1
|
Vuong T, Shetty P, Kurtoglu E, Schultz C, Schrader L, Then P, Petersen J, Westermann M, Rredhi A, Chowdhury S, Mukherji R, Schmitt M, Popp J, Stallforth P, Mittag M. Metamorphosis of a unicellular green alga in the presence of acetate and a spatially structured three-dimensional environment. THE NEW PHYTOLOGIST 2025; 245:1180-1196. [PMID: 39639794 PMCID: PMC11711948 DOI: 10.1111/nph.20299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Photosynthetic protists, named microalgae, are key players in global primary production. The green microalga Chlamydomonas reinhardtii is a well-studied model organism. In nature, it dwells in acetate-rich paddy rice soil, which is not mimicked by standard liquid laboratory conditions. Here, we maintained the algae in a liquid environment with spatially structured 3-D components (S3-D) and acetate recreating natural conditions. We perform transcriptome sequencing, immunoblotting, fluorescence and electron microscopy, and Raman microspectroscopy to characterize the algae in S3-D vs homogeneous conditions. The algae undergo a metamorphosis-like process when transitioned from homogeneous aquatic to a lifestyle simulating acetate-rich rice soil. These conditions result in reduced cell size and cilia length, an enlarged eyespot and many cells with double-layered cell walls. RNA-Seq reveals alterations in c. 2400 transcripts. Four key photoreceptors including CRY-DASH1 and phototropin governing plastid metabolism along with its eyespot are altered in their protein expression. Consequently, photosynthetic pigments, lipids and starch levels vary as do starch distribution patterns. Fitness against antagonistic bacteria is enhanced concurrently with the downregulation of an involved Ca2+ channel transcript. This study highlights the profound impact of S3-D initiating processes inaccessible under homogeneous laboratory conditions. Thus, overexpression lines for certain photoreceptors and starch are naturally created.
Collapse
Affiliation(s)
- Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Prateek Shetty
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
| | - Ece Kurtoglu
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Constanze Schultz
- Leibniz Institute of Photonic Technology (Leibniz‐IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI)Albert‐Einstein‐Str. 907745JenaGermany
| | - Laura Schrader
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Patrick Then
- Microverse Imaging Center, Balance of the Microverse Cluster of ExcellenceFriedrich Schiller University JenaPhilosophenweg 707743JenaGermany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | | | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Somak Chowdhury
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstraße 11a07745JenaGermany
| | - Ruchira Mukherji
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstraße 11a07745JenaGermany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI)Friedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Jürgen Popp
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
- Leibniz Institute of Photonic Technology (Leibniz‐IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI)Albert‐Einstein‐Str. 907745JenaGermany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI)Friedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Pierre Stallforth
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstraße 11a07745JenaGermany
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaHumboldtstrasse 1007743JenaGermany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
2
|
Poirier MC, Fugard K, Cvetkovska M. Light quality affects chlorophyll biosynthesis and photosynthetic performance in Antarctic Chlamydomonas. PHOTOSYNTHESIS RESEARCH 2025; 163:9. [PMID: 39832016 DOI: 10.1007/s11120-024-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
The perennially ice-covered Lake Bonney in Antarctica has been deemed a natural laboratory for studying life at the extreme. Photosynthetic algae dominate the lake food webs and are adapted to a multitude of extreme conditions including perpetual shading even at the height of the austral summer. Here we examine how the unique light environment in Lake Bonney influences the physiology of two Chlamydomonas species. Chlamydomonas priscui is found exclusively in the deep photic zone where it receives very low light levels biased in the blue part of the spectrum (400-500 nm). In contrast, Chlamydomonas sp. ICE-MDV is represented at various depths within the water column (including the bright surface waters), and it receives a broad range of light levels and spectral wavelengths. The psychrophilic character of both species makes them an ideal system to study the effects of light quality and quantity on chlorophyll biosynthesis and photosynthetic performance in extreme conditions. We show that the shade-adapted C. priscui exhibits a decreased ability to accumulate chlorophyll and severe photoinhibition when grown under red light compared to blue light. These effects are particularly pronounced under red light of higher intensity, suggesting a loss of capability to acclimate to varied light conditions. In contrast, ICE-MDV has retained the ability to synthesize chlorophyll and maintain photosynthetic efficiency under a broader range of light conditions. Our findings provide insights into the mechanisms of photosynthesis under extreme conditions and have implications on algal survival in changing conditions of Antarctic ice-covered lakes.
Collapse
Affiliation(s)
- Mackenzie C Poirier
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada
| | - Kassandra Fugard
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada
| | - Marina Cvetkovska
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
3
|
Prost-Boxoen L, Bafort Q, Van de Vloet A, Almeida-Silva F, Paing YT, Casteleyn G, D’hondt S, De Clerck O, de Peer YV. Asymmetric genome merging leads to gene expression novelty through nucleo-cytoplasmic disruptions and transcriptomic shock in Chlamydomonas triploids. THE NEW PHYTOLOGIST 2025; 245:869-884. [PMID: 39501615 PMCID: PMC7616817 DOI: 10.1111/nph.20249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024]
Abstract
Genome merging is a common phenomenon causing a wide range of consequences on phenotype, adaptation, and gene expression, yet its broader implications are not well-understood. Two consequences of genome merging on gene expression remain particularly poorly understood: dosage effects and evolution of expression. We employed Chlamydomonas reinhardtii as a model to investigate the effects of asymmetric genome merging by crossing a diploid with a haploid strain to create a novel triploid line. Five independent clonal lineages derived from this triploid line were evolved for 425 asexual generations in a laboratory natural selection experiment. Utilizing fitness assays, flow cytometry, and RNA-Seq, we assessed the immediate consequences of genome merging and subsequent evolution. Our findings reveal substantial alterations in genome size, gene expression, protein homeostasis, and cytonuclear stoichiometry. Gene expression exhibited expression-level dominance and transgressivity (i.e. expression level higher or lower than either parent). Ongoing expression-level dominance and a pattern of 'functional dominance' from the haploid parent was observed. Despite major genomic and nucleo-cytoplasmic disruptions, enhanced fitness was detected in the triploid strain. By comparing gene expression across generations, our results indicate that proteostasis restoration is a critical component of rapid adaptation following genome merging in Chlamydomonas reinhardtii and possibly other systems.
Collapse
Affiliation(s)
- Lucas Prost-Boxoen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Quinten Bafort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Antoine Van de Vloet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Yunn Thet Paing
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Griet Casteleyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Sofie D’hondt
- Department of Biology, Ghent University, Ghent, Belgium
| | | | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Yamamoto R, Tanaka Y, Orii S, Shiba K, Inaba K, Kon T. Chlamydomonas IC97, an intermediate chain of the flagellar dynein f/I1, is required for normal flagellar and cellular motility. mSphere 2024; 9:e0055824. [PMID: 39601552 DOI: 10.1128/msphere.00558-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Motile flagella (also called "motile cilia") play a variety of important roles in lower and higher eukaryotes, including cellular motility and fertility. Flagellar motility is driven by several species of the gigantic motor-protein complexes, flagellar dyneins, that reside within these organelles. Among the flagellar-dynein species, a hetero-dimeric dynein called "IDA f/I1" has been shown to be particularly important in controlling the flagellar waveform, and defects in this dynein species in humans cause ciliopathies such as multiple morphological abnormalities of the flagella and asthenoteratozoospermia. IDA f/I1 is composed of many subunits, including two HCs (HCα and HCβ) and three ICs (IC140, IC138, and IC97), and among the three ICs of IDA f/I1, the exact molecular function(s) of IC97 in flagellar motility is not well understood. In this study, we isolated a Chlamydomonas mutant lacking IC97 and analyzed the phenotypes. The ic97 mutant phenocopied several aspects of the previously isolated IDA-f/I1-related mutants in Chlamydomonas and showed slow swimming compared to the wild type but retained the ability to phototaxis. Further analysis revealed that the mutant had low flagellar beat frequency and miscoordination between the two (cis- and trans-) flagella. In addition, the mutant cells swam in a comparatively straight path compared to the wild-type cells. Taken together, our results highlight the importance of proper assembly of IC97 in the IDA-f/I1 complex for the regulation of flagellar and cellular motility in Chlamydomonas and provide valuable insights into both the molecular functions of IC97 orthologs in higher eukaryotes and the pathogenetic mechanisms of human ciliopathies caused by IDA-f/I1 defects. IMPORTANCE IDA f/I1 is a hetero-dimeric flagellar dynein that is particularly important for the regulation of flagellar waveform and whose defects are associated with human ciliopathies. IC97 is an evolutionarily conserved intermediate chain of IDA f/I1, but the detailed molecular functions of IC97 in flagellar motility have not been elucidated. In this study, mutational and biochemical analyses of the previously uncharacterized Chlamydomonas ic97 mutant revealed that IC97 is required for both the normal flagellar and cellular motility. In particular, IC97 appears to play an important role in both the control of flagellar beat frequency and the coordination between the two (cis- and trans-) flagella in Chlamydomonas. Our results provide important insights into the regulation of IDA-f/I1 activity by IC97 and the pathogenetic mechanisms of human ciliopathies caused by IDA-f/I1 defects.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yui Tanaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Shunsuke Orii
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Strain A, Kratzberg N, Vu D, Miller E, Wakabayashi KI, Melvin A, Kato N. COP5/HKR1 changes ciliary beat pattern and biases cell steering during chemotaxis in Chlamydomonas reinhardtii. Sci Rep 2024; 14:30354. [PMID: 39639079 PMCID: PMC11621555 DOI: 10.1038/s41598-024-81455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
This study investigates the control of ciliary beat patterns during ammonium chemotaxis in the model ciliate microalga Chlamydomonas reinhardtii. Screening the chemotaxis response of mutant strains with ciliary defects revealed that a strain lacking CAV2, the alpha subunit of the voltage-gated calcium channel, is deficient in ammonium chemotaxis. CAV2 regulates the switching of the ciliary beat pattern from the asymmetric to the symmetric waveform. Strains lacking COP5/HKR1 (chlamyopsin 5/histidine kinase rhodopsin 1) are also deficient in ammonium chemotaxis. Conversely, strains defective in phototaxis perform ammonium chemotaxis normally. Cell motility analysis revealed wild-type cells reduce the incidences of switching the ciliary beat pattern from the asymmetric to symmetric waveform when swimming up the ammonium gradient. In contrast, the COP5/HKR1 disrupted strain does not bias ciliary beat pattern switching in the gradient. This finding reveals that COP5/HKR1 plays a critical role in Chlamydomonas chemotaxis signaling transduction, similarly to animal chemotaxis. On the other hand, ciliary beat pattern switching induces randomized directional changes, analogous to run-and-tumble chemotaxis of bacteria and archaea. This study reveals that Chlamydomonas signaling transduction is similar to the eukaryotic mechanism, yet the cellular locomotion follows the bacteria and archaea mechanism.
