1
|
Hao F, Cui Z, Dong X, Gao Y, Wang R, Zhang H, Lin G. Exogenous Calcium Enhances Castor Tolerance to Saline-Alkaline Stress by Regulating Antioxidant Enzyme Activity and Activating Ca 2+ and ROS Signaling Crosstalk. Int J Mol Sci 2024; 25:12717. [PMID: 39684428 DOI: 10.3390/ijms252312717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Saline-alkaline stress is a major factor limiting agricultural development, with calcium (Ca2+) playing a role in regulating plant tolerance through multiple signaling pathways. However, the specific mechanisms by which Ca2+ mediates saline-alkaline stress tolerance at the molecular level remain incompletely understood. This study investigates the effects of exogenous Ca2+ application on enhancing plant tolerance to saline-alkaline stress, focusing on its impact on the antioxidant system and Ca2+ and reactive oxygen species (ROS) signaling pathways. Through physiological assays and transcriptomic analyses, we evaluated oxidative damage markers, antioxidant enzyme activities, and the expression of key Ca2+ and ROS signaling genes. The results showed that saline-alkaline stress significantly elevated ROS levels, which led to increased membrane lipid peroxidation and induced upregulation of antioxidant response elements in castor roots. Exogenous calcium treatment reduced ROS accumulation by increasing superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and decreasing malondialdehyde (MDA) levels, demonstrating a marked improvement in the antioxidant system. Transcriptomic analysis identified CAT2 (LOC107261240) as the primary target gene associated with increased CAT activity in response to exogenous calcium. Additionally, the upregulation of specific Ca2+ channels, Ca2+ sensors, ROS receptors, and antioxidant-related genes with calcium treatment highlights the critical role of Ca2+-ROS signaling crosstalk in enhancing stress tolerance. Protein-protein interaction analysis identified APX3 and other hub genes involved in Ca2+-ROS signaling transduction and the regulation of antioxidant activity. These findings enhance our understanding of calcium's complex regulatory roles in plant abiotic stress responses, offering new theoretical insights for improving crop resilience in agriculture.
Collapse
Affiliation(s)
- Fei Hao
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhigang Cui
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Xuan Dong
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University of Sichuan Province, Xichang 615000, China
| | - Yan Gao
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Rongjin Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Hui Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Guolin Lin
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
2
|
Qi W, Jiang Z, Long X, Liu Y, Fang Y, Egodauyana UT, Chen X, Liu S, Wu Y, Huang X. The metabolic network response and tolerance mechanism of Thalassia hemprichii under high sulfide based on widely targeted metabolome and transcriptome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175702. [PMID: 39179040 DOI: 10.1016/j.scitotenv.2024.175702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Costal eutrophication leads to increased sulfide levels in sediments, which has been identified as a major cause of the global decline in seagrass beds. The seagrass Thalassia hemprichii, a dominant tropical species in the Indo-Pacific, is facing a potential threat from sulfide, which can be easily reduced from sulfate in porewater under the influence of global climate change and eutrophication. However, its metabolic response and tolerance mechanisms to high sulfide remain unclear. Thus, the current study investigated the physiological responses and programmed metabolic networks of T. hemprichii through a three-week mesocosm experiment, integrating physiology, stable isotope, widely targeted metabolomics, transcriptomics, and microbial diversity assessments. High sulfide reduced the sediment microbial diversity, while increased sediment sulfate reduced bacterial abundance and δ34S. The exposure to sulfide enhanced root δ34S while decreased leaf δ34S in T. hemprichii. High sulfide was shown to inhibit photosynthesis via damaging PSII, which further reduced ATP production. In response, abundant up-regulated differentially expressed genes in energy metabolism, especially in oxidative phosphorylation, were activated to compensate high energy requirement. High sulfide also promoted autophagy by overexpressing the genes related to phagocytosis and phagolysosome. Meanwhile, metabolomic profiling revealed that the contents of many primary metabolites, such as carbohydrates and amino acids, were reduced in both leaves and roots, likely to provide more energy and synthesize stress-responsive secondary metabolites. Genes related to nitrate reduction and transportation were up-regulated to promote N uptake for sulfide detoxification. High sulfide levels specifically enhanced thiamine in roots, while increased jasmonic acid and flavonoid levels in leaves. The distinct differences in metabolism between roots and leaves might be related to sulfide levels and the growth-defense trade-off. Collectively, our work highlights the specific mechanisms underlying the response and tolerance of T. hemprichii to high sulfide, providing new insights into seagrass strategies for resisting sulfide.
Collapse
Affiliation(s)
- Wenqian Qi
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China.
| | - Xu Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijun Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Uditha Thejan Egodauyana
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China.
| |
Collapse
|
3
|
Martins TDS, Da-Silva CJ, Shimoia EP, Posso DA, Carvalho IR, Barneche de Oliveira AC, Amarante LD. Short-term reoxygenation is not enough for the recovery of soybean plants exposed to saline waterlogging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109221. [PMID: 39447242 DOI: 10.1016/j.plaphy.2024.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/08/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
The ability of plants to recover after stressful events is crucial for resuming growth and development and is a key trait when studying stress tolerance. However, there is a lack of information on the physiological responses and the time required to restore homeostasis after the stress experience. This study aimed to (i) enhance understanding of soybean photosynthesis performance during saline waterlogging and (ii) investigate the effects of this combined stress during the reoxygenation and recovery period. Soybean plants (cultivar PELBR10-6049 RR) were subjected to waterlogging, NaCl, or hypoxia + NaCl for 3 and 6 days. Afterward, plants were drained and allowed to recover for an additional two (short-term) and seven days (long-term). Compared to plants exposed to single stress, the combined hypoxia + NaCl treatment resulted in a lower net CO2 assimilation rate, ФPSII, and levels of photosynthetic pigments during the waterlogging period. Furthermore, hypoxia + NaCl increased foliar electrolyte leakage during waterlogging. In response to short-term reoxygenation, these negative effects were amplified, while prolonged reoxygenation resulted in a slight increase in biomass accumulation. In conclusion, full recovery was not achieved under any condition during the reoxygenation periods tested. Notably, the brief reoxygenation phase imposed greater stress than the initial stress conditions for plants facing combined stress. Although extended recovery increased biomass accumulation, it remained lower in plants previously subjected to saline waterlogging.
