 2022; 233:2442-2457. [PMID: 34954833 DOI: 10.1111/nph.17942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Small signalling peptides are key molecules for cell-to-cell communications in plants. The cysteine-rich signalling peptide, rapid alkalinisation factors (RALFs) family are involved in diverse developmental and stress responses and have expanded considerably during land plant evolution, implying neofunctionalisations in the RALF family. However, the ancestral roles of RALFs when land plant first acquired them remain unknown. Here, we functionally characterised two of the three RALFs in bryophyte Physcomitrium patens using loss-of-function mutants, overexpressors, as well as fluorescent proteins tagged reporter lines. We showed that PpRALF1 and PpRALF2 have overlapping functions in promoting protonema tip growth and elongation, showing a homologous function as the Arabidopsis RALF1 in promoting root hair tip growth. Although both PpRALFs are secreted to the plasma membrane on which PpRALF1 symmetrically localised, PpRALF2 showed a polarised localisation at the growing tip. Notably, proteolytic cleavage of PpRALF1 is necessary for its function. Our data reveal a possible evolutionary origin of the RALF functions and suggest that functional divergence of RALFs is essential to drive complex morphogenesis and to facilitate other novel processes in land plants.
Collapse
Affiliation(s)
| | - Ooi-Kock Teh
- Faculty of Science, Hokkaido University, Hokkaido, 060-0810, Japan
- Institute for the Advancement of Higher Education, Hokkaihdo University, Sapporo, 060-0817, Japan
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd, Nankang, Taipei, Taiwan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, Hokkaido, 060-0810, Japan
| |
Collapse
|
16
|
Xu Y, Shang K, Wang C, Yu Z, Zhao X, Song Y, Meng F, Zhu C. WIPK-NtLTP4 pathway confers resistance to Ralstonia solanacearum in tobacco. PLANT CELL REPORTS 2022; 41:249-261. [PMID: 34697685 DOI: 10.1007/s00299-021-02808-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE WIPK-NtLTP4 module improves the resistance to R. solanacearum via upregulating the expression of defense-related genes, increasing the antioxidant enzyme activity, and promoting stomatal closure in tobacco. Lipid transfer proteins (LTPs) are a class of small lipid binding proteins that play important roles in biotic and abiotic stresses. The previous study revealed that NtLTP4 positively regulates salt and drought stresses in Nicotiana tabacum. However, the role of NtLTP4 in biotic stress, especially regarding its function in disease resistance remains unclear. Here, the critical role of NtLTP4 in regulating resistance to Ralstonia solanacearum (R. solanacearum), a causal agent of bacterial wilt disease in tobacco, was reported. The NtLTP4-overexpressing lines markedly improved the resistance to R. solanacearum by upregulating the expression of defense-related genes, increasing the antioxidant enzyme activity, and promoting stomatal closure. Moreover, NtLTP4 interacted with wound-induced protein kinase (WIPK; a homolog of MAPK3 in tobacco) and acted in a genetically epistatic manner to WIPK in planta. WIPK could directly phosphorylate NtLTP4 to positively regulate its protein abundance. Taken together, these results broaden the knowledge about the functions of the WIPK-NtLTP4 module in disease resistance and may provide valuable information for improving tobacco plant tolerance to R. solanacearum.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, 266100, People's Republic of China
| | - Kaijie Shang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Chenchen Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zipeng Yu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Xuechen Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Yunzhi Song
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Fanxiao Meng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
17
|
Kumarswamyreddy N, Reddy DN, Robkis DM, Kamiya N, Tsukamoto R, Kanaoka MM, Higashiyama T, Oishi S, Bode JW. Chemical Synthesis of Torenia Plant Pollen Tube Attractant Proteins by KAHA Ligation. RSC Chem Biol 2022; 3:721-727. [PMID: 35755195 PMCID: PMC9175099 DOI: 10.1039/d2cb00039c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis of secreted cysteine-rich proteins (CRPs) is a long-standing challenge due to protein aggregation and premature formation of inter- and intramolecular disulfide bonds. Chemical synthesis provides reduced CRPs with a higher purity, which is advantageous for folding and isolation. Herein, we report the chemical synthesis of pollen tube attractant CRPs Torenia fournieri LURE (TfLURE) and Torenia concolor LURE (TcLURE) and their chimeric analogues via α-ketoacid-hydroxylamine (KAHA) ligation. The bioactivity of chemically synthesized TfLURE protein was shown to be comparable to E. coli expressed recombinant protein through in vitro assay. The convergent protein synthesis approach is beneficial for preparing these small protein variants efficiently. A convergent chemical synthesis was established for Torenia plant pollen tube attractant proteins, LUREs and their chimeric analogues by KAHA ligation. The synthetic TfLURE showed comparable bioactivity with E.coli expressed recombinant protein.![]()
