1
|
Dong H, Zhou R, Chen J, Wei J, Wei Z, Yang Z, Zhu K, Yang Y, Yang Q, Liu N, Chen Y, Wu Y, Liang Y, Zeng Y, Guo Q, Li M, Shan S, Wang H, Niu M, Yunfei Zeng I, Shi X, Zhang Q, Wang X, Chen Z, Zhang L. Super broad and protective nanobodies against Sarbecoviruses including SARS-CoV-1 and the divergent SARS-CoV-2 subvariant KP.3.1.1. PLoS Pathog 2024; 20:e1012625. [PMID: 39527594 PMCID: PMC11554226 DOI: 10.1371/journal.ppat.1012625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
The ongoing evolution and immune escape of SARS-CoV-2, alongside the potential threat of SARS-CoV-1 and other sarbecoviruses, underscore the urgent need for effective strategies against their infection and transmission. This study highlights the discovery of nanobodies from immunized alpacas, which demonstrate exceptionally broad and potent neutralizing capabilities against the recently emerged and more divergent SARS-CoV-2 Omicron subvariants including JD.1.1, JN.1, KP.3, KP.3.1.1, as well as SARS-CoV-1 and coronaviruses from bats and pangolins utilizing receptor ACE2. Among these, Tnb04-1 emerges as the most broad and potent, binding to a conserved hydrophobic pocket in the spike's receptor-binding domain, distinct from the ACE2 binding site. This interaction disrupts the formation of a proteinase K-resistant core, crucial for viral-cell fusion. Notably, intranasal administration of Tnb04-1 in Syrian hamsters effectively prevented respiratory infection and transmission of the authentic Omicron XBB.1.5 subvariant. Thus, Thb04-1 holds promise in combating respiratory acquisition and transmission of diverse sarbecoviruses.
Collapse
Affiliation(s)
- Haodi Dong
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jing Chen
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Wei
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Zimeng Wei
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Ziqing Yang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Kun Zhu
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Yufan Yang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Qianqian Yang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Na Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yuting Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yuhan Wu
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Yan Liang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Yige Zeng
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Qile Guo
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Mingxi Li
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Sisi Shan
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Han Wang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Mengyue Niu
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Isabella Yunfei Zeng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Qi Zhang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
2
|
Schnee M, Sieler M, Dörnen J, Dittmar T. Effects of polystyrene nano- and microplastics on human breast epithelial cells and human breast cancer cells. Heliyon 2024; 10:e38686. [PMID: 39449700 PMCID: PMC11497447 DOI: 10.1016/j.heliyon.2024.e38686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The continuous littering of the environment with plastic and the resulting nano- and microplastics produced from various processes are ever-increasing problems. These materials also affect humans, as the absorption and accumulation of nano- and microplastics and their effects on health have thus far been rarely researched, which also applies to cancer. In the present study, the absorption of different sizes of polystyrene (PS) nano- and microplastics (PS particles) into human breast epithelial cells and human breast cancer cells was investigated. Subsequently, how the proliferation, colony and mammosphere formation abilities, cell fusion and migration of the cells were influenced by the PS particles were investigated. Our data revealed granularity-, dose- and cell line-dependent absorption of the PS particles, with the highest absorption observed in the MDA-MB-231-DSP1-7 cells and the lowest in the M13SV1_Syn1-DSP8-11 cells. Neither the colony-forming ability nor the cell fusion activity increased with the addition of PS particles. In contrast, slight, partially significant stimulatory effects on both proliferation and cell migration were observed, although these effects depended on the particle quantity and size and the cell line used. In summary, PS particles are absorbed by human breast epithelial and human breast cancer cells and influence cells that may be associated with cancer progression.
Collapse
Affiliation(s)
- Maximilian Schnee
- Institute of Immunology, Center for Biomedical Research and Education (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Mareike Sieler
- Institute of Immunology, Center for Biomedical Research and Education (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Jessica Dörnen
- Institute of Immunology, Center for Biomedical Research and Education (ZBAF), Witten/Herdecke University, Witten, Germany
- Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Research and Education (ZBAF), Witten/Herdecke University, Witten, Germany
| |
Collapse
|
3
|
Farrants H, Shuai Y, Lemon WC, Monroy Hernandez C, Zhang D, Yang S, Patel R, Qiao G, Frei MS, Plutkis SE, Grimm JB, Hanson TL, Tomaska F, Turner GC, Stringer C, Keller PJ, Beyene AG, Chen Y, Liang Y, Lavis LD, Schreiter ER. A modular chemigenetic calcium indicator for multiplexed in vivo functional imaging. Nat Methods 2024; 21:1916-1925. [PMID: 39304767 PMCID: PMC11466818 DOI: 10.1038/s41592-024-02411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
Genetically encoded fluorescent calcium indicators allow cellular-resolution recording of physiology. However, bright, genetically targetable indicators that can be multiplexed with existing tools in vivo are needed for simultaneous imaging of multiple signals. Here we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several that efficiently label the brain in animals. When bound to a near-infrared dye-ligand, WHaloCaMP shows a 7× increase in fluorescence intensity and a 2.1-ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a to image Ca2+ responses in vivo in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae and to quantify Ca2+ concentration using fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- Helen Farrants
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Yichun Shuai
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William C Lemon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Deng Zhang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shang Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Guanda Qiao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle S Frei
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Sarah E Plutkis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothy L Hanson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Filip Tomaska
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Electrical and Computer Engineering, Center for BioEngineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Carsen Stringer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Abraham G Beyene
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yao Chen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
4
|
Reuter N, Kropff B, Chen X, Britt WJ, Sticht H, Mach M, Thomas M. The Autonomous Fusion Activity of Human Cytomegalovirus Glycoprotein B Is Regulated by Its Carboxy-Terminal Domain. Viruses 2024; 16:1482. [PMID: 39339958 PMCID: PMC11437439 DOI: 10.3390/v16091482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The human cytomegalovirus (HCMV) glycoprotein B (gB) is the viral fusogen required for entry into cells and for direct cell-to-cell spread of the virus. We have previously demonstrated that the exchange of the carboxy-terminal domain (CTD) of gB for the CTD of the structurally related fusion protein G of the vesicular stomatitis virus (VSV-G) resulted in an intrinsically fusion-active gB variant (gB/VSV-G). In this present study, we employed a dual split protein (DSP)-based cell fusion assay to further characterize the determinants of fusion activity in the CTD of gB. We generated a comprehensive library of gB CTD truncation mutants and identified two mutants, gB-787 and gB-807, which were fusion-competent and induced the formation of multinucleated cell syncytia in the absence of other HCMV proteins. Structural modeling coupled with site-directed mutagenesis revealed that gB fusion activity is primarily mediated by the CTD helix 2, and secondarily by the recruitment of cellular SH2/WW-domain-containing proteins. The fusion activity of gB-807 was inhibited by gB-specific monoclonal antibodies (MAbs) targeting the antigenic domains AD-1 to AD-5 within the ectodomain and not restricted to MAbs directed against AD-4 and AD-5 as observed for gB/VSV-G. This finding suggested a differential regulation of the fusion-active conformational state of both gB variants. Collectively, our findings underscore a pivotal role of the CTD in regulating the fusogenicity of HCMV gB, with important implications for understanding the conformations of gB that facilitate membrane fusion, including antigenic structures that could be targeted by antibodies to block this essential step in HCMV infection.
Collapse
Affiliation(s)
- Nina Reuter
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Barbara Kropff
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Xiaohan Chen
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - William J Britt
- Departments of Pediatrics, Microbiology and Neurobiology, Children's Hospital of Alabama, School of Medicine, University of Alabama, Birmingham, AL 35233-1771, USA
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michael Mach
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marco Thomas
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Li X, Gamuyao R, Wu ML, Cho WJ, King SV, Petersen R, Stabley DR, Lindow C, Climer LK, Shirinifard A, Ferrara F, Throm RE, Robinson CG, Zhou Y, Carisey AF, Tebo AG, Chang CL. A fluorogenic complementation tool kit for interrogating lipid droplet-organelle interaction. J Cell Biol 2024; 223:e202311126. [PMID: 38949658 PMCID: PMC11215687 DOI: 10.1083/jcb.202311126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis upon metabolic demands. Detection of these contact sites at the nanometer scale over time in living cells is challenging. We developed a tool kit for detecting contact sites based on fluorogen-activated bimolecular complementation at CONtact sites, FABCON, using a reversible, low-affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic regulation.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rico Gamuyao
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ming-Lun Wu
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Woo Jung Cho
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sharon V. King
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - R.A. Petersen
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Daniel R. Stabley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Caleb Lindow
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Leslie K. Climer
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Francesca Ferrara
- Vector Production and Development Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Robert E. Throm
- Vector Production and Development Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yiwang Zhou
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alexandre F. Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alison G. Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
6
|
Dall NR, Mendonça CATF, Torres Vera HL, Marqusee S. The importance of the location of the N-terminus in successful protein folding in vivo and in vitro. Proc Natl Acad Sci U S A 2024; 121:e2321999121. [PMID: 39145938 PMCID: PMC11348275 DOI: 10.1073/pnas.2321999121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Protein folding in the cell often begins during translation. Many proteins fold more efficiently cotranslationally than when refolding from a denatured state. Changing the vectorial synthesis of the polypeptide chain through circular permutation could impact functional, soluble protein expression and interactions with cellular proteostasis factors. Here, we measure the solubility and function of every possible circular permutant (CP) of HaloTag in Escherichia coli cell lysate using a gel-based assay, and in living E. coli cells via FACS-seq. We find that 78% of HaloTag CPs retain protein function, though a subset of these proteins are also highly aggregation-prone. We examine the function of each CP in E. coli cells lacking the cotranslational chaperone trigger factor and the intracellular protease Lon and find no significant changes in function as a result of modifying the cellular proteostasis network. Finally, we biophysically characterize two topologically interesting CPs in vitro via circular dichroism and hydrogen-deuterium exchange coupled with mass spectrometry to reveal changes in global stability and folding kinetics with circular permutation. For CP33, we identify a change in the refolding intermediate as compared to wild-type (WT) HaloTag. Finally, we show that the strongest predictor of aggregation-prone expression in cells is the introduction of termini within the refolding intermediate. These results, in addition to our finding that termini insertion within the conformationally restrained core is most disruptive to protein function, indicate that successful folding of circular permutants may depend more on changes in folding pathway and termini insertion in flexible regions than on the availability of proteostasis factors.
Collapse
Affiliation(s)
- Natalie R. Dall
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | | | - Héctor L. Torres Vera
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
| |
Collapse
|
7
|
Yuan S, Bremmer A, Yang X, Li J, Hu Q. Splittable systems in biomedical applications. Biomater Sci 2024; 12:4103-4116. [PMID: 39012216 DOI: 10.1039/d4bm00709c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Splittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pairs and orthogonal split fragments are introduced by fusing with other modalities to develop more complex and robust designs. One of the pillars of these splittable systems is modularity, which involves decoupling targeting, activation, and effector functions. Challenges, such as off-target effects and overactivation, can be addressed through precise control. This review provides an overview of the design principles, strategies, and applications of splittable systems across diverse fields including immunotherapy, gene editing, prodrug activation, biosensing, and synthetic biology.
Collapse
Affiliation(s)
- Sichen Yuan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
- Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
| | - Alexa Bremmer
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
| | - Xicheng Yang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
| | - Jiayue Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
- Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
| |
Collapse
|
8
|
Bae J, Kim J, Choi J, Lee H, Koh M. Split Proteins and Reassembly Modules for Biological Applications. Chembiochem 2024; 25:e202400123. [PMID: 38530024 DOI: 10.1002/cbic.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Split systems, modular entities enabling controlled biological processes, have become instrumental in biological research. This review highlights their utility across applications like gene regulation, protein interaction identification, and biosensor development. Covering significant progress over the last decade, it revisits traditional split proteins such as GFP, luciferase, and inteins, and explores advancements in technologies like Cas proteins and base editors. We also examine reassembly modules and their applications in diverse fields, from gene regulation to therapeutic innovation. This review offers a comprehensive perspective on the recent evolution of split systems in biological research.