Collapse
Affiliation(s)
- Tamires da Silva Martins
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, 96160-000, Brazil; Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Cristiane Jovelina Da-Silva
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, 96160-000, Brazil; Department of Horticultural Science, North Carolina State University, Raleigh, 27607, USA.
| | | | - Douglas Antônio Posso
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, 96160-000, Brazil
| | - Ivan Ricardo Carvalho
- Departamento de Estudos Agrários, Universidade Regional Do Noroeste Do Estado Do Rio Grande Do Sul, Ijuí, 98700-000, Brazil
| | | | - Luciano do Amarante
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, 96160-000, Brazil
| |
Collapse
|
4
|
Zhang H, Luo Y, Wang Y, Zhao J, Wang Y, Li Y, Pu Y, Wang X, Ren X, Zhao B. Genome-Wide Identification and Characterization of Alternative Oxidase ( AOX) Genes in Foxtail Millet ( Setaria italica): Insights into Their Abiotic Stress Response. PLANTS (BASEL, SWITZERLAND) 2024; 13:2565. [PMID: 39339540 PMCID: PMC11434880 DOI: 10.3390/plants13182565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Alternative oxidase (AOX) serves as a critical terminal oxidase within the plant respiratory pathway, playing a significant role in cellular responses to various stresses. Foxtail millet (Setaria italica), a crop extensively cultivated across Asia, is renowned for its remarkable tolerance to abiotic stresses and minimal requirement for fertilizer. In this study, we conducted a comprehensive genome-wide identification of AOX genes in foxtail millet genome, discovering a total of five SiAOX genes. Phylogenetic analysis categorized these SiAOX members into two subgroups. Prediction of cis-elements within the promoter regions, coupled with co-expression network analysis, intimated that SiAOX proteins are likely involved in the plant's adaptive response to abiotic stresses. Employing RNA sequencing (RNA-seq) and real-time quantitative PCR (RT-qPCR), we scrutinized the expression patterns of the SiAOX genes across a variety of tissues and under multiple abiotic stress conditions. Specifically, our analysis uncovered that SiAOX1, SiAOX2, SiAOX4, and SiAOX5 display distinct tissue-specific expression profiles. Furthermore, SiAOX2, SiAOX3, SiAOX4, and SiAOX5 exhibit responsive expression patterns under abiotic stress conditions, with significant differences in expression levels observed between the shoot and root tissues of foxtail millet seedlings. Haplotype analysis of SiAOX4 and SiAOX5 revealed that these genes are in linkage disequilibrium, with Hap_2 being the superior haplotype for both, potentially conferring enhanced cold stress tolerance in the cultivar group. These findings suggest that both SiAOX4 and SiAOX5 may be targeted for selection in future breeding programs aimed at improving foxtail millet's resilience to cold stress.
Collapse
Affiliation(s)
- Hui Zhang
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yidan Luo
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yujing Wang
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Juan Zhao
- Department of Basic Sciences, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yueyue Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yajun Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yihao Pu
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xingchun Wang
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xuemei Ren
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Bo Zhao
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
5
|
Liu B, Zhang Z, Peng J, Mou H, Wang Z, Dao Y, Liu T, Kong D, Liu S, Xiong Y, Xiong Y, Zhao J, Dong Z, Chen Y, Ma X. Exploring Evolutionary Pathways and Abiotic Stress Responses through Genome-Wide Identification and Analysis of the Alternative Oxidase (AOX) Gene Family in Common Oat ( Avena sativa). Int J Mol Sci 2024; 25:9383. [PMID: 39273329 PMCID: PMC11395127 DOI: 10.3390/ijms25179383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The alternative oxidase (AOX), a common terminal oxidase in the electron transfer chain (ETC) of plants, plays a crucial role in stress resilience and plant growth and development. Oat (Avena sativa), an important crop with high nutritional value, has not been comprehensively studied regarding the AsAOX gene family. Therefore, this study explored the responses and potential functions of the AsAOX gene family to various abiotic stresses and their potential evolutionary pathways. Additionally, we conducted a genome-wide analysis to explore the evolutionary conservation and divergence of AOX gene families among three Avena species (Avena sativa, Avena insularis, Avena longiglumis) and four Poaceae species (Avena sativa, Oryza sativa, Triticum aestivum, and Brachypodium distachyon). We identified 12 AsAOX, 9 AiAOX, and 4 AlAOX gene family members. Phylogenetic, motif, domain, gene structure, and selective pressure analyses revealed that most AsAOXs, AiAOXs, and AlAOXs are evolutionarily conserved. We also identified 16 AsAOX segmental duplication pairs, suggesting that segmental duplication may have contributed to the expansion of the AsAOX gene family, potentially preserving these genes through subfunctionalization. Chromosome polyploidization, gene structural variations, and gene fragment recombination likely contributed to the evolution and expansion of the AsAOX gene family as well. Additionally, we hypothesize that AsAOX2 may have potential function in resisting wounding and heat stresses, while AsAOX4 could be specifically involved in mitigating wounding stress. AsAOX11 might contribute to resistance against chromium and waterlogging stresses. AsAOX8 may have potential fuction in mitigating ABA-mediated stress. AsAOX12 and AsAOX5 are most likely to have potential function in mitigating salt and drought stresses, respectively. This study elucidates the potential evolutionary pathways of the AsAOXs gene family, explores their responses and potential functions to various abiotic stresses, identifies potential candidate genes for future functional studies, and facilitates molecular breeding applications in A. sativa.
