1
|
Lageix S, Hernandez M, Gallego ME, Verbeke J, Bidet Y, Viala S, White CI. Context effects on repair of 5'-overhang DNA double-strand breaks induced by Cas12a in Arabidopsis. PLANT DIRECT 2024; 8:e70009. [PMID: 39421463 PMCID: PMC11486519 DOI: 10.1002/pld3.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Sequence-specific endonucleases have been key to the study of the mechanisms and control of DNA double-strand break (DSB) repair and recombination, and the availability of CRISPR-Cas nucleases over the last decade has driven rapid progress in the understanding and application of targeted recombination in many organisms, including plants. We present here an analysis of recombination at targeted chromosomal 5' overhang DSB generated by the FnCas12a endonuclease in the plant, Arabidopsis thaliana. The much-studied Cas9 nuclease cleaves DNA to generate blunt-ended DSBs, but relatively less is known about the repair of other types of breaks, such as those with 5'-overhanging ends. Sequencing the repaired breaks clearly shows that the majority of repaired DSB carry small deletions and are thus repaired locally by end-joining recombination, confirmed by Nanopore sequencing of larger amplicons. Paired DSBs generate deletions at one or both cut-sites, as well as deletions and reinsertions of the deleted segment between the two cuts, visible as inversions. While differences are seen in the details, overall the deletion patterns are similar between repair at single-cut and double-cut events, notwithstanding the fact that only the former involve cohesive DNA overhangs. A strikingly different repair pattern is however observed at breaks flanked by direct repeats. This change in sequence context results in the presence of a major alternative class of repair events, corresponding to highly efficient repair by single-strand annealing recombination.
Collapse
Affiliation(s)
- Sébastien Lageix
- Institut de Génétique, Reproduction et Développement, UMR CNRS 6293 ‐ INSERM U1103 ‐ Université Clermont Auvergne, Bât. CRBC, Faculté de MédecineClermont‐Ferrand Cedex 1France
| | - Miguel Hernandez
- Institut de Génétique, Reproduction et Développement, UMR CNRS 6293 ‐ INSERM U1103 ‐ Université Clermont Auvergne, Bât. CRBC, Faculté de MédecineClermont‐Ferrand Cedex 1France
- Present address:
Centro de Biología Molecular Severo OchoaMadridSpain
| | - Maria E. Gallego
- Institut de Génétique, Reproduction et Développement, UMR CNRS 6293 ‐ INSERM U1103 ‐ Université Clermont Auvergne, Bât. CRBC, Faculté de MédecineClermont‐Ferrand Cedex 1France
| | - Jérémy Verbeke
- Institut de Génétique, Reproduction et Développement, UMR CNRS 6293 ‐ INSERM U1103 ‐ Université Clermont Auvergne, Bât. CRBC, Faculté de MédecineClermont‐Ferrand Cedex 1France
| | - Yannick Bidet
- Laboratoire d'Oncologie Moléculaire, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Centre Jean Perrin, INSERMClermont‐FerrandFrance
| | - Sandrine Viala
- Laboratoire d'Oncologie Moléculaire, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Centre Jean Perrin, INSERMClermont‐FerrandFrance
| | - Charles I. White
- Institut de Génétique, Reproduction et Développement, UMR CNRS 6293 ‐ INSERM U1103 ‐ Université Clermont Auvergne, Bât. CRBC, Faculté de MédecineClermont‐Ferrand Cedex 1France
| |
Collapse
|
2
|
Ding Y, Hou D, Yin Y, Chen K, He J, Yan S, Li H, Xiong Y, Zhou W, Li M. Genetic dissection of Brassica napus seed vigor after aging. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:141. [PMID: 38789698 DOI: 10.1007/s00122-024-04648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
KEY MESSAGE Stable and novel QTLs that affect seed vigor under different storage durations were discovered, and BnaOLE4, located in the interval of cqSW-C2-3, increased seed vigor after aging. Seed vigor is an important trait in crop breeding; however, the underlying molecular regulatory mechanisms governing this trait in rapeseed remain largely unknown. In the present study, vigor-related traits were analyzed in seeds from a doubled haploid (DH) rapeseed (Brassica napus) population grown in 2 different environments using seeds stored for 7, 5, and 3 years under natural storage conditions. A total of 229 quantitative trait loci (QTLs) were identified and were found to explain 3.78%-17.22% of the phenotypic variance for seed vigor-related traits after aging. We further demonstrated that seed vigor-related traits were positively correlated with oil content (OC) but negatively correlated with unsaturated fatty acids (FAs). Some pleiotropic QTLs that collectively regulate OC, FAs, and seed vigor, such as uq.A8, uq.A3-2, uq.A9-2, and uq.C3-1, were identified. The transcriptomic results from extreme pools of DH lines with distinct seed vigor phenotypes during accelerated aging revealed that various biological pathways and metabolic processes (such as glutathione metabolism and reactive oxygen species) were involved in seed vigor. Through integration of QTL analysis and RNA-Seq, a regulatory network for the control of seed vigor was constructed. Importantly, a candidate (BnaOLE4) from cqSW-C2-3 was selected for functional analysis, and transgenic lines overexpressing BnaOLE4 showed increased seed vigor after artificial aging. Collectively, these results provide novel information on QTL and potential candidate genes for molecular breeding for improved seed storability.