Collapse
Affiliation(s)
- Nandarapu Kumarswamyreddy
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Department of Chemistry, Indian Institute of Technology Tirupati Tirupati Andhra Pradesh 517506 India
| | - Damodara N Reddy
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute Lucknow 226031 India
| | - D Miklos Robkis
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
| | - Nao Kamiya
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
| | - Ryoko Tsukamoto
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
| | - Masahiro M Kanaoka
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo Tokyo 113-0033 Japan
| | - Shunsuke Oishi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
| | - Jeffrey W Bode
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich Zürich 8093 Switzerland
| |
Collapse
|
18
|
Zhang L, Ren Y, Xu Q, Wan Y, Zhang S, Yang G, Huang J, Yan K, Zheng C, Wu C. SiCEP3, a C-terminally encoded peptide from Setaria italica, promotes ABA import and signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6260-6273. [PMID: 34097059 DOI: 10.1093/jxb/erab267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
C-terminally encoded peptides (CEPs) are small peptides, typically post-translationally modified, and highly conserved in many species. CEPs are known to inhibit plant growth and development, but the mechanisms are not well understood. In this study, 14 CEPs were identified in Setaria italica and divided into two groups. The transcripts of most SiCEPs were more abundant in roots than in other detected tissues. SiCEP3, SiCEP4, and SiCEP5 were also highly expressed in panicles. Moreover, expression of all SiCEPs was induced by abiotic stresses and phytohormones. SiCEP3 overexpression and application of synthetic SiCEP3 both inhibited seedling growth. In the presence of abscisic acid (ABA), growth inhibition and ABA content in seedlings increased with the concentration of SiCEP3. Transcripts encoding eight ABA transporters and six ABA receptors were induced or repressed by synthetic SiCEP3, ABA, and their combination. Further analysis using loss-of-function mutants of Arabidopsis genes functioning as ABA transporters, receptors, and in the biosynthesis and degradation of ABA revealed that SiCEP3 promoted ABA import at least via NRT1.2 (NITRATE TRANSPORTER 1.2) and ABCG40 (ATP-BINDING CASSETTE G40). In addition, SiCEP3, ABA, or their combination inhibited the kinase activities of CEP receptors AtCEPR1/2. Taken together, our results indicated that the CEP-CEPR module mediates ABA signaling by regulating ABA transporters and ABA receptors in planta.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Yue Ren
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Qian Xu
- Phytohormone Analysis Platform, Agronomy College of Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yiman Wan
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Kang Yan
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Changai Wu
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| |
Collapse
|
19
|
Regional Heritability Mapping of Quantitative Trait Loci Controlling Traits Related to Growth and Productivity in Popcorn (Zea mays L.). PLANTS 2021; 10:plants10091845. [PMID: 34579378 PMCID: PMC8466968 DOI: 10.3390/plants10091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022]
Abstract
The method of regional heritability mapping (RHM) has become an important tool in the identification of quantitative trait loci (QTLs) controlling traits of interest in plants. Here, RHM was first applied in a breeding population of popcorn, to identify the QTLs and candidate genes involved in grain yield, plant height, kernel popping expansion, and first ear height, as well as determining the heritability of each significant genomic region. The study population consisted of 98 S1 families derived from the 9th recurrent selection cycle (C-9) of the open-pollinated variety UENF-14, which were genetically evaluated in two environments (ENV1 and ENV2). Seventeen and five genomic regions were mapped by the RHM method in ENV1 and ENV2, respectively. Subsequent genome-wide analysis based on the reference genome B73 revealed associations with forty-six candidate genes within these genomic regions, some of them are considered to be biologically important due to the proteins that they encode. The results obtained by the RHM method have the potential to contribute to knowledge on the genetic architecture of the growth and yield traits of popcorn, which might be used for marker-assisted selection in breeding programs.