Collapse
Affiliation(s)
- Alexis Strain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Nathan Kratzberg
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Dan Vu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Emmaline Miller
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ken-Ichi Wakabayashi
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Adam Melvin
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
6
|
Conrado AC, Lemes Jorge G, Rao RSP, Xu C, Xu D, Li-Beisson Y, Thelen JJ. Evolution of the regulatory subunits for the heteromeric acetyl-CoA carboxylase. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230353. [PMID: 39343023 PMCID: PMC11449227 DOI: 10.1098/rstb.2023.0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
The committed step for de novo fatty acid (FA) synthesis is the ATP-dependent carboxylation of acetyl-coenzyme A catalysed by acetyl-CoA carboxylase (ACCase). In most plants, ACCase is a multi-subunit complex orthologous to prokaryotes. However, unlike prokaryotes, the plant and algal orthologues are comprised both catalytic and additional dedicated regulatory subunits. Novel regulatory subunits, biotin lipoyl attachment domain-containing proteins (BADC) and carboxyltransferase interactors (CTI) (both three-gene families in Arabidopsis) represent new effectors specific to plants and certain algal species. The evolutionary history of these genes in autotrophic eukaryotes remains elusive, making it an ongoing area of research. Analyses of potential protein-protein and co-occurrence interactions, informed by gene network patterns using the STRING database, in Arabidopsis thaliana and Chlamydomonas reinhardtii unveil intricate gene associations with ACCase, suggesting a complex interplay between FA synthesis and other cellular processes. Among both species, a higher number of co-expressed genes was identified in Arabidopsis, indicating a wider potential regulatory network of ACCase in plants. This review investigates the extent to which these genes arose in autotrophic eukaryotes and provides insights into their evolutionary trajectory. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Ana Caroline Conrado
- Division of Biochemistry and Interdisciplinary Plant Grou, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211, USA
| | - Gabriel Lemes Jorge
- Division of Biochemistry and Interdisciplinary Plant Grou, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211, USA
| | - R. S. P. Rao
- Center for Bioinformatics, NITTE University Centre, Mangaluru575018, India
| | - Chunhui Xu
- Institute for Data Science and Informatics, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Institute for Data Science and Informatics, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211, USA
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille,Aix Marseille Univ, CEA Cadarache, Saint Paul-Lez-Durance13108, France
| | - Jay J. Thelen
- Division of Biochemistry and Interdisciplinary Plant Grou, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211, USA
| |
Collapse
|
7
|
Gutierrez RF, Ciol H, Carrillo Barra AL, Leonardo DA, Avaca-Crusca JS, Thiemann OH, Zanchin NIT, Araujo APU. Assigning roles in Chlamydomonas ribosome biogenesis: The conserved factor NIP7. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141045. [PMID: 39216654 DOI: 10.1016/j.bbapap.2024.141045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/31/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Ribosome biogenesis (RB) is a highly conserved process across eukaryotes that results in the assembly of functional ribosomal subunits. Studies in Saccharomyces cerevisiae and Homo sapiens have identified numerous RB factors (RBFs), including the NIP7 protein, which is involved in late-stage pre-60S ribosomal maturation. NIP7 expression has also been observed in Chlamydomonas reinhardtii, highlighting its evolutionary significance. This study aimed to characterize the function of the NIP7 protein from C. reinhardtii (CrNip7) through protein complementation assays and a paromomycin resistance test, assessing its ability to complement the role of NIP7 in yeast. Protein interaction studies were conducted via yeast two-hybrid assay to identify potential protein partners of CrNip7. Additionally, rRNA modeling analysis was performed using the predicted structure of CrNip7 to investigate its interaction with rRNA. The study revealed that CrNip7 can complement the role of NIP7 in yeast, implicating CrNip7 in the biogenesis of the 60S ribosomal subunit. Furthermore, two possible partner proteins of CrNip7, UNC-p and G-patch, were identified through yeast two-hybrid assay. The potential of these proteins to interact with CrNip7 was explored through in silico analyses. Furthermore, nucleic acid interaction was also evaluated, indicating the involvement of the N- and C-terminal domains of CrNIP7 in interacting with rRNA. Collectively, our findings provide valuable insights into the RBFs CrNip7, offering novel information for comparative studies on RB among eukaryotic model organisms, shedding light on its evolutionary conservation and functional role across species.
Collapse
Affiliation(s)
- Raissa Ferreira Gutierrez
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-970, PO Box 369, Brazil
| | - Heloisa Ciol
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-970, PO Box 369, Brazil
| | - Angélica L Carrillo Barra
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-970, PO Box 369, Brazil
| | - Diego Antonio Leonardo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-970, PO Box 369, Brazil
| | - Juliana S Avaca-Crusca
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-970, PO Box 369, Brazil
| | - Otavio H Thiemann
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-970, PO Box 369, Brazil
| | | | - Ana P Ulian Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-970, PO Box 369, Brazil.
| |
Collapse
|
8
|
Franklin E, Wang L, Cruz ER, Duggal K, Ergun SL, Garde A, Jonikas MC. Proteomic analysis of the pyrenoid-traversing membranes of Chlamydomonas reinhardtii reveals novel components. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620638. [PMID: 39553959 PMCID: PMC11565738 DOI: 10.1101/2024.10.28.620638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Pyrenoids are algal CO2-fixing organelles that mediate approximately one-third of global carbon fixation and hold the potential to enhance crop growth if engineered into land plants. Most pyrenoids are traversed by membranes that are thought to supply them with concentrated CO2. Despite the critical nature of these membranes for pyrenoid function, they are poorly understood, with few protein components known in any species.• Here we identify protein components of the pyrenoid-traversing membranes from the leading model alga Chlamydomonas reinhardtii by affinity purification and mass spectrometry of membrane fragments. Our proteome includes previously-known proteins as well as novel candidates.• We further characterize two of the novel pyrenoid-traversing membrane-resident proteins, Cre10.g452250, which we name Pyrenoid Membrane Enriched 1 (PME1), and LCI16. We confirm their localization, observe that they physically interact, and find that neither protein is required for normal membrane morphology.• Taken together, our study identifies the proteome of pyrenoid-traversing membranes and initiates the characterization of a novel pyrenoid-traversing membrane complex, building toward a mechanistic understanding of the pyrenoid.