Collapse
Affiliation(s)
- Yiran Ding
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Dalin Hou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Shuxiang Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Yiyi Xiong
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Weixian Zhou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China.
| |
Collapse
|
3
|
Schreiber T, Prange A, Schäfer P, Iwen T, Grützner R, Marillonnet S, Lepage A, Javelle M, Paul W, Tissier A. Efficient scar-free knock-ins of several kilobases in plants by engineered CRISPR-Cas endonucleases. MOLECULAR PLANT 2024; 17:824-837. [PMID: 38520090 DOI: 10.1016/j.molp.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
In plants and mammals, non-homologous end-joining is the dominant pathway to repair DNA double-strand breaks, making it challenging to generate knock-in events. In this study, we identified two groups of exonucleases from the herpes virus and the bacteriophage T7 families that conferred an up to 38-fold increase in homology-directed repair frequencies when fused to Cas9/Cas12a in a tobacco mosaic virus-based transient assay in Nicotiana benthamiana. We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems. In Arabidopsis thaliana, fusion of Cas9 to a herpes virus family exonuclease led to 10-fold higher frequencies of knock-ins in the first generation of transformants. In addition, we demonstrated stable and heritable knock-ins in wheat in 1% of the primary transformants. Taken together, our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants.
Collapse
Affiliation(s)
- Tom Schreiber
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Anja Prange
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Petra Schäfer
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Thomas Iwen
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Ramona Grützner
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Aurélie Lepage
- Limagrain, Centre de Recherche, Route d'Ennezat, CS 90126, 63720 Chappes, France
| | - Marie Javelle
- Limagrain, Centre de Recherche, Route d'Ennezat, CS 90126, 63720 Chappes, France
| | - Wyatt Paul
- Limagrain, Centre de Recherche, Route d'Ennezat, CS 90126, 63720 Chappes, France
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
4
|
Kamoen L, Kralemann LEM, van Schendel R, van Tol N, Hooykaas PJJ, de Pater S, Tijsterman M. Genetic dissection of mutagenic repair and T-DNA capture at CRISPR-induced DNA breaks in Arabidopsis thaliana. PNAS NEXUS 2024; 3:pgae094. [PMID: 38463035 PMCID: PMC10923293 DOI: 10.1093/pnasnexus/pgae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
A practical and powerful approach for genome editing in plants is delivery of CRISPR reagents via Agrobacterium tumefaciens transformation. The double-strand break (DSB)-inducing enzyme is expressed from a transferred segment of bacterial DNA, the T-DNA, which upon transformation integrates at random locations into the host genome or is captured at the self-inflicted DSB site. To develop efficient strategies for precise genome editing, it is thus important to define the mechanisms that repair CRISPR-induced DSBs, as well as those that govern random and targeted integration of T-DNA. In this study, we present a detailed and comprehensive genetic analysis of Cas9-induced DSB repair and T-DNA capture in the model plant Arabidopsis thaliana. We found that classical nonhomologous end joining (cNHEJ) and polymerase theta-mediated end joining (TMEJ) are both, and in part redundantly, acting on CRISPR-induced DSBs to produce very different mutational outcomes. We used newly developed CISGUIDE technology to establish that 8% of mutant alleles have captured T-DNA at the induced break site. In addition, we find T-DNA shards within genomic DSB repair sites indicative of frequent temporary interactions during TMEJ. Analysis of thousands of plant genome-T-DNA junctions, followed up by genetic dissection, further reveals that TMEJ is responsible for attaching the 3' end of T-DNA to a CRISPR-induced DSB, while the 5' end can be attached via TMEJ as well as cNHEJ. By identifying the mechanisms that act to connect recombinogenic ends of DNA molecules at chromosomal breaks, and quantifying their contributions, our study supports the development of tailor-made strategies toward predictable engineering of crop plants.
