1
|
Hao Q, Zhu X, Huang Y, Song J, Mou C, Zhang F, Miao R, Ma T, Wang P, Zhu Z, Chen C, Tong Q, Hu C, Chen Y, Dong H, Liu X, Jiang L, Wan J. E3 ligase DECREASED GRAIN SIZE 1 promotes degradation of a G-protein subunit and positively regulates grain size in rice. PLANT PHYSIOLOGY 2024; 196:948-960. [PMID: 38888990 DOI: 10.1093/plphys/kiae331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
Grain size is one of the most important traits determining crop yield. However, the mechanism controlling grain size remains unclear. Here, we confirmed the E3 ligase activity of DECREASED GRAIN SIZE 1 (DGS1) in positive regulation of grain size in rice (Oryza sativa) suggested in a previous study. Rice G-protein subunit gamma 2 (RGG2), which negatively regulates grain size, was identified as an interacting protein of DGS1. Biochemical analysis suggested that DGS1 specifically interacts with canonical Gγ subunits (rice G-protein subunit gamma 1 [RGG1] and rice G-protein subunit gamma 2 [RGG2]) rather than non-canonical Gγ subunits (DENSE AND ERECT PANICLE 1 [DEP1], rice G-protein gamma subunit type C 2 [GCC2], GRAIN SIZE 3 [GS3]). We also identified the necessary domains for interaction between DGS1 and RGG2. As an E3 ligase, DGS1 ubiquitinated and degraded RGG2 via a proteasome pathway in several experiments. DGS1 also ubiquitinated RGG2 by its K140, K145, and S147 residues. Thus, this work identified a substrate of the E3 ligase DGS1 and elucidated the post-transcriptional regulatory mechanism of the G-protein signaling pathway in the control of grain size.
Collapse
Affiliation(s)
- Qixian Hao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingjie Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunshuai Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiawei Song
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Changling Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Fulin Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Miao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengfei Ma
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyan Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Qikai Tong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
3
|
Yue Z, Wang Z, Yao Y, Liang Y, Li J, Yin K, Li R, Li Y, Ouyang Y, Xiong L, Hu H. Variation in WIDTH OF LEAF AND GRAIN contributes to grain and leaf size by controlling LARGE2 stability in rice. THE PLANT CELL 2024; 36:3201-3218. [PMID: 38701330 PMCID: PMC11371194 DOI: 10.1093/plcell/koae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Grain and flag leaf size are two important agronomic traits that influence grain yield in rice (Oryza sativa). Many quantitative trait loci (QTLs) and genes that regulate these traits individually have been identified, however, few QTLs and genes that simultaneously control these two traits have been identified. In this study, we conducted a genome-wide association analysis in rice and detected a major locus, WIDTH OF LEAF AND GRAIN (WLG), that was associated with both grain and flag leaf width. WLG encodes a RING-domain E3 ubiquitin ligase. WLGhap.B, which possesses five single nucleotide polymophysim (SNP) variations compared to WLGhap.A, encodes a protein with enhanced ubiquitination activity that confers increased rice leaf width and grain size, whereas mutation of WLG leads to narrower leaves and smaller grains. Both WLGhap.A and WLGhap.B interact with LARGE2, a HETC-type E3 ligase, however, WLGhap.B exhibits stronger interaction with LARGE2, thus higher ubiquitination activity toward LARGE2 compared with WLGhap.A. Lysine1021 is crucial for the ubiquitination of LARGE2 by WLG. Loss-of-function of LARGE2 in wlg-1 phenocopies large2-c in grain and leaf width, suggesting that WLG acts upstream of LARGE2. These findings reveal the genetic and molecular mechanism by which the WLG-LARGE2 module mediates grain and leaf size in rice and suggest the potential of WLGhap.B in improving rice yield.