Collapse
Affiliation(s)
- Boyang Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zecheng Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinghan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Haipeng Mou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhaoting Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixin Dao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dandan Kong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhixiao Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Youjun Chen
- College of Grassland Resources, Southwest Minzu University, Chengdu 610041, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Upadhyay-Tiwari N, Huang XJ, Lee YC, Singh SK, Hsu CC, Huang SS, Verslues PE. The nonphototrophic hypocotyl 3 (NPH3) domain protein NRL5 is a trafficking-associated GTPase essential for drought resistance. SCIENCE ADVANCES 2024; 10:eado5429. [PMID: 39121213 PMCID: PMC11313873 DOI: 10.1126/sciadv.ado5429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/02/2024] [Indexed: 08/11/2024]
Abstract
The mechanisms of plant drought resistance are unclear but may involve membrane trafficking and metabolic reprogramming, including proline accumulation. Forward genetic screening using a proline dehydrogenase 1 (ProDH1) promoter:reporter identified a drought hypersensitive mutant with a single-amino acid substitution (P335L) in the nonphototrophic hypocotyl 3 (NPH3) domain of NPH3/root phototropism 2-like 5 (NRL5)/naked pins in Yucca 8 (NPY8). Further experiments found that NRL5 and other NPH3 domain proteins are guanosine triphosphatases (GTPases). NRL5, but not NRL5P335L, interacted with the RABE1c and RABH1b GTPases and the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Vesicle-Associated Membrane Protein (VAMP)721/722. These proteins controlled NRL5 localization and connection to trafficking while also being genetically downstream of, and potentially regulated by, NRL5. These data demonstrate that NRL5-mediated restraint of proline catabolism is required for drought resistance and also reveal unexpected functions of the NPH3 domain such that the role of NPH3 domain proteins in signaling, trafficking, and cellular polarity can be critically reevaluated.
Collapse
Affiliation(s)
| | - Xin-Jie Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | - Shih-Shan Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
7
|
Liu W, Wei JW, Shan Q, Liu M, Xu J, Gong B. Genetic engineering of drought- and salt-tolerant tomato via Δ1-pyrroline-5-carboxylate reductase S-nitrosylation. PLANT PHYSIOLOGY 2024; 195:1038-1052. [PMID: 38478428 DOI: 10.1093/plphys/kiae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 06/02/2024]
Abstract
Drought and soil salinization substantially impact agriculture. While proline's role in enhancing stress tolerance is known, the exact molecular mechanism by which plants process stress signals and control proline synthesis under stress is still not fully understood. In tomato (Solanum lycopersicum L.), drought and salt stress stimulate nitric oxide (NO) production, which boosts proline synthesis by activating Δ1-pyrroline-5-carboxylate synthetase (SlP5CS) and Δ1-pyrroline-5-carboxylate reductase (SlP5CR) genes and the P5CR enzyme. The crucial factor is stress-triggered NO production, which regulates the S-nitrosylation of SlP5CR at Cys-5, thereby increasing its NAD(P)H affinity and enzymatic activity. S-nitrosylation of SlP5CR enables tomato plants to better adapt to changing NAD(P)H levels, boosting both SlP5CR activity and proline synthesis during stress. By comparing tomato lines genetically modified to express different forms of SlP5CR, including a variant mimicking S-nitrosylation (SlP5CRC5W), we found that SlP5CRC5W plants show superior growth and stress tolerance. This is attributed to better P5CR activity, proline production, water use efficiency, reactive oxygen species scavenging, and sodium excretion. Overall, this study demonstrates that tomato engineered to mimic S-nitrosylated SlP5CR exhibits enhanced growth and yield under drought and salt stress conditions, highlighting a promising approach for stress-tolerant tomato cultivation.
Collapse
Affiliation(s)
- Wei Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jin-Wei Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Shan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Minghui Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jinghao Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
8
|
Edrich ESM, Duvenage L, Gourlay CW. Alternative Oxidase - Aid or obstacle to combat the rise of fungal pathogens? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149031. [PMID: 38195037 DOI: 10.1016/j.bbabio.2024.149031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/16/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Fungal pathogens present a growing threat to both humans and global health security alike. Increasing evidence of antifungal resistance in fungal populations that infect both humans and plant species has increased reliance on combination therapies and shown the need for new antifungal therapeutic targets to be investigated. Here, we review the roles of mitochondria and fungal respiration in pathogenesis and discuss the role of the Alternative Oxidase enzyme (Aox) in both human fungal pathogens and phytopathogens. Increasing evidence exists for Aox within mechanisms that underpin fungal virulence. Aox also plays important roles in adaptability that may prove useful within dual targeted fungal-specific therapeutic approaches. As improved fungal specific mitochondrial and Aox inhibitors are under development we may see this as an emerging target for future approaches to tackling the growing challenge of fungal infection.
Collapse
Affiliation(s)
| | - Lucian Duvenage
- CMM AFRICA Medical Mycology Research Unit, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Campbell W Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Kent CT2 9HY, UK.
| |
Collapse
|
9
|
Roces V, Guerrero S, Álvarez A, Pascual J, Meijón M. PlantFUNCO: Integrative Functional Genomics Database Reveals Clues into Duplicates Divergence Evolution. Mol Biol Evol 2024; 41:msae042. [PMID: 38411627 PMCID: PMC10917205 DOI: 10.1093/molbev/msae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Evolutionary epigenomics and, more generally, evolutionary functional genomics, are emerging fields that study how non-DNA-encoded alterations in gene expression regulation are an important form of plasticity and adaptation. Previous evidence analyzing plants' comparative functional genomics has mostly focused on comparing same assay-matched experiments, missing the power of heterogeneous datasets for conservation inference. To fill this gap, we developed PlantFUN(ctional)CO(nservation) database, which is constituted by several tools and two main resources: interspecies chromatin states and functional genomics conservation scores, presented and analyzed in this work for three well-established plant models (Arabidopsis thaliana, Oryza sativa, and Zea mays). Overall, PlantFUNCO elucidated evolutionary information in terms of cross-species functional agreement. Therefore, providing a new complementary comparative-genomics source for assessing evolutionary studies. To illustrate the potential applications of this database, we replicated two previously published models predicting genetic redundancy in A. thaliana and found that chromatin states are a determinant of paralogs degree of functional divergence. These predictions were validated based on the phenotypes of mitochondrial alternative oxidase knockout mutants under two different stressors. Taking all the above into account, PlantFUNCO aim to leverage data diversity and extrapolate molecular mechanisms findings from different model organisms to determine the extent of functional conservation, thus, deepening our understanding of how plants epigenome and functional noncoding genome have evolved. PlantFUNCO is available at https://rocesv.github.io/PlantFUNCO.
