1
|
Chen T, Ko C, Yeh P, Wu T, Shih Y, Yang C, Lee J, Chou M, Lin K. Preventive treatment effects on brain structures and functions in patients with chronic migraine: A multimodel magnetic resonance imaging study. Kaohsiung J Med Sci 2024; 40:1077-1085. [PMID: 39440699 PMCID: PMC11618484 DOI: 10.1002/kjm2.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Patients with chronic migraine (CM) often exhibit structural and functional alterations in pain-matrix regions, but it remains unclear how preventive treatment affects these changes. Therefore, this study aimed to investigate the structural and functional changes in pain-matrix regions in CM patients after 6-month treatment. A total of 24 patients with CM and 15 healthy controls were recruited for this study. Patients were divided into responder group (N = 9) and non-responder group (N = 15). After completing the Migraine Disability Assessment (MIDAS) questionnaire, all patients underwent whole-brain high-resolution T1-weighted images, diffusion-weighted imaging, and resting-state functional magnetic resonance imaging at baseline and 6-month follow-up. Whole brain gray matter volume and white matter diffusion indices were analyzed using voxel-based analysis. Structural and functional connectivity analyses were performed to understand brain changes in patients after 6-month preventive treatment. The responder group exhibited significantly higher MIDAS scores than the non-responder group at baseline, but no significant difference between the two groups at follow-up. No significant interval change was noted in gray matter volume, white matter diffusion indices, and structural connectivity in CM patients after 6-month treatment. Nonetheless, the functional connectivity was significantly increased between occipital, temporal lobes and cerebellum, and was significantly decreased between parietal and temporal lobes after 6-month preventive treatment. We concluded that resting-state functional connectivity was suitable for investigating the preventive treatment effect on CM patients.
Collapse
Affiliation(s)
- Tai‐Yuan Chen
- Department of RadiologyChi Mei Medical CenterTainanTaiwan
- Graduate Institute of Medical SciencesChang Jung Christian UniversityTainanTaiwan
| | - Ching‐Chung Ko
- Department of RadiologyChi Mei Medical CenterTainanTaiwan
- Department of Health and NutritionChia Nan University of Pharmacy and ScienceTainanTaiwan
| | - Poh‐Shiow Yeh
- Department of NeurologyChi Mei Medical CenterTainanTaiwan
| | - Te‐Chang Wu
- Department of RadiologyChi Mei Medical CenterTainanTaiwan
- Department of Medical Sciences IndustryChang Jung Christian UniversityTainanTaiwan
- Department of Biomedical Imaging and Radiological SciencesNational Yang‐Ming UniversityTaipeiTaiwan
| | - Yun‐Ju Shih
- Department of RadiologyChi Mei Medical CenterTainanTaiwan
- Graduate Institute of Medical SciencesChang Jung Christian UniversityTainanTaiwan
| | - Chun‐Ming Yang
- Department of NeurologyChi Mei Medical CenterTainanTaiwan
| | - Ju‐Chi Lee
- Department of NeurologyChi Mei Medical CenterTainanTaiwan
- Institute of Healthcare Information ManagementNational Chung Cheng UniversityChiayiTaiwan
| | - Ming‐Chung Chou
- Department of Medical Imaging and Radiological SciencesKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical ResearchKaohsiung Medical University HospitalKaohsiungTaiwan
- Center for Big Data ResearchKaohsiung Medical UniversityKaohsiungTaiwan
| | - Kao‐Chang Lin
- Department of Neurology and Holistic CareChi Mei Medical CenterTainanTaiwan
| |
Collapse
|
2
|
Del Moro L, Pirovano E, Rota E. Mind the Metabolic Gap: Bridging Migraine and Alzheimer's disease through Brain Insulin Resistance. Aging Dis 2024; 15:2526-2553. [PMID: 38913047 PMCID: PMC11567252 DOI: 10.14336/ad.2024.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
Brain insulin resistance has recently been described as a metabolic abnormality of brain glucose homeostasis that has been proven to downregulate insulin receptors, both in astrocytes and neurons, triggering a reduction in glucose uptake and glycogen synthesis. This condition may generate a mismatch between brain's energy reserve and expenditure, ??mainly during high metabolic demand, which could be involved in the chronification of migraine and, in the long run, at least in certain subsets of patients, in the prodromic phase of Alzheimer's disease, along a putative metabolic physiopathological continuum. Indeed, the persistent disruption of glucose homeostasis and energy supply to neurons may eventually impair protein folding, an energy-requiring process, promoting pathological changes in Alzheimer's disease, such as amyloid-β deposition and tau hyperphosphorylation. Hopefully, the "neuroenergetic hypothesis" presented herein will provide further insight on there being a conceivable metabolic bridge between chronic migraine and Alzheimer's disease, elucidating novel potential targets for the prophylactic treatment of both diseases.