Collapse
|
20
|
Pereira Mendes M, Hickman R, Van Verk MC, Nieuwendijk NM, Reinstädler A, Panstruga R, Pieterse CMJ, Van Wees SCM. A family of pathogen-induced cysteine-rich transmembrane proteins is involved in plant disease resistance. PLANTA 2021; 253:102. [PMID: 33856567 PMCID: PMC8049917 DOI: 10.1007/s00425-021-03606-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/24/2021] [Indexed: 06/01/2023]
Abstract
Overexpression of pathogen-induced cysteine-rich transmembrane proteins (PCMs) in Arabidopsis thaliana enhances resistance against biotrophic pathogens and stimulates hypocotyl growth, suggesting a potential role for PCMs in connecting both biological processes. Plants possess a sophisticated immune system to protect themselves against pathogen attack. The defense hormone salicylic acid (SA) is an important player in the plant immune gene regulatory network. Using RNA-seq time series data of Arabidopsis thaliana leaves treated with SA, we identified a largely uncharacterized SA-responsive gene family of eight members that are all activated in response to various pathogens or their immune elicitors and encode small proteins with cysteine-rich transmembrane domains. Based on their nucleotide similarity and chromosomal position, the designated Pathogen-induced Cysteine-rich transMembrane protein (PCM) genes were subdivided into three subgroups consisting of PCM1-3 (subgroup I), PCM4-6 (subgroup II), and PCM7-8 (subgroup III). Of the PCM genes, only PCM4 (also known as PCC1) has previously been implicated in plant immunity. Transient expression assays in Nicotiana benthamiana indicated that most PCM proteins localize to the plasma membrane. Ectopic overexpression of the PCMs in Arabidopsis thaliana resulted in all eight cases in enhanced resistance against the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. Additionally, overexpression of PCM subgroup I genes conferred enhanced resistance to the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000. The PCM-overexpression lines were found to be also affected in the expression of genes related to light signaling and development, and accordingly, PCM-overexpressing seedlings displayed elongated hypocotyl growth. These results point to a function of PCMs in both disease resistance and photomorphogenesis, connecting both biological processes, possibly via effects on membrane structure or activity of interacting proteins at the plasma membrane.
Collapse
Affiliation(s)
- Marciel Pereira Mendes
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 800.56, 3508 TB, Utrecht, The Netherlands
| | - Richard Hickman
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 800.56, 3508 TB, Utrecht, The Netherlands
| | - Marcel C Van Verk
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 800.56, 3508 TB, Utrecht, The Netherlands
- Bioinformatics, Department of Biology, Science4Life, Utrecht University, 800.56, 3508 TB, Utrecht, The Netherlands
| | - Nicole M Nieuwendijk
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 800.56, 3508 TB, Utrecht, The Netherlands
| | - Anja Reinstädler
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 800.56, 3508 TB, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 800.56, 3508 TB, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Zhang L, Yu Z, Xu Y, Yu M, Ren Y, Zhang S, Yang G, Huang J, Yan K, Zheng C, Wu C. Regulation of the stability and ABA import activity of NRT1.2/NPF4.6 by CEPR2-mediated phosphorylation in Arabidopsis. MOLECULAR PLANT 2021; 14:633-646. [PMID: 33453414 DOI: 10.1016/j.molp.2021.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/05/2020] [Accepted: 01/11/2021] [Indexed: 05/06/2023]
Abstract