Collapse
Affiliation(s)
- Jieun Bae
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jongdoo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Hwiyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
9
|
Qin H, Anderson D, Zou Z, Higashi D, Borland C, Kreth J, Merritt J. Mass spectrometry and split luciferase complementation assays reveal the MecA protein interactome of Streptococcus mutans. Microbiol Spectr 2024; 12:e0369123. [PMID: 38230956 PMCID: PMC10845952 DOI: 10.1128/spectrum.03691-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024] Open
Abstract
MecA is a highly conserved adaptor protein encoded by prokaryotes from the Bacillota phylum. MecA mutants exhibit similar pleiotropic defects in a variety of organisms, although most of these phenotypes currently lack a mechanistic basis. MecA mediates ClpCP-dependent proteolysis of its substrates, but only several such substrates have been reported in the literature and there are suggestions that proteolysis-independent regulatory mechanisms may also exist. Here, we provide the first comprehensive characterization of the MecA interactome and further assess its regulatory role in Clp-dependent proteolysis. Untargeted coimmunoprecipitation assays coupled with mass spectrometry revealed that the MecA ortholog from the oral pathobiont Streptococcus mutans likely serves as a major protein interaction network hub by potentially complexing with >100 distinct protein substrates, most of which function in highly conserved metabolic pathways. The interactome results were independently verified using a newly developed prokaryotic split luciferase complementation assay (SLCA) to detect MecA protein-protein interactions in vivo. In addition, we further develop a new application of SLCA to support in vivo measurements of MecA relative protein binding affinities. SLCA results were independently verified using targeted coimmunoprecipitation assays, suggesting the general utility of this approach for prokaryotic protein-protein interaction studies. Our results indicate that MecA indeed regulates its interactome through both Clp-dependent proteolysis as well as through an as-yet undefined proteolysis-independent mechanism that may affect more than half of its protein interactome. This suggests a significant aspect of the MecA regulatory function still has yet to be discovered.IMPORTANCEDespite multiple decades of study, the regulatory mechanism and function of MecA have remained largely a mystery. The current study provides the first detailed roadmap to investigate these functions in other medically significant bacteria. Furthermore, this study developed new genetic approaches to assay prokaryotic protein-protein interactions via the split luciferase complementation assay (SLCA). SLCA technology is commonly employed in eukaryotic genetic research but has not yet been established for studies of bacterial protein-protein interactions. The SLCA protein binding affinity assay described here is a new technological advance exclusive to the current study and has not been reported elsewhere.
Collapse
Affiliation(s)
- Hua Qin
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - David Anderson
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Zhengzhong Zou
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Dustin Higashi
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Christina Borland
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Jens Kreth
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Justin Merritt
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Hung L, Terwilliger TC, Waldo GS, Nguyen HB. Engineering highly stable variants of Corynactis californica green fluorescent proteins. Protein Sci 2024; 33:e4886. [PMID: 38151801 PMCID: PMC10804665 DOI: 10.1002/pro.4886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Fluorescent proteins (FPs) are versatile biomarkers that facilitate effective detection and tracking of macromolecules of interest in real time. Engineered FPs such as superfolder green fluorescent protein (sfGFP) and superfolder Cherry (sfCherry) have exceptional refolding capability capable of delivering fluorescent readout in harsh environments where most proteins lose their native functions. Our recent work on the development of a split FP from a species of strawberry anemone, Corynactis californica, delivered pairs of fragments with up to threefold faster complementation than split GFP. We present the biophysical, biochemical, and structural characteristics of five full-length variants derived from these split C. californica GFP (ccGFP). These ccGFP variants are more tolerant under chemical denaturation with up to 8 kcal/mol lower unfolding free energy than that of the sfGFP. It is likely that some of these ccGFP variants could be suitable as biomarkers under more adverse environments where sfGFP fails to survive. A structural analysis suggests explanations of the variations in stabilities among the ccGFP variants.
Collapse
Affiliation(s)
- Li‐Wei Hung
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
| | - Thomas C. Terwilliger
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
- New Mexico ConsortiumLos AlamosNew MexicoUSA
| | - Geoffrey S. Waldo
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
| | - Hau B. Nguyen
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
| |
Collapse
|
11
|
Brukman NG, Valansi C, Podbilewicz B. Sperm induction of somatic cell-cell fusion as a novel functional test. eLife 2024; 13:e94228. [PMID: 38265078 PMCID: PMC10883674 DOI: 10.7554/elife.94228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
The fusion of mammalian gametes requires the interaction between IZUMO1 on the sperm and JUNO on the oocyte. We have recently shown that ectopic expression of mouse IZUMO1 induces cell-cell fusion and that sperm can fuse to fibroblasts expressing JUNO. Here, we found that the incubation of mouse sperm with hamster fibroblasts or human epithelial cells in culture induces the fusion between these somatic cells and the formation of syncytia, a pattern previously observed with some animal viruses. This sperm-induced cell-cell fusion requires a species-matching JUNO on both fusing cells, can be blocked by an antibody against IZUMO1, and does not rely on the synthesis of new proteins. The fusion is dependent on the sperm's fusogenic capacity, making this a reliable, fast, and simple method for predicting sperm function during the diagnosis of male infertility.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Clari Valansi
- Department of Biology, Technion-Israel Institute of TechnologyHaifaIsrael
| | | |
Collapse
|
12
|
Zhuang X, Gallo G, Sharma P, Ha J, Magri A, Borrmann H, Harris JM, Tsukuda S, Bentley E, Kirby A, de Neck S, Yang H, Balfe P, Wing PA, Matthews D, Harris AL, Kipar A, Stewart JP, Bailey D, McKeating JA. Hypoxia inducible factors inhibit respiratory syncytial virus infection by modulation of nucleolin expression. iScience 2024; 27:108763. [PMID: 38261926 PMCID: PMC10797196 DOI: 10.1016/j.isci.2023.108763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a global healthcare problem, causing respiratory illness in young children and elderly individuals. Our knowledge of the host pathways that define susceptibility to infection and disease severity are limited. Hypoxia inducible factors (HIFs) define metabolic responses to low oxygen and regulate inflammatory responses in the lower respiratory tract. We demonstrate a role for HIFs to suppress RSV entry and RNA replication. We show that hypoxia and HIF prolyl-hydroxylase inhibitors reduce the expression of the RSV entry receptor nucleolin and inhibit viral cell-cell fusion. We identify a HIF regulated microRNA, miR-494, that regulates nucleolin expression. In RSV-infected mice, treatment with the clinically approved HIF prolyl-hydroxylase inhibitor, Daprodustat, reduced the level of infectious virus and infiltrating monocytes and neutrophils in the lung. This study highlights a role for HIF-signalling to limit multiple aspects of RSV infection and associated inflammation and informs future therapeutic approaches for this respiratory pathogen.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Parul Sharma
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jiyeon Ha
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helene Borrmann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Bentley
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adam Kirby
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Simon de Neck
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A.C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - David Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | | | - Anja Kipar
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Jaremek A, Renaud SJ. Analyzing Trophoblast Fusion Using Immunofluorescence and Split Protein Complementation Assays. Methods Mol Biol 2024; 2728:87-98. [PMID: 38019393 DOI: 10.1007/978-1-0716-3495-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The fusion of cytotrophoblasts into a multinucleated syncytiotrophoblast is essential for placental development. For studies investigating syncytiotrophoblast formation, various methods are available to analyze the fusion efficiency of trophoblast cells in vitro. Here, we describe protocols for measuring trophoblast fusion using immunofluorescence and an assay employing complementary parts of a split green fluorescent protein that self-reassociates and generates a fluorescent signal following cell fusion. Together, these approaches allow for a comprehensive and robust analysis of the fusion index in trophoblast cells and can strengthen the accuracy and throughput of investigations into factors that may regulate syncytiotrophoblast development.
Collapse
Affiliation(s)
- Adam Jaremek
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
- Children's Health Research Institute, London, ON, Canada.
- Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
14
|
Sieler M, Dittmar T. Cell Fusion and Syncytia Formation in Cancer. Results Probl Cell Differ 2024; 71:433-465. [PMID: 37996689 DOI: 10.1007/978-3-031-37936-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The natural phenomenon of cell-cell fusion does not only take place in physiological processes, such as placentation, myogenesis, or osteoclastogenesis, but also in pathophysiological processes, such as cancer. More than a century ago postulated, today the hypothesis that the fusion of cancer cells with normal cells leads to the formation of cancer hybrid cells with altered properties is in scientific consensus. Some studies that have investigated the mechanisms and conditions for the fusion of cancer cells with other cells, as well as studies that have characterized the resulting cancer hybrid cells, are presented in this review. Hypoxia and the cytokine TNFα, for example, have been found to promote cell fusion. In addition, it has been found that both the protein Syncytin-1, which normally plays a role in placentation, and phosphatidylserine signaling on the cell membrane are involved in the fusion of cancer cells with other cells. In human cancer, cancer hybrid cells were detected not only in the primary tumor, but also in the circulation of patients as so-called circulating hybrid cells, where they often correlated with a worse outcome. Although some data are available, the questions of how and especially why cancer cells fuse with other cells are still not fully answered.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany.
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
15
|
Li X, Gamuyao R, Wu ML, Cho WJ, Kurtz NB, King SV, Petersen R, Stabley DR, Lindow C, Climer L, Shirinifard A, Ferrara F, Throm RE, Robinson CG, Carisey A, Tebo AG, Chang CL. A fluorogenic complementation tool kit for interrogating lipid droplet-organelle interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569289. [PMID: 38076863 PMCID: PMC10705429 DOI: 10.1101/2023.11.29.569289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis. Detection of these contact sites at nanometer scale over time in living cells is challenging. Here, we developed a tool kit for detecting contact sites based on Fluorogen-Activated Bimolecular complementation at CONtact sites, FABCON, using a reversible, low affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic switch.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Rico Gamuyao
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ming-Lun Wu
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Woo Jung Cho
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Nathan B. Kurtz
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Sharon V. King
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - R.A. Petersen
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Daniel R. Stabley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Caleb Lindow
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Leslie Climer
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Francesca Ferrara
- Vector Production and Development Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Robert E. Throm
- Vector Production and Development Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alex Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alison G. Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
16
|
Farrants H, Shuai Y, Lemon WC, Hernandez CM, Yang S, Patel R, Qiao G, Frei MS, Grimm JB, Hanson TL, Tomaska F, Turner GC, Stringer C, Keller PJ, Beyene AG, Chen Y, Liang Y, Lavis LD, Schreiter ER. A modular chemigenetic calcium indicator enables in vivo functional imaging with near-infrared light. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549527. [PMID: 37503182 PMCID: PMC10370049 DOI: 10.1101/2023.07.18.549527] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Genetically encoded fluorescent calcium indicators have revolutionized neuroscience and other biological fields by allowing cellular-resolution recording of physiology during behavior. However, we currently lack bright, genetically targetable indicators in the near infrared that can be used in animals. Here, we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains that can be genetically targeted to specific cell populations. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several dye-ligands that efficiently label the central nervous system in animals. When bound to a near-infrared dye-ligand, WHaloCaMP1a is more than twice as bright as jGCaMP8s, and shows a 7× increase in fluorescence intensity and a 2.1 ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a with near-infrared fluorescence emission to image Ca2+ responses in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae, and to quantitate calcium concentration using fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- Helen Farrants
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yichun Shuai
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William C Lemon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Shang Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Guanda Qiao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle S Frei
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothy L Hanson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Filip Tomaska
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Carsen Stringer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Abraham G Beyene
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yao Chen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
17
|
Reuter N, Chen X, Kropff B, Peter AS, Britt WJ, Mach M, Überla K, Thomas M. SARS-CoV-2 Spike Protein Is Capable of Inducing Cell-Cell Fusions Independent from Its Receptor ACE2 and This Activity Can Be Impaired by Furin Inhibitors or a Subset of Monoclonal Antibodies. Viruses 2023; 15:1500. [PMID: 37515187 PMCID: PMC10384293 DOI: 10.3390/v15071500] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was responsible for the COVID-19 pandemic, efficiently spreads cell-to-cell through mechanisms facilitated by its membrane glycoprotein spike. We established a dual split protein (DSP) assay based on the complementation of GFP and luciferase to quantify the fusogenic activity of the SARS-CoV-2 spike protein. We provide several lines of evidence that the spike protein of SARS-CoV-2, but not SARS-CoV-1, induced cell-cell fusion even in the absence of its receptor, angiotensin-converting enzyme 2 (ACE2). This poorly described ACE2-independent cell fusion activity of the spike protein was strictly dependent on the proteasomal cleavage of the spike by furin while TMPRSS2 was dispensable. Previous and current variants of concern (VOCs) differed significantly in their fusogenicity. The Delta spike was extremely potent compared to Alpha, Beta, Gamma and Kappa, while the Omicron spike was almost devoid of receptor-independent fusion activity. Nonetheless, for all analyzed variants, cell fusion was dependent on furin cleavage and could be pharmacologically inhibited with CMK. Mapping studies revealed that amino acids 652-1273 conferred the ACE2-independent fusion activity of the spike. Unexpectedly, residues proximal to the furin cleavage site were not of major relevance, whereas residue 655 critically regulated fusion. Finally, we found that the spike's fusion activity in the absence of ACE2 could be inhibited by antibodies directed against its N-terminal domain (NTD) but not by antibodies targeting its receptor-binding domain (RBD). In conclusion, our BSL-1-compatible DSP assay allowed us to screen for inhibitors or antibodies that interfere with the spike's fusogenic activity and may therefore contribute to both rational vaccine design and development of novel treatment options against SARS-CoV-2.
