1
|
Sigorski D, Sejda A, Abualsaud N, Krawczyk E, Izycka-Swieszewska E, Kitlinska J. Neuropeptide Y in cancer-biological functions and potential clinical implications. Cancer Metastasis Rev 2025; 44:21. [PMID: 39760953 PMCID: PMC11703900 DOI: 10.1007/s10555-024-10237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Neuropeptide Y (NPY) is a sympathetic neurotransmitter widely distributed in the peripheral and central nervous system, affecting many physiological functions. Consequently, dysregulation of the NPY system contributes to numerous pathological disorders, including stress, obesity, and cancer. The pleiotropic functions of NPY in humans are mediated by G protein-coupled receptors (Y1R, Y2R, Y5R), which activate several signaling pathways and thereby regulate cell growth, differentiation, apoptosis, proliferation, angiogenesis, and metabolism. These activities of NPY are highly relevant to tumor biology and known hallmarks of cancer, including sustained proliferative potential, resisting cell death, angiogenesis, invasion, and metastases. In this comprehensive review, we describe the cellular functions of NPY and discuss its role in cancer pathobiology, as well as provide the current state of knowledge pertaining to NPY and its receptors in various cancer types. Moreover, we focus on potential clinical applications targeting the NPY system, such as its role as a prognostic and predictive factor, as well as its utility in cancer diagnostics, imaging, and treatment. Altogether, growing evidence supports the significant role of the NPY system in tumor pathobiology and implicates its potential therapeutic and diagnostic value in modern oncology.
Collapse
Affiliation(s)
- Dawid Sigorski
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, BSB 231A, 3900 Reservoir Rd., NW, Washington, DC, 20057, USA
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Aleksandra Sejda
- Department of Pathomorphology and Forensic Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Nouran Abualsaud
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, BSB 231A, 3900 Reservoir Rd., NW, Washington, DC, 20057, USA
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
| | - Ewa Izycka-Swieszewska
- Department of Pathology and Neuropathology, Medical University of Gdansk, Gdansk, Poland
- Department of Pathomorphology, Copernicus Hospital, Gdansk, Poland
| | - Joanna Kitlinska
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, BSB 231A, 3900 Reservoir Rd., NW, Washington, DC, 20057, USA.
| |
Collapse
|
2
|
Wong AR, Hung A, Yang AWH, Gill H, Lenon GB. Poria cocos compounds targeting neuropeptide Y1 receptor (Y1R) for weight management: A computational ligand- and structure-based study with molecular dynamics simulations identified beta-amyrin acetate as a putative Y1R inhibitor. PLoS One 2023; 18:e0277873. [PMID: 37390097 PMCID: PMC10313034 DOI: 10.1371/journal.pone.0277873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/09/2022] [Indexed: 07/02/2023] Open
Abstract
Poria cocos (PC) is a medicinal herb frequently used in weight-loss clinical trials, however the mechanisms by which its compounds target orexigenic receptors including the neuropeptide Y1 receptor (Y1R) remain largely unknown. This study aimed to screen PC compounds for favourable pharmacokinetics profiles and examine their molecular mechanisms targeting Y1R. Forty-three PC compounds were systematically sought from pharmacological databases and docked with Y1R (PDB: 5ZBQ). By comparing the relative binding affinities, pharmacokinetics and toxicity profiles, we hypothesised that compounds designated PC1 3,4-Dihydroxybenzoic acid, PC8 Vanillic acid, PC40 1-(alpha-L-Ribofuranosyl)uracil, could be potential antagonists as they contact major residues Asn283 and Asp287, similar to various potent Y1R antagonists. In addition, PC21 Poricoic acid B, PC22 Poricoic acid G and PC43 16alpha,25-Dihydroxy-24-methylene-3,4-secolanosta-4(28),7,9(11)-triene-3,21-dioic acid, contacting Asn299, Asp104 and Asp200 proximal to the extracellular surface could also interfere with agonist binding by stabilising the extracellular loop (ECL) 2 of Y1R in a closed position. Owing to their selective interaction with Phe302, an important residue in binding of selective Y1R antagonists, PC12 beta-Amyrin acetate, PC26 3-Epidehydrotumulosic acid and PC27 Cerevisterol were proposed as putative antagonists. Following the consensus approach, PC12 beta-Amyrin acetate, PC26 3-Epidehydrotumulosic acid and PC27 Cerevisterol were identified as candidate compounds due to their high affinities (-12.2, -11.0 and -10.8 kcal, respectively), high drug-likeness and low toxicity profiles. Trajectory analyses and energy contributions of PC12-Y1R complex further confirmed their structural stability and favourable binding free energies, highlighting the feasibility and possible development of PC12 beta-Amyrin acetate as a future Y1R inhibitor.
Collapse
Affiliation(s)
- Ann Rann Wong
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Andrew Hung
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Angela Wei Hong Yang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - George Binh Lenon
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
3
|
Tang T, Tan Q, Han S, Diemar A, Löbner K, Wang H, Schüß C, Behr V, Mörl K, Wang M, Chu X, Yi C, Keller M, Kofoed J, Reedtz-Runge S, Kaiser A, Beck-Sickinger AG, Zhao Q, Wu B. Receptor-specific recognition of NPY peptides revealed by structures of NPY receptors. SCIENCE ADVANCES 2022; 8:eabm1232. [PMID: 35507650 PMCID: PMC9067930 DOI: 10.1126/sciadv.abm1232] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
In response to three highly conserved neuropeptides, neuropeptide Y (NPY), peptide YY, and pancreatic polypeptide (PP), four G protein-coupled receptors mediate multiple essential physiological processes, such as food intake, vasoconstriction, sedation, and memory retention. Here, we report the structures of the human Y1, Y2, and Y4 receptors in complex with NPY or PP, and the Gi1 protein. These structures reveal distinct binding poses of the peptide upon coupling to different receptors, reflecting the importance of the conformational plasticity of the peptide in recognizing the NPY receptors. The N terminus of the peptide forms extensive interactions with the Y1 receptor, but not with the Y2 and Y4 receptors. Supported by mutagenesis and functional studies, subtype-specific interactions between the receptors and peptides were further observed. These findings provide insight into key factors that govern NPY signal recognition and transduction, and would enable development of selective drugs.
Collapse
Affiliation(s)
- Tingting Tang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiuxiang Tan
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shuo Han
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Anne Diemar
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Kristin Löbner
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Hongyu Wang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Corinna Schüß
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Karin Mörl
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Mu Wang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaojing Chu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Cuiying Yi
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Max Keller
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Jacob Kofoed
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | | | - Anette Kaiser
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | | | - Qiang Zhao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Beili Wu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
4
|
Langley DB, Schofield P, Jackson J, Herzog H, Christ D. Crystal structures of human neuropeptide Y (NPY) and peptide YY (PYY). Neuropeptides 2022; 92:102231. [PMID: 35180645 DOI: 10.1016/j.npep.2022.102231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
Abstract
Neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP) form the evolutionarily conserved pancreatic polypeptide family. While the fold is widely utilized in nature, crystal structures remain elusive, particularly for the human forms, with only the structure of a distant avian form of PP reported. Here we utilize a crystallization chaperone (antibody Fab fragment), specifically recognizing the amidated peptide termini, to solve the structures of human NPY and human PYY. Intriguingly, and despite limited sequence identity (~50%), the structure of human PYY closely resembles that of avian PP, highlighting the broad structural conservation of the fold throughout evolution. Specifically, the PYY structure is characterized by a C-terminal amidated α-helix, preceded by a backfolded poly-proline N-terminus, with the termini in close proximity to each other. In contrast, in the structure of human NPY the N-terminal component is disordered, while the helical component of the peptide is observed in a four-helix bundle type arrangement, consistent with a propensity for multimerization suggested by NMR studies.
Collapse
Affiliation(s)
- David B Langley
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales 2010, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales 2010, Australia
| | - Jenny Jackson
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales 2010, Australia
| | - Herbert Herzog
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia.
| |
Collapse
|
5
|
Kögler LM, Stichel J, Beck-Sickinger AG. Structural investigations of cell-free expressed G protein-coupled receptors. Biol Chem 2020; 401:97-116. [PMID: 31539345 DOI: 10.1515/hsz-2019-0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are of great pharmaceutical interest and about 35% of the commercial drugs target these proteins. Still there is huge potential left in finding molecules that target new GPCRs or that modulate GPCRs differentially. For a rational drug design, it is important to understand the structure, binding and activation of the protein of interest. Structural investigations of GPCRs remain challenging, although huge progress has been made in the last 20 years, especially in the generation of crystal structures of GPCRs. This is mostly caused by issues with the expression yield, purity or labeling. Cell-free protein synthesis (CFPS) is an efficient alternative for recombinant expression systems that can potentially address many of these problems. In this article the use of CFPS for structural investigations of GPCRs is reviewed. We compare different CFPS systems, including the cellular basis and reaction configurations, and strategies for an efficient solubilization. Next, we highlight recent advances in the structural investigation of cell-free expressed GPCRs, with special emphasis on the role of photo-crosslinking approaches to investigate ligand binding sites on GPCRs.