Abscisic acid (ABA) transport plays an important role in systemic plant responses to environmental factors. However, it remains largely unclear about the precise regulation of ABA transporters in plants. In this study, we show that the C-terminally encoded peptide receptor 2 (CEPR2) directly interacts with the ABA transporter NRT1.2/NPF4.6. Genetic and phenotypic analyses revealed that NRT1.2/NPF4.6 positively regulates ABA response and that NRT1.2/NPF4.6 is epistatically and negatively regulated by CEPR2. Further biochemical assays demonstrated that CEPR2 phosphorylates NRT1.2/NPF4.6 at serine 292 to promote its degradation under normal conditions. However, ABA treatment and non-phosphorylation at serine 292 prevented the degradation of NRT1.2/NPF4.6, indicating that ABA inhibits the phosphorylation of this residue. Transport assays in yeast and Xenopus oocytes revealed that non-phosphorylated NRT1.2/NPF4.6 had high levels of ABA import activity, whereas phosphorylated NRT1.2/NPF4.6 did not import ABA. Analyses of complemented nrt1.2 mutants that mimicked non-phosphorylated and phosphorylated NRT1.2/NPF4.6 confirmed that non-phosphorylated NRT1.2S292A had high stability and ABA import activity in planta. Additional experiments showed that NRT1.2/NPF4.6 was degraded via the 26S proteasome and vacuolar degradation pathways. Furthermore, we found that three E2 ubiquitin-conjugating enzymes, UBC32, UBC33, and UBC34, interact with NRT1.2/NPF4.6 in the endoplasmic reticulum and mediate its ubiquitination. NRT1.2/NPF4.6 is epistatically and negatively regulated by UBC32, UBC33, and UBC34 in planta. Taken together, these results suggest that the stability and ABA import activity of NRT1.2/NPF4.6 are precisely regulated by its phosphorylation and degradation in response to environmental stress.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zipeng Yu
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yang Xu
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Miao Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yue Ren
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Kang Yan
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Changai Wu
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
22
|
The Role of Chloroplast Gene Expression in Plant Responses to Environmental Stress. Int J Mol Sci 2020; 21:ijms21176082. [PMID: 32846932 PMCID: PMC7503970 DOI: 10.3390/ijms21176082] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts are plant organelles that carry out photosynthesis, produce various metabolites, and sense changes in the external environment. Given their endosymbiotic origin, chloroplasts have retained independent genomes and gene-expression machinery. Most genes from the prokaryotic ancestors of chloroplasts were transferred into the nucleus over the course of evolution. However, the importance of chloroplast gene expression in environmental stress responses have recently become more apparent. Here, we discuss the emerging roles of the distinct chloroplast gene expression processes in plant responses to environmental stresses. For example, the transcription and translation of psbA play an important role in high-light stress responses. A better understanding of the connection between chloroplast gene expression and environmental stress responses is crucial for breeding stress-tolerant crops better able to cope with the rapidly changing environment.
Collapse
|
23
|
Wang J, Su Y, Kong X, Ding Z, Zhang XS. Initiation and maintenance of plant stem cells in root and shoot apical meristems. ABIOTECH 2020; 1:194-204. [PMID: 36303567 PMCID: PMC9590467 DOI: 10.1007/s42994-020-00020-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/07/2020] [Indexed: 11/27/2022]
Abstract
Plant stem cells are a small group of cells with a self-renewal capacity and serve as a steady supply of precursor cells to form new differentiated tissues and organs in plants. Root stem cells and shoot stem cells, which are located in the root apical meristem and in the shoot apical meristem, respectively, play a critical role in plant longitudinal growth. These stem cells in shoot and root apical meristems remain as pluripotent state throughout the lifespan of the plant and control the growth and development of plants. The molecular mechanisms of initiation and maintenance of plant stem cells have been extensively investigated. In this review, we mainly discuss how the plant phytohormones, such as auxin and cytokinin, coordinate with the key transcription factors to regulate plant stem cell initiation and maintenance in root and shoot apical meristems. In addition, we highlight the common regulatory mechanisms of both root and shoot apical meristems.