Collapse
Affiliation(s)
- Nina Reuter
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Xiaohan Chen
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Barbara Kropff
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Antonia Sophia Peter
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - William J Britt
- Departments of Pediatrics, Microbiology and Neurobiology, Children's Hospital of Alabama, School of Medicine, University of Alabama, Birmingham, AL 35233-1771, USA
| | - Michael Mach
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Klaus Überla
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marco Thomas
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
18
|
Jaremek A, Shaha S, Jeyarajah MJ, Jaju Bhattad G, Chowdhury D, Riddell M, Renaud SJ. Genome-Wide Analysis of Hypoxia-Inducible Factor Binding Reveals Targets Implicated in Impaired Human Placental Syncytiotrophoblast Formation under Low Oxygen. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:846-865. [PMID: 37028593 DOI: 10.1016/j.ajpath.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
Preeclampsia (PE) is a common and serious complication of pregnancy with no cure except premature delivery. The root cause of PE is improper development of the placenta-the temporary organ supporting fetal growth and development. Continuous formation of the multinucleated syncytiotrophoblast (STB) layer via differentiation and fusion of cytotrophoblasts (CTBs) is vital for healthy placentation and is impaired in preeclamptic pregnancies. In PE, there is reduced/intermittent placental perfusion, likely resulting in a persistently low O2 environment. Low O2 inhibits differentiation and fusion of CTBs into STB and may thus contribute to PE pathogenesis; however, the underlying mechanisms are unknown. Because low O2 activates a transcription factor complex in cells known as the hypoxia-inducible factor (HIF), the objective of this study was to investigate whether HIF signaling inhibits STB formation by regulating genes required for this process. Culture of primary CTBs, the CTB-like cell line BeWo, and human trophoblast stem cells under low O2 reduced cell fusion and differentiation into STB. Knockdown of aryl hydrocarbon receptor nuclear translocator (a key component of the HIF complex) in BeWo cells restored syncytialization and expression of STB-associated genes under different O2 levels. Chromatin immunoprecipitation sequencing facilitated the identification of global aryl hydrocarbon receptor nuclear translocator/HIF binding sites, including several near genes implicated in STB development, such as ERVH48-1 and BHLHE40, providing new insights into mechanisms underlying pregnancy diseases linked to poor placental O2 supply.
Collapse
Affiliation(s)
- Adam Jaremek
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sumaiyah Shaha
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Gargi Jaju Bhattad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Diba Chowdhury
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Meghan Riddell
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
19
|
Takemoto R, Hirai Y, Watanabe S, Harada H, Suzuki T, Hashiguchi T, Yanagi Y, Shirogane Y. Interaction of the Hemagglutinin Stalk Region with Cell Adhesion Molecule (CADM) 1 and CADM2 Mediates the Spread between Neurons and Neuropathogenicity of Measles Virus with a Hyperfusogenic Fusion Protein. J Virol 2023; 97:e0034023. [PMID: 37166307 PMCID: PMC10231178 DOI: 10.1128/jvi.00340-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2023] Open
Abstract
Measles virus (MeV), the causative agent of measles, is an enveloped RNA virus of the family Paramyxoviridae, which remains an important cause of childhood morbidity and mortality. MeV has two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. During viral entry or virus-mediated fusion between infected cells and neighboring susceptible cells, the head domain of the H protein initially binds to its receptors, signaling lymphocytic activation molecule family member 1 (SLAM) and nectin-4, and then the stalk region of the H protein transmits the fusion-triggering signal to the F protein. MeV may persist in the human brain and cause a fatal neurodegenerative disease, subacute sclerosing panencephalitis (SSPE). Recently, we showed, using in vitro cell culture, that cell adhesion molecule (CADM) 1 and CADM2 are host factors that trigger hyperfusogenic mutant F proteins, causing cell-to-cell fusion and the transfer of the MeV genome between neurons. Unlike conventional receptors, CADM1 and CADM2 interact in cis (on the same membrane) with the H protein and then trigger membrane fusion. Here, we show that alanine substitutions in part of the stalk region (positions 171-175) abolish the ability of the H protein to mediate membrane fusion triggered by CADM1 and CADM2, but not by SLAM. The recombinant hyperfusogenic MeV carrying this mutant H protein loses its ability to spread in primary mouse neurons as well as its neurovirulence in experimentally infected suckling hamsters. These results indicate that CADM1 and CADM2 are key molecules for MeV propagation in the brain and its neurovirulence in vivo. IMPORTANCE Measles is an acute febrile illness with skin rash. Despite the availability of highly effective vaccines, measles is still an important cause of childhood morbidity and mortality in many countries. The World Health Organization estimates that more than 120,000 people died from measles worldwide in 2021. Measles virus (MeV), the causative agent of measles, can also cause a fatal progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. There is currently no effective treatment for this disease. In this study, using recombinant MeVs with altered receptor usage patterns, we show that cell adhesion molecule (CADM) 1 and CADM2 are host factors critical for MeV spread in neurons and its neurovirulence. These findings further our understanding of the molecular mechanism of MeV neuropathogenicity.
Collapse
Affiliation(s)
- Ryuichi Takemoto
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Hirai
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Shumpei Watanabe
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Hidetaka Harada
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University
| | - Yusuke Yanagi
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Yuta Shirogane
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Zhou X, Cimato G, Zhou Y, Frascaroli G, Brune W. A Virus Genetic System to Analyze the Fusogenicity of Human Cytomegalovirus Glycoprotein B Variants. Viruses 2023; 15:v15040979. [PMID: 37112959 PMCID: PMC10142178 DOI: 10.3390/v15040979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Viruses can induce the fusion of infected and neighboring cells, leading to the formation of syncytia. Cell-cell fusion is mediated by viral fusion proteins on the plasma membrane of infected cells that interact with cellular receptors on neighboring cells. Viruses use this mechanism to spread rapidly to adjacent cells or escape host immunity. For some viruses, syncytium formation is a hallmark of infection and a known pathogenicity factor. For others, the role of syncytium formation in viral dissemination and pathogenicity remains poorly understood. Human cytomegalovirus (HCMV) is an important cause of morbidity and mortality in transplant patients and the leading cause of congenital infections. Clinical HCMV isolates have broad cell tropism but differ in their ability to induce cell-cell fusions, and little is known about the molecular determinants. We developed a system to analyze HCMV glycoprotein B (gB) variants in a defined genetic background. HCMV strains TB40/E and TR were used as vectors to compare the fusogenicity of six gB variants from congenitally infected fetuses with those from three laboratory strains. Five of them conferred the ability to induce the fusion of MRC-5 human embryonic lung fibroblasts to one or both backbone strains, as determined by a split GFP-luciferase reporter system. The same gB variants were not sufficient to induce syncytia in infected ARPE-19 epithelial cells, suggesting that additional factors are involved. The system described here allows a systematic comparison of the fusogenicity of viral envelope glycoproteins and may help to clarify whether fusion-promoting variants are associated with increased pathogenicity.
Collapse
Affiliation(s)
- Xuan Zhou
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Giorgia Cimato
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Yihua Zhou
- Departments of Laboratory Medicine and Infectious Diseases, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
| | | | - Wolfram Brune
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| |
Collapse
|
21
|
Atanasiu D, Saw WT, Cairns TM, Friedman HM, Eisenberg RJ, Cohen GH. Receptor Binding-Induced Conformational Changes in Herpes Simplex Virus Glycoprotein D Permit Interaction with the gH/gL Complex to Activate Fusion. Viruses 2023; 15:895. [PMID: 37112875 PMCID: PMC10144430 DOI: 10.3390/v15040895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Herpes simplex virus (HSV) requires four essential virion glycoproteins-gD, gH, gL, and gB-for virus entry and cell fusion. To initiate fusion, the receptor binding protein gD interacts with one of two major cell receptors, HVEM or nectin-1. Once gD binds to a receptor, fusion is carried out by the gH/gL heterodimer and gB. A comparison of free and receptor-bound gD crystal structures revealed that receptor binding domains are located within residues in the N-terminus and core of gD. Problematically, the C-terminus lies across and occludes these binding sites. Consequentially, the C-terminus must relocate to allow for both receptor binding and the subsequent gD interaction with the regulatory complex gH/gL. We previously constructed a disulfide bonded (K190C/A277C) protein that locked the C-terminus to the gD core. Importantly, this mutant protein bound receptor but failed to trigger fusion, effectively separating receptor binding and gH/gL interaction. Here, we show that "unlocking" gD by reducing the disulfide bond restored not only gH/gL interaction but fusion activity as well, confirming the importance of C-terminal movement in triggering the fusion cascade. We characterize these changes, showing that the C-terminus region exposed by unlocking is: (1) a gH/gL binding site; (2) contains epitopes for a group (competition community) of monoclonal antibodies (Mabs) that block gH/gL binding to gD and cell-cell fusion. Here, we generated 14 mutations within the gD C-terminus to identify residues important for the interaction with gH/gL and the key conformational changes involved in fusion. As one example, we found that gD L268N was antigenically correct in that it bound most Mabs but was impaired in fusion, exhibited compromised binding of MC14 (a Mab that blocks both gD-gH/gL interaction and fusion), and failed to bind truncated gH/gL, all events that are associated with the inhibition of C-terminus movement. We conclude that, within the C-terminus, residue 268 is essential for gH/gL binding and induction of conformational changes and serves as a flexible inflection point in the critical movement of the gD C-terminus.
Collapse
Affiliation(s)
- Doina Atanasiu
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.T.S.); (T.M.C.); (G.H.C.)
| | - Wan Ting Saw
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.T.S.); (T.M.C.); (G.H.C.)
| | - Tina M. Cairns
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.T.S.); (T.M.C.); (G.H.C.)
| | - Harvey M. Friedman
- School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Roselyn J. Eisenberg
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gary H. Cohen
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.T.S.); (T.M.C.); (G.H.C.)
| |
Collapse
|
22
|
Olety B, Usami Y, Wu Y, Peters P, Göttlinger H. AP-2 Adaptor Complex-Dependent Enhancement of HIV-1 Replication by Nef in the Absence of the Nef/AP-2 Targets SERINC5 and CD4. mBio 2023; 14:e0338222. [PMID: 36622146 PMCID: PMC9973267 DOI: 10.1128/mbio.03382-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Nef hijacks the clathrin adaptor complex 2 (AP-2) to downregulate the viral receptor CD4 and the antiviral multipass transmembrane proteins SERINC3 and SERINC5, which inhibit the infectivity of progeny virions when incorporated. In Jurkat Tag T lymphoid cells lacking SERINC3 and SERINC5, Nef is no longer required for full progeny virus infectivity and for efficient viral replication. However, in MOLT-3 T lymphoid cells, HIV-1 replication remains highly dependent on Nef even in the absence of SERINC3 and SERINC5. Using a knockout (KO) approach, we now show that the Nef-mediated enhancement of HIV-1 replication in MOLT-3 cells does not depend on the Nef-interacting kinases LCK and PAK2. Furthermore, Nef substantially enhanced HIV-1 replication even in triple-KO MOLT-3 cells that simultaneously lacked the three Nef/AP-2 targets, SERINC3, SERINC5, and CD4, and were reconstituted with a Nef-resistant CD4 to permit HIV-1 entry. Nevertheless, the ability of Nef mutants to promote HIV-1 replication in the triple-KO cells correlated strictly with the ability to bind AP-2. In addition, knockdown and reconstitution experiments confirmed the involvement of AP-2. These observations raise the possibility that MOLT-3 cells express a novel antiviral factor that is downregulated by Nef in an AP-2-dependent manner. IMPORTANCE The HIV-1 Nef protein hijacks a component of the cellular endocytic machinery called AP-2 to downregulate the viral receptor CD4 and the antiviral cellular membrane proteins SERINC3 and SERINC5. In the absence of Nef, SERINC3 and SERINC5 are taken up into viral particles, which reduces their infectivity. Surprisingly, in a T cell line called MOLT-3, Nef remains crucial for HIV-1 spreading in the absence of SERINC3 and SERINC5. We now show that this effect of Nef also does not depend on the cellular signaling molecules and Nef interaction partners LCK and PAK2. Nef was required for efficient HIV-1 spreading even in triple-knockout cells that completely lacked Nef/AP-2-sensitive CD4, in addition to the Nef/AP-2 targets SERINC3 and SERINC5. Nevertheless, our results indicate that the enhancement of HIV-1 spreading by Nef in the triple-knockout cells remained AP-2 dependent, which suggests the presence of an unknown antiviral factor that is sensitive to Nef/AP-2-mediated downregulation.