Collapse
Affiliation(s)
- Zhichuang Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yilong Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanlin Liang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaili Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Isono E, Li J, Pulido P, Siao W, Spoel SH, Wang Z, Zhuang X, Trujillo M. Protein degrons and degradation: Exploring substrate recognition and pathway selection in plants. THE PLANT CELL 2024; 36:3074-3098. [PMID: 38701343 PMCID: PMC11371205 DOI: 10.1093/plcell/koae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Proteome composition is dynamic and influenced by many internal and external cues, including developmental signals, light availability, or environmental stresses. Protein degradation, in synergy with protein biosynthesis, allows cells to respond to various stimuli and adapt by reshaping the proteome. Protein degradation mediates the final and irreversible disassembly of proteins, which is important for protein quality control and to eliminate misfolded or damaged proteins, as well as entire organelles. Consequently, it contributes to cell resilience by buffering against protein or organellar damage caused by stresses. Moreover, protein degradation plays important roles in cell signaling, as well as transcriptional and translational events. The intricate task of recognizing specific proteins for degradation is achieved by specialized systems that are tailored to the substrate's physicochemical properties and subcellular localization. These systems recognize diverse substrate cues collectively referred to as "degrons," which can assume a range of configurations. They are molecular surfaces recognized by E3 ligases of the ubiquitin-proteasome system but can also be considered as general features recognized by other degradation systems, including autophagy or even organellar proteases. Here we provide an overview of the newest developments in the field, delving into the intricate processes of protein recognition and elucidating the pathways through which they are recruited for degradation.
Collapse
Affiliation(s)
- Erika Isono
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jianming Li
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Pablo Pulido
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Wei Siao
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zhishuo Wang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Marco Trujillo
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| |
Collapse
|
5
|
Yan Y, Wang H, Bi Y, Wang J, Li D, Song F. A distinct protein posttranslational modifications-linked OsATL32-OsPPKL2-OsGSK2 loop modulates rice immunity against blast disease. THE NEW PHYTOLOGIST 2024; 243:2332-2350. [PMID: 39056291 DOI: 10.1111/nph.19999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Protein posttranslational modifications play crucial roles in plant immunity through modulating a complicated signaling network mediated by different hormones. We previously demonstrated that OsATL32, an ATL-type E3 ligase, negatively contributes to rice immunity against Magnaporthe oryzae. Here, we show that OsATL32 forms a loop with OsPPKL2 and OsGSK2 through distinct protein posttranslational modifications to modulate rice immunity. OsATL32 ubiquitinates OsPPKL2, a protein phosphatase with Kelch-like repeat domains that exerts positive roles in regulating rice immunity against M. oryzae and chitin-triggered immune responses, for degradation. The glycogen synthase kinase 2 (OsGSK2), which acts as a negative regulator of rice immunity against M. oryzae and chitin-triggered immune responses, phosphorylates OsATL32 to elevate its protein stability and E3 ligase activity on OsPPKL2. Moreover, OsPPKL2 directly dephosphorylates OsGSK2, affecting its kinase activity on substrates including OsATL32 for phosphorylation. Like OsGSK2 as a BR signaling repressor, OsATL32 negatively regulates BR signaling; conversely, OsPPKL2 plays a positive role in BR signaling. These findings provide a molecular mechanism in which OsATL32 serves as a node connecting BR signaling and immunity by associating with OsPPKL2 and OsGSK2, assembling into a distinct protein posttranslational modifications-linked loop that functions in rice BR signaling and immunity.