Collapse
Affiliation(s)
- Lycka Kamoen
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Lejon E M Kralemann
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Niels van Tol
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Paul J J Hooykaas
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Sylvia de Pater
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Marcel Tijsterman
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| |
Collapse
|
5
|
Puchta H, Houben A. Plant chromosome engineering - past, present and future. THE NEW PHYTOLOGIST 2024; 241:541-552. [PMID: 37984056 DOI: 10.1111/nph.19414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Spontaneous chromosomal rearrangements (CRs) play an essential role in speciation, genome evolution and crop domestication. To be able to use the potential of CRs for breeding, plant chromosome engineering was initiated by fragmenting chromosomes by X-ray irradiation. With the rise of the CRISPR/Cas system, it became possible to induce double-strand breaks (DSBs) in a highly efficient manner at will at any chromosomal position. This has enabled a completely new level of predesigned chromosome engineering. The genetic linkage between specific genes can be broken by inducing chromosomal translocations. Natural inversions, which suppress genetic exchange, can be reverted for breeding. In addition, various approaches for constructing minichromosomes by downsizing regular standard A or supernumerary B chromosomes, which could serve as future vectors in plant biotechnology, have been developed. Recently, a functional synthetic centromere could be constructed. Also, different ways of genome haploidization have been set up, some based on centromere manipulations. In the future, we expect to see even more complex rearrangements, which can be combined with previously developed engineering technologies such as recombinases. Chromosome engineering might help to redefine genetic linkage groups, change the number of chromosomes, stack beneficial genes on mini cargo chromosomes, or set up genetic isolation to avoid outcrossing.
Collapse
Affiliation(s)
- Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP) - Molecular Biology, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| |
Collapse
|
6
|
Yoon DE, Kim NR, Park SJ, Jeong TY, Eun B, Cho Y, Lim SY, Lee H, Seong JK, Kim K. Precise base editing without unintended indels in human cells and mouse primary myoblasts. Exp Mol Med 2023; 55:2586-2595. [PMID: 38036737 PMCID: PMC10766602 DOI: 10.1038/s12276-023-01128-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/09/2023] [Accepted: 09/21/2023] [Indexed: 12/02/2023] Open
Abstract
Base editors are powerful tools for making precise single-nucleotide changes in the genome. However, they can lead to unintended insertions and deletions at the target sites, which is a significant limitation for clinical applications. In this study, we aimed to eliminate unwanted indels at the target sites caused by various evolved base editors. Accordingly, we applied dead Cas9 instead of nickase Cas9 in the base editors to induce accurate substitutions without indels. Additionally, we tested the use of chromatin-modulating peptides in the base editors to improve nucleotide conversion efficiency. We found that using both dead Cas9 and chromatin-modulating peptides in base editing improved the nucleotide substitution efficiency without unintended indel mutations at the desired target sites in human cell lines and mouse primary myoblasts. Furthermore, the proposed scheme had fewer off-target effects than conventional base editors at the DNA level. These results indicate that the suggested approach is promising for the development of more accurate and safer base editing techniques for use in clinical applications.
Collapse
Affiliation(s)
- Da Eun Yoon
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Na-Rae Kim
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Soo-Ji Park
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Tae Yeong Jeong
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Bokkee Eun
- Core Laboratory for Convergent Translational Research, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Yongcheol Cho
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Soo-Yeon Lim
- Korea Mouse Phenotyping Center, Seoul National University, 08826, Seoul, Republic of Korea
| | - Hyunji Lee
- Department of Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, 28116, Cheongju, Republic of Korea
| | - Je Kyoung Seong
- Korea Mouse Phenotyping Center, Seoul National University, 08826, Seoul, Republic of Korea
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology, BIO-MAX/N-Bio Institute, Seoul National University, 08826, Seoul, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Guzmán-Benito I, Achkar NP, Bologna N, Ursache R. CRISPR/Cas-mediated inplanta gene targeting: current advances and challenges. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad072. [PMID: 36861321 DOI: 10.1093/jxb/erad072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 06/18/2023]
Abstract
We can use gene targeting (GT) to make modifications at a specific region in a plant's genome and create high-precision tools for plant biotechnology and breeding. However, its low efficiency is a major barrier to its use in plants. The discovery of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas-based site-specific nucleases capable of inducing double-strand breaks in desired loci resulted in the development of novel approaches for plant GT. Several studies have recently demonstrated improvements in GT efficiency through cell-type-specific expression of Cas nucleases, the use of self-amplified GT-vector DNA, or manipulation of RNA silencing and DNA repair pathways. In this review, we summarize recent advances in CRISPR/Cas-mediated GT in plants and discuss potential efficiency improvements. Increasing the efficiency of GT technology will help us pave the way for increased crop yields and food safety in environmentally friendly agriculture.