Collapse
Affiliation(s)
- Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237 Shandong China
| | - Yinghua Su
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237 Shandong China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237 Shandong China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 Shandong China
| |
Collapse
|
24
|
Yu Z, Xu Y, Zhu L, Zhang L, Liu L, Zhang D, Li D, Wu C, Huang J, Yang G, Yan K, Zhang S, Zheng C. The Brassicaceae-specific secreted peptides, STMPs, function in plant growth and pathogen defense. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:403-420. [PMID: 31001913 DOI: 10.1111/jipb.12817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Low molecular weight secreted peptides have recently been shown to affect multiple aspects of plant growth, development, and defense responses. Here, we performed stepwise BLAST filtering to identify unannotated peptides from the Arabidopsis thaliana protein database and uncovered a novel secreted peptide family, secreted transmembrane peptides (STMPs). These low molecular weight peptides, which consist of an N-terminal signal peptide and a transmembrane domain, were primarily localized to extracellular compartments but were also detected in the endomembrane system of the secretory pathway, including the endoplasmic reticulum and Golgi. Comprehensive bioinformatics analysis identified 10 STMP family members that are specific to the Brassicaceae family. Brassicaceae plants showed dramatically inhibited root growth upon exposure to chemically synthesized STMP1 and STMP2. Arabidopsis overexpressing STMP1, 2, 4, 6, or 10 exhibited severely arrested growth, suggesting that STMPs are involved in regulating plant growth and development. In addition, in vitro bioassays demonstrated that STMP1, STMP2, and STMP10 have antibacterial effects against Pseudomonas syringae pv. tomato DC3000, Ralstonia solanacearum, Bacillus subtilis, and Agrobacterium tumefaciens, demonstrating that STMPs are antimicrobial peptides. These findings suggest that STMP family members play important roles in various developmental events and pathogen defense responses in Brassicaceae plants.
Collapse
Affiliation(s)
- Zipeng Yu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Yang Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Lifei Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Lei Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Lin Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Di Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Dandan Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Changai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Kang Yan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
25
|
Influence of Salt Stress on Growth of Spermosphere Bacterial Communities in Different Peanut ( Arachis hypogaea L.) Cultivars. Int J Mol Sci 2020; 21:ijms21062131. [PMID: 32244906 PMCID: PMC7139419 DOI: 10.3390/ijms21062131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Exposure of seeds to high salinity can cause reduced germination and poor seedling establishment. Improving the salt tolerance of peanut (Arachis hypogaea L.) seeds during germination is an important breeding goal of the peanut industry. Bacterial communities in the spermosphere soils may be of special importance to seed germination under salt stress, whereas extant results in oilseed crop peanut are scarce. Methods: Here, bacterial communities colonizing peanut seeds with salt stress were characterized using 16S rRNA gene sequencing. Results: Peanut spermosphere was composed of four dominant genera: Bacillus, Massilia, Pseudarthrobacter, and Sphingomonas. Comparisons of bacterial community structure revealed that the beneficial bacteria (Bacillus), which can produce specific phosphatases to sequentially mineralize organic phosphorus into inorganic phosphorus, occurred in relatively higher abundance in salt-treated spermosphere soils. Further soil enzyme activity assays showed that phosphatase activity increased in salt-treated spermosphere soils, which may be associated with the shift of Bacillus. Conclusion: This study will form the foundation for future improvement of salt tolerance of peanuts at the seed germination stage via modification of the soil microbes.
Collapse
|
26
|
Joshi JR, Singh V, Friedman H. Arabidopsis cysteine-rich trans-membrane module (CYSTM) small proteins play a protective role mainly against heat and UV stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:195-202. [PMID: 32007127 DOI: 10.1071/fp19236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The genomes of Arabidopsis and other plants contain cysteine-rich small protein of unknown function, harbouring a transmembrane module (CYSTM proteins). In this work we show that the transcript of one gene (At1g05340) encoding a CYSTM protein is induced mainly by heat and to a lesser extent by UV, but less by NaCl or sorbitol. A functional analysis of At1g05340 and its paralog At2g32210 using T-DNA insertional mutants revealed a decrease in seedlings root length, and a lower PSII efficiency in mature plant, due to heat stress and to a lesser extent due to UV stress, in comparison to the effect on wild-type plants. The sensitivity of these mutants to salt or osmotic stresses did not differ from wild type response, indicating a specific function for these genes in heat and UV. Heat and UV increased reactive oxygen species levels in wild type; however, the levels were higher in the mutant line than in wild type due to heat treatment, but was similar in the mutant lines and wild type due to UV stress. Taken together, our results suggest that these small cysteine-rich proteins are necessary for thermotolerance and protection from UV exposure. The proteins encoded by these genes most likely, act in heat stress by reducing reactive oxygen species level by yet unknown mechanism.