Collapse
Affiliation(s)
- Balaji Olety
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Yoshiko Usami
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Yuanfei Wu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Paul Peters
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Heinrich Göttlinger
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
23
|
Shirogane Y, Harada H, Hirai Y, Takemoto R, Suzuki T, Hashiguchi T, Yanagi Y. Collective fusion activity determines neurotropism of an en bloc transmitted enveloped virus. SCIENCE ADVANCES 2023; 9:eadf3731. [PMID: 36706187 PMCID: PMC9882980 DOI: 10.1126/sciadv.adf3731] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 06/09/2023]
Abstract
Measles virus (MeV), which is usually non-neurotropic, sometimes persists in the brain and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection, serving as a model for persistent viral infections. The persisting MeVs have hyperfusogenic mutant fusion (F) proteins that likely enable cell-cell fusion at synapses and "en bloc transmission" between neurons. We here show that during persistence, F protein fusogenicity is generally enhanced by cumulative mutations, yet mutations paradoxically reducing the fusogenicity may be selected alongside the wild-type (non-neurotropic) MeV genome. A mutant F protein having SSPE-derived substitutions exhibits lower fusogenicity than the hyperfusogenic F protein containing some of those substitutions, but by the wild-type F protein coexpression, the fusogenicity of the former F protein is enhanced, while that of the latter is nearly abolished. These findings advance the understanding of the long-term process of MeV neuropathogenicity and provide critical insight into the genotype-phenotype relationships of en bloc transmitted viruses.
Collapse
Affiliation(s)
- Yuta Shirogane
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Hidetaka Harada
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yuichi Hirai
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Ryuichi Takemoto
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Yanagi
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
24
|
Liu Y, Katoh H, Sekizuka T, Bae C, Wakata A, Kato F, Sakata M, Yamaji T, Wang Z, Takeda M. SNARE protein USE1 is involved in the glycosylation and the expression of mumps virus fusion protein and important for viral propagation. PLoS Pathog 2022; 18:e1010949. [PMID: 36480520 PMCID: PMC9731409 DOI: 10.1371/journal.ppat.1010949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
Mumps virus (MuV) is the etiological agent of mumps, a disease characterized by painful swelling of the parotid glands and often accompanied by severe complications. To understand the molecular mechanism of MuV infection, a functional analysis of the involved host factors is required. However, little is known about the host factors involved in MuV infection, especially those involved in the late stage of infection. Here, we identified 638 host proteins that have close proximity to MuV glycoproteins, which are a major component of the viral particles, by proximity labeling and examined comprehensive protein-protein interaction networks of the host proteins. From siRNA screening and immunoprecipitation results, we found that a SNARE subfamily protein, USE1, bound specifically to the MuV fusion (F) protein and was important for MuV propagation. In addition, USE1 plays a role in complete N-linked glycosylation and expression of the MuV F protein.
Collapse
Affiliation(s)
- Yaqing Liu
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hiroshi Katoh
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- * E-mail:
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Chaewon Bae
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Aika Wakata
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Fumihiro Kato
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Masafumi Sakata
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Zhiyu Wang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| |
Collapse
|
25
|
FeMV is a cathepsin-dependent unique morbillivirus infecting the kidneys of domestic cats. Proc Natl Acad Sci U S A 2022; 119:e2209405119. [PMID: 36251995 PMCID: PMC9618091 DOI: 10.1073/pnas.2209405119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Feline morbillivirus (FeMV) is a recently discovered pathogen of domestic cats and has been classified as a morbillivirus in the Paramyxovirus family. We determined the complete sequence of FeMVUS5 directly from an FeMV-positive urine sample without virus isolation or cell passage. Sequence analysis of the viral genome revealed potential divergence from characteristics of archetypal morbilliviruses. First, the virus lacks the canonical polybasic furin cleavage signal in the fusion (F) glycoprotein. Second, conserved amino acids in the hemagglutinin (H) glycoprotein used by all other morbilliviruses for binding and/or fusion activation with the cellular receptor CD150 (signaling lymphocyte activation molecule [SLAM]/F1) are absent. We show that, despite this sequence divergence, FeMV H glycoprotein uses feline CD150 as a receptor and cannot use human CD150. We demonstrate that the protease responsible for cleaving the FeMV F glycoprotein is a cathepsin, making FeMV a unique morbillivirus and more similar to the closely related zoonotic Nipah and Hendra viruses. We developed a reverse genetics system for FeMVUS5 and generated recombinant viruses expressing Venus fluorescent protein from an additional transcription unit located either between the phospho-protein (P) and matrix (M) genes or the H and large (L) genes of the genome. We used these recombinant FeMVs to establish a natural infection and demonstrate that FeMV causes an acute morbillivirus-like disease in the cat. Virus was shed in the urine and detectable in the kidneys at later time points. This opens the door for long-term studies to address the postulated role of this morbillivirus in the development of chronic kidney disease.
Collapse
|
26
|
Broadly Applicable, Virus-Free Dual Reporter Assay to Identify Compounds Interfering with Membrane Fusion: Performance for HSV-1 and SARS-CoV-2. Viruses 2022; 14:v14071354. [PMID: 35891336 PMCID: PMC9322530 DOI: 10.3390/v14071354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane fusion constitutes an essential step in the replication cycle of numerous viral pathogens, hence it represents an important druggable target. In the present study, we established a virus-free, stable reporter fusion inhibition assay (SRFIA) specifically designed to identify compounds interfering with virus-induced membrane fusion. The dual reporter assay is based on two stable Vero cell lines harboring the third-generation tetracycline (Tet3G) transactivator and a bicistronic reporter gene cassette under the control of the tetracycline responsive element (TRE3G), respectively. Cell–cell fusion by the transient transfection of viral fusogens in the presence of doxycycline results in the expression of the reporter enzyme secreted alkaline phosphatase (SEAP) and the fluorescent nuclear localization marker EYFPNuc. A constitutively expressed, secreted form of nanoluciferase (secNLuc) functioned as the internal control. The performance of the SRFIA was tested for the quantification of SARS-CoV-2- and HSV-1-induced cell–cell fusion, respectively, showing high sensitivity and specificity, as well as the reliable identification of known fusion inhibitors. Parallel quantification of secNLuc enabled the detection of cytotoxic compounds or insufficient transfection efficacy. In conclusion, the SRFIA reported here is well suited for high-throughput screening for new antiviral agents and essentially will be applicable to all viral fusogens causing cell–cell fusion in Vero cells.
Collapse
|
27
|
Novel Roles of the Nipah Virus Attachment Glycoprotein and Its Mobility in Early and Late Membrane Fusion Steps. mBio 2022; 13:e0322221. [PMID: 35506666 PMCID: PMC9239137 DOI: 10.1128/mbio.03222-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Paramyxoviridae family comprises important pathogens that include measles (MeV), mumps, parainfluenza, and the emerging deadly zoonotic Nipah virus (NiV) and Hendra virus (HeV). Paramyxoviral entry into cells requires viral-cell membrane fusion, and formation of paramyxoviral pathognomonic syncytia requires cell-cell membrane fusion. Both events are coordinated by intricate interactions between the tetrameric attachment (G/H/HN) and trimeric fusion (F) glycoproteins. We report that receptor binding induces conformational changes in NiV G that expose its stalk domain, which triggers F through a cascade from prefusion to prehairpin intermediate (PHI) to postfusion conformations, executing membrane fusion. To decipher how the NiV G stalk may trigger F, we introduced cysteines along the G stalk to increase tetrameric strength and restrict stalk mobility. While most point mutants displayed near-wild-type levels of cell surface expression and receptor binding, most yielded increased NiV G oligomeric strength, and showed remarkably strong defects in syncytium formation. Furthermore, most of these mutants displayed stronger F/G interactions and significant defects in their ability to trigger F, indicating that NiV G stalk mobility is key to proper F triggering via moderate G/F interactions. Also remarkably, a mutant capable of triggering F and of fusion pore formation yielded little syncytium formation, implicating G or G/F interactions in a late step occurring post fusion pore formation, such as the extensive fusion pore expansion required for syncytium formation. This study uncovers novel mechanisms by which the G stalk and its oligomerization/mobility affect G/F interactions, the triggering of F, and a late fusion pore expansion step-exciting novel findings for paramyxoviral attachment glycoproteins. IMPORTANCE The important Paramyxoviridae family includes measles, mumps, human parainfluenza, and the emerging deadly zoonotic Nipah virus (NiV) and Hendra virus (HeV). The deadly emerging NiV can cause neurologic and respiratory symptoms in humans with a >60% mortality rate. NiV has two surface proteins, the receptor binding protein (G) and fusion (F) glycoproteins. They mediate the required membrane fusion during viral entry into host cells and during syncytium formation, a hallmark of paramyxoviral and NiV infections. We previously discovered that the G stalk domain is important for triggering F (via largely unknown mechanisms) to induce membrane fusion. Here, we uncovered new roles and mechanisms by which the G stalk and its mobility modulate the triggering of F and also unexpectedly affect a very late step in membrane fusion, namely fusion pore expansion. Importantly, these novel findings may extend to other paramyxoviruses, offering new potential targets for therapeutic interventions.
Collapse
|
28
|
Caputo I, Caroccia B, Frasson I, Poggio E, Zamberlan S, Morpurgo M, Seccia TM, Calì T, Brini M, Richter SN, Rossi GP. Angiotensin II Promotes SARS-CoV-2 Infection via Upregulation of ACE2 in Human Bronchial Cells. Int J Mol Sci 2022; 23:ijms23095125. [PMID: 35563515 PMCID: PMC9102833 DOI: 10.3390/ijms23095125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Blockers of the renin-angiotensin system (RAS) have been reported to increase the angiotensin converting enzyme (ACE)2, the cellular receptor of SARS-CoV-2, and thus the risk and course of COVID-19. Therefore, we investigated if angiotensin (Ang) II and RAS blockers affected ACE2 expression and SARS-CoV-2 infectivity in human epithelial bronchial Calu-3 cells. By infectivity and spike-mediated cell–cell fusion assays, we showed that Ang II acting on the angiotensin type 1 receptor markedly increased ACE2 at mRNA and protein levels, resulting in enhanced SARS-CoV-2 cell entry. These effects were abolished by irbesartan and not affected by the blockade of ACE-1-mediated Ang II formation with ramipril, and of ACE2- mediated Ang II conversion into Ang 1-7 with MLN-4760. Thus, enhanced Ang II production in patients with an activated RAS might expose to a greater spread of COVID-19 infection in lung cells. The protective action of Angiotensin type 1 receptor antagonists (ARBs) documented in these studies provides a mechanistic explanation for the lack of worse outcomes in high-risk COVID-19 patients on RAS blockers.
Collapse
Affiliation(s)
- Ilaria Caputo
- Specialized Center for Blood Pressure Disorders-Regione Veneto and Internal Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, 35128 Padua, Italy; (I.C.); (B.C.); (S.Z.); (T.M.S.)
| | - Brasilina Caroccia
- Specialized Center for Blood Pressure Disorders-Regione Veneto and Internal Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, 35128 Padua, Italy; (I.C.); (B.C.); (S.Z.); (T.M.S.)
| | - Ilaria Frasson
- Department of Molecular Medicine-DMM, University of Padua, 35121 Padua, Italy; (I.F.); (S.N.R.)
| | - Elena Poggio
- Department of Biology, University of Padua, 35131 Padua, Italy; (E.P.); (M.B.)
| | - Stefania Zamberlan
- Specialized Center for Blood Pressure Disorders-Regione Veneto and Internal Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, 35128 Padua, Italy; (I.C.); (B.C.); (S.Z.); (T.M.S.)
| | - Margherita Morpurgo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy;
| | - Teresa M. Seccia
- Specialized Center for Blood Pressure Disorders-Regione Veneto and Internal Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, 35128 Padua, Italy; (I.C.); (B.C.); (S.Z.); (T.M.S.)