Collapse
Affiliation(s)
- Víctor Roces
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Asturias, Spain
| | - Sara Guerrero
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Asturias, Spain
| | - Ana Álvarez
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Asturias, Spain
| | - Jesús Pascual
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Asturias, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Asturias, Spain
| |
Collapse
|
10
|
Zsigmond L, Juhász-Erdélyi A, Valkai I, Aleksza D, Rigó G, Kant K, Szepesi Á, Fiorani F, Körber N, Kovács L, Szabados L. Mitochondrial complex I subunit NDUFS8.2 modulates responses to stresses associated with reduced water availability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108466. [PMID: 38428158 DOI: 10.1016/j.plaphy.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Mitochondria are important sources of energy in plants and are implicated in coordination of a number of metabolic and physiological processes including stabilization of redox balance, synthesis and turnover of a number of metabolites, and control of programmed cell death. Mitochondrial electron transport chain (mETC) is the backbone of the energy producing process which can influence other processes as well. Accumulating evidence suggests that mETC can affect responses to environmental stimuli and modulate tolerance to extreme conditions such as drought or salinity. Screening for stress responses of 13 Arabidopsis mitochondria-related T-DNA insertion mutants, we identified ndufs8.2-1 which has an increased ability to withstand osmotic and oxidative stresses compared to wild type plants. Insertion in ndufs8.2-1 disrupted the gene that encodes the NADH dehydrogenase [ubiquinone] fragment S subunit 8 (NDUFS8) a component of Complex I of mETC. ndufs8.2-1 tolerated reduced water availability, retained photosynthetic activity and recovered from severe water stress with higher efficiency compared to wild type plants. Several mitochondrial functions were altered in the mutant including oxygen consumption, ROS production, ATP and ADP content as well as activities of genes encoding alternative oxidase 1A (AOX1A) and various alternative NAD(P)H dehydrogenases (ND). Our results suggest that in the absence of NDUFS8.2 stress-induced ROS generation is restrained leading to reduced oxidative damage and improved tolerance to water deficiency. mETC components can be implicated in redox and energy homeostasis and modulate responses to stresses associated with reduced water availability.
Collapse
Affiliation(s)
- Laura Zsigmond
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary.
| | - Annabella Juhász-Erdélyi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ildikó Valkai
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Dávid Aleksza
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gábor Rigó
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Kamal Kant
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ágnes Szepesi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Fabio Fiorani
- Institute of Bio- and Geo-Sciences, IBG2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Niklas Körber
- Nunhems - BASF Vegetable Seeds, Department of Data Science and Technology, Roermond, Netherlands
| | - László Kovács
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
11
|
Verslues PE. Please, carefully, pass the P5C. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:663-666. [PMID: 38307518 PMCID: PMC10837010 DOI: 10.1093/jxb/erad446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
This article comments on:
Zheng Y, Cabassa-Hourton C, Eubel H, Chevreux G, Lignieres L, Crilat E, Braun H-P, Lebreton S, Savouré A. 2024. Pyrroline-5-carboxylate metabolism protein complex detected in Arabidopsis thaliana leaf mitochondria. Journal of Experimental Botany 75, 917–934.
Collapse
Affiliation(s)
- Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11528, Taiwan
| |
Collapse
|
12
|
Sena F, Monza J, Signorelli S. Determination of Free Proline in Plants. Methods Mol Biol 2024; 2798:183-194. [PMID: 38587743 DOI: 10.1007/978-1-0716-3826-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Proline metabolism has been associated with the induction of reactive oxygen species (ROS), antioxidant enzymes, and the control of cellular redox status. Moreover, proline accumulation is a highly evolutionarily conserved response to diverse abiotic stresses in plants. Thus, proline quantification has been helpful in abiotic stress research as a stress marker. The need for a reliable, fast, and simple method to detect proline in plant tissues is a powerful resource to imply the physiological status of plants under abiotic stress. This chapter summarizes the main strategies for proline extraction and quantification, highlighting their limitations and advantages, and recommends and details a specific protocol for proline extraction and quantification. The chapter provides a friendly version of this protocol with notes useful for researchers to perform the protocol.
Collapse
Affiliation(s)
- Florencia Sena
- Food and Plant Biology group, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Jorge Monza
- Food and Plant Biology group, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Santiago Signorelli
- Food and Plant Biology group, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay.