Collapse
Affiliation(s)
- Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiajing Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
6
|
Wang X, Yan W, Real N, Jia Y, Fu Y, Zhang X, You H, Cai Y, Liu B. Metabolic, transcriptomic, and genetic analyses of candidate genes for seed size in watermelon. FRONTIERS IN PLANT SCIENCE 2024; 15:1394724. [PMID: 39081518 PMCID: PMC11286464 DOI: 10.3389/fpls.2024.1394724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Seed size (SS) constitutes a pivotal trait in watermelon breeding. In this study, we present findings from an examination of two watermelon accessions, namely, BW85 and F211. Seeds from BW85 exhibited a significant enlargement compared to those of F211 at 13 days after pollination (DAP), with the maximal disparity in seed length and width manifesting at 17 DAP. A comprehensive study involving both metabolic and transcriptomic analyses indicated a significant enrichment of the ubiquinone and other terpenoid-quinone biosynthesis KEGG pathways. To detect the genetic region governing seed size, a BSA-seq analysis was conducted utilizing the F2 (BW85 × F211) population, which resulted in the identification of two adjacent QTLs, namely, SS6.1 and SS6.2, located on chromosomes 6. SS6.1 spanned from Chr06:4847169 to Chr06:5163486, encompassing 33 genes, while SS6.2 ranged from Chr06:5379337 to Chr06:5419136, which included only one gene. Among these genes, 11 exhibited a significant differential expression between BW85 and F211 according to transcriptomic analysis. Notably, three genes (Cla97C06G113960, Cla97C06G114180, and Cla97C06G114000) presented a differential expression at both 13 and 17 DAP. Through annotation, Cla97C06G113960 was identified as a ubiquitin-conjugating enzyme E2, playing a role in the ubiquitin pathway that mediates seed size control. Taken together, our results provide a novel candidate gene influencing the seed size in watermelon, shedding light on the mechanism underlying seed development.
Collapse
Affiliation(s)
- Xiqing Wang
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Center for Research in Vegetable Engineering Technology of Heilongjiang, Harbin, China
| | - Wen Yan
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Center for Research in Vegetable Engineering Technology of Heilongjiang, Harbin, China
| | - Núria Real
- Plant Pathology, IRTA Cabrils, Cabrils, Spain
| | - Yunhe Jia
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Center for Research in Vegetable Engineering Technology of Heilongjiang, Harbin, China
| | - Yongkai Fu
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Center for Research in Vegetable Engineering Technology of Heilongjiang, Harbin, China
| | - Xuejun Zhang
- Hainan Sanya Crops Breeding Trial Center of Xinjiang Academy Agricultural Sciences, Sanya, China
| | - Haibo You
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Center for Research in Vegetable Engineering Technology of Heilongjiang, Harbin, China
| | - Yi Cai
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Center for Research in Vegetable Engineering Technology of Heilongjiang, Harbin, China
| | - Bin Liu
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
7
|
Boccaccini A, Cimini S, Kazmi H, Lepri A, Longo C, Lorrai R, Vittorioso P. When Size Matters: New Insights on How Seed Size Can Contribute to the Early Stages of Plant Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1793. [PMID: 38999633 PMCID: PMC11244240 DOI: 10.3390/plants13131793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
The seed habit is the most complex and successful method of sexual reproduction in vascular plants. It represents a remarkable moment in the evolution of plants that afterward spread on land. In particular, seed size had a pivotal role in evolutionary success and agronomic traits, especially in the field of crop domestication. Given that crop seeds constitute one of the primary products for consumption, it follows that seed size represents a fundamental determinant of crop yield. This adaptative feature is strictly controlled by genetic traits from both maternal and zygotic tissues, although seed development and growth are also affected by environmental cues. Despite being a highly exploited topic for both basic and applied research, there are still many issues to be elucidated for developmental biology as well as for agronomic science. This review addresses a number of open questions related to cues that influence seed growth and size and how they influence seed germination. Moreover, new insights on the genetic-molecular control of this adaptive trait are presented.