Collapse
Affiliation(s)
- Lorenzo Del Moro
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Elenamaria Pirovano
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy.
| | - Eugenia Rota
- Neurology Unit, San Giacomo Hospital, Novi Ligure, ASL AL, Italy.
| |
Collapse
|
3
|
Zhao L, Tang Y, Tu Y, Cao J. Genetic evidence for the causal relationships between migraine, dementia, and longitudinal brain atrophy. J Headache Pain 2024; 25:93. [PMID: 38840235 DOI: 10.1186/s10194-024-01801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Migraine is a neurological disease with a significant genetic component and is characterized by recurrent and prolonged episodes of headache. Previous epidemiological studies have reported a higher risk of dementia in migraine patients. Neuroimaging studies have also shown structural brain atrophy in regions that are common to migraine and dementia. However, these studies are observational and cannot establish causality. The present study aims to explore the genetic causal relationship between migraine and dementia, as well as the mediation roles of brain structural changes in this association using Mendelian randomization (MR). METHODS We collected the genome-wide association study (GWAS) summary statistics of migraine and its two subtypes, as well as four common types of dementia, including Alzheimer's disease (AD), vascular dementia, frontotemporal dementia, and Lewy body dementia. In addition, we collected the GWAS summary statistics of seven longitudinal brain measures that characterize brain structural alterations with age. Using these GWAS, we performed Two-sample MR analyses to investigate the causal effects of migraine and its two subtypes on dementia and brain structural changes. To explore the possible mediation of brain structural changes between migraine and dementia, we conducted a two-step MR mediation analysis. RESULTS The MR analysis demonstrated a significant association between genetically predicted migraine and an increased risk of AD (OR = 1.097, 95% CI = [1.040, 1.158], p = 7.03 × 10- 4). Moreover, migraine significantly accelerated annual atrophy of the total cortical surface area (-65.588 cm2 per year, 95% CI = [-103.112, -28.064], p = 6.13 × 10- 4) and thalamic volume (-9.507 cm3 per year, 95% CI = [-15.512, -3.502], p = 1.91 × 10- 3). The migraine without aura (MO) subtype increased the risk of AD (OR = 1.091, 95% CI = [1.059, 1.123], p = 6.95 × 10- 9) and accelerated annual atrophy of the total cortical surface area (-31.401 cm2 per year, 95% CI = [-43.990, -18.811], p = 1.02 × 10- 6). The two-step MR mediation analysis revealed that thalamic atrophy partly mediated the causal effect of migraine on AD, accounting for 28.2% of the total effect. DISCUSSION This comprehensive MR study provided genetic evidence for the causal effect of migraine on AD and identified longitudinal thalamic atrophy as a potential mediator in this association. These findings may inform brain intervention targets to prevent AD risk in migraine patients.
Collapse
Affiliation(s)
- Lei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing, China
| | - Yilan Tang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing, China
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing, China
| | - Jin Cao
- School of Life Sciences, Beijing University of Chinese Medicine, 11 North third Ring Road East, Beijing, China.
| |
Collapse
|
4
|
Lin CL, Lane HY, Sun CK, Chen MH, Lee CY, Li L, Lee JJ, Yeh PY. Effects of chronic daily headache with subclinical depression on brain volume: A systematic review and meta-analysis. Eur J Pain 2024. [PMID: 38563383 DOI: 10.1002/ejp.2270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND AND OBJECTIVE The relationship between chronic daily headache (CDH), depression symptoms, and brain volume remains unclear. METHODS To investigate the effects of CDH on brain volume and the impact of depressive symptoms (DSs) as well as the effects of demography and medication overuse, PubMed, Embase, and Web of Science databases were systematically searched using appropriate keyword strings to retrieve observational studies from inception to May 2023. RESULTS Two distinct comparisons were made in CDH patients: (1) those with DSs versus their pain-free counterparts and (2) those without DSs versus pain-free controls. The first comprised nine studies enrolling 225 CDH patients with DSs and 234 controls. Beck depression inventory, Hamilton depression scale, and Hospital anxiety/depression scale were used to assess DSs, revealing significantly more DSs in CDH patients with DSs compared to their controls (all p < 0.05). Besides, the second analysed four studies involving 117 CDH patients without DSs and 155 comparators. Compared to CDH patients without DSs, those with DSs had a smaller brain volume than controls (p = 0.03). Furthermore, CDH patients with DSs who did not overuse medications showed a smaller right cerebral cortical volume than overusers (p = 0.003). A significant inverse correlation between female prevalence and brain volume (p = 0.02) was revealed using regression analysis. CONCLUSIONS Pain-induced persistent depressive symptoms not only incur structural alterations but also encompass affective-motivational changes, involving medication use and gender-specific health concerns. SIGNIFICANCE This study highlighted the importance of an integrated CDH treatment, emphasizing psychological interventions for the affective-motivational component alongside pain management.