Collapse
Affiliation(s)
- Janak Raj Joshi
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organisation (ARO), The Volcani Centre, Bet Dagan, Israel; and Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Kennedy-Leigh Centre for Horticultural Research, Faculty of Agriculture, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | - Vikram Singh
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organisation (ARO), The Volcani Centre, Bet Dagan, Israel
| | - Haya Friedman
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organisation (ARO), The Volcani Centre, Bet Dagan, Israel; and Corresponding author.
| |
Collapse
|
27
|
Xu Y, Zhang G, Ding H, Ci D, Dai L, Zhang Z. Influence of salt stress on the rhizosphere soil bacterial community structure and growth performance of groundnut (Arachis hypogaea L.). Int Microbiol 2020; 23:453-465. [PMID: 31933013 DOI: 10.1007/s10123-020-00118-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Soil salinity is regarded as severe environmental stress that can change the composition of rhizosphere soil bacterial community and import a plethora of harms to crop plants. However, relatively little is known about the relationship between salt stress and root microbial communities in groundnuts. The goal of this study was to assess the effect of salt stress on groundnut growth performance and rhizosphere microbial community structure. Statistical analysis exhibited that salt stress indeed affected groundnut growth and pod yield. Further taxonomic analysis showed that the bacterial community predominantly consisted of phyla Proteobacteria, Actinobacteria, Saccharibacteria, Chloroflexi, Acidobacteria, and Cyanobacteria. Among these bacteria, numbers of Cyanobacteria and Acidobacteria mainly increased, while that of Actinobacteria and Chloroflexi decreased after salt treatment via taxonomic and qPCR analysis. Moreover, Sphingomonas and Microcoleus as the predominant genera in salt-treated rhizosphere soils might enhance salt tolerance as plant growth-promoting rhizobacteria. Metagenomic profiling showed that series of sequences related to signaling transduction, posttranslational modification, and chaperones were enriched in the salt-treated soils, which may have implications for plant survival and salt tolerance. These data will help us better understand the symbiotic relationship between the dominant microbial community and groundnuts and form the foundation for further improvement of salt tolerance of groundnuts via modification of soil microbial community.
Collapse
Affiliation(s)
- Yang Xu
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Guanchu Zhang
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Hong Ding
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Dunwei Ci
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Liangxiang Dai
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, 266100, China.
| | - Zhimeng Zhang
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, 266100, China.
| |
Collapse
|
28
|
Takeda S, Yoza M, Amano T, Ohshima I, Hirano T, Sato MH, Sakamoto T, Kimura S. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development. PLoS One 2019; 14:e0223686. [PMID: 31647845 PMCID: PMC6812778 DOI: 10.1371/journal.pone.0223686] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022] Open
Abstract
Galls are plant structures generated by gall–inducing organisms including insects, nematodes, fungi, bacteria and viruses. Those made by insects generally consist of inner callus–like cells surrounded by lignified hard cells, supplying both nutrients and protection to the gall insects living inside. This indicates that gall insects hijack developmental processes in host plants to generate tissues for their own use. Although galls are morphologically diverse, the molecular mechanism for their development remains poorly understood. To identify genes involved in gall development, we performed RNA–sequencing based transcriptome analysis for leaf galls. We examined the young and mature galls of Glochidion obovatum (Phyllanthaceae), induced by the micromoth Caloptilia cecidophora (Lepidoptera: Gracillariidae), the leaf gall from Eurya japonica (Pentaphylacaceae) induced by Borboryctis euryae (Lepidoptera: Gracillariidae), and the strawberry-shaped leaf gall from Artemisia montana (Asteraceae) induced by gall midge Rhopalomyia yomogicola (Oligotrophini: Cecidomyiidae). Gene ontology (GO) analyses suggested that genes related to developmental processes are up–regulated, whereas ones related to photosynthesis are down–regulated in these three galls. Comparison of transcripts in these three galls together with the gall on leaves of Rhus javanica (Anacardiaceae), induced by the aphid Schlechtendalia chinensis (Hemiptera: Aphidoidea), suggested 38 genes commonly up–regulated in galls from different plant species. GO analysis showed that peptide biosynthesis and metabolism are commonly involved in the four different galls. Our results suggest that gall development involves common processes across gall inducers and plant taxa, providing an initial step towards understanding how they manipulate host plant developmental systems.