Collapse
Affiliation(s)
- Alessandra Boccaccini
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, via Álvaro del Portillo, 21, 00128 Rome, Italy; (A.B.); (S.C.)
| | - Sara Cimini
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, via Álvaro del Portillo, 21, 00128 Rome, Italy; (A.B.); (S.C.)
| | - Hira Kazmi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Andrea Lepri
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Chiara Longo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Riccardo Lorrai
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Paola Vittorioso
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| |
Collapse
|
8
|
Ma Z, Miao J, Yu J, Pan Y, Li D, Xu P, Sun X, Li J, Zhang H, Li Z, Zhang Z. The wall-associated kinase GWN1 controls grain weight and grain number in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:150. [PMID: 38847846 DOI: 10.1007/s00122-024-04658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/25/2024] [Indexed: 07/16/2024]
Abstract
Grain size is a crucial agronomic trait that determines grain weight and final yield. Although several genes have been reported to regulate grain size in rice (Oryza sativa), the function of Wall-Associated Kinase family genes affecting grain size is still largely unknown. In this study, we identified GRAIN WEIGHT AND NUMBER 1 (GWN1) using map-based cloning. GWN1 encodes the OsWAK74 protein kinase, which is conserved in plants. GWN1 negatively regulates grain length and weight by regulating cell proliferation in spikelet hulls. We also found that GWN1 negatively influenced grain number by influencing secondary branch numbers and finally increased plant grain yield. The GWN1 gene was highly expressed in inflorescences and its encoded protein is located at the cell membrane and cell wall. Moreover, we identified three haplotypes of GWN1 in the germplasm. GWN1hap1 showing longer grain, has not been widely utilized in modern rice varieties. In summary, GWN1 played a very important role in regulating grain length, weight and number, thereby exhibiting application potential in molecular breeding for longer grain and higher yield.
Collapse
Affiliation(s)
- Zhiqi Ma
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinli Miao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jianping Yu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Xingming Sun
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinjie Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hongliang Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya, Hainan, China.
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
9
|
Bai C, Wang GJ, Feng XH, Gao Q, Wang WQ, Xu R, Guo SJ, Shen SY, Ma M, Lin WH, Liu CM, Li Y, Song XJ. OsMAPK6 phosphorylation and CLG1 ubiquitylation of GW6a non-additively enhance rice grain size through stabilization of the substrate. Nat Commun 2024; 15:4300. [PMID: 38773134 PMCID: PMC11109111 DOI: 10.1038/s41467-024-48786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
The chromatin modifier GRAIN WEIGHT 6a (GW6a) enhances rice grain size and yield. However, little is known about its gene network determining grain size. Here, we report that MITOGEN-ACTIVED PROTEIN KINASE 6 (OsMAPK6) and E3 ligase CHANG LI GENG 1 (CLG1) interact with and target GW6a for phosphorylation and ubiquitylation, respectively. Unexpectedly, however, in vitro and in vivo assays reveal that both of the two post-translational modifications stabilize GW6a. Furthermore, we uncover two major GW6a phosphorylation sites (serine142 and threonine186) targeted by OsMAPK6 serving an important role in modulating grain size. In addition, our genetic and molecular results suggest that the OsMAPK6-GW6a and CLG1-GW6a axes are crucial and operate in a non-additive manner to control grain size. Overall, our findings identify a previously unknown mechanism by which phosphorylation and ubiquitylation non-additively stabilize GW6a to enhance grain size, and reveal correlations and interactions of these posttranslational modifications during rice grain development.
Collapse
Affiliation(s)
- Chen Bai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gao-Jie Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hui Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong Gao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Ran Xu
- Sanya Nanfan Research, Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops Hainan University, Hainan University, Haikou, 570288, China
| | - Su-Jie Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shao-Yan Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Hui Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunhai Li
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian-Jun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Huang J, Zhou Z, Wang Y, Yang J, Wang X, Tang Y, Xu R, Li Y, Wu L. SMS2, a Novel Allele of OsINV3, Regulates Grain Size in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:1219. [PMID: 38732433 PMCID: PMC11085151 DOI: 10.3390/plants13091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Grain size has an important effect on rice yield. Although several key genes that regulate seed size have been reported in rice, their molecular mechanisms remain unclear. In this study, a rice small grain size 2 (sms2) mutant was identified, and MutMap resequencing analysis results showed that a 2 bp insertion in the second exon of the LOC_Os02g01590 gene resulted in a grain length and width lower than those of the wild-type Teqing (TQ). We found that SMS2 encoded vacuolar acid invertase, a novel allele of OsINV3, which regulates grain size. GO and KEGG enrichment analyses showed that SMS2 was involved in endoplasmic reticulum protein synthesis, cysteine and methionine metabolism, and propionic acid metabolism, thereby regulating grain size. An analysis of sugar content in young panicles showed that SMS2 reduced sucrose, fructose, and starch contents, thus regulating grain size. A haplotype analysis showed that Hap2 of SMS2 had a longer grain and was widely present in indica rice varieties. Our results provide a new theoretical basis for the molecular and physiological mechanisms by which SMS2 regulates grain size.