Collapse
Affiliation(s)
- Chih-Lung Lin
- Department of Neurosurgery, Asia University Hospital, Taichung, Taiwan
- Department of Occupational Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiao-Yu Lee
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Lin Li
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Jia-Jie Lee
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Pin-Yang Yeh
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Clinical Psychology Center, Asia University Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Golden E, van der Heijden H, Ren B, Randall ET, Drubach LA, Shah N, Cay M, Ebb D, Kaban LB, Peacock ZS, Boyce AM, Mannstadt M, Upadhyay J. Phenotyping Pain in Patients With Fibrous Dysplasia/McCune-Albright Syndrome. J Clin Endocrinol Metab 2024; 109:771-782. [PMID: 37804088 PMCID: PMC11491648 DOI: 10.1210/clinem/dgad589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
CONTEXT Pain is a poorly managed aspect in fibrous dysplasia/McCune-Albright syndrome (FD/MAS) because of uncertainties regarding the clinical, behavioral, and neurobiological underpinnings that contribute to pain in these patients. OBJECTIVE Identify neuropsychological and neurobiological factors associated with pain severity in FD/MAS. DESIGN Prospective, single-site study. PATIENTS Twenty patients with FD/MAS and 16 age-sex matched healthy controls. INTERVENTION Assessments of pain severity, neuropathic pain, pain catastrophizing (pain rumination, magnification, and helplessness), emotional health, and pain sensitivity with thermal quantitative sensory testing. Central nervous system (CNS) properties were measured with diffusion tensor imaging, structural magnetic resonance imaging, and functional magnetic resonance imaging. MAIN OUTCOME MEASURES Questionnaire responses, detection thresholds and tolerances to thermal stimuli, and structural and functional CNS properties. RESULTS Pain severity in patients with FD/MAS was associated with more neuropathic pain quality, higher levels of pain catastrophizing, and depression. Quantitative sensory testing revealed normal detection of nonnoxious stimuli in patients. Individuals with FD/MAS had higher pain tolerances relative to healthy controls. From neuroimaging studies, greater pain severity, neuropathic pain quality, and psychological status of the patient were associated with reduced structural integrity of white matter pathways (superior thalamic radiation and uncinate fasciculus), reduced gray matter thickness (pre-/paracentral gyri), and heightened responses to pain (precentral, temporal, and frontal gyri). Thus, properties of CNS circuits involved in processing sensorimotor and emotional aspects of pain were altered in FD/MAS. CONCLUSION These results offer insights into pain mechanisms in FD/MAS, while providing a basis for implementation of comprehensive pain management treatment approaches that addresses neuropsychological aspects of pain.
Collapse
Affiliation(s)
- Emma Golden
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hanne van der Heijden
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Boyu Ren
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Edin T Randall
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Laura A Drubach
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nehal Shah
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mariesa Cay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David Ebb
- Department of Pediatric Hematology Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leonard B Kaban
- Department of Oral & Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA 02114, USA
| | - Zachary S Peacock
- Department of Oral & Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA 02114, USA
| | - Alison M Boyce
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| |
Collapse
|
6
|
Zhang Y, Huang W, Pan S, Shan Z, Zhou Y, Gan Q, Xiao Z. New management strategies for primary headache disorders: Insights from P4 medicine. Heliyon 2023; 9:e22285. [PMID: 38053857 PMCID: PMC10694333 DOI: 10.1016/j.heliyon.2023.e22285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Primary headache disorder is the main cause of headache attacks, leading to significant disability and impaired quality of life. This disorder is increasingly recognized as a heterogeneous condition with a complex network of genetic, environmental, and lifestyle factors. However, the timely diagnosis and effective treatment of these headaches remain challenging. Precision medicine is a potential strategy based on P4 (predictive, preventive, personalized, and participatory) medicine that may bring new insights for headache care. Recent machine learning advances and widely available molecular biology and imaging data have increased the usefulness of this medical strategy. Precision medicine emphasizes classifying headaches according to their risk factors, clinical presentation, and therapy responsiveness to provide individualized headache management. Furthermore, early preventive strategies, mainly utilizing predictive tools, are critical in reducing headache attacks and improving the quality of life of individuals with headaches. The current review comprehensively discusses the potential application value of P4 medicine in headache management.
Collapse
Affiliation(s)
| | | | - Songqing Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhengming Shan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yanjie Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Quan Gan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
7
|
Navarro-González R, García-Azorín D, Guerrero-Peral ÁL, Planchuelo-Gómez Á, Aja-Fernández S, de Luis-García R. Increased MRI-based Brain Age in chronic migraine patients. J Headache Pain 2023; 24:133. [PMID: 37798720 PMCID: PMC10557155 DOI: 10.1186/s10194-023-01670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Neuroimaging has revealed that migraine is linked to alterations in both the structure and function of the brain. However, the relationship of these changes with aging has not been studied in detail. Here we employ the Brain Age framework to analyze migraine, by building a machine-learning model that predicts age from neuroimaging data. We hypothesize that migraine patients will exhibit an increased Brain Age Gap (the difference between the predicted age and the chronological age) compared to healthy participants. METHODS We trained a machine learning model to predict Brain Age from 2,771 T1-weighted magnetic resonance imaging scans of healthy subjects. The processing pipeline included the automatic segmentation of the images, the extraction of 1,479 imaging features (both morphological and intensity-based), harmonization, feature selection and training inside a 10-fold cross-validation scheme. Separate models based only on morphological and intensity features were also trained, and all the Brain Age models were later applied to a discovery cohort composed of 247 subjects, divided into healthy controls (HC, n=82), episodic migraine (EM, n=91), and chronic migraine patients (CM, n=74). RESULTS CM patients showed an increased Brain Age Gap compared to HC (4.16 vs -0.56 years, P=0.01). A smaller Brain Age Gap was found for EM patients, not reaching statistical significance (1.21 vs -0.56 years, P=0.19). No associations were found between the Brain Age Gap and headache or migraine frequency, or duration of the disease. Brain imaging features that have previously been associated with migraine were among the main drivers of the differences in the predicted age. Also, the separate analysis using only morphological or intensity-based features revealed different patterns in the Brain Age biomarker in patients with migraine. CONCLUSION The brain-predicted age has shown to be a sensitive biomarker of CM patients and can help reveal distinct aging patterns in migraine.
Collapse
Affiliation(s)
| | - David García-Azorín
- Headache Unit, Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.