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
13
|
Amthor JS. ATP yield of plant respiration: potential, actual and unknown. ANNALS OF BOTANY 2023; 132:133-162. [PMID: 37409716 PMCID: PMC10550282 DOI: 10.1093/aob/mcad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND AND AIMS The ATP yield of plant respiration (ATP/hexose unit respired) quantitatively links active heterotrophic processes with substrate consumption. Despite its importance, plant respiratory ATP yield is uncertain. The aim here was to integrate current knowledge of cellular mechanisms with inferences required to fill knowledge gaps to generate a contemporary estimate of respiratory ATP yield and identify important unknowns. METHOD A numerical balance sheet model combining respiratory carbon metabolism and electron transport pathways with uses of the resulting transmembrane electrochemical proton gradient was created and parameterized for healthy, non-photosynthesizing plant cells catabolizing sucrose or starch to produce cytosolic ATP. KEY RESULTS Mechanistically, the number of c subunits in the mitochondrial ATP synthase Fo sector c-ring, which is unquantified in plants, affects ATP yield. A value of 10 was (justifiably) used in the model, in which case respiration of sucrose potentially yields about 27.5 ATP/hexose (0.5 ATP/hexose more from starch). Actual ATP yield often will be smaller than its potential due to bypasses of energy-conserving reactions in the respiratory chain, even in unstressed plants. Notably, all else being optimal, if 25 % of respiratory O2 uptake is via the alternative oxidase - a typically observed fraction - ATP yield falls 15 % below its potential. CONCLUSIONS Plant respiratory ATP yield is smaller than often assumed (certainly less than older textbook values of 36-38 ATP/hexose) leading to underestimation of active-process substrate requirements. This hinders understanding of ecological/evolutionary trade-offs between competing active processes and assessments of crop growth gains possible through bioengineering of processes that consume ATP. Determining the plant mitochondrial ATP synthase c-ring size, the degree of any minimally required (useful) bypasses of energy-conserving reactions in the respiratory chain, and the magnitude of any 'leaks' in the inner mitochondrial membrane are key research needs.
Collapse
Affiliation(s)
- J S Amthor
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
14
|
O’Leary BM, Scafaro AP, York LM. High-throughput, dynamic, multi-dimensional: an expanding repertoire of plant respiration measurements. PLANT PHYSIOLOGY 2023; 191:2070-2083. [PMID: 36638140 PMCID: PMC10069890 DOI: 10.1093/plphys/kiac580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
A recent burst of technological innovation and adaptation has greatly improved our ability to capture respiration rate data from plant sources. At the tissue level, several independent respiration measurement options are now available, each with distinct advantages and suitability, including high-throughput sampling capacity. These advancements facilitate the inclusion of respiration rate data into large-scale biological studies such as genetic screens, ecological surveys, crop breeding trials, and multi-omics molecular studies. As a result, our understanding of the correlations of respiration with other biological and biochemical measurements is rapidly increasing. Difficult questions persist concerning the interpretation and utilization of respiration data; concepts such as allocation of respiration to growth versus maintenance, the unnecessary or inefficient use of carbon and energy by respiration, and predictions of future respiration rates in response to environmental change are all insufficiently grounded in empirical data. However, we emphasize that new experimental designs involving novel combinations of respiration rate data with other measurements will flesh-out our current theories of respiration. Furthermore, dynamic recordings of respiration rate, which have long been used at the scale of mitochondria, are increasingly being used at larger scales of size and time to reflect processes of cellular signal transduction and physiological response to the environment. We also highlight how respiratory methods are being better adapted to different plant tissues including roots and seeds, which have been somewhat neglected historically.
Collapse
Affiliation(s)
- Brendan M O’Leary
- Saskatoon Research and Development Centre, Agriculture and Agri-food Canada, Saskatoon S7N 0X2, Canada
| | - Andrew P Scafaro
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Larry M York
- Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
15
|
McDonald AE. Unique opportunities for future research on the alternative oxidase of plants. PLANT PHYSIOLOGY 2023; 191:2084-2092. [PMID: 36472529 PMCID: PMC10069896 DOI: 10.1093/plphys/kiac555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Alternative oxidase (AOX) is a terminal oxidase present in the electron transport system of all plants examined to date that plays an important role in the responses to abiotic and biotic stresses. Due to recent advances in cell and tissue culture, genetic engineering, and bioinformatic resources for nonmodel plants, it is now possible to study AOX in a broader diversity of species to investigate the full taxonomic distribution of AOX in plants. Additional functions of AOX should be investigated in thermogenic, carnivorous, and parasitic plants with atypical life histories. Recent methodological improvements in oxygen sensing, clustered regularly interspaced short palindromic repeats technology, and protein biochemistry will allow for considerable advancement on questions that have been long standing in the field due to experimental limitations. The role of AOX in secondary metabolism and mitochondrial metabolic pathways should also be examined due to recent discoveries in analogous systems in other organelles and fungi.
Collapse
Affiliation(s)
- Allison E McDonald
- Department of Biology, Wilfrid Laurier University, 75 University Ave. W., N2L 3C5 Waterloo, Ontario, Canada
| |
Collapse
|
16
|
Le XH, Millar AH. The diversity of substrates for plant respiration and how to optimize their use. PLANT PHYSIOLOGY 2023; 191:2133-2149. [PMID: 36573332 PMCID: PMC10069909 DOI: 10.1093/plphys/kiac599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Plant respiration is a foundational biological process with the potential to be optimized to improve crop yield. To understand and manipulate the outputs of respiration, the inputs of respiration-respiratory substrates-need to be probed in detail. Mitochondria house substrate catabolic pathways and respiratory machinery, so transport into and out of these organelles plays an important role in committing substrates to respiration. The large number of mitochondrial carriers and catabolic pathways that remain unidentified hinder this process and lead to confusion about the identity of direct and indirect respiratory substrates in plants. The sources and usage of respiratory substrates vary and are increasing found to be highly regulated based on cellular processes and environmental factors. This review covers the use of direct respiratory substrates following transport through mitochondrial carriers and catabolism under normal and stressed conditions. We suggest the introduction of enzymes not currently found in plant mitochondria to enable serine and acetate to be direct respiratory substrates in plants. We also compare respiratory substrates by assessing energetic yields, availability in cells, and their full or partial oxidation during cell catabolism. This information can assist in decisions to use synthetic biology approaches to alter the range of respiratory substrates in plants. As a result, respiration could be optimized by introducing, improving, or controlling specific mitochondrial transporters and mitochondrial catabolic pathways.