Collapse
Affiliation(s)
- Jianzhi Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China (R.X.)
| | - Zelong Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China (R.X.)
| | - Ying Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China (R.X.)
| | - Jing Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China (R.X.)
| | - Xinyue Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China (R.X.)
| | - Yijun Tang
- Department of Resources and Environment, Zunyi Normal College, Ping An Avenue, Xinpu New District, Zunyi 563006, China
| | - Ran Xu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China (R.X.)
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Lian Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China (R.X.)
| |
Collapse
|
11
|
Gao W, Zhang L, Zhang Y, Zhang P, Shahinnia F, Chen T, Yang D. Genome‑wide identification and expression analysis of the UBC gene family in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2024; 24:341. [PMID: 38671351 PMCID: PMC11047035 DOI: 10.1186/s12870-024-05042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Ubiquitination is an important regulatory step of selective protein degradation in the plant UPS (ubiquitin-proteasome system), which is involved in various biological processes in eukaryotes. Ubiquitin-conjugating enzymes play an intermediate role in the process of protein ubiquitination reactions and thus play an essential role in regulating plant growth and response to adverse environmental conditions. However, a genome-wide analysis of the UBC gene family in wheat (Triticum aestivum L.) has not yet been performed. RESULTS In this study, the number, physiochemical properties, gene structure, collinearity, and phylogenetic relationships of TaUBC family members in wheat were analyzed using bioinformatics methods. The expression pattern of TaUBC genes in different tissues/organs and developmental periods, as well as the transcript levels under abiotic stress treatment, were analyzed using RNA-Seq data and qRT-PCR. Meanwhile, favorable haplotypes of TaUBC25 were investigated based on wheat resequencing data of 681 wheat cultivars from the Wheat Union Database. The analyses identified a total of 93 TaUBC family members containing a UBC domain in wheat genome. These genes were unevenly distributed across 21 chromosomes, and numerous duplication events were observed between gene members. Based on phylogenetic analysis, the TaUBC family was divided into 13 E2 groups and a separate UEV group. We investigated the expression of TaUBC family genes under different tissue/organ and stress conditions by quantitative real-time PCR (qRT-PCR) analysis. The results showed that some TaUBC genes were specifically expressed in certain tissues/organs and that most TaUBC genes responded to NaCl, PEG6000, and ABA treatment with different levels of expression. In addition, we performed association analysis for the two haplotypes based on key agronomic traits such as thousand-kernel weight (TKW), kernel length (KL), kernel weight (KW), and kernel thickness (KT), examining 122 wheat accessions at three environmental sites. The results showed that TaUBC25-Hap II had significantly higher TKW, KL, KW, and KT than TaUBC25-Hap I. The distribution analysis of haplotypes showed that TaUBC25-Hap II was preferred in the natural population of wheat. CONCLUSION Our results identified 93 members of the TaUBC family in wheat, and several genes involved in grain development and abiotic stress response. Based on the SNPs detected in the TaUBC sequence, two haplotypes, TaUBC25-Hap I and TaUBC25-Hap II, were identified among wheat cultivars, and their potential value for wheat breeding was validated by association analysis. The above results provide a theoretical basis for elucidating the evolutionary relationships of the TaUBC gene family and lay the foundation for studying the functions of family members in the future.