- Department of Medicine, Universidad de Valladolid, Valladolid, Spain.
| | - Ángel L Guerrero-Peral
- Headache Unit, Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
- Department of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Álvaro Planchuelo-Gómez
- Laboratorio de Procesado de Imagen, Universidad de Valladolid, Valladolid, Spain
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | | | | |
Collapse
|
8
|
George A, Minen MT. Episodic Migraine and Psychiatric Comorbidity: A Narrative Review of the Literature. Curr Pain Headache Rep 2023; 27:461-469. [PMID: 37382869 DOI: 10.1007/s11916-023-01123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE OF REVIEW We evaluate the evolving evidence of psychiatric comorbidities associated with episodic migraine. Utilizing recent research publications, we aim to assess traditional treatment option considerations and discuss recent and evolving non-pharmacologic treatment progress for episodic migraine and related psychiatric conditions. RECENT FINDINGS Recent findings indicate that episodic migraine is strongly linked to comorbid depression, anxiety, posttraumatic stress disorder, and sleep disorders. Not only do patients with episodic migraine have higher rates of psychiatric comorbidity, but a higher number of headache days reported is also strongly linked to an increased risk of developing a psychiatric disorder, indicating there may be a link between frequency and psychiatric comorbidity and that patients with high-frequency episodic migraine should be assessed for psychiatric comorbidity. Few migraine preventive medications have examined the effect of the medication on both migraine and psychiatric comorbidity though we discuss what has been reported in the literature. Non-pharmacologic-based treatments including behavioral therapies and mind-body interventions previously developed for psychiatric conditions, e.g., mindfulness-based CBT (MBCT), acceptance and commitment therapy (ACT), and mindfulness-based stress reduction (MBSR) therapy, have promising results for patients diagnosed with episodic migraine and may therefore be useful in treating migraine and comorbid psychiatric conditions. Psychiatric comorbidity may affect the efficacy of the treatment of episodic migraine. Thus, we must assess for psychiatric comorbidities to inform better treatment plans for patients. Providing patients with episodic migraine with alternate modalities of treatment may help to improve patient-centered care and increase patients' sense of self-efficacy.
Collapse
Affiliation(s)
- Alexis George
- Department of Neurology, NYU Langone Health, 222 East 41st Street, New York, NY, 10017, USA
| | - Mia T Minen
- Department of Neurology, NYU Langone Health, 222 East 41st Street, New York, NY, 10017, USA.
| |
Collapse
|
9
|
Mao L, Li J, Schwedt TJ, Berisha V, Nikjou D, Wu T, Dumkrieger GM, Ross KB, Chong CD. Questionnaire and structural imaging data accurately predict headache improvement in patients with acute post-traumatic headache attributed to mild traumatic brain injury. Cephalalgia 2023; 43:3331024231172736. [PMID: 37157808 DOI: 10.1177/03331024231172736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Our prior work demonstrated that questionnaires assessing psychosocial symptoms have utility for predicting improvement in patients with acute post-traumatic headache following mild traumatic brain injury. In this cohort study, we aimed to determine whether prediction accuracy can be refined by adding structural magnetic resonance imaging (MRI) brain measures to the model. METHODS Adults with acute post-traumatic headache (enrolled 0-59 days post-mild traumatic brain injury) underwent T1-weighted brain MRI and completed three questionnaires (Sports Concussion Assessment Tool, Pain Catastrophizing Scale, and the Trait Anxiety Inventory Scale). Individuals with post-traumatic headache completed an electronic headache diary allowing for determination of headache improvement at three- and at six-month follow-up. Questionnaire and MRI measures were used to train prediction models of headache improvement and headache trajectory. RESULTS Forty-three patients with post-traumatic headache (mean age = 43.0, SD = 12.4; 27 females/16 males) and 61 healthy controls were enrolled (mean age = 39.1, SD = 12.8; 39 females/22 males). The best model achieved cross-validation Area Under the Curve of 0.801 and 0.805 for predicting headache improvement at three and at six months. The top contributing MRI features for the prediction included curvature and thickness of superior, middle, and inferior temporal, fusiform, inferior parietal, and lateral occipital regions. Patients with post-traumatic headache who did not improve by three months had less thickness and higher curvature measures and notably greater baseline differences in brain structure vs. healthy controls (thickness: p < 0.001, curvature: p = 0.012) than those who had headache improvement. CONCLUSIONS A model including clinical questionnaire data and measures of brain structure accurately predicted headache improvement in patients with post-traumatic headache and achieved improvement compared to a model developed using questionnaire data alone.
Collapse
Affiliation(s)
- Lingchao Mao
- School of Industrial and Systems Engineering, Georgia Tech, Atlanta, GA, USA
| | - Jing Li
- School of Industrial and Systems Engineering, Georgia Tech, Atlanta, GA, USA
| | - Todd J Schwedt
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
- ASU-Mayo Center for Innovative Imaging, Phoenix, AZ, USA
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA
| | - Visar Berisha
- ASU-Mayo Center for Innovative Imaging, Phoenix, AZ, USA
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA
- School of Electrical, Computer and Energy Engineering and College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Devin Nikjou
- School of Electrical, Computer and Energy Engineering and College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Teresa Wu
- ASU-Mayo Center for Innovative Imaging, Phoenix, AZ, USA
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | | | | | - Catherine D Chong
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
- ASU-Mayo Center for Innovative Imaging, Phoenix, AZ, USA
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA
| |
Collapse
|
10
|
Wang W, Yuan Z, Zhang X, Bai X, Tang H, Mei Y, Qiu D, Zhang Y, Zhang P, Zhang X, Zhang Y, Yu X, Sui B, Wang Y. Mapping the aberrant brain functional connectivity in new daily persistent headache: a resting-state functional magnetic resonance imaging study. J Headache Pain 2023; 24:46. [PMID: 37098469 PMCID: PMC10131335 DOI: 10.1186/s10194-023-01577-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of new daily persistent headache (NDPH) is not fully understood. We aim to map aberrant functional connectivity (FC) in patients with NDPH using resting-state functional magnetic resonance imaging (MRI). METHODS Brain structural and functional MRI data were acquired from 29 patients with NDPH and 37 well-matched healthy controls (HCs) in this cross-sectional study. Region of interest (ROI) based analysis was used to compare FC between patients and HCs, with 116 brain regions in the automated anatomical labeling (AAL) atlas were defined as seeds. The correlations between aberrant FC and patients' clinical characteristics, and neuropsychological evaluation were also investigated. RESULTS Compared with HCs, patients with NDPH showed increased FC in the left inferior occipital gyrus, right thalamus and decreased FC in right lingual gyrus, left superior occipital gyrus, right middle occipital gyrus, left inferior occipital gyrus, right inferior occipital gyrus, right fusiform gyrus, left postcentral gyrus, right postcentral gyrus, right thalamus and right superior temporal gyrus. There were no correlation between FC of these brain regions and clinical characteristics, neuropsychological evaluation after Bonferroni correction (p > 0.05/266). CONCLUSIONS Patients with NDPH showed aberrant FC in multiple brain regions involved in perception and regulation of emotion and pain. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05334927.