Collapse
Affiliation(s)
- Xuyen H Le
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - A Harvey Millar
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
17
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
18
|
Qiao K, Yao X, Zhou Z, Xiong J, Fang K, Lan J, Xu F, Deng X, Zhang D, Lin H. Mitochondrial alternative oxidase enhanced ABA-mediated drought tolerance in Solanum lycopersicum. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153892. [PMID: 36566671 DOI: 10.1016/j.jplph.2022.153892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The phytohormone abscisic acid (ABA) plays essential roles in modulating drought stress responses. Mitochondrial alternative oxidase (AOX) is critical for reactive oxygen species (ROS) scavenging in drought stress responses. However, whether ABA signal in concert with AOX to moderate drought stress response remains largely unclear. In our study, we uncover the positive role of AOX in ABA-mediated drought tolerance in tomato (Solanum lycopersicum). Here, we report that ABA participates in the regulation of alternative respiration, and the increased AOX was found to improve drought tolerance by reducing total ROS accumulation. We also found that transcription factor ABA response element-binding factor 1 (SlAREB1) can directly bind to the promoter of AOX1a to activate its transcription. Virus-induced gene silencing (VIGS) of SlAREB1 compromised the ABA-induced alternative respiratory pathway, disrupted redox homeostasis and decreased plant resistance to drought stress, while overexpression of AOX1a in TRV2-SlAREB1 plants partially rescued the severe drought phenotype. Taken together, our results indicated that AOX1a plays an essential role in ABA-mediated drought tolerance partially in a SlAREB1-dependent manner, providing new insights into how ABA modulates ROS levels to cope with drought stress by AOX.
Collapse
Affiliation(s)
- Kang Qiao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Xiuhong Yao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Zuxu Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Jiawei Xiong
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Ke Fang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Jiayi Lan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Fei Xu
- Life Science and Biotechnology, Wuhan Bioengineering Institute, Wuhan, China
| | - Xingguang Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Dawei Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China.
| | - Honghui Lin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Fedorin DN, Eprintsev AT, Florez Caro OJ, Igamberdiev AU. Effect of Salt Stress on the Activity, Expression, and Promoter Methylation of Succinate Dehydrogenase and Succinic Semialdehyde Dehydrogenase in Maize ( Zea mays L.) Leaves. PLANTS (BASEL, SWITZERLAND) 2022; 12:68. [PMID: 36616197 PMCID: PMC9823291 DOI: 10.3390/plants12010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The effect of salt stress on the expression of genes, the methylation of their promoters, and the enzymatic activity of succinate dehydrogenase (SDH) and succinic semialdehyde dehydrogenase (SSADH) was investigated in maize (Zea mays L.). The incubation of maize seedlings in a 150 mM NaCl solution for 24 h led to a several-fold increase in the activity of SSADH that peaked at 6 h of NaCl treatment, which was preceded by an increase in the Ssadh1 gene expression and a decrease in its promoter methylation observed at 3 h of salt stress. The increase in SDH activity and succinate oxidation by mitochondria was slower, developing by 24 h of NaCl treatment, which corresponded to the increase in expression of the genes Sdh1-2 and Sdh2-3 encoding SDH catalytic subunits and of the gene Sdh3-1 encoding the anchoring SDH subunit. The increase in the Sdh2-3 expression was accompanied by the decrease in promoter methylation. It is concluded that salt stress results in the rapid increase in succinate production via SSADH operating in the GABA shunt, which leads to the activation of SDH, the process partially regulated via epigenetic mechanisms. The role of succinate metabolism under the conditions of salt stress is discussed.
Collapse
Affiliation(s)
- Dmitry N. Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Alexander T. Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Orlando J. Florez Caro
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
20
|
Sweetman C, Waterman CD, Wong DC, Day DA, Jenkins CL, Soole KL. Altering the balance between AOX1A and NDB2 expression affects a common set of transcripts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:876843. [PMID: 36466234 PMCID: PMC9716356 DOI: 10.3389/fpls.2022.876843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Stress-responsive components of the mitochondrial alternative electron transport pathway have the capacity to improve tolerance of plants to abiotic stress, particularly the alternative oxidase AOX1A but also external NAD(P)H dehydrogenases such as NDB2, in Arabidopsis. NDB2 and AOX1A can cooperate to entirely circumvent the classical electron transport chain in Arabidopsis mitochondria. Overexpression of AOX1A or NDB2 alone can have slightly negative impacts on plant growth under optimal conditions, while simultaneous overexpression of NDB2 and AOX1A can reverse these phenotypic effects. We have taken a global transcriptomic approach to better understand the molecular shifts that occur due to overexpression of AOX1A alone and with concomitant overexpression of NDB2. Of the transcripts that were significantly up- or down- regulated in the AOX1A overexpression line compared to wild type (410 and 408, respectively), the majority (372 and 337, respectively) reverted to wild type levels in the dual overexpression line. Several mechanisms for the AOX1A overexpression phenotype are proposed based on the functional classification of these 709 genes, which can be used to guide future experiments. Only 28 genes were uniquely up- or down-regulated when NDB2 was overexpressed in the AOX1A overexpression line. On the other hand, many unique genes were deregulated in the NDB2 knockout line. Furthermore, several changes in transcript abundance seen in the NDB2 knockout line were consistent with changes in the AOX1A overexpression line. The results suggest that an imbalance in AOX1A:NDB2 protein levels caused by under- or over-expression of either component, triggers a common set of transcriptional responses that may be important in mitochondrial redox regulation. The most significant changes were transcripts associated with photosynthesis, secondary metabolism and oxidative stress responses.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Darren C.J. Wong
- College of Science, Australian National University, Canberra, ACT, Australia
| | - David A. Day
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Colin L.D. Jenkins
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kathleen L. Soole
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
21
|
Ivanova A, O′Leary B, Signorelli S, Falconet D, Moyankova D, Whelan J, Djilianov D, Murcha MW. Mitochondrial activity and biogenesis during resurrection of Haberlea rhodopensis. THE NEW PHYTOLOGIST 2022; 236:943-957. [PMID: 35872573 PMCID: PMC9804507 DOI: 10.1111/nph.18396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2022] [Indexed: 06/01/2023]
Abstract
Haberlea rhodopensis is a resurrection plant that can tolerate extreme and prolonged periods of desiccation with a rapid restoration of physiological function upon rehydration. Specialized mechanisms are required to minimize cellular damage during desiccation and to maintain integrity for rapid recovery following rehydration. In this study we used respiratory activity measurements, electron microscopy, transcript, protein and blue native-PAGE analysis to investigate mitochondrial activity and biogenesis in fresh, desiccated and rehydrated detached H. rhodopensis leaves. We demonstrate that unlike photosynthesis, mitochondrial respiration was almost immediately activated to levels of fresh tissue upon rehydration. The abundance of transcripts and proteins involved in mitochondrial respiration and biogenesis were at comparable levels in fresh, desiccated and rehydrated tissues. Blue native-PAGE analysis revealed fully assembled and equally abundant OXPHOS complexes in mitochondria isolated from fresh, desiccated and rehydrated detached leaves. We observed a high abundance of alternative respiratory components which correlates with the observed high uncoupled respiration capacity in desiccated tissue. Our study reveals that during desiccation of vascular H. rhodopensis tissue, mitochondrial composition is conserved and maintained at a functional state allowing for an almost immediate activation to full capacity upon rehydration. Mitochondria-specific mechanisms were activated during desiccation which probably play a role in maintaining tolerance.