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
| | - Marisa Brini
- Department of Biology, University of Padua, 35131 Padua, Italy; (E.P.); (M.B.)
| | - Sara N. Richter
- Department of Molecular Medicine-DMM, University of Padua, 35121 Padua, Italy; (I.F.); (S.N.R.)
| | - Gian Paolo Rossi
- Specialized Center for Blood Pressure Disorders-Regione Veneto and Internal Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, 35128 Padua, Italy; (I.C.); (B.C.); (S.Z.); (T.M.S.)
- Correspondence:
| |
Collapse
|
29
|
Zhou J, Peacock TP, Brown JC, Goldhill DH, Elrefaey AME, Penrice-Randal R, Cowton VM, De Lorenzo G, Furnon W, Harvey WT, Kugathasan R, Frise R, Baillon L, Lassaunière R, Thakur N, Gallo G, Goldswain H, Donovan-Banfield I, Dong X, Randle NP, Sweeney F, Glynn MC, Quantrill JL, McKay PF, Patel AH, Palmarini M, Hiscox JA, Bailey D, Barclay WS. Mutations that adapt SARS-CoV-2 to mink or ferret do not increase fitness in the human airway. Cell Rep 2022; 38:110344. [PMID: 35093235 PMCID: PMC8768428 DOI: 10.1016/j.celrep.2022.110344] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/11/2021] [Accepted: 01/14/2022] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2 has a broad mammalian species tropism infecting humans, cats, dogs, and farmed mink. Since the start of the 2019 pandemic, several reverse zoonotic outbreaks of SARS-CoV-2 have occurred in mink, one of which reinfected humans and caused a cluster of infections in Denmark. Here we investigate the molecular basis of mink and ferret adaptation and demonstrate the spike mutations Y453F, F486L, and N501T all specifically adapt SARS-CoV-2 to use mustelid ACE2. Furthermore, we risk assess these mutations and conclude mink-adapted viruses are unlikely to pose an increased threat to humans, as Y453F attenuates the virus replication in human cells and all three mink adaptations have minimal antigenic impact. Finally, we show that certain SARS-CoV-2 variants emerging from circulation in humans may naturally have a greater propensity to infect mustelid hosts and therefore these species should continue to be surveyed for reverse zoonotic infections.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Infectious Disease, Imperial College London, London, UK
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jonathan C Brown
- Department of Infectious Disease, Imperial College London, London, UK
| | - Daniel H Goldhill
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Rebekah Penrice-Randal
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, Liverpool, UK
| | - Vanessa M Cowton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - William T Harvey
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Rebecca Frise
- Department of Infectious Disease, Imperial College London, London, UK
| | - Laury Baillon
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ria Lassaunière
- Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Nazia Thakur
- The Pirbright Institute, Woking, Surrey, UK; The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Hannah Goldswain
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, Liverpool, UK
| | - I'ah Donovan-Banfield
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, Liverpool, UK
| | - Xiaofeng Dong
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, Liverpool, UK
| | - Nadine P Randle
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, Liverpool, UK
| | - Fiachra Sweeney
- Department of Infectious Disease, Imperial College London, London, UK
| | - Martha C Glynn
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Paul F McKay
- Department of Infectious Disease, Imperial College London, London, UK
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, Liverpool, UK; Infectious Diseases Horizontal Technology Centre (ID HTC), A(∗)STAR, Singapore, Singapore
| | | | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
30
|
Xiong Q, Cao L, Ma C, Tortorici MA, Liu C, Si J, Liu P, Gu M, Walls AC, Wang C, Shi L, Tong F, Huang M, Li J, Zhao C, Shen C, Chen Y, Zhao H, Lan K, Corti D, Veesler D, Wang X, Yan H. Close relatives of MERS-CoV in bats use ACE2 as their functional receptors. Nature 2022; 612:748-757. [PMID: 36477529 PMCID: PMC9734910 DOI: 10.1038/s41586-022-05513-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) and several bat coronaviruses use dipeptidyl peptidase-4 (DPP4) as an entry receptor1-4. However, the receptor for NeoCoV-the closest known MERS-CoV relative found in bats-remains unclear5. Here, using a pseudotype virus entry assay, we found that NeoCoV and its close relative, PDF-2180, can efficiently bind to and use specific bat angiotensin-converting enzyme 2 (ACE2) orthologues and, less favourably, human ACE2 as entry receptors through their receptor-binding domains (RBDs) on the spike (S) proteins. Cryo-electron microscopy analysis revealed an RBD-ACE2 binding interface involving protein-glycan interactions, distinct from those of other known ACE2-using coronaviruses. We identified residues 337-342 of human ACE2 as a molecular determinant restricting NeoCoV entry, whereas a NeoCoV S pseudotyped virus containing a T510F RBD mutation efficiently entered cells expressing human ACE2. Although polyclonal SARS-CoV-2 antibodies or MERS-CoV RBD-specific nanobodies did not cross-neutralize NeoCoV or PDF-2180, an ACE2-specific antibody and two broadly neutralizing betacoronavirus antibodies efficiently inhibited these two pseudotyped viruses. We describe MERS-CoV-related viruses that use ACE2 as an entry receptor, underscoring a promiscuity of receptor use and a potential zoonotic threat.
Collapse
Affiliation(s)
- Qing Xiong
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Cao
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chengbao Ma
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - M. Alejandra Tortorici
- grid.34477.330000000122986657Department of Biochemistry, University of Washington, Seattle, WA USA
| | - Chen Liu
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Junyu Si
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Peng Liu
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mengxue Gu
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Alexandra C. Walls
- grid.34477.330000000122986657Department of Biochemistry, University of Washington, Seattle, WA USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Seattle, WA USA
| | - Chunli Wang
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lulu Shi
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Fei Tong
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Meiling Huang
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Li
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chufeng Zhao
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chao Shen
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yu Chen
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Huabin Zhao
- grid.49470.3e0000 0001 2331 6153Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Davide Corti
- grid.498378.9Humabs BioMed SA, subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, Seattle, WA, USA.
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Huan Yan
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
31
|
Short-stalk isoforms of CADM1 and CADM2 trigger neuropathogenic measles virus-mediated membrane fusion by interacting with the viral hemagglutinin. J Virol 2021; 96:e0194921. [PMID: 34788082 DOI: 10.1128/jvi.01949-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Measles virus (MeV), an enveloped RNA virus in the family Paramyxoviridae, usually causes acute febrile illness with skin rash, but in rare cases persists in the brain, causing a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE). MeV bears two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. The H protein possesses a head domain that initially mediates receptor binding and a stalk domain that subsequently transmits the fusion-triggering signal to the F protein. We have recently shown that cell adhesion molecule 1 (CADM1, also known as IGSF4A, Necl-2, SynCAM1) and CADM2 (also known as IGSF4D, Necl-3, SynCAM2) are host factors enabling cell-cell membrane fusion mediated by hyperfusogenic F proteins of neuropathogenic MeVs as well as MeV spread between neurons lacking the known receptors. CADM1 and CADM2 interact in cis with the H protein on the same cell membrane, triggering hyperfusogenic F protein-mediated membrane fusion. Multiple isoforms of CADM1 and CADM2 containing various lengths of their stalk regions are generated by alternative splicing. Here we show that only short-stalk isoforms of CADM1 and CADM2 predominantly expressed in the brain induce hyperfusogenic F protein-mediated membrane fusion. While the known receptors interact in trans with the H protein through its head domain, these isoforms can interact in cis even with the H protein lacking the head domain and trigger membrane fusion, presumably through its stalk domain. Thus, our results unveil a new mechanism of viral fusion triggering by host factors. Importance Measles, an acute febrile illness with skin rash, is still an important cause of childhood morbidity and mortality worldwide. Measles virus (MeV), the causative agent of measles, may also cause a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. The disease is fatal, and no effective therapy is available. Recently, we have reported that cell adhesion molecule 1 (CADM1) and CADM2 are host factors enabling MeV cell-to-cell spread in neurons. These molecules interact in cis with the MeV attachment protein on the same cell membrane, triggering the fusion protein and causing membrane fusion. CADM1 and CADM2 are known to exist in multiple splice isoforms. In this study, we report that their short-stalk isoforms can induce membrane fusion by interacting in cis with the viral attachment protein independently of its receptor-binding head domain. This finding may have important implications for cis-acting fusion triggering by host factors.
Collapse
|
32
|
Engineering an efficient and bright split Corynactis californica green fluorescent protein. Sci Rep 2021; 11:18440. [PMID: 34531533 PMCID: PMC8445986 DOI: 10.1038/s41598-021-98149-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/03/2021] [Indexed: 11/08/2022] Open
Abstract
Split green fluorescent protein (GFP) has been used in a panoply of cellular biology applications to study protein translocation, monitor protein solubility and aggregation, detect protein–protein interactions, enhance protein crystallization, and even map neuron contacts. Recent work shows the utility of split fluorescent proteins for large scale labeling of proteins in cells using CRISPR, but sets of efficient split fluorescent proteins that do not cross-react are needed for multiplexing experiments. We present a new monomeric split green fluorescent protein (ccGFP) engineered from a tetrameric GFP found in Corynactis californica, a bright red colonial anthozoan similar to sea anemones and scleractinian stony corals. Split ccGFP from C. californica complements up to threefold faster compared to the original Aequorea victoria split GFP and enable multiplexed labeling with existing A. victoria split YFP and CFP.
Collapse
|
33
|
Minner-Meinen R, Weber JN, Albrecht A, Matis R, Behnecke M, Tietge C, Frank S, Schulze J, Buschmann H, Walla PJ, Mendel RR, Hänsch R, Kaufholdt D. Split-HaloTag imaging assay for sophisticated microscopy of protein-protein interactions in planta. PLANT COMMUNICATIONS 2021; 2:100212. [PMID: 34746759 PMCID: PMC8555439 DOI: 10.1016/j.xplc.2021.100212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 05/04/2023]
Abstract
An ever-increasing number of intracellular multi-protein networks have been identified in plant cells. Split-GFP-based protein-protein interaction assays combine the advantages of in vivo interaction studies in a native environment with additional visualization of protein complex localization. Because of their simple protocols, they have become some of the most frequently used methods. However, standard fluorescent proteins present several drawbacks for sophisticated microscopy. With the HaloTag system, these drawbacks can be overcome, as this reporter forms covalent irreversible bonds with synthetic photostable fluorescent ligands. Dyes can be used in adjustable concentrations and are suitable for advanced microscopy methods. Therefore, we have established the Split-HaloTag imaging assay in plants, which is based on the reconstitution of a functional HaloTag protein upon protein-protein interaction and the subsequent covalent binding of an added fluorescent ligand. Its suitability and robustness were demonstrated using a well-characterized interaction as an example of protein-protein interaction at cellular structures: the anchoring of the molybdenum cofactor biosynthesis complex to filamentous actin. In addition, a specific interaction was visualized in a more distinctive manner with subdiffractional polarization microscopy, Airyscan, and structured illumination microscopy to provide examples of sophisticated imaging. Split-GFP and Split-HaloTag can complement one another, as Split-HaloTag represents an alternative option and an addition to the large toolbox of in vivo methods. Therefore, this promising new Split-HaloTag imaging assay provides a unique and sensitive approach for more detailed characterization of protein-protein interactions using specific microscopy techniques, such as 3D imaging, single-molecule tracking, and super-resolution microscopy.