Collapse
Affiliation(s)
- Lisa Maria Kögler
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| |
Collapse
|
6
|
Hirst NL, Lawton SP, Walker AJ. Protein kinase A signalling in Schistosoma mansoni cercariae and schistosomules. Int J Parasitol 2016; 46:425-37. [PMID: 26777870 DOI: 10.1016/j.ijpara.2015.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
Abstract
Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A regulates multiple processes in eukaryotes by phosphorylating diverse cellular substrates, including metabolic and signalling enzymes, ion channels and transcription factors. Here we provide insight into protein kinase A signalling in cercariae and 24h in vitro cultured somules of the blood parasite, Schistosoma mansoni, which causes human intestinal schistosomiasis. Functional mapping of activated protein kinase A using anti-phospho protein kinase A antibodies and confocal laser scanning microscopy revealed activated protein kinase A in the central and peripheral nervous system, oral-tip sensory papillae, oesophagus and excretory system of intact cercariae. Cultured 24h somules, which biologically represent the skin-resident stage of the parasite, exhibited similar activation patterns in oesophageal and nerve tissues but also displayed striking activation at the tegument and activation in a region resembling the germinal 'stem' cell cluster. The adenylyl cyclase activator, forskolin, stimulated somule protein kinase A activation and produced a hyperkinesia phenotype. The biogenic amines, serotonin and dopamine known to be present in skin also induced protein kinase A activation in somules, whereas neuropeptide Y or [Leu(31),Pro(34)]-neuropeptide Y attenuated protein kinase A activation. However, neuropeptide Y did not block the forskolin-induced somule hyperkinesia. Bioinformatic investigation of potential protein associations revealed 193 medium confidence and 59 high confidence protein kinase A interacting partners in S. mansoni, many of which possess putative protein kinase A phosphorylation sites. These data provide valuable insight into the intricacies of protein kinase A signalling in S. mansoni and a framework for further physiological investigations into the roles of protein kinase A in schistosomes, particularly in the context of interactions between the parasite and the host.
Collapse
Affiliation(s)
- Natasha L Hirst
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Scott P Lawton
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK.
| |
Collapse
|
7
|
Xu B, Fällmar H, Boukharta L, Pruner J, Lundell I, Mohell N, Gutiérrez-de-Terán H, Aqvist J, Larhammar D. Mutagenesis and computational modeling of human G-protein-coupled receptor Y2 for neuropeptide Y and peptide YY. Biochemistry 2013; 52:7987-98. [PMID: 24111902 DOI: 10.1021/bi400830c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuropeptide Y and peptide YY receptor type 2 (Y2) is involved in appetite regulation and several other physiological processes. We have investigated the structure of the human Y2 receptor. Computational modeling of receptor-agonist interactions was used as a guide to design a series of receptor mutants, followed by binding assays using full-length and truncated peptide agonists and the Y2-specific antagonist BIIE0246. Our model suggested a hydrogen bond network among highly conserved residues Thr2.61, Gln3.32, and His7.39, which could play roles in ligand binding and/or receptor structure. In addition, the C-terminus of the peptide could make contact with residues Tyr5.38 and Leu6.51. Mutagenesis of all these positions, followed by binding assays, provides experimental support for our computational model: most of the mutants for the residues forming the proposed hydrogen bond network displayed reduced peptide agonist affinities as well as reduced hPYY3-36 potency in a functional assay. The Ala and Leu mutants of Gln3.32 and His7.39 disrupted membrane expression of the receptor. Combined with the modeling, the experimental results support roles for these hydrogen bond network residues in peptide binding as well as receptor architecture. The reduced agonist affinity for mutants of Tyr5.38 and Leu6.51 supports their role in a binding pocket surrounding the invariant tyrosine at position 36 of the peptide ligands. The results for antagonist BIIE0246 suggest several differences in interactions compared to those of the peptides. Our results lead to a new structural model for NPY family receptors and peptide binding.
Collapse
Affiliation(s)
- Bo Xu
- Department of Neuroscience, Science for Life Laboratory, Uppsala University , Box 593, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Uehara H, Hocart SJ, González N, Mantey SA, Nakagawa T, Katsuno T, Coy DH, Jensen RT. The molecular basis for high affinity of a universal ligand for human bombesin receptor (BnR) family members. Biochem Pharmacol 2012; 84:936-948. [PMID: 22828605 PMCID: PMC3433740 DOI: 10.1016/j.bcp.2012.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/17/2022]
Abstract
There is increased interest in the Bn-receptor family because they are frequently over/ectopically expressed by tumors and thus useful as targets for imaging or receptor-targeted-cytotoxicity. The synthetic Bn-analog, [D-Tyr(6), β-Ala(11), Phe(13), Nle(14)]Bn(6-14) [Univ.Lig] has the unique property of having high affinity for all three human BNRs (GRPR, NMBR, BRS-3), and thus could be especially useful for this approach. However, the molecular basis of this property is unclear and is the subject of this study. To accomplish this, site-directed mutagenesis was used after identifying potentially important amino acids using sequence homology analysis of all BnRs with high affinity for Univ.Lig compared to the Cholecystokinin-receptor (CCK(A)R), which has low affinity. Using various criteria 74 amino acids were identified and 101 mutations made in GRPR by changing each to those of CCK(A)R or to alanine. 22 GRPR mutations showed a significant decrease in affinity for Univ.Lig (>2-fold) with 2 in EC2[D97N, G112V], 1 in UTM6[Y284A], 2 in EC4[R287N, H300S] showing >10-fold decrease in Univ.Lig affinity. Additional mutations were made to explore the molecular basis for these changes. Our results show that high affinity for Univ.Lig by human Bn-receptors requires positively charged amino acids in extracellular (EC)-domain 4 and to a lesser extent EC2 and EC3 suggesting charge-charge interactions may be particularly important for determining the general high affinity of this ligand. Furthermore, transmembrane amino acids particularly in UTM6 are important contributing both charge-charge interactions as well as interaction with a tyrosine residue in close proximity suggesting possible receptor-peptide cation-π or H-bonding interactions are also important for determining its high affinity.
Collapse
Affiliation(s)
- Hirotsugu Uehara
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Simon J. Hocart
- Peptide Research Laboratories, Department of Medicine, Tulane Health Sciences Center, New Orleans, Louisiana 70112-2699
| | - Nieves González
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Samuel A. Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Tomoo Nakagawa
- Department of Medicine and Clinical Oncology (K1), Graduate School of Medicine, Chiba University1-8-1 Inohana, Chuo-ku, Chiba-shi 260-8670, Japan
| | - Tatsuro Katsuno
- Department of Medicine and Clinical Oncology (K1), Graduate School of Medicine, Chiba University1-8-1 Inohana, Chuo-ku, Chiba-shi 260-8670, Japan
| | - David H. Coy
- Peptide Research Laboratories, Department of Medicine, Tulane Health Sciences Center, New Orleans, Louisiana 70112-2699
| | - Robert T. Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1804
| |
Collapse
|
9
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
10
|
Parker MS, Sah R, Balasubramaniam A, Sallee FR, Zerbe O, Parker SL. Non-specific binding and general cross-reactivity of Y receptor agonists are correlated and should importantly depend on their acidic sectors. Peptides 2011; 32:258-65. [PMID: 21126552 PMCID: PMC3025077 DOI: 10.1016/j.peptides.2010.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 11/12/2010] [Accepted: 11/12/2010] [Indexed: 10/18/2022]
Abstract
Non-specific binding of Y receptor agonists to intact CHO cells, and to CHO cell or rat brain particulates, is much greater for human neuropeptide Y (hNPY) compared to porcine peptide Y (pPYY), and especially relative to human pancreatic polypeptide (hPP). This binding of hNPY is reduced by alkali cations in preference to non-ionic chaotrope urea, while the much lower non-specific binding of pPYY is more sensitive to urea. The difference could mainly be due to the 10-16 stretch in 36-residue Y agonists (residues 8-14 in N-terminally clipped 34-peptides), located in the sector that contains all acidic residues of physiological Y agonists. Anionic pairs containing aspartate in the 10-16 zone could be principally responsible for non-specific attachments, but may also aid the receptor site binding. Two such pairs are found in hNPY, one in pPYY, and none in hPP. The hydroxyl amino acid residue at position 13 in mammalian PYY and PP molecules could lower conformational plasticity and the non-selective binding via intrachain hydrogen bonding. The acidity of this tract could also be important in agonist selectivity of the Y receptor subtypes. The differences point to an evolutionary reduction of promiscuous protein binding from NPY to PP, and should also be important for Y agonist selectivity within NPY receptor group, and correlate with partial agonism and out-of group cross-reactivity with other receptors.