Collapse
Affiliation(s)
- Weidong Gao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Long Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanyan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fahimeh Shahinnia
- Bioanalytics Gatersleben, Am Schwabenplan 1b, Seeland, 06466, Germany
| | - Tao Chen
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
12
|
Wen Y, Hu P, Fang Y, Tan Y, Wang Y, Wu H, Wang J, Wu K, Chai B, Zhu L, Zhang G, Gao Z, Ren D, Zeng D, Shen L, Dong G, Zhang Q, Li Q, Xiong G, Xue D, Qian Q, Hu J. GW9 determines grain size and floral organ identity in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:915-928. [PMID: 37983630 PMCID: PMC10955487 DOI: 10.1111/pbi.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/22/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
Grain weight is an important determinant of grain yield. However, the underlying regulatory mechanisms for grain size remain to be fully elucidated. Here, we identify a rice mutant grain weight 9 (gw9), which exhibits larger and heavier grains due to excessive cell proliferation and expansion in spikelet hull. GW9 encodes a nucleus-localized protein containing both C2H2 zinc finger (C2H2-ZnF) and VRN2-EMF2-FIS2-SUZ12 (VEFS) domains, serving as a negative regulator of grain size and weight. Interestingly, the non-frameshift mutations in C2H2-ZnF domain result in increased plant height and larger grain size, whereas frameshift mutations in both C2H2-ZnF and VEFS domains lead to dwarf and malformed spikelet. These observations indicated the dual functions of GW9 in regulating grain size and floral organ identity through the C2H2-ZnF and VEFS domains, respectively. Further investigation revealed the interaction between GW9 and the E3 ubiquitin ligase protein GW2, with GW9 being the target of ubiquitination by GW2. Genetic analyses suggest that GW9 and GW2 function in a coordinated pathway controlling grain size and weight. Our findings provide a novel insight into the functional role of GW9 in the regulation of grain size and weight, offering potential molecular strategies for improving rice yield.
Collapse
Affiliation(s)
- Yi Wen
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Peng Hu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Yunxia Fang
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Yiqing Tan
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
- Plant Phenomics Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yueying Wang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Hao Wu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Junge Wang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Kaixiong Wu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Bingze Chai
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Li Zhu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Deyong Ren
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Dali Zeng
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Lan Shen
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Guojun Dong
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Qiang Zhang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Qing Li
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Guosheng Xiong
- Plant Phenomics Research CenterNanjing Agricultural UniversityNanjingChina
| | - Dawei Xue
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Qian Qian
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Jiang Hu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| |
Collapse
|
13
|
Wang Y, Zheng C, Peng YL, Chen Q. DGS1 improves rice disease resistance by elevating pathogen-associated molecular pattern-triggered immunity. ABIOTECH 2024; 5:46-51. [PMID: 38576430 PMCID: PMC10987426 DOI: 10.1007/s42994-024-00137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/10/2024] [Indexed: 04/06/2024]
Abstract
Rice yield and disease resistance are two crucial factors in determining the suitability of a gene for agricultural breeding. Decreased grain size1 (DGS1), encoding an RING-type E3 ligase, has been found to have a positive effect on rice yield by regulating rice grain number and 1000-grain weight. However, the role of DGS1 in rice blast resistance is still unknown. In this study, we report that DGS1 enhances disease resistance by improving PTI responses, including stronger ROS burst and MAPK activation, and also increased expression of defense-related genes. Furthermore, DGS1 works in conjunction with ubiquitin conjugating enzyme OsUBC45 as an E2-E3 pair to facilitate the ubiquitin-dependent degradation of OsGSK3 and OsPIP2;1, thereby influencing rice yield and immunity, respectively. Therefore, the DGS1-OsUBC45 module has the potential in facilitating rice agricultural breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00137-9.