Collapse
Affiliation(s)
- Eric Franklin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Edward Renne Cruz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Keenan Duggal
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sabrina L Ergun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Aastha Garde
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
9
|
Ge T, Gui X, Xu JX, Xia W, Wang CH, Yang W, Huang K, Walsh C, Umen JG, Walter J, Du YR, Chen H, Shao Z, Xu GL. DNA cytosine methylation suppresses meiotic recombination at the sex-determining region. SCIENCE ADVANCES 2024; 10:eadr2345. [PMID: 39383224 PMCID: PMC11463267 DOI: 10.1126/sciadv.adr2345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
Meiotic recombination between homologous chromosomes is vital for maximizing genetic variation among offspring. However, sex-determining regions are often rearranged and blocked from recombination. It remains unclear whether rearrangements or other mechanisms might be responsible for recombination suppression. Here, we uncover that the deficiency of the DNA cytosine methyltransferase DNMT1 in the green alga Chlamydomonas reinhardtii causes anomalous meiotic recombination at the mating-type locus (MT), generating haploid progeny containing both plus and minus mating-type markers due to crossovers within MT. The deficiency of a histone methyltransferase for H3K9 methylation does not lead to anomalous recombination. These findings suggest that DNA methylation, rather than rearrangements or histone methylation, suppresses meiotic recombination, revealing an unappreciated biological function for DNA methylation in eukaryotes.
Collapse
Affiliation(s)
- Tong Ge
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiuqi Gui
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia-Xi Xu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Xia
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao-Han Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Colum Walsh
- Department of Cell Biology, Institute for Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - James G. Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd, St. Louis, MO 63132, USA
| | - Jörn Walter
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken 66123, Germany
| | - Ya-Rui Du
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Chen
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Liang Xu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Alvarez Viar G, Klena N, Martino F, Nievergelt AP, Bolognini D, Capasso P, Pigino G. Protofilament-specific nanopatterns of tubulin post-translational modifications regulate the mechanics of ciliary beating. Curr Biol 2024; 34:4464-4475.e9. [PMID: 39270640 PMCID: PMC11466076 DOI: 10.1016/j.cub.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
Controlling ciliary beating is essential for motility and signaling in eukaryotes. This process relies on the regulation of various axonemal proteins that assemble in stereotyped patterns onto individual microtubules of the ciliary structure. Additionally, each axonemal protein interacts exclusively with determined tubulin protofilaments of the neighboring microtubule to carry out its function. While it is known that tubulin post-translational modifications (PTMs) are important for proper ciliary motility, the mode and extent to which they contribute to these interactions remain poorly understood. Currently, the prevailing understanding is that PTMs can confer functional specialization at the level of individual microtubules. However, this paradigm falls short of explaining how the tubulin code can manage the complexity of the axonemal structure where functional interactions happen in defined patterns at the sub-microtubular scale. Here, we combine immuno-cryo-electron tomography (cryo-ET), expansion microscopy, and mutant analysis to show that, in motile cilia, tubulin glycylation and polyglutamylation form mutually exclusive protofilament-specific nanopatterns at a sub-microtubular scale. These nanopatterns are consistent with the distributions of axonemal dyneins and nexin-dynein regulatory complexes, respectively, and are indispensable for their regulation during ciliary beating. Our findings offer a new paradigm for understanding how different tubulin PTMs, such as glycylation, glutamylation, acetylation, tyrosination, and detyrosination, can coexist within the ciliary structure and specialize individual protofilaments for the regulation of diverse protein complexes. The identification of a ciliary tubulin nanocode by cryo-ET suggests the need for high-resolution studies to better understand the molecular role of PTMs in other cellular compartments beyond the cilium.
Collapse
Affiliation(s)
| | - Nikolai Klena
- Human Technopole, V.le Rita Levi-Montalcini 1, Milan 20157, Italy
| | - Fabrizio Martino
- Human Technopole, V.le Rita Levi-Montalcini 1, Milan 20157, Italy
| | - Adrian Pascal Nievergelt
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Davide Bolognini
- Human Technopole, V.le Rita Levi-Montalcini 1, Milan 20157, Italy
| | - Paola Capasso
- Human Technopole, V.le Rita Levi-Montalcini 1, Milan 20157, Italy
| | - Gaia Pigino
- Human Technopole, V.le Rita Levi-Montalcini 1, Milan 20157, Italy.
| |
Collapse
|
11
|
Erazo-Garcia MP, Sheyn U, Barth ZK, Craig RJ, Wessman P, Jivaji AM, Ray WK, Svensson-Coelho M, Cornwallis CK, Rengefors K, Brussaard CPD, Moniruzzaman M, Aylward FO. Latent infection of an active giant endogenous virus in a unicellular green alga. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611062. [PMID: 39282281 PMCID: PMC11398304 DOI: 10.1101/2024.09.03.611062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Latency is a common strategy in a wide range of viral lineages, but its prevalence in giant viruses remains unknown. Here we describe the activity and viral production from a 617 kbp integrated giant viral element in the model green alga Chlamydomonas reinhardtii. We resolve the integrated viral region using long-read sequencing and show that viral particles are produced and released in otherwise healthy cultures. A diverse array of viral-encoded selfish genetic elements are expressed during GEVE reactivation and produce proteins that are packaged in virions. In addition, we show that field isolates of Chlamydomonas sp. harbor latent giant viruses related to the C. reinhardtii GEVE that exhibit similar infection dynamics, demonstrating that giant virus latency is prevalent in natural host communities. Our work reports the largest temperate virus documented to date and the first active GEVE identified in a unicellular eukaryote, substantially expanding the known limits of viral latency.
Collapse
Affiliation(s)
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech; Blacksburg, 24061, USA
| | - Zachary K. Barth
- Department of Biological Sciences, Virginia Tech; Blacksburg, 24061, USA
| | - Rory J. Craig
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen; Tübingen, 72076, Germany
| | | | - Abdeali M. Jivaji
- Department of Biological Sciences, Virginia Tech; Blacksburg, 24061, USA
| | - W. Keith Ray
- Mass Spectrometry Incubator, Fralin Life Sciences Institute, Virginia Tech; Blacksburg, 24061, USA
| | - Maria Svensson-Coelho
- Department of Biology, Lund University; Lund, 223 62, Sweden
- Division of Molecular Biology, Department of Laboratory Medicine, Ryhov County Hospital; Jönköping, 55185, Sweden
| | | | - Karin Rengefors
- Department of Biology, Lund University; Lund, 223 62, Sweden
| | - Corina P. D. Brussaard
- Department of Biology, Lund University; Lund, 223 62, Sweden
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ); Texel, 1790 AB, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam; Amsterdam, 1090 GE, The Netherlands
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, University of Miami; Coral Gables, 33149, USA
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech; Blacksburg, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech; Blacksburg, 24061, USA
| |
Collapse
|
12
|
Lacey SE, Graziadei A, Pigino G. Extensive structural rearrangement of intraflagellar transport trains underpins bidirectional cargo transport. Cell 2024; 187:4621-4636.e18. [PMID: 39067443 PMCID: PMC11349379 DOI: 10.1016/j.cell.2024.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/06/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
Bidirectional transport in cilia is carried out by polymers of the IFTA and IFTB protein complexes, called anterograde and retrograde intraflagellar transport (IFT) trains. Anterograde trains deliver cargoes from the cell to the cilium tip, then convert into retrograde trains for cargo export. We set out to understand how the IFT complexes can perform these two directly opposing roles before and after conversion. We use cryoelectron tomography and in situ cross-linking mass spectrometry to determine the structure of retrograde IFT trains and compare it with the known structure of anterograde trains. The retrograde train is a 2-fold symmetric polymer organized around a central thread of IFTA complexes. We conclude that anterograde-to-retrograde remodeling involves global rearrangements of the IFTA/B complexes and requires complete disassembly of the anterograde train. Finally, we describe how conformational changes to cargo-binding sites facilitate unidirectional cargo transport in a bidirectional system.
Collapse
|
13
|
Lihanova Y, Nagel R, Jakob T, Sasso S. Characterization of activating cis-regulatory elements from the histone genes of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:525-539. [PMID: 38693717 DOI: 10.1111/tpj.16781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Regulation of gene expression in eukaryotes is controlled by cis-regulatory modules (CRMs). A major class of CRMs are enhancers which are composed of activating cis-regulatory elements (CREs) responsible for upregulating transcription. To date, most enhancers and activating CREs have been studied in angiosperms; in contrast, our knowledge about these key regulators of gene expression in green algae is limited. In this study, we aimed at characterizing putative activating CREs/CRMs from the histone genes of the unicellular model alga Chlamydomonas reinhardtii. To test the activity of four candidates, reporter constructs consisting of a tetramerized CRE, an established promoter, and a gene for the mCerulean3 fluorescent protein were incorporated into the nuclear genome of C. reinhardtii, and their activity was quantified by flow cytometry. Two tested candidates, Eupstr and Ehist cons, significantly upregulated gene expression and were characterized in detail. Eupstr, which originates from highly expressed genes of C. reinhardtii, is an orientation-independent CRE capable of activating both the RBCS2 and β2-tubulin promoters. Ehist cons, which is a CRM from histone genes of angiosperms, upregulates the β2-tubulin promoter in C. reinhardtii over a distance of at least 1.5 kb. The octamer motif present in Ehist cons was identified in C. reinhardtii and the related green algae Chlamydomonas incerta, Chlamydomonas schloesseri, and Edaphochlamys debaryana, demonstrating its high evolutionary conservation. The results of this investigation expand our knowledge about the regulation of gene expression in green algae. Furthermore, the characterized activating CREs/CRMs can be applied as valuable genetic tools.