Collapse
Affiliation(s)
- M. S. Parker
- Department. of Molecular Cell Sciences, Univ. of Memphis, Memphis, TN 38152, USA
| | - R. Sah
- Department of Surgery, Univ. of Cincinnati, Cincinnati, OH 45267, USA
| | - A. Balasubramaniam
- Department of Psychiatry, Univ. of Cincinnati, Cincinnati, OH 45267, USA
| | - F. R. Sallee
- Department of Surgery, Univ. of Cincinnati, Cincinnati, OH 45267, USA
| | - O. Zerbe
- Department of Organic Chemistry, Univ. of Basel, Basel, CH-8057, Switzerland
| | - S. L. Parker
- Department of Pharmacology, Univ. of Tennessee Health Science Center, Memphis, TN 38163, USA
- Corresponding author at: Department of Pharmacology, UTHSC Memphis, Memphis TN 38163, USA,
| |
Collapse
|
11
|
Zhang J, Zhang Y. GPCRRD: G protein-coupled receptor spatial restraint database for 3D structure modeling and function annotation. Bioinformatics 2010; 26:3004-5. [PMID: 20926423 DOI: 10.1093/bioinformatics/btq563] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SUMMARY G protein-coupled receptors (GPCRs) comprise the largest family of integral membrane proteins. They are the most important class of drug targets. While there exist crystal structures for only a very few GPCR sequences, numerous experiments have been performed on GPCRs to identify the critical residues and motifs. GPCRRD database is designed to systematically collect all experimental restraints (including residue orientation, contact and distance maps) available from the literature and primary GPCR resources using an automated text mining algorithm combined with manual validation, with the purpose of assisting GPCR 3D structure modeling and function annotation. The current dataset contains thousands of spatial restraints from mutagenesis, disulfide mapping distances, electron cryo-microscopy and Fourier-transform infrared spectroscopy experiments. AVAILABILITY http://zhanglab.ccmb.med.umich.edu/GPCRRD/ CONTACT: zhng@umich.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jian Zhang
- Center for Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
12
|
Åkerberg H, Fällmar H, Sjödin P, Boukharta L, Gutiérrez-de-Terán H, Lundell I, Mohell N, Larhammar D. Mutagenesis of human neuropeptide Y/peptide YY receptor Y2 reveals additional differences to Y1 in interactions with highly conserved ligand positions. ACTA ACUST UNITED AC 2010; 163:120-9. [DOI: 10.1016/j.regpep.2010.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 04/17/2010] [Accepted: 04/28/2010] [Indexed: 01/22/2023]
|
13
|
Umeda T, Kanatani A, Iwaasa H. Cloning and characterization of rabbit neuropeptide Y receptor subtypes. Peptides 2009; 30:1441-7. [PMID: 19481128 DOI: 10.1016/j.peptides.2009.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 05/19/2009] [Accepted: 05/19/2009] [Indexed: 11/18/2022]
Abstract
Neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP) are structurally related peptides that have numerous functions in both neural and endocrine signaling. These effects are mediated by the NPY receptor family and five members of this family have been cloned in mammals. To better characterize these receptor subtypes, we cloned and expressed the Y1, Y2, Y4 and Y5 receptor subtypes from the rabbit. Comparison of these sequences with human orthologs revealed that the Y1, Y2 and Y5 receptors have generally strong amino-acid sequence conservation, with 91-96% identity, while Y4 receptor showed relatively weak similarity with 82% identity, as with other species. Particularly in the transmembrane regions, Y1, Y2, and Y5 receptor subtypes showed remarkable conservation, with 98-99% amino acid identity. Competitive binding studies by NPY-family peptides and analogs showed that Y1, Y2 and Y5 receptors had similar pharmacological profiles between the respective rabbit and human receptor subtypes. Interestingly, all the tested peptides had a greater affinity for rabbit Y4 receptor than human Y4 receptor. These results suggest that rabbit and human Y1, Y2 and Y5 receptor subtypes are well conserved, whereas Y4 receptors are less well conserved.
Collapse
Affiliation(s)
- Tatsuya Umeda
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan.
| | | | | |
Collapse
|
14
|
Lindner D, Stichel J, Beck-Sickinger AG. Molecular recognition of the NPY hormone family by their receptors. Nutrition 2009; 24:907-17. [PMID: 18725086 DOI: 10.1016/j.nut.2008.06.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Many G-protein-coupled receptors belong to families of different receptor subtypes, which are recognized by a variety of distinct ligands. We summarize the current state of the art of the multireceptor/multiligand system of the so-called Y-receptor family. This family consists of four G-protein-coupled Y receptors in humans (hY(1), hY(2), hY(4), and hY(5)) and is activated by the so-called neuropeptide Y hormone family, which consists of three native peptide ligands named neuropeptide Y, pancreatic polypeptide, and peptide YY. We recently reported that one conserved aspartate residue in the third extracellular loop is essential for ligand binding in all four Y receptors, but binds the endogenous ligands in a different mode by interacting with different ligand arginine residues. By combining peptide synthesis to obtain chemically modified neuropeptide Y, peptide YY, and pancreatic polypeptide analogs, receptor mutagenesis, and receptor chimeras, we could trace binding and signaling to a molecular level. The data on the variation of the ligands and an overview of the currently known mutagenesis data are summarized and specific models for the binding mode of the three ligands in all four receptors are provided.
Collapse
Affiliation(s)
- Diana Lindner
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy, and Psychology, Leipzig University, Leipzig, Germany
| | | | | |
Collapse
|
15
|
Merten N, Beck-Sickinger AG. Molecular ligand-receptor interaction of the NPY/PP peptide family. EXS 2006:35-62. [PMID: 16382996 DOI: 10.1007/3-7643-7417-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nicole Merten
- Institute of Biochemistry, Brüderstr. 34, 04103 Leipzig, Germany
| | | |
Collapse
|
16
|
Sjödin P, Holmberg SKS, Akerberg H, Berglund MM, Mohell N, Larhammar D. Re-evaluation of receptor-ligand interactions of the human neuropeptide Y receptor Y1: a site-directed mutagenesis study. Biochem J 2006; 393:161-9. [PMID: 16097949 PMCID: PMC1383674 DOI: 10.1042/bj20050708] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interactions of the human NPY (neuropeptide Y) receptor Y1 with the two endogenous agonists NPY and peptide YY and two non-peptide antagonists were investigated using site-directed mutagenesis at 17 positions. The present study was triggered by contradictions among previously published reports and conclusions that seemed inconsistent with sequence comparisons across species and receptor subtypes. Our results show that Asp287, at the border between TM (transmembrane) region 6 and EL3 (extracellular loop 3) influences peptide binding, while two aspartic residues in EL2 do not, in agreement with some previous studies but in disagreement with others. A hydrophobic pocket of the Y1 receptor consisting of Tyr100 (TM2), Phe286 (TM6) and His298 (EL3) has been proposed to interact with the amidated C-terminus of NPY, a theory that is unsupported by sequence comparisons between Y1, Y2 and Y5. Nevertheless, our results confirm that these amino acid residues are critical for peptide binding, but probably interact with NPY differently than proposed previously. Studies with the Y1-selective antagonist SR120819A identified a new site of interaction at Asn116 in TM3. Position Phe173 in TM4 is also important for binding of this antagonist. In contrast with previous reports, we found that Phe173 is not crucial for the binding of BIBP3226, another selective Y1 receptor antagonist. Also, we found that position Thr212 (TM5) is important for binding of both antagonists. Our mutagenesis results and our three-dimensional model of the receptor based on the high-resolution structure of bovine rhodopsin suggest new interactions for agonist as well as antagonist binding to the Y1 receptor.
Collapse
Affiliation(s)
- Paula Sjödin
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Box 593, SE-75124 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
17
|
Zhang Y, DeVries ME, Skolnick J. Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol 2006; 2:e13. [PMID: 16485037 PMCID: PMC1364505 DOI: 10.1371/journal.pcbi.0020013] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 01/11/2005] [Indexed: 12/22/2022] Open
Abstract
G protein–coupled receptors (GPCRs), encoded by about 5% of human genes, comprise the largest family of integral membrane proteins and act as cell surface receptors responsible for the transduction of endogenous signal into a cellular response. Although tertiary structural information is crucial for function annotation and drug design, there are few experimentally determined GPCR structures. To address this issue, we employ the recently developed threading assembly refinement (TASSER) method to generate structure predictions for all 907 putative GPCRs in the human genome. Unlike traditional homology modeling approaches, TASSER modeling does not require solved homologous template structures; moreover, it often refines the structures closer to native. These features are essential for the comprehensive modeling of all human GPCRs when close homologous templates are absent. Based on a benchmarked confidence score, approximately 820 predicted models should have the correct folds. The majority of GPCR models share the characteristic seven-transmembrane helix topology, but 45 ORFs are predicted to have different structures. This is due to GPCR fragments that are predominantly from extracellular or intracellular domains as well as database annotation errors. Our preliminary validation includes the automated modeling of bovine rhodopsin, the only solved GPCR in the Protein Data Bank. With homologous templates excluded, the final model built by TASSER has a global Cα root-mean-squared deviation from native of 4.6 Å, with a root-mean-squared deviation in the transmembrane helix region of 2.1 Å. Models of several representative GPCRs are compared with mutagenesis and affinity labeling data, and consistent agreement is demonstrated. Structure clustering of the predicted models shows that GPCRs with similar structures tend to belong to a similar functional class even when their sequences are diverse. These results demonstrate the usefulness and robustness of the in silico models for GPCR functional analysis. All predicted GPCR models are freely available for noncommercial users on our Web site (http://www.bioinformatics.buffalo.edu/GPCR). G protein–coupled receptors (GPCRs) are a large superfamily of integral membrane proteins that transduce signals across the cell membrane. Because of the breadth and importance of the physiological roles undertaken by the GPCR family, many of its members are important pharmacological targets. Although the knowledge of a protein's native structure can provide important insight into understanding its function and for the design of new drugs, the experimental determination of the three-dimensional structure of GPCR membrane proteins has proved to be very difficult. This is demonstrated by the fact that there is only one solved GPCR structure (from bovine rhodopsin) deposited in the Protein Data Bank library. In contrast, there are no human GPCR structures in the Protein Data Bank. To address the need for the tertiary structures of human GPCRs, using just sequence information, the authors use a newly developed threading-assembly-refinement method to generate models for all 907 registered GPCRs in the human genome. About 820 GPCRs are anticipated to have correct topology and transmembrane helix arrangement. A subset of the resulting models is validated by comparison with mutagenesis experimental data, and consistent agreement is demonstrated.