Collapse
Affiliation(s)
- Rieke Minner-Meinen
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Jan-Niklas Weber
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Andreas Albrecht
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Hagenring 30.023c, 38106 Braunschweig, Germany
| | - Rainer Matis
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Hagenring 30.023c, 38106 Braunschweig, Germany
| | - Maria Behnecke
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Cindy Tietge
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Stefan Frank
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Jutta Schulze
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Henrik Buschmann
- Botany Department, Universität Osnabrück, Barbara Strasse 11, 49076 Osnabrück, Germany
| | - Peter Jomo Walla
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Hagenring 30.023c, 38106 Braunschweig, Germany
| | - Ralf-R. Mendel
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Robert Hänsch
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Tiansheng Road No. 2, Beibei District, 400715 Chongqing, P.R. China
- Corresponding author
| | - David Kaufholdt
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| |
Collapse
|
34
|
Hybrid Formation and Fusion of Cancer Cells In Vitro and In Vivo. Cancers (Basel) 2021; 13:cancers13174496. [PMID: 34503305 PMCID: PMC8431460 DOI: 10.3390/cancers13174496] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cell fusion as a fundamental biological process is required for various physiological processes, including fertilization, placentation, myogenesis, osteoclastogenesis, and wound healing/tissue regeneration. However, cell fusion is also observed during pathophysiological processes like tumor development. Mesenchymal stroma/stem-like cells (MSC) which play an important role within the tumor microenvironment like other cell types such as macrophages can closely interact and hybridize with cancer cells. The formation of cancer hybrid cells can involve various different mechanisms whereby the genomic parts of the hybrid cells require rearrangement to form a new functional hybrid cell. The fusion of cancer cells with neighboring cell types may represent an important mechanism during tumor development since cancer hybrid cells are detectable in various tumor tissues. During this rare event with resulting genomic instability the cancer hybrid cells undergo a post-hybrid selection process (PHSP) to reorganize chromosomes of the two parental nuclei whereby the majority of the hybrid population undergoes cell death. The remaining cancer hybrid cells survive by displaying altered properties within the tumor tissue. Abstract The generation of cancer hybrid cells by intra-tumoral cell fusion opens new avenues for tumor plasticity to develop cancer stem cells with altered properties, to escape from immune surveillance, to change metastatic behavior, and to broaden drug responsiveness/resistance. Genomic instability and chromosomal rearrangements in bi- or multinucleated aneuploid cancer hybrid cells contribute to these new functions. However, the significance of cell fusion in tumorigenesis is controversial with respect to the low frequency of cancer cell fusion events and a clonal advantage of surviving cancer hybrid cells following a post-hybrid selection process. This review highlights alternative processes of cancer hybrid cell development such as entosis, emperipolesis, cannibalism, therapy-induced polyploidization/endoreduplication, horizontal or lateral gene transfer, and focusses on the predominant mechanisms of cell fusion. Based upon new properties of cancer hybrid cells the arising clinical consequences of the subsequent tumor heterogeneity after cancer cell fusion represent a major therapeutic challenge.
Collapse
|
35
|
Gallo G, Conceicao C, Tsirigoti C, Willett B, Graham SC, Bailey D. Application of error-prone PCR to functionally probe the morbillivirus Haemagglutinin protein. J Gen Virol 2021; 102. [PMID: 33739251 PMCID: PMC8290269 DOI: 10.1099/jgv.0.001580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The enveloped morbilliviruses utilise conserved proteinaceous receptors to enter host cells: SLAMF1 or Nectin-4. Receptor binding is initiated by the viral attachment protein Haemagglutinin (H), with the viral Fusion protein (F) driving membrane fusion. Crystal structures of the prototypic morbillivirus measles virus H with either SLAMF1 or Nectin-4 are available and have served as the basis for improved understanding of this interaction. However, whether these interactions remain conserved throughout the morbillivirus genus requires further characterisation. Using a random mutagenesis approach, based on error-prone PCR, we targeted the putative receptor binding site for SLAMF1 interaction on peste des petits ruminants virus (PPRV) H, identifying mutations that inhibited virus-induced cell-cell fusion. These data, combined with structural modelling of the PPRV H and ovine SLAMF1 interaction, indicate this region is functionally conserved across all morbilliviruses. Error-prone PCR provides a powerful tool for functionally characterising functional domains within viral proteins.
Collapse
Affiliation(s)
- Giulia Gallo
- The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK
| | | | | | - Brian Willett
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Dalan Bailey
- The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK
| |
Collapse
|
36
|
Differential Diagnosis for Highly Pathogenic Avian Influenza Virus Using Nanoparticles Expressing Chemiluminescence. Viruses 2021; 13:v13071274. [PMID: 34208793 PMCID: PMC8310176 DOI: 10.3390/v13071274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/19/2021] [Accepted: 06/26/2021] [Indexed: 11/19/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) virus is a causative agent of systemic disease in poultry, characterized by high mortality. Rapid diagnosis is crucial for the control of HPAI. In this study, we aimed to develop a differential diagnostic method that can distinguish HPAI from low pathogenic avian influenza (LPAI) viruses using dual split proteins (DSPs). DSPs are chimeras of an enzymatic split, Renilla luciferase (RL), and a non-enzymatic split green fluorescent protein (GFP). Nanoparticles expressing DSPs, sialic acid, and/or transmembrane serine protease 2 (TMPRSS2) were generated, and RL activity was determined in the presence of HPAI or LPAI pseudotyped viruses. The RL activity of nanoparticles containing both DSPs was approximately 2 × 106 RLU, indicating that DSPs can be successfully incorporated into nanoparticles. The RL activity of nanoparticles containing half of the DSPs was around 5 × 101 RLU. When nanoparticles containing half of the DSPs were incubated with HPAI pseudotyped viruses at low pH, RL activity was increased up to 1 × 103 RLU. However, LPAI pseudotyped viruses produced RL activity only in the presence of proteases (trypsin or TMPRSS2), and the average RL activity was around 7 × 102 RLU. We confirmed that nanoparticle fusion assay also diagnoses authentic viruses with specificity of 100% and sensitivity of 91.67%. The data indicated that the developed method distinguished HPAI and LPAI, and suggested that the diagnosis using DSPs could be used for the development of differential diagnostic kits for HPAI after further optimization.
Collapse
|
37
|
CADM1 and CADM2 Trigger Neuropathogenic Measles Virus-Mediated Membrane Fusion by Acting in cis. J Virol 2021; 95:e0052821. [PMID: 33910952 DOI: 10.1128/jvi.00528-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Measles virus (MeV), an enveloped RNA virus in the family Paramyxoviridae, is still an important cause of childhood morbidity and mortality worldwide. MeV usually causes acute febrile illness with skin rash, but in rare cases persists in the brain, causing a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE). The disease is fatal, and no effective therapy is currently available. Although transsynaptic cell-to-cell transmission is thought to account for MeV propagation in the brain, neurons do not express the known receptors for MeV. Recent studies have shown that hyperfusogenic changes in the MeV fusion (F) protein play a key role in MeV propagation in the brain. However, how such mutant viruses spread in neurons remains unexplained. Here, we show that cell adhesion molecule 1 (CADM1; also known as IGSF4A, Necl-2, and SynCAM1) and CADM2 (also known as IGSF4D, Necl-3, SynCAM2) are host factors that enable MeV to cause membrane fusion in cells lacking the known receptors and to spread between neurons. During enveloped virus entry, a cellular receptor generally interacts in trans with the attachment protein on the envelope. However, CADM1 and CADM2 interact in cis with the MeV attachment protein on the same cell membrane, causing the fusion protein triggering and membrane fusion. Knockdown of CADM1 and CADM2 inhibits syncytium formation and virus transmission between neurons that are both mediated by hyperfusogenic F proteins. Thus, our results unravel the molecular mechanism (receptor-mimicking cis-acting fusion triggering) by which MeV spreads transsynaptically between neurons, thereby causing SSPE. IMPORTANCE Measles virus (MeV), an enveloped RNA virus, is the causative agent of measles, which is still an important cause of childhood morbidity and mortality worldwide. Persistent MeV infection in the brain causes a fatal progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. However, how MeV spreads in neurons, which are mainly affected in SSPE, remains largely unknown. In this study, we demonstrate that cell adhesion molecule 1 (CADM1) and CADM2 are host factors enabling MeV spread between neurons. During enveloped virus entry, a cellular receptor generally interacts in trans with the attachment protein on the viral membrane (envelope). Remarkably, CADM1 and CADM2 interact in cis with the MeV attachment protein on the same membrane, triggering the fusion protein and causing membrane fusion, as viral receptors usually do in trans. Careful screening may lead to more examples of such "receptor-mimicking cis-acting fusion triggering" in other viruses.
Collapse
|
38
|
Muñoz-Alía MÁ, Nace RA, Zhang L, Russell SJ. Serotypic evolution of measles virus is constrained by multiple co-dominant B cell epitopes on its surface glycoproteins. Cell Rep Med 2021; 2:100225. [PMID: 33948566 PMCID: PMC8080110 DOI: 10.1016/j.xcrm.2021.100225] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Accepted: 03/04/2021] [Indexed: 11/27/2022]
Abstract
After centuries of pestilence and decades of global vaccination, measles virus (MeV) genotypes capable of evading vaccine-induced immunity have not emerged. Here, by systematically building mutations into the hemagglutinin (H) glycoprotein of an attenuated measles virus strain and assaying for serum neutralization, we show that virus evolution is severely constrained by the existence of numerous co-dominant H glycoprotein antigenic sites, some critical for binding to the pathogenicity receptors SLAMF1 and nectin-4. We further demonstrate the existence in serum of protective neutralizing antibodies targeting co-dominant fusion (F) glycoprotein epitopes. Lack of a substantial reduction in serum neutralization of mutant measles viruses that retain even one of the co-dominant antigenic sites makes evolution of pathogenic measles viruses capable of escaping serum neutralization in vaccinated individuals extremely unlikely.
Collapse
Affiliation(s)
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine and Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
39
|
Makhija S, Brown D, Rudlaff RM, Doh JK, Bourke S, Wang Y, Zhou S, Cheloor-Kovilakam R, Huang B. Versatile Labeling and Detection of Endogenous Proteins Using Tag-Assisted Split Enzyme Complementation. ACS Chem Biol 2021; 16:671-681. [PMID: 33734687 DOI: 10.1021/acschembio.0c00925] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances in genome engineering have expanded our capabilities to study proteins in their natural states. In particular, the ease and scalability of knocking-in small peptide tags has enabled high throughput tagging and analysis of endogenous proteins. To improve enrichment capacities and expand the functionality of knock-ins using short tags, we developed the tag-assisted split enzyme complementation (TASEC) approach, which uses two orthogonal small peptide tags and their cognate binders to conditionally drive complementation of a split enzyme upon labeled protein expression. Using this approach, we have engineered and optimized the tag-assisted split HaloTag complementation system (TA-splitHalo) and demonstrated its versatile applications in improving the efficiency of knock-in cell enrichment, detection of protein-protein interaction, and isolation of biallelic gene edited cells through multiplexing.
Collapse
Affiliation(s)
- Suraj Makhija
- UC Berkeley - UCSF Joint Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94143, United States
| | - David Brown
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - Rachel M. Rudlaff
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - Julia K. Doh
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - Struan Bourke
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - Yina Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - Shuqin Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- School of Pharmacy, Tsinghua University, Beijing 100872, China
| | - Rasmi Cheloor-Kovilakam
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
40
|
Muñoz-Alía MÁ, Nace RA, Tischer A, Zhang L, Bah ES, Auton M, Russell SJ. MeV-Stealth: A CD46-specific oncolytic measles virus resistant to neutralization by measles-immune human serum. PLoS Pathog 2021; 17:e1009283. [PMID: 33534834 PMCID: PMC7886131 DOI: 10.1371/journal.ppat.1009283] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/16/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
The frequent overexpression of CD46 in malignant tumors has provided a basis to use vaccine-lineage measles virus (MeV) as an oncolytic virotherapy platform. However, widespread measles seropositivity limits the systemic deployment of oncolytic MeV for the treatment of metastatic neoplasia. Here, we report the development of MeV-Stealth, a modified vaccine MeV strain that exhibits oncolytic properties and escapes antimeasles antibodies in vivo. We engineered this virus using homologous envelope glycoproteins from the closely-related but serologically non-cross reactive canine distemper virus (CDV). By fusing a high-affinity CD46 specific single-chain antibody fragment (scFv) to the CDV-Hemagglutinin (H), ablating its tropism for human nectin-4 and modifying the CDV-Fusion (F) signal peptide we achieved efficient retargeting to CD46. A receptor binding affinity of ~20 nM was required to trigger CD46-dependent intercellular fusion at levels comparable to the original MeV H/F complex and to achieve similar antitumor efficacy in myeloma and ovarian tumor-bearing mice models. In mice passively immunized with measles-immune serum, treatment of ovarian tumors with MeV-Stealth significantly increased overall survival compared with treatment with vaccine-lineage MeV. Our results show that MeV-Stealth effectively targets and lyses CD46-expressing cancer cells in mouse models of ovarian cancer and myeloma, and evades inhibition by human measles-immune serum. MeV-Stealth could therefore represent a strong alternative to current oncolytic MeV strains for treatment of measles-immune cancer patients. Vaccine strains of the measles virus (MeV) have been shown to be promising anti-cancer agents because of the frequent overexpression of the host-cell receptor CD46 in human malignancies. However, anti-MeV antibodies in the human population severely restrict the use of MeV as an oncolytic agent. Here, we engineered a neutralization-resistant MeV vaccine, MeV-Stealth, by replacing its envelope glycoproteins with receptor-targeted glycoproteins from wild-type canine distemper virus. By fully-retargeting the new envelope to the receptor CD46, we found that in mouse models of ovarian cancer and myeloma MeV-Stealth displayed oncolytic properties similar to the parental MeV vaccine. Furthermore, we found that passive immunization with measles-immune human serum did not eliminate the oncolytic potency of the MeV-Stealth, whereas it did destroy the potency of the parental MeV strain. The virus we here report may be considered a suitable oncolytic agent for the treatment of MeV-immune patients.