Collapse
Affiliation(s)
- Yuliia Lihanova
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Raimund Nagel
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Torsten Jakob
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Severin Sasso
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
14
|
Marcolungo L, Bellamoli F, Cecchin M, Lopatriello G, Rossato M, Cosentino E, Rombauts S, Delledonne M, Ballottari M. Haematococcus lacustris genome assembly and annotation reveal diploid genetic traits and stress-induced gene expression patterns. ALGAL RES 2024; 80:103567. [PMID: 39717182 PMCID: PMC7617258 DOI: 10.1016/j.algal.2024.103567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The green alga Haematococcus lacustris (formerly Haematococcus pluvialis) is a primary source of astaxanthin, a ketocarotenoid with high antioxidant activity and several industrial applications. Here, the Haematococcus lacustris highly repetitive genome was reconstructed by exploiting next-generation sequencing integrated with Hi-C scaffolding, obtaining a 151 Mb genome assembly in 32 scaffolds at a near-chromosome level with high continuity. Surprisingly, the distribution of the single-nucleotide-polymorphisms identified demonstrates a diploid configuration for the Haematococcus genome, further validated by Sanger sequencing of heterozygous regions. Functional annotation and RNA-seq data enabled the identification of 13,946 nuclear genes, with >5000 genes not previously identified in this species, providing insights into the molecular basis for metabolic rear-rangement in stressing conditions such as high light and/or nitrogen starvation, where astaxanthin biosynthesis is triggered. These data constitute a rich genetic resource for biotechnological manipulation of Haematococcus lacustris highlighting potential targets to improve astaxanthin and carotenoid productivity.
Collapse
Affiliation(s)
- Luca Marcolungo
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| | - Francesco Bellamoli
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| | - Michela Cecchin
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| | - Giulia Lopatriello
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| | - Marzia Rossato
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| | - Emanuela Cosentino
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| | - Stephane Rombauts
- Bioinformatics and Evolutionary Genomics, University of Ghent, Technologiepark 927, B-9052Gent, Belgium
| | - Massimo Delledonne
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134Verona, Italy
| |
Collapse
|
15
|
Dai J, Ma M, Niu Q, Eisert RJ, Wang X, Das P, Lechtreck KF, Dutcher SK, Zhang R, Brown A. Mastigoneme structure reveals insights into the O-linked glycosylation code of native hydroxyproline-rich helices. Cell 2024; 187:1907-1921.e16. [PMID: 38552624 PMCID: PMC11015965 DOI: 10.1016/j.cell.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
Hydroxyproline-rich glycoproteins (HRGPs) are a ubiquitous class of protein in the extracellular matrices and cell walls of plants and algae, yet little is known of their native structures or interactions. Here, we used electron cryomicroscopy (cryo-EM) to determine the structure of the hydroxyproline-rich mastigoneme, an extracellular filament isolated from the cilia of the alga Chlamydomonas reinhardtii. The structure demonstrates that mastigonemes are formed from two HRGPs (a filament of MST1 wrapped around a single copy of MST3) that both have hyperglycosylated poly(hydroxyproline) helices. Within the helices, O-linked glycosylation of the hydroxyproline residues and O-galactosylation of interspersed serine residues create a carbohydrate casing. Analysis of the associated glycans reveals how the pattern of hydroxyproline repetition determines the type and extent of glycosylation. MST3 possesses a PKD2-like transmembrane domain that forms a heteromeric polycystin-like cation channel with PKD2 and SIP, explaining how mastigonemes are tethered to ciliary membranes.
Collapse
Affiliation(s)
- Jin Dai
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Qingwei Niu
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Molecular Cell Biology (MCB) graduate program, Division of Biology & Biomedical Sciences, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Robyn J Eisert
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Xiangli Wang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Poulomi Das
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St Louis, MO, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Wang B, Jia Y, Dang N, Yu J, Bush SJ, Gao S, He W, Wang S, Guo H, Yang X, Ma W, Ye K. Near telomere-to-telomere genome assemblies of two Chlorella species unveil the composition and evolution of centromeres in green algae. BMC Genomics 2024; 25:356. [PMID: 38600443 PMCID: PMC11005252 DOI: 10.1186/s12864-024-10280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Centromeres play a crucial and conserved role in cell division, although their composition and evolutionary history in green algae, the evolutionary ancestors of land plants, remains largely unknown. RESULTS We constructed near telomere-to-telomere (T2T) assemblies for two Trebouxiophyceae species, Chlorella sorokiniana NS4-2 and Chlorella pyrenoidosa DBH, with chromosome numbers of 12 and 13, and genome sizes of 58.11 Mb and 53.41 Mb, respectively. We identified and validated their centromere sequences using CENH3 ChIP-seq and found that, similar to humans and higher plants, the centromeric CENH3 signals of green algae display a pattern of hypomethylation. Interestingly, the centromeres of both species largely comprised transposable elements, although they differed significantly in their composition. Species within the Chlorella genus display a more diverse centromere composition, with major constituents including members of the LTR/Copia, LINE/L1, and LINE/RTEX families. This is in contrast to green algae including Chlamydomonas reinhardtii, Coccomyxa subellipsoidea, and Chromochloris zofingiensis, in which centromere composition instead has a pronounced single-element composition. Moreover, we observed significant differences in the composition and structure of centromeres among chromosomes with strong collinearity within the Chlorella genus, suggesting that centromeric sequence evolves more rapidly than sequence in non-centromeric regions. CONCLUSIONS This study not only provides high-quality genome data for comparative genomics of green algae but gives insight into the composition and evolutionary history of centromeres in early plants, laying an important foundation for further research on their evolution.
Collapse
Affiliation(s)
- Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yanyan Jia
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Ningxin Dang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Yu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Shenghan Gao
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenxi He
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Sirui Wang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hongtao Guo
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University, Shanghai, China.
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
- Faculty of Science, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
17
|
Carrasco Flores D, Hotter V, Vuong T, Hou Y, Bando Y, Scherlach K, Burgunter-Delamare B, Hermenau R, Komor AJ, Aiyar P, Rose M, Sasso S, Arndt HD, Hertweck C, Mittag M. A mutualistic bacterium rescues a green alga from an antagonist. Proc Natl Acad Sci U S A 2024; 121:e2401632121. [PMID: 38568970 PMCID: PMC11009677 DOI: 10.1073/pnas.2401632121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Photosynthetic protists, known as microalgae, are key contributors to primary production on Earth. Since early in evolution, they coexist with bacteria in nature, and their mode of interaction shapes ecosystems. We have recently shown that the bacterium Pseudomonas protegens acts algicidal on the microalga Chlamydomonas reinhardtii. It secretes a cyclic lipopeptide and a polyyne that deflagellate, blind, and lyse the algae [P. Aiyar et al., Nat. Commun. 8, 1756 (2017) and V. Hotter et al., Proc. Natl. Acad. Sci. U.S.A. 118, e2107695118 (2021)]. Here, we report about the bacterium Mycetocola lacteus, which establishes a mutualistic relationship with C. reinhardtii and acts as a helper. While M. lacteus enhances algal growth, it receives methionine as needed organic sulfur and the vitamins B1, B3, and B5 from the algae. In tripartite cultures with the alga and the antagonistic bacterium P. protegens, M. lacteus aids the algae in surviving the bacterial attack. By combining synthetic natural product chemistry with high-resolution mass spectrometry and an algal Ca2+ reporter line, we found that M. lacteus rescues the alga from the antagonistic bacterium by cleaving the ester bond of the cyclic lipopeptide involved. The resulting linearized seco acid does not trigger a cytosolic Ca2+ homeostasis imbalance that leads to algal deflagellation. Thus, the algae remain motile, can swim away from the antagonistic bacteria and survive the attack. All three involved genera cooccur in nature. Remarkably, related species of Pseudomonas and Mycetocola also act antagonistically against C. reinhardtii or as helper bacteria in tripartite cultures.