Collapse
Affiliation(s)
- Yang Zhang
- Center of Excellence in Bioinformatics, University at Buffalo, Buffalo, New York, United States of America
| | - Mark E DeVries
- Center of Excellence in Bioinformatics, University at Buffalo, Buffalo, New York, United States of America
| | - Jeffrey Skolnick
- Center of Excellence in Bioinformatics, University at Buffalo, Buffalo, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Dumont Y, Quirion R. An overview of neuropeptide Y: pharmacology to molecular biology and receptor localization. EXS 2006:7-33. [PMID: 16382995 DOI: 10.1007/3-7643-7417-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Yvan Dumont
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, 6875 Boul. LaSalle, Montreal, QC H4H 1R3, Canada.
| | | |
Collapse
|
19
|
Fanelli F, De Benedetti PG. Computational Modeling Approaches to Structure−Function Analysis of G Protein-Coupled Receptors. Chem Rev 2005; 105:3297-351. [PMID: 16159154 DOI: 10.1021/cr000095n] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute and Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | |
Collapse
|
20
|
Bywater RP. Location and nature of the residues important for ligand recognition in G-protein coupled receptors. J Mol Recognit 2005; 18:60-72. [PMID: 15386622 DOI: 10.1002/jmr.685] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The overall structure of the biogenic amine subclass of the G-protein-coupled receptors, and of their ligand binding sites, is discussed with the aim of highlighting the major structural features of these receptors that are responsible for ligand recognition. A comparison is made between biogenic amine receptors, peptide receptors of the rhodopsin class, and the secretin receptors which all have peptide ligands. The question of where the peptide ligands bind, whether at extracellular sites or within the transmembrane helix bundle, is discussed. The suitability of the rhodopsin crystal structure as a template for construction of homology models is discussed and it is concluded that there are many reasons why a caution should be issued against using it uncritically.
Collapse
Affiliation(s)
- Robert P Bywater
- Adelard Institute, London, UK and Division of Molecular Neurobiology, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| |
Collapse
|
21
|
Shacham S, Marantz Y, Bar-Haim S, Kalid O, Warshaviak D, Avisar N, Inbal B, Heifetz A, Fichman M, Topf M, Naor Z, Noiman S, Becker OM. PREDICT modeling and in-silico screening for G-protein coupled receptors. Proteins 2005; 57:51-86. [PMID: 15326594 DOI: 10.1002/prot.20195] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
G-protein coupled receptors (GPCRs) are a major group of drug targets for which only one x-ray structure is known (the nondrugable rhodopsin), limiting the application of structure-based drug discovery to GPCRs. In this paper we present the details of PREDICT, a new algorithmic approach for modeling the 3D structure of GPCRs without relying on homology to rhodopsin. PREDICT, which focuses on the transmembrane domain of GPCRs, starts from the primary sequence of the receptor, simultaneously optimizing multiple 'decoy' conformations of the protein in order to find its most stable structure, culminating in a virtual receptor-ligand complex. In this paper we present a comprehensive analysis of three PREDICT models for the dopamine D2, neurokinin NK1, and neuropeptide Y Y1 receptors. A shorter discussion of the CCR3 receptor model is also included. All models were found to be in good agreement with a large body of experimental data. The quality of the PREDICT models, at least for drug discovery purposes, was evaluated by their successful utilization in in-silico screening. Virtual screening using all three PREDICT models yielded enrichment factors 9-fold to 44-fold better than random screening. Namely, the PREDICT models can be used to identify active small-molecule ligands embedded in large compound libraries with an efficiency comparable to that obtained using crystal structures for non-GPCR targets.
Collapse
|
22
|
Lu X, Huang W, Worthington S, Drabik P, Osman R, Gershengorn MC. A model of inverse agonist action at thyrotropin-releasing hormone receptor type 1: role of a conserved tryptophan in helix 6. Mol Pharmacol 2004; 66:1192-200. [PMID: 15306657 DOI: 10.1124/mol.104.000349] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A binding pocket for thyrotropin-releasing hormone (TRH) within the transmembrane helices of the TRH receptor type 1 (TRH-R1) has been identified based on experimental evidence and computer simulations. To determine the binding site for a competitive inverse agonist, midazolam, three of the four residues that directly contact TRH and other residues that restrain TRH-R1 in an inactive conformation were screened by mutagenesis and binding assays. We found that two residues that directly contact TRH, Asn-110 in transmembrane helix 3 (3.37) and Arg-306 in transmembrane helix 7 (7.39), were important for midazolam binding but another, Tyr-282 in transmembrane helix 6 (6.51), was not. A highly conserved residue, Trp-279 in transmembrane helix 6 (6.48), which was reported to be critical in stabilizing TRH-R1 in an inactive state but not for TRH binding, was critical for midazolam binding. We used our previous model of the unoccupied TRH-R1 to generate a model of the TRH-R1/midazolam complex. The experimental results and the molecular model of the complex suggest that midazolam binds to TRH-R1 within a transmembrane helical pocket that partially overlaps the TRH binding pocket. This result is consistent with the competitive antagonism of midazolam binding. We suggest that the mechanism of inverse agonism effected by midazolam involves its direct interaction with Trp-279, which contributes to the stabilization of the inactive conformation of TRH-R1.
Collapse
Affiliation(s)
- Xinping Lu
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-1818, USA
| | | | | | | | | | | |
Collapse
|
23
|
Jois SDS, Nagarajarao LM, Prabhakaran M, Balasubramaniam A. Modeling of Neuropeptide Receptors Y1, Y4, Y5, and Docking Studies with Neuropeptide Antagonist Analogues: Implications for Selectivity. J Biomol Struct Dyn 2004; 22:497-508. [DOI: 10.1080/07391102.2004.10506987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Berglund MM, Hipskind PA, Gehlert DR. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med (Maywood) 2003; 228:217-44. [PMID: 12626767 DOI: 10.1177/153537020322800301] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The three peptides pancreatic polypeptide (PP), peptide YY (PYY), and neuropeptide Y (NPY) share a similar structure known as the PP-fold. There are four known human G-protein coupled receptors for the PP-fold peptides, namely Y1, Y2, Y4, and Y5, each of them being able to bind at least two of the three endogenous ligands. All three peptides are found in the circulation acting as hormones. Although NPY is only released from neurons, PYY and PP are primarily found in endocrine cells in the gut, where they exert such effects as inhibition of gall bladder secretion, gut motility, and pancreatic secretion. However, when PYY is administered in an experimental setting to animals, cloned receptors, or tissue preparations, it can mimic the effects of NPY in essentially all studies, making it difficult to study the effects of PP-fold peptides and to delineate what receptor and peptide accounts for a particular effect. Initial studies with transgenic animals confirmed the well-established action of NPY on metabolism, food-intake, vascular systems, memory, mood, neuronal excitability, and reproduction. More recently, using transgenic techniques and novel antagonists for the Y1, Y2, and Y5 receptors, NPY has been found to be a key player in the regulation of ethanol consumption and neuronal development.
Collapse
Affiliation(s)
- Magnus M Berglund
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | | | | |
Collapse
|
25
|
Abstract
Neuropeptide Y (NPY) is a 36 amino acids peptide amide that was isolated for the first time almost 20 years ago from porcine brain. NPY displays a multiplicity of physiological effects that are transmitted by at least six G-protein coupled receptors (GPCRs) named Y(1), Y(2), Y(3), Y(4), Y(5), and y(6). Because of the difficulty in obtaining high-resolution crystallographic structures from GPCRs that all belong to seven transmembrane helices proteins, a variety of biophysical methods have been applied in order to characterize the interaction of ligand and receptor. In this review article we present the most relevant outcomes of the studies performed in this field by our group and others. The use of photoaffinity labeling allowed the molecular characterization of the Y(2) receptor. The concerted application of molecular modeling and mutagenesis studies led to a model for the interaction of the natural agonist and nonpeptide antagonists with the Y(1) receptor. The three-dimensional (3D) structure and dynamics of micelle-bound NPY and their implications for receptor selection have been studied by NMR. The characterization of the tertiary and quaternary structure of the NPY dimer in solution at millimolar concentrations has been performed by NMR and extended to physiologically relevant concentrations by fluorescence resonance energy transfer (FRET) experiments performed with fluorescence-labeled analogues.