Collapse
Affiliation(s)
- Wei Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ziyu Yuan
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xueyan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaoyan Bai
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing Neurosurgical Institute, Beijing, 100070, China
| | - Hefei Tang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yanliang Mei
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Dong Qiu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yingkui Zhang
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Peng Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xue Zhang
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing Neurosurgical Institute, Beijing, 100070, China
| | - Yaqing Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xueying Yu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Binbin Sui
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
11
|
Guo X, Wang D, Ying C, Hong Y. Association between brain structures and migraine: A bidirectional Mendelian randomization study. Front Neurosci 2023; 17:1148458. [PMID: 36937660 PMCID: PMC10020331 DOI: 10.3389/fnins.2023.1148458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Background Accumulating evidence of clinical and neuroimaging studies indicated that migraine is related to brain structural alterations. However, it is still not clear whether the associations of brain structural alterations with migraine are likely to be causal, or could be explained by reverse causality confounding. Methods We carried on a bidirectional Mendelian randomization analysis in order to identify the causal relationship between brain structures and migraine risk. Summary-level data and independent variants used as instruments came from large genome-wide association studies of total surface area and average thickness of cortex (33,992 participants), gray matter volume (8,428 participants), white matter hyperintensities (50,970 participants), hippocampal volume (33,536 participants), and migraine (102,084 cases and 771,257 controls). Results We identified suggestive associations of the decreased surface area (OR = 0.85; 95% CI, 0.75-0.96; P = 0.007), and decreased hippocampal volume (OR = 0.74; 95% CI, 0.55-1.00; P = 0.047) with higher migraine risk. We did not find any significant association of gray matter volume, cortical thickness, or white matter hyperintensities with migraine. No evidence supporting the significant association was found in the reverse MR analysis. Conclusion We provided suggestive evidence that surface area and hippocampal volume are causally associated with migraine risk.
Collapse
Affiliation(s)
- Xiaoming Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Dingkun Wang
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Caidi Ying
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Hong
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Yuan Hong,
| |
Collapse
|
12
|
Planchuelo-Gómez Á, García-Azorín D, Guerrero ÁL, Rodríguez M, Aja-Fernández S, de Luis-García R. Structural brain changes in patients with persistent headache after COVID-19 resolution. J Neurol 2023; 270:13-31. [PMID: 36178541 PMCID: PMC9522538 DOI: 10.1007/s00415-022-11398-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/09/2023]
Abstract
Headache is among the most frequently reported symptoms after resolution of COVID-19. We assessed structural brain changes using T1- and diffusion-weighted MRI processed data from 167 subjects: 40 patients who recovered from COVID-19 but suffered from persistent headache without prior history of headache (COV), 41 healthy controls, 43 patients with episodic migraine and 43 patients with chronic migraine. To evaluate gray matter and white matter changes, morphometry parameters and diffusion tensor imaging-based measures were employed, respectively. COV patients showed significant lower cortical gray matter volume and cortical thickness than healthy subjects (p < 0.05, false discovery rate corrected) in the inferior frontal and the fusiform cortex. Lower fractional anisotropy and higher radial diffusivity (p < 0.05, family-wise error corrected) were observed in COV patients compared to controls, mainly in the corpus callosum and left hemisphere. COV patients showed higher cortical volume and thickness than migraine patients in the cingulate and frontal gyri, paracentral lobule and superior temporal sulcus, lower volume in subcortical regions and lower curvature in the precuneus and cuneus. Lower diffusion metric values in COV patients compared to migraine were identified prominently in the right hemisphere. COV patients present diverse changes in the white matter and gray matter structure. White matter changes seem to be associated with impairment of fiber bundles. Besides, the gray matter changes and other white matter modifications such as axonal integrity loss seemed subtle and less pronounced than those detected in migraine, showing that persistent headache after COVID-19 resolution could be an intermediate state between normality and migraine.
Collapse
Affiliation(s)
- Álvaro Planchuelo-Gómez
- Laboratorio de Procesado de Imagen (LPI), Universidad de Valladolid, 47011, Valladolid, Spain
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, CF24 4HQ, UK
| | - David García-Azorín
- Department of Neurology, Headache Unit, Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal, 3, 47003, Valladolid, Spain.