Collapse
Affiliation(s)
- Miguel Ángel Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (MÁM-A); (SJR)
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Alexander Tischer
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eugene S. Bah
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Matthew Auton
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (MÁM-A); (SJR)
| |
Collapse
|
41
|
Thakur N, Conceicao C, Isaacs A, Human S, Modhiran N, McLean RK, Pedrera M, Tan TK, Rijal P, Townsend A, Taylor G, Young PR, Watterson D, Chappell KJ, Graham SP, Bailey D. Micro-fusion inhibition tests: quantifying antibody neutralization of virus-mediated cell-cell fusion. J Gen Virol 2021; 102:jgv001506. [PMID: 33054904 PMCID: PMC8116787 DOI: 10.1099/jgv.0.001506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although enveloped viruses canonically mediate particle entry through virus-cell fusion, certain viruses can spread by cell-cell fusion, brought about by receptor engagement and triggering of membrane-bound, viral-encoded fusion proteins on the surface of cells. The formation of pathogenic syncytia or multinucleated cells is seen in vivo, but their contribution to viral pathogenesis is poorly understood. For the negative-strand paramyxoviruses respiratory syncytial virus (RSV) and Nipah virus (NiV), cell-cell spread is highly efficient because their oligomeric fusion protein complexes are active at neutral pH. The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has also been reported to induce syncytia formation in infected cells, with the spike protein initiating cell-cell fusion. Whilst it is well established that fusion protein-specific antibodies can block particle attachment and/or entry into the cell (canonical virus neutralization), their capacity to inhibit cell-cell fusion and the consequences of this neutralization for the control of infection are not well characterized, in part because of the lack of specific tools to assay and quantify this activity. Using an adapted bimolecular fluorescence complementation assay, based on a split GFP-Renilla luciferase reporter, we have established a micro-fusion inhibition test (mFIT) that allows the identification and quantification of these neutralizing antibodies. This assay has been optimized for high-throughput use and its applicability has been demonstrated by screening monoclonal antibody (mAb)-mediated inhibition of RSV and NiV fusion and, separately, the development of fusion-inhibitory antibodies following NiV vaccine immunization in pigs. In light of the recent emergence of coronavirus disease 2019 (COVID-19), a similar assay was developed for SARS-CoV-2 and used to screen mAbs and convalescent patient plasma for fusion-inhibitory antibodies. Using mFITs to assess antibody responses following natural infection or vaccination is favourable, as this assay can be performed entirely at low biocontainment, without the need for live virus. In addition, the repertoire of antibodies that inhibit cell-cell fusion may be different to those that inhibit particle entry, shedding light on the mechanisms underpinning antibody-mediated neutralization of viral spread.
Collapse
Affiliation(s)
- Nazia Thakur
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Carina Conceicao
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Ariel Isaacs
- University of Queensland, Brisbane, Queensland 4071, Australia
| | - Stacey Human
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Naphak Modhiran
- University of Queensland, Brisbane, Queensland 4071, Australia
| | - Rebecca K McLean
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Miriam Pedrera
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Pramila Rijal
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alain Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Paul R Young
- University of Queensland, Brisbane, Queensland 4071, Australia
| | | | | | - Simon P Graham
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Dalan Bailey
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| |
Collapse
|
42
|
Yamamoto M, Ichinohe T, Watanabe A, Kobayashi A, Zhang R, Song J, Kawaguchi Y, Matsuda Z, Inoue JI. The Antimalarial Compound Atovaquone Inhibits Zika and Dengue Virus Infection by Blocking E Protein-Mediated Membrane Fusion. Viruses 2020; 12:v12121475. [PMID: 33371476 PMCID: PMC7767512 DOI: 10.3390/v12121475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
Flaviviruses bear class II fusion proteins as their envelope (E) proteins. Here, we describe the development of an in vitro quantitative mosquito-cell-based membrane-fusion assay for the E protein using dual split proteins (DSPs). The assay does not involve the use of live viruses and allows the analysis of a membrane-fusion step independent of other events in the viral lifecycle, such as endocytosis. The progress of membrane fusion can be monitored continuously by measuring the activities of Renilla luciferase derived from the reassociation of DSPs during cell fusion. We optimized the assay to screen an FDA-approved drug library for a potential membrane fusion inhibitor using the E protein of Zika virus. Screening results identified atovaquone, which was previously described as an antimalarial agent. Atovaquone potently blocked the in vitro Zika virus infection of mammalian cells with an IC90 of 2.1 µM. Furthermore, four distinct serotypes of dengue virus were also inhibited by atovaquone with IC90 values of 1.6–2.5 µM, which is a range below the average blood concentration of atovaquone after its oral administration in humans. These findings make atovaquone a likely candidate drug to treat illnesses caused by Zika as well as dengue viruses. Additionally, the DSP assay is useful to study the mechanism of membrane fusion in Flaviviruses.
Collapse
Affiliation(s)
- Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan; (M.Y.); (A.W.); (A.K.); (Y.K.)
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Aya Watanabe
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan; (M.Y.); (A.W.); (A.K.); (Y.K.)
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ayako Kobayashi
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan; (M.Y.); (A.W.); (A.K.); (Y.K.)
| | - Rui Zhang
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, China;
| | - Jiping Song
- China-Japan Joint Laboratory of Molecular Immunology & Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100864, China;
| | - Yasushi Kawaguchi
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan; (M.Y.); (A.W.); (A.K.); (Y.K.)
- Division of Molecular Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Zene Matsuda
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan; (M.Y.); (A.W.); (A.K.); (Y.K.)
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Kochi 780-8072, Japan
- Correspondence: (Z.M.); (J.-i.I.); Tel.: +81-3-6409-2204 (Z.M.); +81-3-6409-2476 (J.-i.I.)
| | - Jun-ichiro Inoue
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan; (M.Y.); (A.W.); (A.K.); (Y.K.)
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan
- Senior Professor Office, The University of Tokyo, Tokyo 113-0033, Japan
- Correspondence: (Z.M.); (J.-i.I.); Tel.: +81-3-6409-2204 (Z.M.); +81-3-6409-2476 (J.-i.I.)
| |
Collapse
|
43
|
Conceicao C, Thakur N, Human S, Kelly JT, Logan L, Bialy D, Bhat S, Stevenson-Leggett P, Zagrajek AK, Hollinghurst P, Varga M, Tsirigoti C, Tully M, Chiu C, Moffat K, Silesian AP, Hammond JA, Maier HJ, Bickerton E, Shelton H, Dietrich I, Graham SC, Bailey D. The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol 2020; 18:e3001016. [PMID: 33347434 PMCID: PMC7751883 DOI: 10.1371/journal.pbio.3001016] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
SARS Coronavirus 2 (SARS-CoV-2) emerged in late 2019, leading to the Coronavirus Disease 2019 (COVID-19) pandemic that continues to cause significant global mortality in human populations. Given its sequence similarity to SARS-CoV, as well as related coronaviruses circulating in bats, SARS-CoV-2 is thought to have originated in Chiroptera species in China. However, whether the virus spread directly to humans or through an intermediate host is currently unclear, as is the potential for this virus to infect companion animals, livestock, and wildlife that could act as viral reservoirs. Using a combination of surrogate entry assays and live virus, we demonstrate that, in addition to human angiotensin-converting enzyme 2 (ACE2), the Spike glycoprotein of SARS-CoV-2 has a broad host tropism for mammalian ACE2 receptors, despite divergence in the amino acids at the Spike receptor binding site on these proteins. Of the 22 different hosts we investigated, ACE2 proteins from dog, cat, and cattle were the most permissive to SARS-CoV-2, while bat and bird ACE2 proteins were the least efficiently used receptors. The absence of a significant tropism for any of the 3 genetically distinct bat ACE2 proteins we examined indicates that SARS-CoV-2 receptor usage likely shifted during zoonotic transmission from bats into people, possibly in an intermediate reservoir. Comparison of SARS-CoV-2 receptor usage to the related coronaviruses SARS-CoV and RaTG13 identified distinct tropisms, with the 2 human viruses being more closely aligned. Finally, using bioinformatics, structural data, and targeted mutagenesis, we identified amino acid residues within the Spike-ACE2 interface, which may have played a pivotal role in the emergence of SARS-CoV-2 in humans. The apparently broad tropism of SARS-CoV-2 at the point of viral entry confirms the potential risk of infection to a wide range of companion animals, livestock, and wildlife.
Collapse
Affiliation(s)
| | - Nazia Thakur
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Stacey Human
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | - Leanne Logan
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Dagmara Bialy
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Sushant Bhat
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | | | - Philippa Hollinghurst
- The Pirbright Institute, Woking, Surrey, United Kingdom
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Michal Varga
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | - Matthew Tully
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Chris Chiu
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Katy Moffat
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | | | | | | | - Holly Shelton
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Dalan Bailey
- The Pirbright Institute, Woking, Surrey, United Kingdom
| |
Collapse
|
44
|
Localization of the Interaction Site of Herpes Simplex Virus Glycoprotein D (gD) on the Membrane Fusion Regulator, gH/gL. J Virol 2020; 94:JVI.00983-20. [PMID: 32759318 DOI: 10.1128/jvi.00983-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
A cascade of protein-protein interactions between four herpes simplex virus (HSV) glycoproteins (gD, gH/gL, and gB) drive fusion between the HSV envelope and host membrane, thereby allowing for virus entry and infection. Specifically, binding of gD to one of its receptors induces a conformational change that allows gD to bind to the regulatory complex gH/gL, which then activates the fusogen gB, resulting in membrane fusion. Using surface plasmon resonance and a panel of anti-gD monoclonal antibodies (MAbs) that sterically blocked the interaction, we previously showed that gH/gL binds directly to gD at sites distinct from the gD receptor binding site. Here, using an analogous strategy, we first evaluated the ability of a panel of uncharacterized anti-gH/gL MAbs to block binding to gD and/or inhibit fusion. We found that the epitopes of four gD-gH/gL-blocking MAbs were located within flexible regions of the gH N terminus and the gL C terminus, while the fifth was placed around gL residue 77. Taken together, our data localized the gD binding region on gH/gL to a group of gH and gL residues at the membrane distal region of the heterodimer. Surprisingly, a second set of MAbs did not block gD-gH/gL binding but instead stabilized the complex by altering the kinetic binding. However, despite this prolonged gD-gH/gL interaction, "stabilizing" MAbs also inhibited cell-cell fusion, suggesting a unique mechanism by which the fusion process is halted. Our findings support targeting the gD-gH/gL interaction to prevent fusion in both therapeutic and vaccine strategies against HSV.IMPORTANCE Key to developing a human HSV vaccine is an understanding of the virion glycoproteins involved in entry. HSV employs multiple glycoproteins for attachment, receptor interaction, and membrane fusion. Determining how these proteins function was resolved, in part, by structural biology coupled with immunological and biologic evidence. After binding, virion gD interacts with a receptor to activate the regulator gH/gL complex, triggering gB to drive fusion. Multiple questions remain, one being the physical location of each glycoprotein interaction site. Using protective antibodies with known epitopes, we documented the long-sought interaction between gD and gH/gL, detailing the region on gD important to create the gD-gH/gL triplex. Now, we have identified the corresponding gD contact sites on gH/gL. Concurrently we discovered a novel mechanism whereby gH/gL antibodies stabilize the complex and inhibit fusion progression. Our model for the gD-gH/gL triplex provides a new framework for studying fusion, which identifies targets for vaccine development.