Collapse
Affiliation(s)
- A Bettio
- Institute of Biochemistry, University of Leipzig, Talstrasse 33, D-04103, Leipzig, Germany
| | | |
Collapse
|
26
|
Islam I, Dhanoa D, Finn J, Du P, Walker MW, Salon JA, Zhang J, Gluchowski C. Discovery of potent and selective small molecule NPY Y5 receptor antagonists. Bioorg Med Chem Lett 2002; 12:1767-9. [PMID: 12067557 DOI: 10.1016/s0960-894x(02)00287-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The discovery of a new class of sulfonamide NPY Y5 receptor antagonists is described. Optimization of this series led to the identification of compounds with high affinity for the hY5 subtype and excellent selectivity over the other NPY receptor subtypes. The SAR for this series was examined and a model for understanding the ligand-receptor interactions was developed.
Collapse
Affiliation(s)
- Imadul Islam
- Synaptic Pharmaceutical Corporation, 215 College Road, Paramus, NJ 07652. USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Berglund MM, Fredriksson R, Salaneck E, Larhammar D. Reciprocal mutations of neuropeptide Y receptor Y2 in human and chicken identify amino acids important for antagonist binding. FEBS Lett 2002; 518:5-9. [PMID: 11997008 DOI: 10.1016/s0014-5793(02)02534-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The neuropeptide Y (NPY) receptor Y2 antagonist BIIE0246 has sub-nanomolar affinity for the human Y2 (hY2) receptor but binds very poorly to chicken Y2 (chY2) with micromolar affinity. Sequence comparisons identified several amino acids for investigation by mutagenesis. Reciprocal mutagenesis between hY2 and chY2 revealed that three of these, individually and in combination, are important for BIIE0246 binding, namely positions Gln(135) in transmembrane (TM) 3, Leu(227) in TM5, and Leu(284) in TM6. Mutagenesis of hY2 to the corresponding amino in chY2 (generating hY2[Q135H,L227Q,L284F]) made the affinity of BIIE0246 as low as for chY2. Introduction into chY2 of the three human residues resulted in antagonist affinity almost as high as for hY2. To distinguish between direct and indirect effects, each of the three residues in hY2 was replaced with alanine. BIIE0246 bound with 28-fold lower affinity to hY2[L227A], suggesting the Leu(227) interacts directly with the antagonist. The other two alanine mutants bound with unaltered affinity, suggesting that the corresponding chY2 residues abolish binding through steric hindrance or charge repulsion. Thus, three amino acid residues can in an additive manner completely account for the difference in antagonist binding between the hY2 and chY2 receptors. These results will be useful for construction of three-dimensional models of the widely divergent NPY receptor subtypes.
Collapse
Affiliation(s)
- Magnus M Berglund
- Department of Neuroscience, Pharmacology, Uppsala University, Box 593, SE-75224, Uppsala, Sweden
| | | | | | | |
Collapse
|
28
|
Abstract
Differences in the structure of PYY and two important analogs, PYY [3-36] and [Pro34]PYY, are evaluated. Y-receptor subtype ligand binding data are used in conjunction with structural data to develop a model for receptor subtype selective agonists. For PYY it is proposed that potent binding to Y1, Y4 and Y5 receptors requires the juxtaposition of the two termini while Y2 binding only requires the C-terminal helix. Further experiments that delineate between primary and tertiary structure contributions for receptor binding and activation are required to support the hypothesis that tertiary structure is stable enough to influence the expression of PYY's bioactivity.
Collapse
Affiliation(s)
- D A Keire
- CURE Digestive Diseases Research Center, Greater Los Angeles Veterans Health Care System, Los Angeles, CA 90073, USA.
| | | | | | | |
Collapse
|
29
|
Tokita K, Katsuno T, Hocart SJ, Coy DH, Llinares M, Martinez J, Jensen RT. Molecular basis for selectivity of high affinity peptide antagonists for the gastrin-releasing peptide receptor. J Biol Chem 2001; 276:36652-36663. [PMID: 11463790 DOI: 10.1074/jbc.m104566200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Few gastrointestinal hormones/neurotransmitters have high affinity peptide receptor antagonists, and little is known about the molecular basis of their selectivity or affinity. The receptor mediating the action of the mammalian bombesin (Bn) peptide, gastrin-releasing peptide receptor (GRPR), is an exception, because numerous classes of peptide antagonists are described. To investigate the molecular basis for their high affinity for the GRPR, two classes of peptide antagonists, a statine analogue, JMV594 ([d-Phe(6),Stat(13)]Bn(6-14)), and a pseudopeptide analogue, JMV641 (d-Phe-Gln-Trp-Ala-Val-Gly-His-Leupsi(CHOH-CH(2))-(CH(2))(2)-CH(3)), were studied. Each had high affinity for the GRPR and >3,000-fold selectivity for GRPR over the closely related neuromedin B receptor (NMBR). To investigate the basis for this, we used a chimeric receptor approach to make both GRPR loss of affinity and NMBR gain of affinity chimeras and a site-directed mutagenesis approach. Chimeric or mutated receptors were transiently expressed in Balb/c 3T3. Only substitution of the fourth extracellular (EC) domain of the GRPR by the comparable NMBR domain markedly decreased the affinity for both antagonists. Substituting the fourth EC domain of NMBR into the GRPR resulted in a 300-fold gain in affinity for JMV594 and an 11-fold gain for JMV641. Each of the 11 amino acid differences between the GRPR and NMBR in this domain were exchanged. The substitutions of Thr(297) in GRPR by Pro from the comparable position in NMBR, Phe(302) by Met, and Ser(305) by Thr decreased the affinity of each antagonist. Simultaneous replacement of Thr(297), Phe(302), and Ser(305) in GRPR by the three comparable NMBR amino acids caused a 500-fold decrease in affinity for both antagonists. Replacing the comparable three amino acids in NMBR by those from GRPR caused a gain in affinity for each antagonist. Receptor modeling showed that each of these three amino acids faced inward and was within 5 A of the putative binding pocket. These results demonstrate that differences in the fourth EC domain of the mammalian Bn receptors are responsible for the selectivity of these two peptide antagonists. They demonstrate that Thr(297), Phe(302), and Ser(305) of the fourth EC domain of GRPR are the critical residues for determining GRPR selectivity and suggest that both receptor-ligand cation-pi interactions and hydrogen bonding are important for their high affinity interaction.
Collapse
Affiliation(s)
- K Tokita
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1804, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Shacham S, Topf M, Avisar N, Glaser F, Marantz Y, Bar-Haim S, Noiman S, Naor Z, Becker OM. Modeling the 3D structure of GPCRs from sequence. Med Res Rev 2001; 21:472-83. [PMID: 11579443 DOI: 10.1002/med.1019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
G-protein-coupled receptors (GPCRs) are a large and functionally diverse protein superfamily, which form a seven transmembrane (TM) helices bundle with alternating extra-cellular and intracellular loops. GPCRs are considered to be one of the most important groups of drug targets because they are involved in a broad range of body functions and processes and are related to major diseases. In this paper we present a new technology, named PREDICT, for modeling the 3D structure of any GPCR from its amino acid sequence. This approach takes into account both internal protein properties (i.e., the amino acid sequence) and the properties of the membrane environment. Unlike competing approaches, the new technology does not rely on the single known structure of rhodopsin, and is thus capable of predicting novel GPCR conformations. We demonstrate the capabilities of PREDICT in reproducing the known experimental structure of rhodopsin. In principle, PREDICT-generated models offer new opportunities for structure-based drug discovery towards GPCR targets.
Collapse
Affiliation(s)
- S Shacham
- Bio IT (Bio Information Technologies) Ltd., 3 Hayetzira St., Ramat Gan, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gehlert DR, Yang P, George C, Wang Y, Schober D, Gackenheimer S, Johnson D, Beavers LS, Gadski RA, Baez M. Cloning and characterization of Rhesus monkey neuropeptide Y receptor subtypes. Peptides 2001; 22:343-50. [PMID: 11287088 DOI: 10.1016/s0196-9781(01)00336-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuropeptide Y (NPY) is a 36 amino acid peptide that is abundant in the brain and peripheral nervous system. NPY has a variety of effects when administered into the brain including a pronounced feeding effect, anxiolysis, regulation of neuroendocrine axes and inhibition of neurotransmitter release. These effects are mediated by up to 6 G protein coupled receptors designated Y1, Y2, Y3, Y4, Y5 and y6. To better understand the phylogeny and pharmacology of NPY in non-human primates, we have cloned and expressed the NPY Y1, Y2 and Y5 receptor subtypes from the Rhesus monkey. No cDNA sequence encoding a Y4 receptor was found suggesting substantial sequence differences when compared to the human sequence. Comparison of these sequences with those from human indicated strong sequence conservation of Y1, Y2 and Y5 between the two species. The displacement of (125)I-PYY binding to the Rhesus monkey and human receptors by various peptides was compared to evaluate the pharmacology of the two species. Similar pharmacologies were noted across the species at the various receptor subtypes. These results indicate the Rhesus monkey and human NPY receptor subtypes have a close amino acid sequence conservation and that the peptide recognition domains are conserved as well.