- Department of Medicine, Universidad de Valladolid, 47005, Valladolid, Spain.
| | - Ángel L Guerrero
- Department of Neurology, Headache Unit, Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal, 3, 47003, Valladolid, Spain
- Department of Medicine, Universidad de Valladolid, 47005, Valladolid, Spain
| | - Margarita Rodríguez
- Department of Radiology, Hospital Clínico Universitario de Valladolid, 47003, Valladolid, Spain
| | - Santiago Aja-Fernández
- Laboratorio de Procesado de Imagen (LPI), Universidad de Valladolid, 47011, Valladolid, Spain
| | - Rodrigo de Luis-García
- Laboratorio de Procesado de Imagen (LPI), Universidad de Valladolid, 47011, Valladolid, Spain
| |
Collapse
|
13
|
Szabo E, Chang YC, Shulman J, Sieberg CB, Sethna NF, Borsook D, Holmes SA, Lebel AA. Alterations in the structure and function of the brain in adolescents with new daily persistent headache: A pilot
MRI
study. Headache 2022; 62:858-869. [DOI: 10.1111/head.14360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Edina Szabo
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine Boston Children's Hospital, Harvard Medical School Boston Massachusetts USA
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry and Behavioral Sciences Boston Children's Hospital, Harvard Medical School Boston Massachusetts USA
| | | | - Julie Shulman
- Department of Physical Therapy and Occupational Therapy Boston Children's Hospital Boston Massachusetts USA
| | - Christine B. Sieberg
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine Boston Children's Hospital, Harvard Medical School Boston Massachusetts USA
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry and Behavioral Sciences Boston Children's Hospital, Harvard Medical School Boston Massachusetts USA
- Department of Psychiatry Harvard Medical School Boston Massachusetts USA
| | - Navil F. Sethna
- Department of Anesthesiology, Critical Care, and Pain Medicine Boston Children's Hospital Boston Massachusetts USA
| | - David Borsook
- Department of Psychiatry Massachusetts General Hospital Boston Massachusetts USA
- Department of Radiology Massachusetts General Hospital Boston Massachusetts USA
- Department of Anesthesiology Harvard Medical School Boston Massachusetts USA
| | - Scott A. Holmes
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine Boston Children's Hospital, Harvard Medical School Boston Massachusetts USA
- Pediatric Pain Pathway Lab, Department of Anesthesiology, Critical Care, and Pain Medicine Boston Children's Hospital, Harvard Medical School Boston Massachusetts USA
| | - Alyssa A. Lebel
- Department of Anesthesiology, Critical Care, and Pain Medicine Boston Children's Hospital Boston Massachusetts USA
| |
Collapse
|
14
|
Gray matter alteration in medication overuse headache: a coordinates-based activation likelihood estimation meta-analysis. Brain Imaging Behav 2022; 16:2307-2319. [PMID: 35143020 PMCID: PMC9581858 DOI: 10.1007/s11682-022-00634-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 11/02/2022]
Abstract
Medication overuse headache (MOH) is a prevalent secondary headache, bringing heavy economic burden and neuropsychological damage. Neuroimaging studies on the disease reported divergent results. To merge the reported neuroimaging alterations in MOH patients and explore a pathophysiological mechanism of this disorder. A meta-analytic activation likelihood estimation (ALE) analysis method was used. We systematically searched English and Chinese databases for both morphological and functional neuroimaging studies published before Nov 18, 2021. Reported altered brain regions and the stereotactic coordinates of their peaks were extracted and pooled by GingerALE using Gaussian probability distribution into brain maps, illustrating converged regions of alteration among studies. We identified 927 articles, of which five studies on gray matter changes, using voxel-based morphometry (VBM) were eventually included for ALE analysis, with 344 subjects and 54 coordinates put into GingerALE. No functional magnetic resonance imaging (fMRI) or positron emission topography (PET) studies were included for pooling. Compared with healthy controls (HCs), MOH featured increased gray matter density in midbrain, striatum, cingulate, inferior parietal cortex and cerebellum (P < 0.001 uncorrected), whereas decreased gray matter density in orbitofrontal cortex (P < 0.05, family-wise error), frontal, insular and parietal cortices (P < 0.001 uncorrected). Withdrawal of analgesics led to decreased gray matter density in superior temporal gyrus, cuneus, midbrain and cerebellum (P < 0.001 uncorrected). This meta-analysis confirmed that medication overuse headache is associated with morphologic alteration in the reward system, the prefrontal cortex and a reversible modification in the pain network. Further functional imaging paradigms and longitudinal studies are required for a more definite conclusion and a causal mechanism.