Collapse
Affiliation(s)
- Irene Guzmán-Benito
- The Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Natalia Patricia Achkar
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona 08193, Spain
| | - Nicolas Bologna
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona 08193, Spain
| | - Robertas Ursache
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
8
|
CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae. Nat Commun 2022; 13:7168. [PMID: 36418866 PMCID: PMC9684475 DOI: 10.1038/s41467-022-34736-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
CRISPR-Cas mediated genome engineering has revolutionized functional genomics. However, understanding of DNA repair following Cas-mediated DNA cleavage remains incomplete. Using Cas12a ribonucleoprotein genome editing in the fungal pathogen, Magnaporthe oryzae, we detail non-canonical DNA repair outcomes from hundreds of transformants. Sanger and nanopore sequencing analysis reveals significant variation in DNA repair profiles, ranging from small INDELs to kilobase size deletions and insertions. Furthermore, we find the frequency of DNA repair outcomes varies between loci. The results are not specific to the Cas-nuclease or selection procedure. Through Ku80 deletion analysis, a key protein required for canonical non-homologous end joining, we demonstrate activity of an alternative end joining mechanism that creates larger DNA deletions, and uses longer microhomology compared to C-NHEJ. Together, our results suggest preferential DNA repair pathway activity in the genome that can create different mutation profiles following repair, which could create biased genome variation and impact genome engineering and genome evolution.
Collapse
|
9
|
Lv Q, Han S, Wang L, Xia J, Li P, Hu R, Wang J, Gao L, Chen Y, Wang Y, Du J, Bao F, Hu Y, Xu X, Xiao W, He Y. TEB/POLQ plays dual roles in protecting Arabidopsis from NO-induced DNA damage. Nucleic Acids Res 2022; 50:6820-6836. [PMID: 35736216 PMCID: PMC9262624 DOI: 10.1093/nar/gkac469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/07/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
Nitric oxide (NO) is a key player in numerous physiological processes. Excessive NO induces DNA damage, but how plants respond to this damage remains unclear. We screened and identified an Arabidopsis NO hypersensitive mutant and found it to be allelic to TEBICHI/POLQ, encoding DNA polymerase θ. The teb mutant plants were preferentially sensitive to NO- and its derivative peroxynitrite-induced DNA damage and subsequent double-strand breaks (DSBs). Inactivation of TEB caused the accumulation of spontaneous DSBs largely attributed to endogenous NO and was synergistic to DSB repair pathway mutations with respect to growth. These effects were manifested in the presence of NO-inducing agents and relieved by NO scavengers. NO induced G2/M cell cycle arrest in the teb mutant, indicative of stalled replication forks. Genetic analyses indicate that Polθ is required for translesion DNA synthesis across NO-induced lesions, but not oxidation-induced lesions. Whole-genome sequencing revealed that Polθ bypasses NO-induced base adducts in an error-free manner and generates mutations characteristic of Polθ-mediated end joining. Our experimental data collectively suggests that Polθ plays dual roles in protecting plants from NO-induced DNA damage. Since Polθ is conserved in higher eukaryotes, mammalian Polθ may also be required for balancing NO physiological signaling and genotoxicity.
Collapse
Affiliation(s)
- Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shuang Han
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lei Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jinchan Xia
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Peng Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruoyang Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jinzheng Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lei Gao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuli Chen
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jing Du
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fang Bao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yong Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
10
|
Gehrke F, Schindele A, Puchta H. Nonhomologous end joining as key to CRISPR/Cas-mediated plant chromosome engineering. PLANT PHYSIOLOGY 2022; 188:1769-1779. [PMID: 34893907 PMCID: PMC8968298 DOI: 10.1093/plphys/kiab572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/09/2021] [Indexed: 05/24/2023]
Abstract
Although clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated gene editing has revolutionized biology and plant breeding, large-scale, heritable restructuring of plant chromosomes is still in its infancy. Duplications and inversions within a chromosome, and also translocations between chromosomes, can now be achieved. Subsequently, genetic linkages can be broken or can be newly created. Also, the order of genes on a chromosome can be changed. While natural chromosomal recombination occurs by homologous recombination during meiosis, CRISPR/Cas-mediated chromosomal rearrangements can be obtained best by harnessing nonhomologous end joining (NHEJ) pathways in somatic cells. NHEJ can be subdivided into the classical (cNHEJ) and alternative NHEJ (aNHEJ) pathways, which partially operate antagonistically. The cNHEJ pathway not only protects broken DNA ends from degradation but also suppresses the joining of previously unlinked broken ends. Hence, in the absence of cNHEJ, more inversions or translocations can be obtained which can be ascribed to the unrestricted use of the aNHEJ pathway for double-strand break (DSB) repair. In contrast to inversions or translocations, short tandem duplications can be produced by paired single-strand breaks via a Cas9 nickase. Interestingly, the cNHEJ pathway is essential for these kinds of duplications, whereas aNHEJ is required for patch insertions that can also be formed during DSB repair. As chromosome engineering has not only been accomplished in the model plant Arabidopsis (Arabidopsis thaliana) but also in the crop maize (Zea mays), we expect that this technology will soon transform the breeding process.
Collapse
Affiliation(s)
- Fabienne Gehrke
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Angelina Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|