Collapse
Affiliation(s)
- D R Gehlert
- Neuroscience and Endocrine Discovery Research, Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kannoa T, Kanatani A, Keen SL, Arai-Otsuki S, Haga Y, Iwama T, Ishihara A, Sakuraba A, Iwaasa H, Hirose M, Morishima H, Fukami T, Ihara M. Different binding sites for the neuropeptide Y Y1 antagonists 1229U91 and J-104870 on human Y1 receptors. Peptides 2001; 22:405-13. [PMID: 11287095 DOI: 10.1016/s0196-9781(01)00350-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The peptidic Y1 antagonist 1229U91 and the non-peptidic antagonist J-104870 have high binding affinities for the human Y1 receptor. These Y1 antagonists show anorexigenic effects on NPY-induced feeding in rats, although they have completely different structures and molecular sizes. To identify the binding sites of these ligands, we substituted amino acid residues of the human Y1 receptor with alanine and examined the abilities of the mutant receptors to bind the radio-labeled ligands. Alanine substitutions, F98A, D104A, T125A, D200A, D205A, L215A, Q219A, L279A, F282A, F286A, W288A and H298A, in the human Y1 receptor lost their affinity for the peptide agonist PYY, but not for 1229U91 and J-104870, while L303A and F173A lost affinity for 1229U91 and J-104870, respectively. N283A retained its affinity for 1229U91, but not for PYY and J-104870. Y47A and N299A retained their affinity for J-104870, but not for PYY and 1229U91. W163A and D287A showed no affinity for any of the three ligands. Taken together, these data indicate that the binding sites of 1229U91 are widely located in the shallow region of the transmembrane (TM) domain of the receptor, especially TM1, TM6 and TM7. In contrast, J-104870 recognized the pocket formed by TM4, TM5 and TM6, based on the molecular modeling of the Y1 receptor and J-104870 complex. In conclusion, 1229U91 and J-104870 have high affinities for Y1 receptors using basically different binding sites. D287 of the common binding site in the TM6 domain could be crucial for the binding of Y1 antagonists.
Collapse
Affiliation(s)
- T Kannoa
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., 3 Okubo, 300-2611, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tokita K, Hocart SJ, Katsuno T, Mantey SA, Coy DH, Jensen RT. Tyrosine 220 in the 5th transmembrane domain of the neuromedin B receptor is critical for the high selectivity of the peptoid antagonist PD168368. J Biol Chem 2001; 276:495-504. [PMID: 11013243 DOI: 10.1074/jbc.m006059200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptoid antagonists are increasingly being described for G protein-coupled receptors; however, little is known about the molecular basis of their binding. Recently, the peptoid PD168368 was found to be a potent selective neuromedin B receptor (NMBR) antagonist. To investigate the molecular basis for its selectivity for the NMBR over the closely related receptor for gastrin-releasing peptide (GRPR), we used a chimeric receptor approach and a site-directed mutagenesis approach. Mutated receptors were transiently expressed in Balb 3T3. The extracellular domains of the NMBR were not important for the selectivity of PD168368. However, substitution of the 5th upper transmembrane domain (uTM5) of the NMBR by the comparable GRPR domains decreased the affinity 16-fold. When the reverse study was performed by substituting the uTM5 of NMBR into the GRPR, a 9-fold increase in affinity occurred. Each of the 4 amino acids that differed between NMBR and GRPR in the uTM5 region were exchanged, but only the substitution of Phe(220) for Tyr in the NMBR caused a decrease in affinity. When the reverse study was performed to attempt to demonstrate a gain of affinity in the GRPR, the substitution of Tyr(219) for Phe caused an increase in affinity. These results suggest that the hydroxyl group of Tyr(220) in uTM5 of NMBR plays a critical role for high selectivity of PD168368 for NMBR over GRPR. Receptor and ligand modeling suggests that the hydroxyl of the Tyr(220) interacts with nitrophenyl group of PD168368 likely primarily by hydrogen bonding. This result shows the selectivity of the peptoid PD168368, similar to that reported for numerous non-peptide analogues with other G protein-coupled receptors, is primarily dependent on interaction with transmembrane amino acids.
Collapse
Affiliation(s)
- K Tokita
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1804, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP) belong to the NPY hormone family and activate a class of receptors called the Y-receptors, and also belong to the large superfamily of the G-protein coupled receptors. Structure-affinity and structure-activity relationship studies of peptide analogs, combined with studies based on site-directed mutagenesis and anti-receptor antibodies, have given insight into the individual characterization of each receptor subtype relative to its interaction with the ligand, as well as to its biological function. A number of selective antagonists at the Y1-receptor are available whose structures resemble that of the C-terminus of NPY. Some of these compounds, like BIBP3226, BIBO3304 and GW1229, have recently been used for in vivo investigations of the NPY-induced increase in food intake. Y2-receptor selective agonists are the analog cyclo-(28/32)-Ac-[Lys28-Glu32]-(25-36)-pNPY and the TASP molecule containing two units of the NPY segment 21-36. Now the first antagonist with nanomolar affinity for the Y2-receptor is also known, BIIE0246. So far, the native peptide PP has been shown to be the most potent ligand at the Y4-receptor. However, by the design of PP/NPY chimera, some analogs have been found that bind not only to the Y4-, but also to the Y5-receptor with subnanomolar affinities, and are as potent as NPY at the Y1-receptor. For the characterization of the Y5-receptor in vitro and in vivo, a new class of highly selective agonists is now available. This consists of analogs of NPY and of PP/NPY chimera which all contain the motif Ala31-Aib32. This motif has been shown to induce a 3(10)-helical turn in the region 28-31 of NPY and is suggested to be the key motif for high Y5-receptor selectivity. The results of feeding experiments in rats treated with the first highly specific Y5-receptor agonists support the hypothesis that this receptor plays a role in the NPY-induced stimulation of food intake. In conclusion, the selective compounds for the different Y receptor subtypes known so far are promising tools for a better understanding of the physiological properties of the hormones of the NPY family and related receptors.
Collapse
Affiliation(s)
- C Cabrele
- Department of Pharmacy, ETH Zurich, Switzerland
| | | |
Collapse
|
35
|
Parker SL, Parker MS. Ligand association with the rabbit kidney and brain Y1, Y2 and Y5-like neuropeptide Y (NPY) receptors shows large subtype-related differences in sensitivity to chaotropic and alkylating agents. REGULATORY PEPTIDES 2000; 87:59-72. [PMID: 10710289 DOI: 10.1016/s0167-0115(99)00110-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The binding to rabbit kidney or hypothalamic particulates of the subtype-selective neuropeptide Y (NPY) receptor ligands [125I](Leu31,Pro34)hPYY (as Y1 site label at 2 nM human pancreatic polypeptide (hPP)), [125I]-hPYY(3-36) (Y2 label), and [125I]-hPP (Y5 label) displayed great differences in sensitivity to alkylators and chaotropic agents. Sensitivity to a nonionic chaotrope, urea, was much higher for the Y1 binding than for the Y5-like binding or the Y2 binding. The non-selective alkylator N-ethylmaleimide (NEM) and several alkylators selective for aminergic receptors were much more efficacious against the Y1 relative to the Y2 binding. Similar differences could be confirmed with the attachment of Y1 and Y2-selective tracers to CHO cells expressing the cloned guinea-pig Y1 or Y2 receptors. The Y5-like binding was quite insensitive to NEM, but sensitive to chloroethylclonidine (CEC) and prazobind, which were less potent at the Y1, and especially at the Y2 site. The unrestricted-access alkylator 2-aminoethyl methanethiosulfonate inhibited the binding to all subtypes, while the restricted-access agent 2-(trimethylammonium)ethylmethanethiosulfonate poorly inhibited the Y5-like binding, or the guanine nucleotide-insensitive Y2 binding. These results are compatible with an active conformation of the Y5-like site dependent on maintenance of a shared hydrophobic cavity. The Y2 sites resistant to guanosine polyphosphates and restricted-access alkylators were detected mainly in particulates slowly solubilized by cholate at 0-5 degrees C; these sites could be clustered.