Collapse
Affiliation(s)
- Yu Wang
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193 China
| | - Chuan Zheng
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193 China
| | - You-liang Peng
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193 China
| | - Qian Chen
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
14
|
Yu F, Xie Q. ER-associated ubiquitin-conjugating enzyme: a key regulator of grain yield and stress resistance in crops. TRENDS IN PLANT SCIENCE 2024; 29:286-289. [PMID: 38160067 DOI: 10.1016/j.tplants.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Recent research reveals the critical roles of endoplasmic reticulum (ER)-associated protein degradation (ERAD)-related ubiquitin-conjugating enzyme AtUBC32 orthologs and their partnering E3 ligases, which play dual roles in enhancing both crop yield and stress resistance. These findings open avenues for breeding high-yield, stress-tolerant crops and inspire further exploration of the ERAD pathway in agricultural innovation.
Collapse
Affiliation(s)
- Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China.
| | - Qi Xie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, National Center of Technology Innovation for Maize, Syngenta Group China, Beijing 102206, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Yang Y, Chu C, Qian Q, Tong H. Leveraging brassinosteroids towards the next Green Revolution. TRENDS IN PLANT SCIENCE 2024; 29:86-98. [PMID: 37805340 DOI: 10.1016/j.tplants.2023.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
The use of gibberellin-related dwarfing genes significantly increased grain yield during the Green Revolution. Brassinosteroids (BRs) play a vital role in regulating agronomic traits and stress resistance. The potential of BR-related genes in crop improvement has been well demonstrated, positioning BRs as crucial targets for the next agricultural biotechnological revolution. However, BRs exert pleiotropic effects on plants, and thus present both opportunities and challenges for their application. Recent research suggests promising strategies for leveraging BR regulatory molecules for crop improvement, such as exploring function-specific genes, identifying beneficial alleles, inducing favorable mutations, and optimizing spatial hormone distribution. Advancing our understanding of the roles of BRs in plants is imperative to implement these strategies effectively.
Collapse
Affiliation(s)
- Yanzhao Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qian Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongning Tong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
16
|
Wang Y, Yue J, Yang N, Zheng C, Zheng Y, Wu X, Yang J, Zhang H, Liu L, Ning Y, Bhadauria V, Zhao W, Xie Q, Peng YL, Chen Q. An ERAD-related ubiquitin-conjugating enzyme boosts broad-spectrum disease resistance and yield in rice. NATURE FOOD 2023; 4:774-787. [PMID: 37591962 DOI: 10.1038/s43016-023-00820-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
Rice is a staple crop for over half of the global population. However, blast disease caused by Magnaporthe orzae can result in more than a 30% loss in rice yield in epidemic years. Although some major resistance genes bolstering blast resistance have been identified in rice, their stacking in elite cultivars usually leads to yield penalties. Here we report that OsUBC45, a ubiquitin-conjugating enzyme functioning in the endoplasmic reticulum-associated protein degradation system, promotes broad-spectrum disease resistance and yield in rice. OsUBC45 is induced upon infection by M. oryzae, and its overexpression enhances resistance to blast disease and bacterial leaf blight by elevating pathogen-associated molecular pattern-triggered immunity (PTI) while nullifying the gene-attenuated PTI. The OsUBC45 overexpression also increases grain yield by over 10%. Further, OsUBC45 enhances the degradation of glycogen synthase kinase 3 OsGSK3 and aquaporin OsPIP2;1, which negatively regulate the grain size and PTI, respectively. The OsUBC45 reported in our study has the potential for improving yield and disease resistance for sustainable rice production.