Collapse
Affiliation(s)
- David Carrasco Flores
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
| | - Vivien Hotter
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
| | - Yu Hou
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
| | - Yuko Bando
- Institute for Organic Chemistry and Macromolecular Chemistry, Organic Chemistry, Friedrich Schiller University Jena, Jena07743, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena07745, Germany
| | - Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
| | - Ron Hermenau
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena07745, Germany
| | - Anna J. Komor
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena07745, Germany
| | - Prasad Aiyar
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
| | - Magdalena Rose
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
- Institute of Biology, Plant Physiology, Leipzig University, Leipzig04103, Germany
| | - Severin Sasso
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
- Institute of Biology, Plant Physiology, Leipzig University, Leipzig04103, Germany
| | - Hans-Dieter Arndt
- Institute for Organic Chemistry and Macromolecular Chemistry, Organic Chemistry, Friedrich Schiller University Jena, Jena07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
18
|
Jamali K, Käll L, Zhang R, Brown A, Kimanius D, Scheres SHW. Automated model building and protein identification in cryo-EM maps. Nature 2024; 628:450-457. [PMID: 38408488 PMCID: PMC11006616 DOI: 10.1038/s41586-024-07215-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
Interpreting electron cryo-microscopy (cryo-EM) maps with atomic models requires high levels of expertise and labour-intensive manual intervention in three-dimensional computer graphics programs1,2. Here we present ModelAngelo, a machine-learning approach for automated atomic model building in cryo-EM maps. By combining information from the cryo-EM map with information from protein sequence and structure in a single graph neural network, ModelAngelo builds atomic models for proteins that are of similar quality to those generated by human experts. For nucleotides, ModelAngelo builds backbones with similar accuracy to those built by humans. By using its predicted amino acid probabilities for each residue in hidden Markov model sequence searches, ModelAngelo outperforms human experts in the identification of proteins with unknown sequences. ModelAngelo will therefore remove bottlenecks and increase objectivity in cryo-EM structure determination.
Collapse
Affiliation(s)
| | - Lukas Käll
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rui Zhang
- Washington University in St Louis, St Louis, MO, USA
| | - Alan Brown
- Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
19
|
Lambert L, de Carpentier F, André P, Marchand CH, Danon A. Type II metacaspase mediates light-dependent programmed cell death in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2024; 194:2648-2662. [PMID: 37971939 PMCID: PMC10980519 DOI: 10.1093/plphys/kiad618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023]
Abstract
Among the crucial processes that preside over the destiny of cells from any type of organism are those involving their self-destruction. This process is well characterized and conceptually logical to understand in multicellular organisms; however, the levels of knowledge and comprehension of its existence are still quite enigmatic in unicellular organisms. We use Chlamydomonas (Chlamydomonas reinhardtii) to lay the foundation for understanding the mechanisms of programmed cell death (PCD) in a unicellular photosynthetic organism. In this paper, we show that while PCD induces the death of a proportion of cells, it allows the survival of the remaining population. A quantitative proteomic analysis aiming at unveiling the proteome of PCD in Chlamydomonas allowed us to identify key proteins that led to the discovery of essential mechanisms. We show that in Chlamydomonas, PCD relies on the light dependence of a photosynthetic organism to generate reactive oxygen species and induce cell death. Finally, we obtained and characterized mutants for the 2 metacaspase genes in Chlamydomonas and showed that a type II metacaspase is essential for PCD execution.
Collapse
Affiliation(s)
- Lou Lambert
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
| | - Félix de Carpentier
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
- Doctoral School of Plant Sciences, Université Paris-Saclay, Saint-Aubin 91190, France
| | - Phuc André
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
| | - Christophe H Marchand
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique (CNRS), Paris F-75005, France
| | - Antoine Danon
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
| |
Collapse
|
20
|
Naish M, Henderson IR. The structure, function, and evolution of plant centromeres. Genome Res 2024; 34:161-178. [PMID: 38485193 PMCID: PMC10984392 DOI: 10.1101/gr.278409.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Centromeres are essential regions of eukaryotic chromosomes responsible for the formation of kinetochore complexes, which connect to spindle microtubules during cell division. Notably, although centromeres maintain a conserved function in chromosome segregation, the underlying DNA sequences are diverse both within and between species and are predominantly repetitive in nature. The repeat content of centromeres includes high-copy tandem repeats (satellites), and/or specific families of transposons. The functional region of the centromere is defined by loading of a specific histone 3 variant (CENH3), which nucleates the kinetochore and shows dynamic regulation. In many plants, the centromeres are composed of satellite repeat arrays that are densely DNA methylated and invaded by centrophilic retrotransposons. In some cases, the retrotransposons become the sites of CENH3 loading. We review the structure of plant centromeres, including monocentric, holocentric, and metapolycentric architectures, which vary in the number and distribution of kinetochore attachment sites along chromosomes. We discuss how variation in CENH3 loading can drive genome elimination during early cell divisions of plant embryogenesis. We review how epigenetic state may influence centromere identity and discuss evolutionary models that seek to explain the paradoxically rapid change of centromere sequences observed across species, including the potential roles of recombination. We outline putative modes of selection that could act within the centromeres, as well as the role of repeats in driving cycles of centromere evolution. Although our primary focus is on plant genomes, we draw comparisons with animal and fungal centromeres to derive a eukaryote-wide perspective of centromere structure and function.
Collapse
Affiliation(s)
- Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
21
|
Burgunter-Delamare B, Shetty P, Vuong T, Mittag M. Exchange or Eliminate: The Secrets of Algal-Bacterial Relationships. PLANTS (BASEL, SWITZERLAND) 2024; 13:829. [PMID: 38592793 PMCID: PMC10974524 DOI: 10.3390/plants13060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Algae and bacteria have co-occurred and coevolved in common habitats for hundreds of millions of years, fostering specific associations and interactions such as mutualism or antagonism. These interactions are shaped through exchanges of primary and secondary metabolites provided by one of the partners. Metabolites, such as N-sources or vitamins, can be beneficial to the partner and they may be assimilated through chemotaxis towards the partner producing these metabolites. Other metabolites, especially many natural products synthesized by bacteria, can act as toxins and damage or kill the partner. For instance, the green microalga Chlamydomonas reinhardtii establishes a mutualistic partnership with a Methylobacterium, in stark contrast to its antagonistic relationship with the toxin producing Pseudomonas protegens. In other cases, as with a coccolithophore haptophyte alga and a Phaeobacter bacterium, the same alga and bacterium can even be subject to both processes, depending on the secreted bacterial and algal metabolites. Some bacteria also influence algal morphology by producing specific metabolites and micronutrients, as is observed in some macroalgae. This review focuses on algal-bacterial interactions with micro- and macroalgal models from marine, freshwater, and terrestrial environments and summarizes the advances in the field. It also highlights the effects of temperature on these interactions as it is presently known.
Collapse
Affiliation(s)
- Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Prateek Shetty
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
22
|
Goold HD, Moseley JL, Lauersen KJ. The synthetic future of algal genomes. CELL GENOMICS 2024; 4:100505. [PMID: 38395701 PMCID: PMC10943592 DOI: 10.1016/j.xgen.2024.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Algae are diverse organisms with significant biotechnological potential for resource circularity. Taking inspiration from fermentative microbes, engineering algal genomes holds promise to broadly expand their application ranges. Advances in genome sequencing with improvements in DNA synthesis and delivery techniques are enabling customized molecular tool development to confer advanced traits to algae. Efforts to redesign and rebuild entire genomes to create fit-for-purpose organisms currently being explored in heterotrophic prokaryotes and eukaryotic microbes could also be applied to photosynthetic algae. Future algal genome engineering will enhance yields of native products and permit the expression of complex biochemical pathways to produce novel metabolites from sustainable inputs. We present a historical perspective on advances in engineering algae, discuss the requisite genetic traits to enable algal genome optimization, take inspiration from whole-genome engineering efforts in other microbes for algal systems, and present candidate algal species in the context of these engineering goals.
Collapse
Affiliation(s)
- Hugh D Goold
- New South Wales Department of Primary Industries, Orange, NSW 2800, Australia; ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia; School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jeffrey L Moseley
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Phycoil Biotechnology International, Inc., Fremont, CA 94538, USA
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
23
|
Balogun EJ, Ness RW. The Effects of De Novo Mutation on Gene Expression and the Consequences for Fitness in Chlamydomonas reinhardtii. Mol Biol Evol 2024; 41:msae035. [PMID: 38366781 PMCID: PMC10910851 DOI: 10.1093/molbev/msae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Mutation is the ultimate source of genetic variation, the bedrock of evolution. Yet, predicting the consequences of new mutations remains a challenge in biology. Gene expression provides a potential link between a genotype and its phenotype. But the variation in gene expression created by de novo mutation and the fitness consequences of mutational changes to expression remain relatively unexplored. Here, we investigate the effects of >2,600 de novo mutations on gene expression across the transcriptome of 28 mutation accumulation lines derived from 2 independent wild-type genotypes of the green algae Chlamydomonas reinhardtii. We observed that the amount of genetic variance in gene expression created by mutation (Vm) was similar to the variance that mutation generates in typical polygenic phenotypic traits and approximately 15-fold the variance seen in the limited species where Vm in gene expression has been estimated. Despite the clear effect of mutation on expression, we did not observe a simple additive effect of mutation on expression change, with no linear correlation between the total expression change and mutation count of individual MA lines. We therefore inferred the distribution of expression effects of new mutations to connect the number of mutations to the number of differentially expressed genes (DEGs). Our inferred DEE is highly L-shaped with 95% of mutations causing 0-1 DEG while the remaining 5% are spread over a long tail of large effect mutations that cause multiple genes to change expression. The distribution is consistent with many cis-acting mutation targets that affect the expression of only 1 gene and a large target of trans-acting targets that have the potential to affect tens or hundreds of genes. Further evidence for cis-acting mutations can be seen in the overabundance of mutations in or near differentially expressed genes. Supporting evidence for trans-acting mutations comes from a 15:1 ratio of DEGs to mutations and the clusters of DEGs in the co-expression network, indicative of shared regulatory architecture. Lastly, we show that there is a negative correlation with the extent of expression divergence from the ancestor and fitness, providing direct evidence of the deleterious effects of perturbing gene expression.