Collapse
Affiliation(s)
- S L Parker
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis 38163, USA.
| | | |
Collapse
|
36
|
Parker SL, Parker MS. FMRFamides exert a unique modulation of rodent pancreatic polypeptide sensitive neuropeptide Y (NPY) receptors. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y99-126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
FMRFamide and related peptides (RFamides) were found to inhibit the association binding of iodinated human pancreatic polypeptide ([125I]hPP) to Y5-like neuropeptide Y (NPY) receptor in rodent tissues. An allosteric regulation of the activity of the rodent kidney PP-sensitive neuropeptide Y (NPY) receptor by RFamides was indicated by potency decrease with particle concentration in the inhibition of the association binding of 125I-labeled human pancreatic polypeptide (hPP) by RFamides at rabbit kidney membranes. The competition by C-terminal hexapeptide of hPP (LTRPRY.NH2) did not show such affinity change. The steady-state binding of hPP showed little sensitivity to any of the RFamides tested. The Y1-selective binding of [125I][Leu31,Pro34]hPYY (at 2 nM hPP) was much less sensitive to RFamides than the binding of [125I]hPP, albeit with some differences across tissue or cell types. The binding of Y2-selective agonist 125I-labeled human peptide YY (3-36) was quite insensitive to RFamides. The presence of a unique component in the inhibition of hPP binding by RFamides was further indicated by a degree of antagonism with phospholipase C inhibitor U-73122, and by an only limited cooperation with a N5-amiloride compound, and with alkylator chloroethylclonidine. Change of the chirality of individual residues in the FMRFamide molecule produced a significant reduction of inhibitory potency only with D-Phe in the C-terminal position. Substitution of the (C-3) L-Met by L-Leu greatly increased the inhibitory potency of RFamides relative to otherwise identical congeners. RFamides could act both as ligands of membrane neighbors of the PP receptor, and as competitors of Y5-like NPY receptor epitopes that accommodate the C-terminal aspects of agonist peptides.Key words: Y1 receptor, Y2 receptor, Y5 receptor, RFamide, allosteric interaction, hydrophobic pocket, amino acid chirality.
Collapse
|
37
|
Behar V, Bisello A, Bitan G, Rosenblatt M, Chorev M. Photoaffinity cross-linking identifies differences in the interactions of an agonist and an antagonist with the parathyroid hormone/parathyroid hormone-related protein receptor. J Biol Chem 2000; 275:9-17. [PMID: 10617579 DOI: 10.1074/jbc.275.1.9] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analogs of parathyroid hormone (PTH)-related protein (PTHrP), singularly substituted with a photoreactive L-p-benzoylphenylalanine (Bpa) at each of the first 6 N-terminal positions, were pharmacologically evaluated in human embryonic kidney cells stably expressing the recombinant human PTH/PTHrP receptor. Two of these analogs, in which the photoreactive residue is either in position 1 or 2 (Bpa(1)- and Bpa(2)-PTHrP, respectively) displayed high affinity binding. Bpa(1)-PTHrP also displayed high efficacy for the stimulation of increased cAMP levels. Surprisingly, Bpa(2)-PTHrP was found to be a potent antagonist, despite the presence of the principal activation domain (sequence 1-6). Analysis of the digestion profiles of the ligand-receptor photoconjugates revealed that both the agonist and the antagonist cross-link to the S-CH(3) group of Met(425) in transmembrane domain 6 of the human PTH/PTHrP receptor. However, the antagonist Bpa(2)-PTHrP also cross-links to a proximal site within the receptor domain Pro(415)-Met(425). Unlike the antagonist Bpa(2)-PTHrP, the potent agonist Bpa(2)-PTH, also bearing the Bpa residue in position 2, cross-links only to the S-CH(3) group of Met(425) (similar to Bpa(1)-PTHrP and Bpa(1)-PTH). Taken together, these results suggest that the antagonist Bpa(2)-PTHrP is able to distinguish between two distinct conformations of the receptor. The comparison between PTHrP analogs substituted by Bpa at two consecutive positions and across PTH and PTHrP reveals insights into the PTH/PTHrP ligand-receptor bimolecular interaction at the level of a single amino acid.
Collapse
Affiliation(s)
- V Behar
- Division of Bone and Mineral Metabolism, Charles A. Dana Laboratories, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
38
|
Sylte I, Andrianjara CR, Calvet A, Pascal Y, Dahl SG. Molecular dynamics of NPY Y1 receptor activation. Bioorg Med Chem 1999; 7:2737-48. [PMID: 10658578 DOI: 10.1016/s0968-0896(99)00229-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A three-dimensional model of the human neuropeptide Y(NPY)Y1 receptor (hY1) was constructed, energy refined and used to simulate molecular receptor interactions of the peptide ligands NPY, [L31, P34]NPY, peptide YY (PYY) and pancreatic polypeptide (PP), and of the nonpeptide antagonist R-N2-(diphenylacetyl)-N-(4-hydroxyphenyl)methyl-argininamide (BIBP3226) and its S-enantiomer BIBP3435. The best complementarity in charges between the receptor and the peptides, and the best structural accordance with experimental studies, was obtained with amino acid 1-4 of the peptides interacting with Asp194, Asp200, Gln201, Phe202 and Trp288 in the receptor. Arg33 and Arg35 of the peptides formed salt bridges with Asp104 and Asp287, respectively, while Tyr36 interacted in a binding pocket formed by Phe41, Thr42, Tyr100, Asn297, His298 and Phe302. Calculated electrostatic potentials around NPY and hY1 molecules indicated that ligand binding is initiated by electrostatic interactions between a highly positive region in the N- and C-terminal parts of the peptides, and a negative region in the extracellular receptor domains. Molecular dynamics simulations of NPY and BIBP3226 interactions with the receptor indicated rigid body motions of TMH5 and TMH6 upon NPY binding as mechanisms of receptor activation, and that BIBP3226 may act as an antagonist by constraining these motions.
Collapse
Affiliation(s)
- I Sylte
- Department of Pharmacology, Faculty of Medicine, University of Tromsø, Norway.
| | | | | | | | | |
Collapse
|
39
|
Sun J, Ember JA, Chao TH, Fukuoka Y, Ye RD, Hugli TE. Identification of ligand effector binding sites in transmembrane regions of the human G protein-coupled C3a receptor. Protein Sci 1999; 8:2304-11. [PMID: 10595533 PMCID: PMC2144205 DOI: 10.1110/ps.8.11.2304] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The human C3a anaphylatoxin receptor (C3aR) is a G protein-coupled receptor (GPCR) composed of seven transmembrane alpha-helices connected by hydrophilic loops. Previous studies of chimeric C3aR/C5aR and loop deletions in C3aR demonstrated that the large extracellular loop2 plays an important role in noneffector ligand binding; however, the effector binding site for C3a has not been identified. In this study, selected charged residues in the transmembrane regions of C3aR were replaced by Ala using site-directed mutagenesis, and mutant receptors were stably expressed in the RBL-2H3 cell line. Ligand binding studies demonstrated that R161A (helix IV), R340A (helix V), and D417A (helix VII) showed no binding activity, although full expression of these receptors was established by flow cytometric analysis. C3a induced very weak intracellular calcium flux in cells expressing these three mutant receptors. H81A (helix II) and K96A (helix III) showed decreased ligand binding activity. The calcium flux induced by C3a in H81A and K96A cells was also consistently reduced. These findings suggest that the charged transmembrane residues Arg161, Arg340, and Asp417 in C3aR are essential for ligand effector binding and/or signal coupling, and that residues His81 and Lys96 may contribute less directly to the overall free energy of ligand binding. These transmembrane residues in C3aR identify specific molecular contacts for ligand interactions that account for C3a-induced receptor activation.
Collapse
Affiliation(s)
- J Sun
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
40
|
Parker SL, Parker MS, Crowley WR. Characterization of rabbit kidney and brain pancreatic polypeptide-binding neuropeptide Y receptors: differences with Y1 and Y2 sites in sensitivity to amiloride derivatives affecting sodium transport. REGULATORY PEPTIDES 1999; 82:91-102. [PMID: 10458651 DOI: 10.1016/s0167-0115(99)00049-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sites sensitive to human and rat pancreatic polypeptides (hPP and rPP) accounted for more than 30% of the specific binding of [125I](Leu31,Pro34) human peptide YY (LP-PYY) in particulates from rabbit kidney cortex, and about 10% of the specific binding in membranes from rabbit hypothalamus. The binding of [125I]hPP or [125I]rPP showed a high-affinity displacement with either hPP, rPP, LP-PYY, neuropeptide Y or peptide YY (Ki below 50 pM for all), while being quite insensitive to Y2-selective ligands. The PP binding had a high sensitivity to alkali cations and inhibitors of phospholipase C, very similar to that of LP-PYY binding 'masked' by excess cold hPP. However, as different from the Y1-like LP-PYY binding, but similar to the binding of the Y2-selective ligand [125I]human peptide YY(3-36) (hPYY(3-36)), the PP binding showed a low sensitivity to guanosine polyphosphates. The PP binding was much more sensitive to N5-substituted amiloride inhibitors of Na+ transport than the binding of LP-PYY, or that of hPYY(3-36). The inhibition of PP binding by N5-substituted amilorides was not enhanced by guanine nucleotides or by phospholipase C blockers. However, pairing of N5-substituted amilorides disproportionately increased the inhibition of hPP binding. Thus, in rabbit kidney or hypothalamus, the high-affinity PP-responding sites share some of the basic properties of the Y1 and Y2 sites, but are distinguished from both by a high sensitivity to compounds affecting sodium transport. These PP/NPY receptors could associate with membrane structures involved in the control of ion balance and osmotic responses.