Collapse
Affiliation(s)
- Aneta Ivanova
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
- AgroBioInstituteAgricultural Academy8 Dragan Tzankov Blvd.1164SofiaBulgaria
| | - Brendan O′Leary
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food Canada107 Science PlaceSaskatoonSKK1A 0C5Canada
| | - Santiago Signorelli
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
- Department of Plant Biology, School of AgricultureUniversidad de la RepúblicaE. Garzón 780, Sayago12900MontevideoUruguay
| | - Denis Falconet
- Cell and Plant Physiology Laboratory, CNRS, CEA, INRAE, IRIGUniversité Grenoble Alpes38054GrenobleFrance
| | - Daniela Moyankova
- AgroBioInstituteAgricultural Academy8 Dragan Tzankov Blvd.1164SofiaBulgaria
| | - James Whelan
- Department of Animal, Plant and Soil Science, School of Life Science, The ARC Centre of Excellence in Plant Energy BiologyLa Trobe UniversityBundoora3086VICAustralia
| | - Dimitar Djilianov
- AgroBioInstituteAgricultural Academy8 Dragan Tzankov Blvd.1164SofiaBulgaria
| | - Monika W. Murcha
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
| |
Collapse
|
22
|
Barreto P, Koltun A, Nonato J, Yassitepe J, Maia IDG, Arruda P. Metabolism and Signaling of Plant Mitochondria in Adaptation to Environmental Stresses. Int J Mol Sci 2022; 23:ijms231911176. [PMID: 36232478 PMCID: PMC9570015 DOI: 10.3390/ijms231911176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.
Collapse
Affiliation(s)
- Pedro Barreto
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Alessandra Koltun
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Nonato
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Embrapa Agricultura Digital, Campinas 13083-886, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Correspondence:
| |
Collapse
|
23
|
Mechanisms Regulating Energy Homeostasis in Plant Cells and Their Potential to Inspire Electrical Microgrids Models. Biomimetics (Basel) 2022; 7:biomimetics7020083. [PMID: 35735599 PMCID: PMC9221007 DOI: 10.3390/biomimetics7020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, the main features of systems that are required to flexibly modulate energy states of plant cells in response to environmental fluctuations are surveyed and summarized. Plant cells possess multiple sources (chloroplasts and mitochondria) to produce energy that is consumed to drive many processes, as well as mechanisms that adequately provide energy to the processes with high priority depending on the conditions. Such energy-providing systems are tightly linked to sensors that monitor the status of the environment and inside the cell. In addition, plants possess the ability to efficiently store and transport energy both at the cell level and at a higher level. Furthermore, these systems can finely tune the various mechanisms of energy homeostasis in plant cells in response to the changes in environment, also assuring the plant survival under adverse environmental conditions. Electrical power systems are prone to the effects of environmental changes as well; furthermore, they are required to be increasingly resilient to the threats of extreme natural events caused, for example, by climate changes, outages, and/or external deliberate attacks. Starting from this consideration, similarities between energy-related processes in plant cells and electrical power grids are identified, and the potential of mechanisms regulating energy homeostasis in plant cells to inspire the definition of new models of flexible and resilient electrical power grids, particularly microgrids, is delineated. The main contribution of this review is surveying energy regulatory mechanisms in detail as a reference and helping readers to find useful information for their work in this research field.
Collapse
|
24
|
Del-Saz NF, Iglesias-Sanchez A, Alonso-Forn D, López-Gómez M, Palma F, Clemente-Moreno MJ, Fernie AR, Ribas-Carbo M, Florez-Sarasa I. The Lack of Alternative Oxidase 1a Restricts in vivo Respiratory Activity and Stress-Related Metabolism for Leaf Osmoprotection and Redox Balancing Under Sudden Acute Water and Salt Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:833113. [PMID: 35656009 PMCID: PMC9152546 DOI: 10.3389/fpls.2022.833113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
In plants salt and water stress result in an induction of respiration and accumulation of stress-related metabolites (SRMs) with osmoregulation and osmoprotection functions that benefit photosynthesis. The synthesis of SRMs may depend on an active respiratory metabolism, which can be restricted under stress by the inhibition of the cytochrome oxidase pathway (COP), thus causing an increase in the reduction level of the ubiquinone pool. However, the activity of the alternative oxidase pathway (AOP) is thought to prevent this from occurring while at the same time, dissipates excess of reducing power from the chloroplast and thereby improves photosynthetic performance. The present research is based on the hypothesis that the accumulation of SRMs under osmotic stress will be affected by changes in folial AOP activity. To test this, the oxygen isotope-fractionation technique was used to study the in vivo respiratory activities of COP and AOP in leaves of wild-type Arabidopsis thaliana plants and of aox1a mutants under sudden acute stress conditions induced by mannitol and salt treatments. Levels of leaf primary metabolites and transcripts of respiratory-related proteins were also determined in parallel to photosynthetic analyses. The lack of in vivo AOP response in the aox1a mutants coincided with a lower leaf relative water content and a decreased accumulation of crucial osmoregulators. Additionally, levels of oxidative stress-related metabolites and transcripts encoding alternative respiratory components were increased. Coordinated changes in metabolite levels, respiratory activities and photosynthetic performance highlight the contribution of the AOP in providing flexibility to carbon metabolism for the accumulation of SRMs.