Collapse
Affiliation(s)
- Eniolaye J Balogun
- Department of Biology, William G. Davis Building, University of Toronto, Mississauga L5L-1C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto M5S-3B2, Canada
| | - Rob W Ness
- Department of Biology, William G. Davis Building, University of Toronto, Mississauga L5L-1C6, Canada
| |
Collapse
|
24
|
Rredhi A, Petersen J, Wagner V, Vuong T, Li W, Li W, Schrader L, Mittag M. The UV-A Receptor CRY-DASH1 Up- and Downregulates Proteins Involved in Different Plastidial Pathways. J Mol Biol 2024; 436:168271. [PMID: 37699454 DOI: 10.1016/j.jmb.2023.168271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Algae encode up to five different types of cryptochrome photoreceptors. So far, relatively little is known about the biological functions of the DASH (Drosophila, Arabidopsis, Synechocystis and Homo)-type cryptochromes. The green alga Chlamydomonas reinhardtii encodes two of them. CRY-DASH1 also called DCRY1 has its maximal absorption peak in the UV-A range. It is localized in the chloroplast and plays an important role in balancing the photosynthetic machinery. Here, we performed a comparative analysis of chloroplast proteins from wild type and a knockout mutant of CRY-DASH1 named cry-dash1mut, using label-free quantitative proteomics as well as immunoblotting. Our results show upregulation of enzymes involved in specific pathways in the mutant including key enzymes of chlorophyll and carotenoid biosynthesis consistent with increased levels of photosynthetic pigments in cry-dash1mut. There is also an increase in certain redox as well as photosystem I and II proteins, including D1. Strikingly, CRY-DASH1 is coregulated in a D1 deletion mutant, where its amount is increased. In contrast, key proteins of the central carbon metabolism, including glycolysis/gluconeogenesis, dark fermentation and the oxidative pentose phosphate pathway are downregulated in cry-dash1mut. Similarly, enzymes of histidine biosynthesis are downregulated in cry-dash1mut leading to a reduction in the amount of free histidine. Yet, transcripts encoding for several of these proteins are at a similar level in the wild type and cry-dash1mut or even opposite. We show that CRY-DASH1 can bind to RNA, taking the psbA RNA encoding D1 as target. These data suggest that CRY-DASH1 regulates plastidial metabolic pathways at the posttranscriptional level.
Collapse
Affiliation(s)
- Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/1anPetersen
| | - Volker Wagner
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/trangha593
| | - Wenshuang Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Wei Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Laura Schrader
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
25
|
Chaux F, Agier N, Eberhard S, Xu Z. Extraction and selection of high-molecular-weight DNA for long-read sequencing from Chlamydomonas reinhardtii. PLoS One 2024; 19:e0297014. [PMID: 38330024 PMCID: PMC10852265 DOI: 10.1371/journal.pone.0297014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024] Open
Abstract
Recent advances in long-read sequencing technologies have enabled the complete assembly of eukaryotic genomes from telomere to telomere by allowing repeated regions to be fully sequenced and assembled, thus filling the gaps left by previous short-read sequencing methods. Furthermore, long-read sequencing can also help characterizing structural variants, with applications in the fields of genome evolution or cancer genomics. For many organisms, the main bottleneck to sequence long reads remains the lack of robust methods to obtain high-molecular-weight (HMW) DNA. For this purpose, we developed an optimized protocol to extract DNA suitable for long-read sequencing from the unicellular green alga Chlamydomonas reinhardtii, based on CTAB/phenol extraction followed by a size selection step for long DNA molecules. We provide validation results for the extraction protocol, as well as statistics obtained with Oxford Nanopore Technologies sequencing.
Collapse
Affiliation(s)
- Frédéric Chaux
- CNRS, UMR7238, Institut de Biologie Paris‐Seine, Laboratory of Computational and Quantitative Biology, Sorbonne Université, Paris, France
| | - Nicolas Agier
- CNRS, UMR7238, Institut de Biologie Paris‐Seine, Laboratory of Computational and Quantitative Biology, Sorbonne Université, Paris, France
| | - Stephan Eberhard
- CNRS, UMR7141, Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light-Sensing in Microalgae, Sorbonne Université, Paris, France
| | - Zhou Xu
- CNRS, UMR7238, Institut de Biologie Paris‐Seine, Laboratory of Computational and Quantitative Biology, Sorbonne Université, Paris, France
| |
Collapse
|
26
|
NOZAKI H, YAMAMOTO K, TAKAHASHI K. Whole-genome sequencing analysis of volvocine green algae reveals the molecular genetic basis for the diversity and evolution of sex. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:465-475. [PMID: 39401900 PMCID: PMC11535005 DOI: 10.2183/pjab.100.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/13/2024] [Indexed: 11/08/2024]
Abstract
This review describes the development of evolutionary studies of sex based on the volvocine lineage of green algae, which was facilitated by whole-genome analyses of both model and non-model species. Volvocine algae, which include Chlamydomonas and Volvox species, have long been considered a model group for experimental studies investigating the evolution of sex. Thus, whole-genomic information on the sex-determining regions of volvocine algal sex chromosomes has been sought to elucidate the molecular genetic basis of sex evolution. By 2010, whole genomes were published for two model species in this group, Chlamydomonas reinhardtii and Volvox carteri. Recent improvements in sequencing technology, particularly next-generation sequencing, allowed our studies to obtain complete genomes for non-model, but evolutionary important, volvocine algal species. These genomes have provided critical details about sex-determining regions that will contribute to our understanding of the diversity and evolution of sex.
Collapse
Affiliation(s)
- Hisayoshi NOZAKI
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | - Kayoko YAMAMOTO
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | - Kohei TAKAHASHI
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Poirier M, Osmers P, Wilkins K, Morgan-Kiss RM, Cvetkovska M. Aberrant light sensing and motility in the green alga Chlamydomonas priscuii from the ice-covered Antarctic Lake Bonney. PLANT SIGNALING & BEHAVIOR 2023; 18:2184588. [PMID: 38126947 PMCID: PMC10012900 DOI: 10.1080/15592324.2023.2184588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
The Antarctic green alga Chlamydomonas priscuii is an obligate psychrophile and an emerging model for photosynthetic adaptation to extreme conditions. Endemic to the ice-covered Lake Bonney, this alga thrives at highly unusual light conditions characterized by very low light irradiance (<15 μmol m-2 s-1), a narrow wavelength spectrum enriched in blue light, and an extreme photoperiod. Genome sequencing of C. priscuii exposed an unusually large genome, with hundreds of highly similar gene duplicates and expanded gene families, some of which could be aiding its survival in extreme conditions. In contrast to the described expansion in the genetic repertoire in C. priscuii, here we suggest that the gene family encoding for photoreceptors is reduced when compared to related green algae. This alga also possesses a very small eyespot and exhibits an aberrant phototactic response, compared to the model Chlamydomonas reinhardtii. We also investigated the genome and behavior of the closely related psychrophilic alga Chlamydomonas sp. ICE-MDV, that is found throughout the photic zone of Lake Bonney and is naturally exposed to higher light levels. Our analyses revealed a photoreceptor gene family and a robust phototactic response similar to those in the model Chlamydomonas reinhardtii. These results suggest that the aberrant phototactic response in C. priscuii is a result of life under extreme shading rather than a common feature of all psychrophilic algae. We discuss the implications of these results on the evolution and survival of shade adapted polar algae.
Collapse
Affiliation(s)
| | - Pomona Osmers
- Department of Biology, University of Ottawa, Ottawa, OH, Canada
| | - Kieran Wilkins
- Department of Biology, University of Ottawa, Ottawa, OH, Canada
| | | | | |
Collapse
|
28
|
Niu Y, Liu L. RNA pseudouridine modification in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6431-6447. [PMID: 37581601 DOI: 10.1093/jxb/erad323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Pseudouridine is one of the well-known chemical modifications in various RNA species. Current advances to detect pseudouridine show that the pseudouridine landscape is dynamic and affects multiple cellular processes. Although our understanding of this post-transcriptional modification mainly depends on yeast and human models, the recent findings provide strong evidence for the critical role of pseudouridine in plants. Here, we review the current knowledge of pseudouridine in plant RNAs, including its synthesis, degradation, regulatory mechanisms, and functions. Moreover, we propose future areas of research on pseudouridine modification in plants.