Collapse
|
15
|
Chen Z, Zhao H, Chen X, Liu M, Li X, Ma L, Yu S. The increased iron deposition of the gray matter over the whole brain in chronic migraine: an exploratory quantitative susceptibility mapping study. Mol Pain 2022; 18:17448069221074987. [PMID: 35083927 PMCID: PMC8874206 DOI: 10.1177/17448069221074987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Prior studies identified iron deposition in deep brain nuclei and the periaqueductal gray matter region in chronic migraine, and less is known about the cerebral iron deposition over the whole cerebral gray matter in CM. The aim of this case–control study is to investigate the cerebral iron deposition of gray matter in CM using an advanced quantitative susceptibility mapping. Methods A multi-echo gradient echo MR sequence was used to obtain raw quantitative susceptibility mapping data from 12 CM patients and 18 normal controls and the quantitative susceptibility mapping were reconstructed. Three dimensional T1 images were segmented and the gray matter mask was generated to extract the susceptibility value of gray matter over the whole brain. The independent t test and receiver operating characteristic curve Receiver operating characteristics was used to investigate the iron deposition changes in CM patients. Results CM presented a higher susceptibility value (1.44 × 10−3 ppm) compared with NC group (0.47 × 10−3 ppm) (p < 0.0001) over the whole cerebral gray matter. There was no correlation between susceptibility value and the clinical variables including disease duration, Visual Analog Scale (VAS), Migraine Disability Assessment Scale (MIDAS), Hamilton Anxiety Scale (HAMA), Hamilton Depression Scale (HAMD), and Montreal Cognitive Assessment (MoCA) scores (p > 0.05). ROC analysis demonstrated the susceptibility had a high diagnostic efficacy (AUC 0.949, sensitivity 77.78% and specificity 100%) in distinguishing CM from NC. Conclusion CM patients had increased iron deposition in total cerebral gray matter which could be considered as a potential diagnostic and evaluated imaging biomarker in CM.
Collapse
Affiliation(s)
| | | | - Xiaoyan Chen
- Department of Neurology104607Chinese PLA General Hospital
| | - Mengqi Liu
- Department of Radiology104607Chinese PLA General Hospital
| | | | - Lin Ma
- Department of Radiology104607Chinese PLA General Hospital
| | - Shengyuan Yu
- Department of Neurology104607Chinese PLA General Hospital
| |
Collapse
|
16
|
Schading S, Pohl H, Gantenbein A, Luechinger R, Sandor P, Riederer F, Freund P, Michels L. Tracking tDCS induced grey matter changes in episodic migraine: a randomized controlled trial. J Headache Pain 2021; 22:139. [PMID: 34800989 PMCID: PMC8605508 DOI: 10.1186/s10194-021-01347-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Occipital transcranial direct current stimulation (tDCS) is an effective and safe treatment for migraine attack prevention. Structural brain alterations have been found in migraineurs in regions related to pain modulation and perception, including occipital areas. However, whether these structural alterations can be dynamically modulated through tDCS treatment is understudied. OBJECTIVE To track longitudinally grey matter volume changes in occipital areas in episodic migraineurs during and up to five months after occipital tDCS treatment in a single-blind, and sham-controlled study. METHODS 24 episodic migraineurs were randomized to either receive verum or sham occipital tDCS treatment for 28 days. To investigate dynamic grey matter volume changes patients underwent structural MRI at baseline (prior to treatment), 1.5 months and 5.5 months (after completion of treatment). 31 healthy controls were scanned with the same MRI protocol. Morphometry measures assessed rate of changes over time and between groups by means of tensor-based morphometry. RESULTS Before treatment, migraineurs reported 5.6 monthly migraine days on average. A cross-sectional analysis revealed grey matter volume increases in the left lingual gyrus in migraineurs compared to controls. Four weeks of tDCS application led to a reduction of 1.9 migraine days/month and was paralleled by grey matter volume decreases in the left lingual gyrus in the treatment group; its extent overlapping with that seen at baseline. CONCLUSION This study shows that migraineurs have increased grey matter volume in the lingual gyrus, which can be modified by tDCS. Tracking structural plasticity in migraineurs provides a potential neuroimaging biomarker for treatment monitoring. TRIAL REGISTRATION ClinicalTrials.gov , NCT03237754 . Registered 03 August 2017 - retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03237754 .
Collapse
Affiliation(s)
- Simon Schading
- Spinal Cord Injury Centre Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Heiko Pohl
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Gantenbein
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- ZURZACH Care, Bad Zurzach, Switzerland
| | - Roger Luechinger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Peter Sandor
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- ZURZACH Care, Bad Zurzach, Switzerland
| | - Franz Riederer
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Neurological Center Rosenhügel and Karl Landsteiner Institute for Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Patrick Freund
- Spinal Cord Injury Centre Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lars Michels
- Department of Neuroradiology, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
| |
Collapse
|
17
|
Guarnera A, Bottino F, Napolitano A, Sforza G, Cappa M, Chioma L, Pasquini L, Rossi-Espagnet MC, Lucignani G, Figà-Talamanca L, Carducci C, Ruscitto C, Valeriani M, Longo D, Papetti L. Early alterations of cortical thickness and gyrification in migraine without aura: a retrospective MRI study in pediatric patients. J Headache Pain 2021; 22:79. [PMID: 34294048 PMCID: PMC8296718 DOI: 10.1186/s10194-021-01290-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Migraine is the most common neurological disease, with high social-economical burden. Although there is growing evidence of brain structural and functional abnormalities in patients with migraine, few studies have been conducted on children and no studies investigating cortical gyrification have been conducted on pediatric patients affected by migraine without aura. Methods Seventy-two pediatric patients affected by migraine without aura and eighty-two controls aged between 6 and 18 were retrospectively recruited with the following inclusion criteria: MRI exam showing no morphological or signal abnormalities, no systemic comorbidities, no abnormal neurological examination. Cortical thickness (CT) and local gyrification index (LGI) were obtained through a dedicated algorithm, consisting of a combination of voxel-based and surface-based morphometric techniques. The statistical analysis was performed separately on CT and LGI between: patients and controls; subgroups of controls and subgroups of patients. Results Patients showed a decreased LGI in the left superior parietal lobule and in the supramarginal gyrus, compared to controls. Female patients presented a decreased LGI in the right superior, middle and transverse temporal gyri, right postcentral gyrus and supramarginal gyrus compared to male patients. Compared to migraine patients younger than 12 years, the ≥ 12-year-old subjects showed a decreased CT in the superior and middle frontal gyri, pre- and post-central cortex, paracentral lobule, superior and transverse temporal gyri, supramarginal gyrus and posterior insula. Migraine patients experiencing nausea and/or vomiting during headache attacks presented an increased CT in the pars opercularis of the left inferior frontal gyrus. Conclusions Differences in CT and LGI in patients affected by migraine without aura may suggest the presence of congenital and acquired abnormalities in migraine and that migraine might represent a vast spectrum of different entities. In particular, ≥ 12-year-old pediatric patients showed a decreased CT in areas related to the executive function and nociceptive networks compared to younger patients, while female patients compared to males showed a decreased CT of the auditory cortex compared to males. Therefore, early and tailored therapies are paramount to obtain migraine control, prevent cerebral reduction of cortical thickness and preserve executive function and nociception networks to ensure a high quality of life.