Collapse
Affiliation(s)
- Seiji Takeda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Biotechnology Research Department, Kyoto Prefectural Agriculture Forestry and Fisheries Technology Center, Seika, Kyoto, Japan
- * E-mail: (ST); (SK)
| | - Makiko Yoza
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Taisuke Amano
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Issei Ohshima
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Tomoko Hirano
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Masa H. Sato
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Tomoaki Sakamoto
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Seisuke Kimura
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo University, Kyoto, Japan
- * E-mail: (ST); (SK)
| |
Collapse
|
29
|
Regulation of conidiation and antagonistic properties of the soil-borne plant beneficial fungus Trichoderma virens by a novel proline-, glycine-, tyrosine-rich protein and a GPI-anchored cell wall protein. Curr Genet 2019; 65:953-964. [DOI: 10.1007/s00294-019-00948-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 11/25/2022]
|
30
|
Xu Y, Yu Z, Zhang S, Wu C, Yang G, Yan K, Zheng C, Huang J. CYSTM3 negatively regulates salt stress tolerance in Arabidopsis. PLANT MOLECULAR BIOLOGY 2019; 99:395-406. [PMID: 30701352 DOI: 10.1007/s11103-019-00825-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
CYSTM3, a small mitochondrial protein, acts as a negative regulator in salt stress response by preventing Na+ efflux and disturbing reactive oxygen species (ROS) homeostasis in Arabidopsis. Cysteine-rich transmembrane module (CYSTM) is a not well characterized small peptide family in plants. In this study, we identified a novel mitochondrion-localized CYSTM member CYSTM3 from Arabidopsis, which was ubiquitously expressed in different tissues and dramatically induced by salt stress. Transgenic plants overexpressing CYSTM3 (OE) displayed hypersensitivity to salt stress compared with wild type (WT) plants, whereas a knockout mutant cystm3 was more tolerant to high salinity than WT. Moreover, OE lines accumulated higher contents of Na+ and ROS than WT and cystm3 upon exposure to high salinity. Further analysis revealed that CYSTM3 could deter root Na+ efflux and inhibit the activities of a range of ROS scavenging enzymes in Arabidopsis. In addition, the transcripts of nuclear salt stress-responsive genes were over-activated in cystm3 than those in WT and OE lines. Taken together, Arabidopsis CYSTM3 acts as a negative regulator in salt stress tolerance.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zipeng Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
31
|
Yu Z, Xu Y, Liu L, Guo Y, Yuan X, Man X, Liu C, Yang G, Huang J, Yan K, Zheng C, Wu C, Zhang S. The Importance of Conserved Serine for C-Terminally Encoded Peptides Function Exertion in Apple. Int J Mol Sci 2019; 20:ijms20030775. [PMID: 30759748 PMCID: PMC6387203 DOI: 10.3390/ijms20030775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The C-terminally encoded peptide (CEP) family has been shown to play vital roles in plant growth. Although a genome-wide analysis of this family has been performed in Arabidopsis, little is known regarding CEPs in apple (Malus domestica). METHODS Here, a comprehensive bioinformatics approach was applied to identify MdCEPs in apple, and 12 MdCEP genes were identified and distributed on 6 chromosomes. RESULTS MdCEP1 peptide had an inhibitory effect on root growth of apple seedlings, indicating that MdCEP1 played a negative role in root development. In addition, the serine and glycine residues remained conserved within the CEP domains, and MdCEP1 lost its function after mutation of these two key amino acids, suggesting that Ser10 and Gly14 residues are crucial for MdCEPs-mediated root growth of apple. Encouragingly, multiple sequence alignment of 273 CEP domains showed that Ser10 residue was evolutionarily conserved in monocot and eudicot plants. MdCEP derivative (Ser to Cys) lost the ability to inhibit the root growth of Nicotiana benthamiana, Setaria italic, Samolous parviflorus, and Raphanus sativus L. and up-regulate the NO3- importer gene NRT2.1. CONCLUSION Taken together, Ser10 residue is crucial for CEP function exertion in higher land plants, at least in apple.