Collapse
Affiliation(s)
- Yanli Niu
- Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Lingyun Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| |
Collapse
|
29
|
Jamali K, Käll L, Zhang R, Brown A, Kimanius D, Scheres SH. Automated model building and protein identification in cryo-EM maps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541002. [PMID: 37292681 PMCID: PMC10245678 DOI: 10.1101/2023.05.16.541002] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Interpreting electron cryo-microscopy (cryo-EM) maps with atomic models requires high levels of expertise and labour-intensive manual intervention. We present ModelAngelo, a machine-learning approach for automated atomic model building in cryo-EM maps. By combining information from the cryo-EM map with information from protein sequence and structure in a single graph neural network, ModelAngelo builds atomic models for proteins that are of similar quality as those generated by human experts. For nucleotides, ModelAngelo builds backbones with similar accuracy as humans. By using its predicted amino acid probabilities for each residue in hidden Markov model sequence searches, ModelAngelo outperforms human experts in the identification of proteins with unknown sequences. ModelAngelo will thus remove bottlenecks and increase objectivity in cryo-EM structure determination.
Collapse
Affiliation(s)
| | - Lukas Käll
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rui Zhang
- Washington University in St. Louis, St. Louis, MO, USA
| | - Alan Brown
- Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
30
|
He S, Crans VL, Jonikas MC. The pyrenoid: the eukaryotic CO2-concentrating organelle. THE PLANT CELL 2023; 35:3236-3259. [PMID: 37279536 PMCID: PMC10473226 DOI: 10.1093/plcell/koad157] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
The pyrenoid is a phase-separated organelle that enhances photosynthetic carbon assimilation in most eukaryotic algae and the land plant hornwort lineage. Pyrenoids mediate approximately one-third of global CO2 fixation, and engineering a pyrenoid into C3 crops is predicted to boost CO2 uptake and increase yields. Pyrenoids enhance the activity of the CO2-fixing enzyme Rubisco by supplying it with concentrated CO2. All pyrenoids have a dense matrix of Rubisco associated with photosynthetic thylakoid membranes that are thought to supply concentrated CO2. Many pyrenoids are also surrounded by polysaccharide structures that may slow CO2 leakage. Phylogenetic analysis and pyrenoid morphological diversity support a convergent evolutionary origin for pyrenoids. Most of the molecular understanding of pyrenoids comes from the model green alga Chlamydomonas (Chlamydomonas reinhardtii). The Chlamydomonas pyrenoid exhibits multiple liquid-like behaviors, including internal mixing, division by fission, and dissolution and condensation in response to environmental cues and during the cell cycle. Pyrenoid assembly and function are induced by CO2 availability and light, and although transcriptional regulators have been identified, posttranslational regulation remains to be characterized. Here, we summarize the current knowledge of pyrenoid function, structure, components, and dynamic regulation in Chlamydomonas and extrapolate to pyrenoids in other species.
Collapse
Affiliation(s)
- Shan He
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540, USA
| | - Victoria L Crans
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
31
|
Chaux F, Agier N, Garrido C, Fischer G, Eberhard S, Xu Z. Telomerase-independent survival leads to a mosaic of complex subtelomere rearrangements in Chlamydomonas reinhardtii. Genome Res 2023; 33:1582-1598. [PMID: 37580131 PMCID: PMC10620057 DOI: 10.1101/gr.278043.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Telomeres and subtelomeres, the genomic regions located at chromosome extremities, are essential for genome stability in eukaryotes. In the absence of the canonical maintenance mechanism provided by telomerase, telomere shortening induces genome instability. The landscape of the ensuing genome rearrangements is not accessible by short-read sequencing. Here, we leverage Oxford Nanopore Technologies long-read sequencing to survey the extensive repertoire of genome rearrangements in telomerase mutants of the model green microalga Chlamydomonas reinhardtii In telomerase-mutant strains grown for hundreds of generations, most chromosome extremities were capped by short telomere sequences that were either recruited de novo from other loci or maintained in a telomerase-independent manner. Other extremities did not end with telomeres but only with repeated subtelomeric sequences. The subtelomeric elements, including rDNA, were massively rearranged and involved in breakage-fusion-bridge cycles, translocations, recombinations, and chromosome circularization. These events were established progressively over time and displayed heterogeneity at the subpopulation level. New telomere-capped extremities composed of sequences originating from more internal genomic regions were associated with high DNA methylation, suggesting that de novo heterochromatin formation contributes to the restoration of chromosome end stability in C. reinhardtii The diversity of alternative strategies present in the same organism to maintain chromosome integrity and the variety of rearrangements found in telomerase mutants are remarkable, and illustrate genome plasticity at short timescales.
Collapse
Affiliation(s)
- Frédéric Chaux
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Nicolas Agier
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Clotilde Garrido
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Gilles Fischer
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Stephan Eberhard
- Sorbonne Université, CNRS, UMR7141, Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light-Sensing in Microalgae, 75005 Paris, France
| | - Zhou Xu
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France;
| |
Collapse
|
32
|
Findinier J, Grossman AR. Chlamydomonas: Fast tracking from genomics. JOURNAL OF PHYCOLOGY 2023; 59:644-652. [PMID: 37417760 DOI: 10.1111/jpy.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Elucidating biological processes has relied on the establishment of model organisms, many of which offer advantageous features such as rapid axenic growth, extensive knowledge of their physiological features and gene content, and the ease with which they can be genetically manipulated. The unicellular green alga Chlamydomonas reinhardtii has been an exemplary model that has enabled many scientific breakthroughs over the decades, especially in the fields of photosynthesis, cilia function and biogenesis, and the acclimation of photosynthetic organisms to their environment. Here, we discuss recent molecular/technological advances that have been applied to C. reinhardtii and how they have further fostered its development as a "flagship" algal system. We also explore the future promise of this alga in leveraging advances in the fields of genomics, proteomics, imaging, and synthetic biology for addressing critical future biological issues.
Collapse
Affiliation(s)
- Justin Findinier
- The Carnegie Institution for Science, Biosphere Science and Engineering, Stanford, California, USA
| | - Arthur R Grossman
- The Carnegie Institution for Science, Biosphere Science and Engineering, Stanford, California, USA
| |
Collapse
|
33
|
Milito A, Aschern M, McQuillan JL, Yang JS. Challenges and advances towards the rational design of microalgal synthetic promoters in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3833-3850. [PMID: 37025006 DOI: 10.1093/jxb/erad100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Microalgae hold enormous potential to provide a safe and sustainable source of high-value compounds, acting as carbon-fixing biofactories that could help to mitigate rapidly progressing climate change. Bioengineering microalgal strains will be key to optimizing and modifying their metabolic outputs, and to render them competitive with established industrial biotechnology hosts, such as bacteria or yeast. To achieve this, precise and tuneable control over transgene expression will be essential, which would require the development and rational design of synthetic promoters as a key strategy. Among green microalgae, Chlamydomonas reinhardtii represents the reference species for bioengineering and synthetic biology; however, the repertoire of functional synthetic promoters for this species, and for microalgae generally, is limited in comparison to other commercial chassis, emphasizing the need to expand the current microalgal gene expression toolbox. Here, we discuss state-of-the-art promoter analyses, and highlight areas of research required to advance synthetic promoter development in C. reinhardtii. In particular, we exemplify high-throughput studies performed in other model systems that could be applicable to microalgae, and propose novel approaches to interrogating algal promoters. We lastly outline the major limitations hindering microalgal promoter development, while providing novel suggestions and perspectives for how to overcome them.
Collapse
Affiliation(s)
- Alfonsina Milito
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Moritz Aschern
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Josie L McQuillan
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Jae-Seong Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
34
|
Perozeni F, Baier T. Current Nuclear Engineering Strategies in the Green Microalga Chlamydomonas reinhardtii. Life (Basel) 2023; 13:1566. [PMID: 37511941 PMCID: PMC10381326 DOI: 10.3390/life13071566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The green model microalga Chlamydomonas reinhardtii recently emerged as a sustainable production chassis for the efficient biosynthesis of recombinant proteins and high-value metabolites. Its capacity for scalable, rapid and light-driven growth in minimal salt solutions, its simplicity for genetic manipulation and its "Generally Recognized As Safe" (GRAS) status are key features for its application in industrial biotechnology. Although nuclear transformation has typically resulted in limited transgene expression levels, recent developments now allow the design of powerful and innovative bioproduction concepts. In this review, we summarize the main obstacles to genetic engineering in C. reinhardtii and describe all essential aspects in sequence adaption and vector design to enable sufficient transgene expression from the nuclear genome. Several biotechnological examples of successful engineering serve as blueprints for the future establishment of C. reinhardtii as a green cell factory.