Collapse
Affiliation(s)
- Alessia Guarnera
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.,Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Francesca Bottino
- Medical Physics Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, Rome, Italy.
| | - Giorgia Sforza
- Pediatric Headache Center, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Marco Cappa
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Laura Chioma
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Luca Pasquini
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy.,Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 10065, New York City, NY, USA
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.,Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Giulia Lucignani
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Lorenzo Figà-Talamanca
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Chiara Carducci
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Claudia Ruscitto
- Child Neurology Unit, Systems Medicine Department, Tor Vergata University Hospital of Rome, 00133, Rome, Italy
| | - Massimiliano Valeriani
- Pediatric Headache Center, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy.,Center for Sensory-Motor Interaction, Aalborg University, 9220, Aalborg, Denmark
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Laura Papetti
- Pediatric Headache Center, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
18
|
Khera T, Rangasamy V. Cognition and Pain: A Review. Front Psychol 2021; 12:673962. [PMID: 34093370 PMCID: PMC8175647 DOI: 10.3389/fpsyg.2021.673962] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 01/14/2023] Open
Abstract
Cognition is defined as the brain's ability to acquire, process, store, and retrieve information. Pain has been described as an unpleasant sensory or emotional experience, and for experiencing pain consciously, cognitive processing becomes imperative. Moreover, evaluation of pain strongly depends on cognition as it requires learning and recall of previous experiences. There could be a possible close link between neural systems involved in cognition and pain processing, and studies have reported an association between pain and cognitive impairment. In this narrative review, we explore the available evidence that has investigated cognitive changes associated with pain. We also examine the anatomical, biochemical, and molecular association of pain and neuro-cognition. Additionally, we focus on the cognitive impairment caused by analgesic medications. There is a need to improve our understanding of pathophysiology and cognitive impairment mechanisms associated with chronic pain and its treatment. This area provides a diverse opportunity for grounding future research, aiding institution of timely interventions to prevent chronic pain and associated cognitive decline, ultimately improving patient care.
Collapse
Affiliation(s)
- Tanvi Khera
- Department of Anesthesia Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Valluvan Rangasamy
- Department of Anesthesia Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Planchuelo‐Gómez Á, García‐Azorín D, Guerrero ÁL, Aja‐Fernández S, Rodríguez M, Luis‐García R. Multimodal fusion analysis of structural connectivity and gray matter morphology in migraine. Hum Brain Mapp 2020. [PMCID: PMC7856653 DOI: 10.1002/hbm.25267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
No specific migraine biomarkers have been found in single‐modality MRI studies. We aimed at establishing biomarkers for episodic and chronic migraine using diverse MRI modalities. We employed canonical correlation analysis and joint independent component analysis to find structural connectivity abnormalities that are related to gray matter morphometric alterations. The number of streamlines (trajectories of estimated fiber‐tracts from tractography) was employed as structural connectivity measure, while cortical curvature, thickness, surface area, and volume were used as gray matter parameters. These parameters were compared between 56 chronic and 54 episodic migraine patients, and 50 healthy controls. Cortical curvature alterations were associated with abnormalities in the streamline count in episodic migraine patients compared to controls, with higher curvature values in the frontal and temporal poles being related to a higher streamline count. Lower streamline count was found in migraine compared to controls in connections between cortical regions within each of the four lobes. Higher streamline count was found in migraine in connections between subcortical regions, the insula, and the cingulate and orbitofrontal cortex, and between the insula and the temporal region. The connections between the caudate nucleus and the orbitofrontal cortex presented worse connectivity in chronic compared to episodic migraine. The hippocampus was involved in connections with higher and lower number of streamlines in chronic migraine. Strengthening of structural networks involving pain processing and subcortical regions coexists in migraine with weakening of cortical networks within each lobe. The multimodal analysis offers a new insight about the association between brain structure and connectivity.
Collapse
Affiliation(s)
| | - David García‐Azorín
- Headache Unit, Department of Neurology Hospital Clínico Universitario de Valladolid Valladolid Spain
- Institute for Biomedical Research of Salamanca (IBSAL) Salamanca Spain
| | - Ángel L. Guerrero
- Headache Unit, Department of Neurology Hospital Clínico Universitario de Valladolid Valladolid Spain
- Institute for Biomedical Research of Salamanca (IBSAL) Salamanca Spain
- Department of Medicine Universidad de Valladolid Valladolid Spain
| | | | - Margarita Rodríguez
- Department of Radiology Hospital Clínico Universitario de Valladolid Valladolid Spain
| | | |
Collapse
|