Collapse
Affiliation(s)
- Zipeng Yu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yang Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao 266100, China.
| | - Lin Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yarong Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Xisen Yuan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Xinyu Man
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Chang Liu
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA.
| | - Guodong Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Kang Yan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Changai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
32
|
Qi H, Jiang Z, Zhang K, Yang S, He F, Zhang Z. PlaD: A Transcriptomics Database for Plant Defense Responses to Pathogens, Providing New Insights into Plant Immune System. GENOMICS, PROTEOMICS & BIOINFORMATICS 2018; 16:283-293. [PMID: 30266409 PMCID: PMC6205082 DOI: 10.1016/j.gpb.2018.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/02/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023]
Abstract
High-throughput transcriptomics technologies have been widely used to study plant transcriptional reprogramming during the process of plant defense responses, and a large quantity of gene expression data have been accumulated in public repositories. However, utilization of these data is often hampered by the lack of standard metadata annotation. In this study, we curated 2444 public pathogenesis-related gene expression samples from the model plant Arabidopsis and three major crops (maize, rice, and wheat). We organized the data into a user-friendly database termed as PlaD. Currently, PlaD contains three key features. First, it provides large-scale curated data related to plant defense responses, including gene expression and gene functional annotation data. Second, it provides the visualization of condition-specific expression profiles. Third, it allows users to search co-regulated genes under the infections of various pathogens. Using PlaD, we conducted a large-scale transcriptome analysis to explore the global landscape of gene expression in the curated data. We found that only a small fraction of genes were differentially expressed under multiple conditions, which might be explained by their tendency of having more network connections and shorter network distances in gene networks. Collectively, we hope that PlaD can serve as an important and comprehensive knowledgebase to the community of plant sciences, providing insightful clues to better understand the molecular mechanisms underlying plant immune responses. PlaD is freely available at http://systbio.cau.edu.cn/plad/index.php or http://zzdlab.com/plad/index.php.
Collapse
Affiliation(s)
- Huan Qi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenhong Jiang
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Kang Zhang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fei He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Biology Department, Brookhaven National Lab, Upton, NY 11967, USA.
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Xu Y, Zheng X, Song Y, Zhu L, Yu Z, Gan L, Zhou S, Liu H, Wen F, Zhu C. NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum. Sci Rep 2018; 8:8873. [PMID: 29891874 PMCID: PMC5995848 DOI: 10.1038/s41598-018-27274-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/25/2018] [Indexed: 11/08/2022] Open
Abstract
Lipid transfer proteins (LTPs), a class of small, ubiquitous proteins, play critical roles in various environmental stresses. However, their precise biological functions remain unknown. Here we isolated an extracellular matrix-localised LTP, NtLTP4, from Nicotiana tabacum. The overexpression of NtLTP4 in N. tabacum enhanced resistance to salt and drought stresses. Upon exposure to high salinity, NtLTP4-overexpressing lines (OE lines) accumulated low Na+ levels. Salt-responsive genes, including Na+/H+ exchangers (NHX1) and high-affinity K+ transporter1 (HKT1), were dramatically higher in OE lines than in wild-type lines. NtLTP4 might regulate transcription levels of NHX1 and HKT1 to alleviate the toxicity of Na+. Interestingly, OE lines enhanced the tolerance of N. tabacum to drought stress by reducing the transpiration rate. Moreover, NtLTP4 could increase reactive oxygen species (ROS)-scavenging enzyme activity and expression levels to scavenge excess ROS under drought and high salinity conditions. We used a two-hybrid yeast system and screened seven putative proteins that interact with NtLTP4 in tobacco. An MAPK member, wound-induced protein kinase, was confirmed to interact with NtLTP4 via co-immunoprecipitation and a firefly luciferase complementation imaging assay. Taken together, this is the first functional analysis of NtLTP4, and proves that NtLTP4 positively regulates salt and drought stresses in N. tabacum.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Xinxin Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Yunzhi Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Lifei Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Zipeng Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Liming Gan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Shumei Zhou
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Hongmei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Fujiang Wen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China.
| |
Collapse
|