Collapse
Affiliation(s)
- Federico Perozeni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
35
|
von der Heyde B, von der Heyde EL, Hallmann A. Cell Type-Specific Promoters of Volvox carteri for Molecular Cell Biology Studies. Genes (Basel) 2023; 14:1389. [PMID: 37510294 PMCID: PMC10379329 DOI: 10.3390/genes14071389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The multicellular green alga Volvox carteri has emerged as a valuable model organism for investigating various aspects of multicellularity and cellular differentiation, photoreception and phototaxis, cell division, biogenesis of the extracellular matrix and morphogenetic movements. While a range of molecular tools and bioinformatics resources have been made available for exploring these topics, the establishment of cell type-specific promoters in V. carteri has not been achieved so far. Therefore, here, we conducted a thorough screening of transcriptome data from RNA sequencing analyses of V. carteri in order to identify potential cell type-specific promoters. Eventually, we chose two putative strong and cell type-specific promoters, with one exhibiting specific expression in reproductive cells (gonidia), the PCY1 promoter, and the other in somatic cells, the PFP promoter. After cloning both promoter regions, they were introduced upstream of a luciferase reporter gene. By using particle bombardment, the DNA constructs were stably integrated into the genome of V. carteri. The results of the expression analyses, which were conducted at both the transcript and protein levels, demonstrated that the two promoters drive cell type-specific expression in their respective target cell types. Transformants with considerably diverse expression levels of the chimeric genes were identifiable. In conclusion, the screening and analysis of transcriptome data from RNA sequencing allowed for the identification of potential cell type-specific promoters in V. carteri. Reporter gene constructs demonstrated the actual usability of two promoters. The investigated PCY1 and PFP promoters were proven to be potent molecular tools for genetic engineering in V. carteri.
Collapse
Affiliation(s)
- Benjamin von der Heyde
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Eva Laura von der Heyde
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
36
|
Förster B, Rourke LM, Weerasooriya HN, Pabuayon ICM, Rolland V, Au EK, Bala S, Bajsa-Hirschel J, Kaines S, Kasili R, LaPlace L, Machingura MC, Massey B, Rosati VC, Stuart-Williams H, Badger MR, Price GD, Moroney JV. The Chlamydomonas reinhardtii chloroplast envelope protein LCIA transports bicarbonate in planta. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad116. [PMID: 36987927 DOI: 10.1093/jxb/erad116] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 06/19/2023]
Abstract
LCIA is a chloroplast envelope protein associated with the CO2 concentrating mechanism of the green alga Chlamydomonas reinhardtii. LCIA is postulated to be a HCO3- channel, but previous studies were unable to show that LCIA was actively transporting bicarbonate in planta. Therefore, LCIA activity was investigated more directly in two heterologous systems: an E. coli mutant (DCAKO) lacking both native carbonic anhydrases and an Arabidopsis mutant (βca5) missing the plastid carbonic anhydrase βCA5. Both DCAKO and βca5 cannot grow in ambient CO2 conditions, as they lack carbonic anhydrase-catalyzed production of the necessary HCO3- concentration for lipid and nucleic acid biosynthesis. Expression of LCIA restored growth in both systems in ambient CO2 conditions, which strongly suggests that LCIA is facilitating HCO3- uptake in each system. To our knowledge, this is the first direct evidence that LCIA moves HCO3- across membranes in bacteria and plants. Furthermore, the βca5 plant bioassay used in this study is the first system for testing HCO3- transport activity in planta, an experimental breakthrough that will be valuable for future studies aimed at improving the photosynthetic efficiency of crop plants using components from algal CO2 concentrating mechanisms.
Collapse
Affiliation(s)
- Britta Förster
- The Australian National University, Canberra, ACT 2600, Australia
| | - Loraine M Rourke
- The Australian National University, Canberra, ACT 2600, Australia
| | - Hiruni N Weerasooriya
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Isaiah C M Pabuayon
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Vivien Rolland
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Eng Kee Au
- The Australian National University, Canberra, ACT 2600, Australia
| | - Soumi Bala
- The Australian National University, Canberra, ACT 2600, Australia
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, United States Department of Agriculture, University, MS 38677, USA
| | - Sarah Kaines
- The Australian National University, Canberra, ACT 2600, Australia
| | - Remmy Kasili
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Lillian LaPlace
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Baxter Massey
- The Australian National University, Canberra, ACT 2600, Australia
| | - Viviana C Rosati
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York YO10 5DD, UK
| | | | - Murray R Badger
- The Australian National University, Canberra, ACT 2600, Australia
| | - G Dean Price
- The Australian National University, Canberra, ACT 2600, Australia
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
37
|
Payne ZL, Penny GM, Turner TN, Dutcher SK. A gap-free genome assembly of Chlamydomonas reinhardtii and detection of translocations induced by CRISPR-mediated mutagenesis. PLANT COMMUNICATIONS 2023; 4:100493. [PMID: 36397679 PMCID: PMC10030371 DOI: 10.1016/j.xplc.2022.100493] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 05/04/2023]
Abstract
Genomic assemblies of the unicellular green alga Chlamydomonas reinhardtii have provided important resources for researchers. However, assembly errors, large gaps, and unplaced scaffolds as well as strain-specific variants currently impede many types of analysis. By combining PacBio HiFi and Oxford Nanopore long-read technologies, we generated a de novo genome assembly for strain CC-5816, derived from crosses of strains CC-125 and CC-124. Multiple methods of evaluating genome completeness and base-pair error rate suggest that the final telomere-to-telomere assembly is highly accurate. The CC-5816 assembly enabled previously difficult analyses that include characterization of the 17 centromeres, rDNA arrays on three chromosomes, and 56 insertions of organellar DNA into the nuclear genome. Using Nanopore sequencing, we identified sites of cytosine (CpG) methylation, which are enriched at centromeres. We analyzed CRISPR-Cas9 insertional mutants in the PF23 gene. Two of the three alleles produced progeny that displayed patterns of meiotic inviability that suggested the presence of a chromosomal aberration. Mapping Nanopore reads from pf23-2 and pf23-3 onto the CC-5816 genome showed that these two strains each carry a translocation that was initiated at the PF23 gene locus on chromosome 11 and joined with chromosomes 5 or 3, respectively. The translocations were verified by demonstrating linkage between loci on the two translocated chromosomes in meiotic progeny. The three pf23 alleles display the expected short-cilia phenotype, and immunoblotting showed that pf23-2 lacks the PF23 protein. Our CC-5816 genome assembly will undoubtedly provide an important tool for the Chlamydomonas research community.
Collapse
Affiliation(s)
- Zachary L Payne
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Gervette M Penny
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tychele N Turner
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
38
|
Chan C, Salomé PA. What makes a good reference? First steps toward a Chlamydomonas pangenome. THE PLANT CELL 2023; 35:628-629. [PMID: 36503997 PMCID: PMC9940859 DOI: 10.1093/plcell/koac361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Ching Chan
- Author for correspondence: (C.C.), (P.A.S.)
| | | |
Collapse
|
39
|
López-Cortegano E, Craig RJ, Chebib J, Balogun EJ, Keightley PD. Rates and spectra of de novo structural mutations in Chlamydomonas reinhardtii. Genome Res 2023; 33:45-60. [PMID: 36617667 PMCID: PMC9977147 DOI: 10.1101/gr.276957.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Genetic variation originates from several types of spontaneous mutation, including single-nucleotide substitutions, short insertions and deletions (indels), and larger structural changes. Structural mutations (SMs) drive genome evolution and are thought to play major roles in evolutionary adaptation, speciation, and genetic disease, including cancers. Sequencing of mutation accumulation (MA) lines has provided estimates of rates and spectra of single-nucleotide and indel mutations in many species, yet the rate of new SMs is largely unknown. Here, we use long-read sequencing to determine the full mutation spectrum in MA lines derived from two strains (CC-1952 and CC-2931) of the green alga Chlamydomonas reinhardtii The SM rate is highly variable between strains and between MA lines, and SMs represent a substantial proportion of all mutations in both strains (CC-1952 6%; CC-2931 12%). The SM spectra differ considerably between the two strains, with almost all inversions and translocations occurring in CC-2931 MA lines. This variation is associated with heterogeneity in the number and type of active transposable elements (TEs), which comprise major proportions of SMs in both strains (CC-1952 22%; CC-2931 38%). In CC-2931, a Crypton and a previously undescribed type of DNA element have caused 71% of chromosomal rearrangements, whereas in CC-1952, a Dualen LINE is associated with 87% of duplications. Other SMs, notably large duplications in CC-2931, are likely products of various double-strand break repair pathways. Our results show that diverse types of SMs occur at substantial rates, and support prominent roles for SMs and TEs in evolution.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Rory J Craig
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720, USA
| | - Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Eniolaye J Balogun
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario ON M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga ON L5L 1C6, Canada
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|