Collapse
Affiliation(s)
- Néstor F. Del-Saz
- Laboratorio de Fisiología Vegetal, Universidad de Concepción, Concepción, Chile
| | | | - David Alonso-Forn
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain
| | | | - Francisco Palma
- Department of Plant Physiology, University of Granada, Granada, Spain
| | - María José Clemente-Moreno
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Palma, Spain
| | | | - Miquel Ribas-Carbo
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Palma, Spain
| | - Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institut de Recerca i Tecnología Agroalimentàries (IRTA), Edifici CRAG, Barcelona, Spain
| |
Collapse
|
25
|
Fuchs P, Bohle F, Lichtenauer S, Ugalde JM, Feitosa Araujo E, Mansuroglu B, Ruberti C, Wagner S, Müller-Schüssele SJ, Meyer AJ, Schwarzländer M. Reductive stress triggers ANAC017-mediated retrograde signaling to safeguard the endoplasmic reticulum by boosting mitochondrial respiratory capacity. THE PLANT CELL 2022; 34:1375-1395. [PMID: 35078237 PMCID: PMC9125394 DOI: 10.1093/plcell/koac017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/18/2021] [Indexed: 05/16/2023]
Abstract
Redox processes are at the heart of universal life processes, such as metabolism, signaling, or folding of secreted proteins. Redox landscapes differ between cell compartments and are strictly controlled to tolerate changing conditions and to avoid cell dysfunction. While a sophisticated antioxidant network counteracts oxidative stress, our understanding of reductive stress responses remains fragmentary. Here, we observed root growth impairment in Arabidopsis thaliana mutants of mitochondrial alternative oxidase 1a (aox1a) in response to the model thiol reductant dithiothreitol (DTT). Mutants of mitochondrial uncoupling protein 1 (ucp1) displayed a similar phenotype indicating that impaired respiratory flexibility led to hypersensitivity. Endoplasmic reticulum (ER) stress was enhanced in the mitochondrial mutants and limiting ER oxidoreductin capacity in the aox1a background led to synergistic root growth impairment by DTT, indicating that mitochondrial respiration alleviates reductive ER stress. The observations that DTT triggered nicotinamide adenine dinucleotide (NAD) reduction in vivo and that the presence of thiols led to electron transport chain activity in isolated mitochondria offer a biochemical framework of mitochondrion-mediated alleviation of thiol-mediated reductive stress. Ablation of transcription factor Arabidopsis NAC domain-containing protein17 (ANAC017) impaired the induction of AOX1a expression by DTT and led to DTT hypersensitivity, revealing that reductive stress tolerance is achieved by adjusting mitochondrial respiratory capacity via retrograde signaling. Our data reveal an unexpected role for mitochondrial respiratory flexibility and retrograde signaling in reductive stress tolerance involving inter-organelle redox crosstalk.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Finja Bohle
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Elias Feitosa Araujo
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - Berivan Mansuroglu
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Cristina Ruberti
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - Stephan Wagner
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| |
Collapse
|
26
|
Singh P, Kumari A, Gupta KJ. Alternative oxidase plays a role in minimizing ROS and RNS produced under salinity stress in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2022; 174:e13649. [PMID: 35149995 DOI: 10.1111/ppl.13649] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Under stress conditions, the overproduction of different reactive oxygen species (ROS) and reactive nitrogen species (RNS) causes imbalance in the redox homeostasis of the cell leading to nitro-oxidative stress in plants. Alternative oxidase (AOX) is a conserving terminal oxidase of the mitochondrial electron transport chain, which can minimize the ROS. Still, the role of AOX in the regulation of RNS during nitro-oxidative stress imposed by salinity stress is not known. Here, we investigated the role of AOX in minimizing ROS and RNS induced by 150 mM NaCl in Arabidopsis using transgenic plants overexpressing (AOX OE) and antisense lines (AOX AS) of AOX. Imposing NaCl treatment leads to a 4-fold enhanced expression of AOX accompanied by enhanced AOX capacity in WT Col-0. Further AOX-OE seedlings displayed enhanced growth compared with the AOX-AS line under stress. Examination of NO levels by DAF-FM fluorescence and chemiluminescence revealed that AOX overexpression leads to reduced levels of NO. The total NR activity was elevated under NaCl, but no significant change was observed in wild-type (WT), AOX OE, and AS lines. The total ROS, superoxide, H2 O2 levels, and lipid peroxidation were higher in the AOX-AS line than in WT and AOX-OE lines. The peroxynitrite levels were also higher in the AOX-AS line than in WT and AOX-OE lines; further, the expression of antioxidant genes was elevated in AOX-AS. Taken together, our results suggest that AOX plays an important role in the mitigation of ROS and RNS levels and enhances plant growth, thus providing tolerance against nitro-oxidative stress exerted by NaCl.
Collapse
Affiliation(s)
- Pooja Singh
- National Institute for Plant Genome Research, New Delhi, India
| | - Aprajita Kumari
- National Institute for Plant Genome Research, New Delhi, India
| | | |
Collapse
|