Collapse
Affiliation(s)
- Yu Wang
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Jiaolin Yue
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Nan Yang
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Chuan Zheng
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Yunna Zheng
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Xi Wu
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Jun Yang
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Huawei Zhang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Lijing Liu
- School of Life Sciences, Shandong University, Qingdao, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Vijai Bhadauria
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Wensheng Zhao
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - You-Liang Peng
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
| | - Qian Chen
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
| |
Collapse
|
17
|
Tong H, Chu C. Coordinating gibberellin and brassinosteroid signaling beyond Green Revolution. J Genet Genomics 2023; 50:459-461. [PMID: 37121378 DOI: 10.1016/j.jgg.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
18
|
Tang H, Dong H, Guo X, Cheng M, Li M, Chen Q, Yuan Z, Pu Z, Wang J. Identification of candidate gene for the defective kernel phenotype using bulked segregant RNA and exome capture sequencing methods in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1173861. [PMID: 37342127 PMCID: PMC10277647 DOI: 10.3389/fpls.2023.1173861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/03/2023] [Indexed: 06/22/2023]
Abstract
Wheat is a significant source of protein and starch worldwide. The defective kernel (Dek) mutant AK-3537, displaying a large hollow area in the endosperm and shrunken grain, was obtained through ethyl methane sulfonate (EMS) treatment of the wheat cultivar Aikang 58 (AK58). The mode of inheritance of the AK-3537 grain Dek phenotype was determined to be recessive with a specific statistical significance level. We used bulked segregant RNA-seq (BSR-seq), BSA-based exome capture sequencing (BSE-seq), and the ΔSNP-index algorithm to identify candidate regions for the grain Dek phenotype. Two major candidate regions, DCR1 (Dek candidate region 1) and DCR2, were identified on chromosome 7A between 279.98 and 287.93 Mb and 565.34 and 568.59 Mb, respectively. Based on transcriptome analysis and previous reports, we designed KASP genotyping assays based on SNP variations in the candidate regions and speculated that the candidate gene is TraesCS7A03G0625900 (HMGS-7A), which encodes a 3-hydroxy-3-methylglutaryl-CoA synthase. One SNP variation located at position 1,049 in the coding sequence (G>A) causes an amino acid change from Gly to Asp. The research suggests that functional changes in HMGS-7A may affect the expression of key enzyme genes involved in wheat starch syntheses, such as GBSSII and SSIIIa.
Collapse
Affiliation(s)
- Hao Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Huixue Dong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xiaojiang Guo
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Mengping Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Maolian Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qian Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhongwei Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhien Pu
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
19
|
Tang S, Zhao Z, Liu X, Sui Y, Zhang D, Zhi H, Gao Y, Zhang H, Zhang L, Wang Y, Zhao M, Li D, Wang K, He Q, Zhang R, Zhang W, Jia G, Tang W, Ye X, Wu C, Diao X. An E2-E3 pair contributes to seed size control in grain crops. Nat Commun 2023; 14:3091. [PMID: 37248257 DOI: 10.1038/s41467-023-38812-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Understanding the molecular mechanisms that regulate grain yield is important for improving agricultural productivity. Protein ubiquitination controls various aspects of plant growth but lacks understanding on how E2-E3 enzyme pairs impact grain yield in major crops. Here, we identified a RING-type E3 ligase SGD1 and its E2 partner SiUBC32 responsible for grain yield control in Setaria italica. The conserved role of SGD1 was observed in wheat, maize, and rice. Furthermore, SGD1 ubiquitinates the brassinosteroid receptor BRI1, stabilizing it and promoting plant growth. Overexpression of an elite SGD1 haplotype improved grain yield by about 12.8% per plant, and promote complex biological processes such as protein processing in endoplasmic reticulum, stress responses, photosystem stabilization, and nitrogen metabolism. Our research not only identifies the SiUBC32-SGD1-BRI1 genetic module that contributes to grain yield improvement but also provides a strategy for exploring key genes controlling important traits in Poaceae crops using the Setaria model system.
Collapse
Affiliation(s)
- Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiying Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaotong Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural, Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dandan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanzhu Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Linlin Zhang
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yannan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meicheng Zhao
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural, Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Dongdong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Renliang Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenqiang Tang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuanyin Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
20
|
Herrera-Ubaldo H. Quality check: ER-associated protein degradation and the control of grain size in rice. THE PLANT CELL 2023; 35:967-968. [PMID: 36651123 PMCID: PMC10015153 DOI: 10.1093/plcell/koad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
|