Collapse
Affiliation(s)
- S L Parker
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis 38163, USA.
| | | | | |
Collapse
|
41
|
A theoretical model of the human thrombin receptor (PAR-1), the first known protease-activated g-protein-coupled receptor. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1067-5698(99)80007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
42
|
Parker SL, Parker MS, Crowley WR. Characterization of Y1, Y2 and Y5 subtypes of the neuropeptide Y (NPY) receptor in rabbit kidney. Sensitivity of ligand binding to guanine nucleotides and phospholipase C inhibitors. REGULATORY PEPTIDES 1998; 75-76:127-43. [PMID: 9802402 DOI: 10.1016/s0167-0115(98)00061-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The binding of two peptide YY/neuropeptide Y analogues selective for major subtypes of neuropeptide Y (NPY) receptors was compared in particulates from rabbit kidney cortex employing modulators of activity of G-proteins, phospholipase enzymes, and ion channels. The binding of (Leu31,Pro34)human peptide YY resembled the patterns observed previously for the brain tissue Y1 receptor, exhibiting a high sensitivity to monovalent cations, disulfide disruptors, guanosine polyphosphates and phospholipase C inhibitors. However, this binding was bimodal in response to human pancreatic polypeptide and to peptides selective for the Y2 subtype of the NPY receptor, displaying a large component pharmacologically similar to the brain Y5 receptor. This kidney Y5-like binding largely shared the sensitivity to monovalent cations, guanine nucleotides and phospholipase C inhibitors found for either the kidney or the brain Y1 receptor, and also was activated by Ca2+ ion. Both Y1- and Y5-like binding in the kidney displayed a uniformly low reactivity to a nonpeptidic Y1 antagonist, BIBP-3226, and to a receptor peptide mimetic, mastoparan analogue MAS-7. The kidney Y2 binding shared the low sensitivity to ionic environment observed for the brain Y2 subtype, and was only partially sensitive to guanine nucleotides or to MAS-7. The Y2 liganding had a sensitivity to phospholipase C inhibitors similar to the Y1/Y5 binding. This reactivity was retained in the fraction of the Y2 receptor persisting detergent solubilization in a high-affinity form, which, however, was activated rather than inhibited by G-protein agonists.
Collapse
Affiliation(s)
- S L Parker
- Department of Pharmacology, University of Tennessee School of Medicine, Memphis 38163, USA.
| | | | | |
Collapse
|
43
|
Efremov RG, Legret F, Vergoten G, Capron A, Bahr GM, Arseniev AS. Molecular modeling of HIV-1 coreceptor CCR5 and exploring of conformational space of its extracellular domain in molecular dynamics simulation. J Biomol Struct Dyn 1998; 16:77-90. [PMID: 9745897 DOI: 10.1080/07391102.1998.10508229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The chemokine receptor CCR5 functions as a major fusion coreceptor for macrophage-tropic human immunodeficiency virus entry into cell. Here we report a three-dimensional model of CCR5 built using molecular modeling approach. Because the virus binds to extracellular domain of the receptor, special attention was given to conformational flexibility, hydrogen bonding, and environmental polarity properties of this protein part. Such data were obtained in the result of molecular dynamics study of the extracellular domain. It was shown that during the simulation the extracellular segments form a compact globular domain with numerous long-range hydrogen bonds between them. First loop of the receptor stays quite rigid while N-terminal region and loops 2, 3 are rather flexible. A number of amino acid residues disposed in unfavourable environment and, therefore, potentially involved in binding of CCR5 to viral glycoproteins and chemokines, was delineated. Comparison of the results with available experimental data permits a proposal that such residues in loop-1 and N-terminal part of the receptor are important for HIV-1 entry, while those in loops 2 and 3 participate in ligand binding. Perspectives of rational alteration of virus-binding activity of CCR5 are discussed.
Collapse
Affiliation(s)
- R G Efremov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, GSP, Moscow.
| | | | | | | | | | | |
Collapse
|
44
|
Khiat A, Labelle M, Boulanger Y. Three-dimensional structure of the Y1 receptor agonist [Leu31, Pro34]NPY as determined by NMR and molecular modeling. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1998; 51:317-22. [PMID: 9560007 DOI: 10.1111/j.1399-3011.1998.tb00429.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solution structure of the Y1 receptor agonist, porcine [Leu31, Pro34]NPY, has been investigated by two-dimensional NMR and molecular modeling. A complete assignment of the NMR resonances was achieved and 201 inter-residue nuclear Overhauser enhancement spectroscopy (NOESY) connectivities could be identified, comprising several connectivities between the N- and C-terminal segments. A molecular model was calculated by distance geometry, simulated annealing and conjugate gradients energy minimization using the NOE constraints. The results indicate that, like NPY and other peptides of the family, [Leu31, Pro34]NPY adopts a folded hairpin structure with the terminal segments in close proximity. Analysis of the secondary chemical shifts for the CH(alpha)'s and of the temperature dependence of the NH chemical shifts combined with the NOE constraints indicates a tendency toward helix structure for the segment 18-30 and the presence of turn structure for the C-terminal segment (residues 31-36). Native NPY and [Leu31, Pro34]NPY have most of their structures in common but differ slightly in their C-terminal portion. Based on the structures of NPY and of its specific agonists, [Leu31, Pro34]NPY and NPY 13-36, conclusions can be drawn about the structural requirements for binding to the Y1 and Y2 receptor subtypes.
Collapse
Affiliation(s)
- A Khiat
- Département de radiologie, Campus Saint-Luc, Centre hospitalier de l'Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
45
|
Afshar M, Hubbard RE, Demaille J. Towards structural models of molecular recognition in olfactory receptors. Biochimie 1998; 80:129-35. [PMID: 9587670 DOI: 10.1016/s0300-9084(98)80019-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The G protein coupled receptors (GPCR) are an important class of proteins that act as signal transducers through the cytoplasmic membrane. Understanding the structure and activation mechanism of these proteins is crucial for understanding many different aspects of cellular signalling. The olfactory receptors correspond to the largest family of GPCRs. Very little is known about how the structures of the receptors govern the specificity of interaction which enables identification of particular odorant molecules. In this paper, we review recent developments in two areas of molecular modelling: methods for modelling the configuration of trans-membrane helices and methods for automatic docking of ligands into receptor structures. We then show how a subset of these methods can be combined to construct a model of a rat odorant receptor interacting with lyral for which experimental data are available. This modelling can help us make progress towards elucidating the specificity of interactions between receptors and odorant molecules.
Collapse
Affiliation(s)
- M Afshar
- CRBM du CNRS, Montpellier, France
| | | | | |
Collapse
|
46
|
Müller M, Knieps S, Gessele K, Dove S, Bernhardt G, Buschauer A. Synthesis and neuropeptide Y Y1 receptor antagonistic activity of N,N-disubstituted omega-guanidino- and omega-aminoalkanoic acid amides. Arch Pharm (Weinheim) 1997; 330:333-42. [PMID: 9431025 DOI: 10.1002/ardp.19973301104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Potent arpromidine-type histamine H2 receptor agonists such as BU-E-76 (He 90481) were among the first non-peptides reported to display weak neuropeptide Y (NPY) Y1 receptor antagonist activity. In search of new chemical leads for the development of more potent NPY antagonists, a series of N,N-disubstituted omega-guanidino and omega-aminoalkanoic acid amides were synthesized on the basis of structure-activity relationships and molecular modeling studies of arpromidine and related imidazolylpropylguanidines. In one group of compounds the imidazole ring was retained whereas in the second group it was replaced with a phenol group representing a putative mimic of Tyr36 in NPY. Although the substitution patterns have not yet been optimized, the title compounds are NPY Y1 antagonists in human erythroleukemia (HEL) cells (Ca2+ assay) achieving pKB values in the range of 6.3-6.6. For representative new substances tested in the isolated guinea pig right atrium histamine H2 receptor agonism could not be found. In the N-(diphenylalkyl)amide series, compounds with a trimethylene chain were more active Y1 antagonists than the ethylene homologs. Concerning the spacer in the omega-amino or omega-guanidinoalkanoyl portion, the best activity was found in compounds with a four- or five-membered alkyl chain or a 1,4-cyclohexylene group. Surprisingly, in contrast to the phenol series, in the imidazole series the compounds with a side chain amino group turned out to be considerably more potent than the correspondence strongly basic guanidines. Thus, the structure-activity relationships appear to be different for the diphenylalkylamide NPY antagonists with one or two basic groups.
Collapse
Affiliation(s)
- M Müller
- Institute of Pharmacy, University of Regensburg, Germany
| | | | | | | | | | | |
Collapse
|