Collapse
|
45
|
Anti-Chikungunya Virus Monoclonal Antibody That Inhibits Viral Fusion and Release. J Virol 2020; 94:JVI.00252-20. [PMID: 32699087 DOI: 10.1128/jvi.00252-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Chikungunya fever, a mosquito-borne disease manifested by fever, rash, myalgia, and arthralgia, is caused by chikungunya virus (CHIKV), which belongs to the genus Alphavirus of the family Togaviridae Anti-CHIKV IgG from convalescent patients is known to directly neutralize CHIKV, and the state of immunity lasts throughout life. Here, we examined the epitope of a neutralizing mouse monoclonal antibody against CHIKV, CHE19, which inhibits viral fusion and release. In silico docking analysis showed that the epitope of CHE19 was localized in the viral E2 envelope and consisted of two separate segments, an N-linker and a β-ribbon connector, and that its bound Fab fragment on E2 overlapped the position that the E3 glycoprotein originally occupied. We showed that CHIKV-E2 is lost during the viral internalization and that CHE19 inhibits the elimination of CHIKV-E2. These findings suggested that CHE19 stabilizes the E2-E1 heterodimer instead of E3 and inhibits the protrusion of the E1 fusion loop and subsequent membrane fusion. In addition, the antigen-bound Fab fragment configuration showed that CHE19 connects to the CHIKV spikes existing on the two individual virions, leading us to conclude that the CHE19-CHIKV complex was responsible for the large virus aggregations. In our subsequent filtration experiments, large viral aggregations by CHE19 were trapped by a 0.45-μm filter. This virion-connecting characteristic of CHE19 could explain the inhibition of viral release from infected cells by the tethering effect of the virion itself. These findings provide clues toward the development of effective prophylactic and therapeutic monoclonal antibodies against the Alphavirus infection.IMPORTANCE Recent outbreaks of chikungunya fever have increased its clinical importance. Neither a specific antiviral drug nor a commercial vaccine for CHIKV infection are available. Here, we show a detailed model of the docking between the envelope glycoprotein of CHIKV and our unique anti-CHIKV-neutralizing monoclonal antibody (CHE19), which inhibits CHIKV membrane fusion and virion release from CHIKV-infected cells. Homology modeling of the neutralizing antibody CHE19 and protein-protein docking analysis of the CHIKV envelope glycoprotein and CHE19 suggested that CHE19 inhibits the viral membrane fusion by stabilizing the E2-E1 heterodimer and inhibits virion release by facilitating the formation of virus aggregation due to the connecting virions, and these predictions were confirmed by experiments. Sequence information of CHE19 and the CHIKV envelope glycoprotein and their docking model will contribute to future development of an effective prophylactic and therapeutic agent.
Collapse
|
46
|
Seki F, Yamamoto Y, Fukuhara H, Ohishi K, Maruyama T, Maenaka K, Tokiwa H, Takeda M. Measles Virus Hemagglutinin Protein Establishes a Specific Interaction With the Extreme N-Terminal Region of Human Signaling Lymphocytic Activation Molecule to Enhance Infection. Front Microbiol 2020; 11:1830. [PMID: 32922371 PMCID: PMC7457132 DOI: 10.3389/fmicb.2020.01830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/13/2020] [Indexed: 11/26/2022] Open
Abstract
Measles virus (MV) is a human pathogen that is classified in the genus Morbillivirus in the family Paramyxoviridae together with several non-human animal morbilliviruses. They cause severe systemic infections by using signaling lymphocytic activation molecule (SLAM) and poliovirus receptor-like 4 expressed on immune and epithelial cells, respectively, as receptors. The viral hemagglutinin (H) protein is responsible for the receptor-binding. Previously determined structures of MV-H and SLAM complexes revealed a major binding interface between the SLAM V domain and MV-H with four binding components (sites 1–4) in the interface. We studied the MV-H and human SLAM (hSLAM) complex structure in further detail by in silico analyses and determined missing regions or residues in the previously determined complex structures. These analyses showed that, in addition to sites 1–4, MV-H establishes a unique interaction with the extreme N-terminal region (ExNTR) of hSLAM. The first principles calculation-based fragment molecular orbital computation method revealed that methionine at position 29 (hSLAM-Met29) is the key residue for the interaction. hSLAM-Met29 was predicted to establish a CH-π interaction with phenylalanine at position 549 of MV-H (MVH-Phe549). A cell-cell fusion assay showed that the hSLAM-Met29 and MVH-Phe549 interaction is important for hSLAM-dependent MV membrane fusion. Furthermore, Jurkat cell lines expressing hSLAM with or without Met29 and recombinant MV possessing the H protein with or without Phe549 showed that the hSLAM-Met29 and MVH-Phe549 interaction enhanced hSLAM-dependent MV infection by ~10-fold. We speculate that in the evolutionary history of morbilliviruses, this interaction may have contributed to MV adaptation to humans because this interaction is unique for MV and only MV uses hSLAM efficiently among morbilliviruses.
Collapse
Affiliation(s)
- Fumio Seki
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuta Yamamoto
- Department of Chemistry, Rikkyo University, Tokyo, Japan
| | - Hideo Fukuhara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kazue Ohishi
- Faculty of Engineering, Tokyo Polytechnic University, Atsugi, Japan
| | | | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroaki Tokiwa
- Department of Chemistry, Rikkyo University, Tokyo, Japan
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
47
|
Bozhanova NG, Gavrikov AS, Mishin AS, Meiler J. DiB-splits: nature-guided design of a novel fluorescent labeling split system. Sci Rep 2020; 10:11049. [PMID: 32632329 PMCID: PMC7338535 DOI: 10.1038/s41598-020-67095-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/27/2020] [Indexed: 11/18/2022] Open
Abstract
Fluorogen-activating proteins (FAPs) are innovative fluorescent probes combining advantages of genetically-encoded proteins such as green fluorescent protein and externally added fluorogens that allow for highly tunable and on demand fluorescent signaling. Previously, a panel of green- and red-emitting FAPs has been created from bacterial lipocalin Blc (named DiBs). Here we present a rational design as well as functional and structural characterization of the first self-assembling FAP split system, DiB-splits. This new system decreases the size of the FAP label to ~8-12 kDa while preserving DiBs' unique properties: strong increase in fluorescence intensity of the chromophore upon binding, binding affinities to the chromophore in nanomolar to low micromolar range, and high photostability of the protein-ligand complex. These properties allow for use of DiB-splits for wide-field, confocal, and super-resolution fluorescence microscopy. DiB-splits also represent an attractive starting point for further design of a protein-protein interaction detection system as well as novel FAP-based sensors.
Collapse
Affiliation(s)
- Nina G Bozhanova
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Alexey S Gavrikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander S Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA.
- Institute for Drug Discovery, Leipzig University, Leipzig, SAC 04103, Germany.
| |
Collapse
|
48
|
Pedrera M, Macchi F, McLean RK, Franceschi V, Thakur N, Russo L, Medfai L, Todd S, Tchilian EZ, Audonnet JC, Chappell K, Isaacs A, Watterson D, Young PR, Marsh GA, Bailey D, Graham SP, Donofrio G. Bovine Herpesvirus-4-Vectored Delivery of Nipah Virus Glycoproteins Enhances T Cell Immunogenicity in Pigs. Vaccines (Basel) 2020; 8:vaccines8010115. [PMID: 32131403 PMCID: PMC7157636 DOI: 10.3390/vaccines8010115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Nipah virus (NiV) is an emergent pathogen capable of causing acute respiratory illness and fatal encephalitis in pigs and humans. A high fatality rate and broad host tropism makes NiV a serious public and animal health concern. There is therefore an urgent need for a NiV vaccines to protect animals and humans. In this study we investigated the immunogenicity of bovine herpesvirus (BoHV-4) vectors expressing either NiV attachment (G) or fusion (F) glycoproteins, BoHV-4-A-CMV-NiV-GΔTK or BoHV-4-A-CMV-NiV-FΔTK, respectively in pigs. The vaccines were benchmarked against a canarypox (ALVAC) vector expressing NiV G, previously demonstrated to induce protective immunity in pigs. Both BoHV-4 vectors induced robust antigen-specific antibody responses. BoHV-4-A-CMV-NiV-GΔTK stimulated NiV-neutralizing antibody titers comparable to ALVAC NiV G and greater than those induced by BoHV-4-A-CMV-NiV-FΔTK. In contrast, only BoHV-4-A-CMV-NiV-FΔTK immunized pigs had antibodies capable of significantly neutralizing NiV G and F-mediated cell fusion. All three vectored vaccines evoked antigen-specific CD4 and CD8 T cell responses, which were particularly strong in BoHV-4-A-CMV-NiV-GΔTK immunized pigs and to a lesser extent BoHV-4-A-CMV-NiV-FΔTK. These findings emphasize the potential of BoHV-4 vectors for inducing antibody and cell-mediated immunity in pigs and provide a solid basis for the further evaluation of these vectored NiV vaccine candidates.
Collapse
Affiliation(s)
- Miriam Pedrera
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
| | - Francesca Macchi
- Department of Medical-Veterinary Science, University of Parma, 43126 Parma, Italy; (F.M.); (V.F.); (L.R.)
| | - Rebecca K. McLean
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
| | - Valentina Franceschi
- Department of Medical-Veterinary Science, University of Parma, 43126 Parma, Italy; (F.M.); (V.F.); (L.R.)
| | - Nazia Thakur
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
| | - Luca Russo
- Department of Medical-Veterinary Science, University of Parma, 43126 Parma, Italy; (F.M.); (V.F.); (L.R.)
| | - Lobna Medfai
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
- UnivLyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Shawn Todd
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia; (S.T.); (G.A.M.)
| | - Elma Z. Tchilian
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
| | - Jean-Christophe Audonnet
- Boehringer Ingelheim Animal Health, Bâtiment 700 R&D, 813 Cours du 3ème Millénaire, 69800 Saint Priest, France;
| | - Keith Chappell
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia; (K.C.); (A.I.); (D.W.); (P.R.Y.)
| | - Ariel Isaacs
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia; (K.C.); (A.I.); (D.W.); (P.R.Y.)
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia; (K.C.); (A.I.); (D.W.); (P.R.Y.)
| | - Paul R. Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia; (K.C.); (A.I.); (D.W.); (P.R.Y.)
| | - Glenn A. Marsh
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia; (S.T.); (G.A.M.)
| | - Dalan Bailey
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
| | - Simon P. Graham
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
- Correspondence: (S.P.G.); (G.D.)
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, 43126 Parma, Italy; (F.M.); (V.F.); (L.R.)
- Correspondence: (S.P.G.); (G.D.)
| |
Collapse
|
49
|
Tuzmen C, Cairns TM, Atanasiu D, Lou H, Saw WT, Hall BL, Cohen JB, Cohen GH, Glorioso JC. Point Mutations in Retargeted gD Eliminate the Sensitivity of EGFR/EGFRvIII-Targeted HSV to Key Neutralizing Antibodies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:145-154. [PMID: 32042851 PMCID: PMC7000558 DOI: 10.1016/j.omtm.2019.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/26/2019] [Indexed: 11/29/2022]
Abstract
Effective oncolytic virotherapy may require systemic delivery, tumor targeting, and resistance to virus-neutralizing (VN) antibodies. Since herpes simplex virus (HSV) glycoprotein D (gD) is the viral attachment/entry protein and predominant VN target, we examined the impact of gD retargeting alone and in combination with alterations in dominant VN epitopes on virus susceptibility to VN antibodies. We compared the binding of a panel of anti-gD monoclonal antibodies (mAbs) that mimic antibody specificities in human HSV-immune sera to the purified ectodomains of wild-type and retargeted gD, revealing the retention of two prominent epitopes. Substitution of a key residue in each epitope, separately and together, revealed that both substitutions (1) blocked retargeted gD recognition by mAbs to the respective epitopes, and, in combination, caused a global reduction in mAb binding; (2) protected against fusion inhibition by VN mAbs reactive with each epitope in virus-free cell-cell fusion assays; and (3) increased the resistance of retargeted HSV-1 to these VN mAbs. Although the combined modifications of retargeted gD allowed bona fide retargeting, incorporation into virions was partially compromised. Our results indicate that stacking of epitope mutations can additively block retargeted gD recognition by VN antibodies but also that improvements in gD incorporation into virus particles may be required.
Collapse
Affiliation(s)
- Ceren Tuzmen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Doina Atanasiu
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Huan Lou
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wan Ting Saw
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bonnie L Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Gary H Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
50
|
Shirogane Y, Hashiguchi T, Yanagi Y. Weak cis and trans Interactions of the Hemagglutinin with Receptors Trigger Fusion Proteins of Neuropathogenic Measles Virus Isolates. J Virol 2020; 94:e01727-19. [PMID: 31619560 PMCID: PMC6955248 DOI: 10.1128/jvi.01727-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Measles virus (MeV) is an enveloped RNA virus bearing two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. Upon receptor binding, the H protein triggers conformational changes of the F protein, causing membrane fusion and subsequent virus entry. MeV may persist in the brain, infecting neurons and causing fatal subacute sclerosing panencephalitis (SSPE). Since neurons do not express either of the MeV receptors, signaling lymphocytic activation molecule (SLAM; also called CD150) and nectin-4, how MeV propagates in neurons is unknown. Recent studies have shown that specific substitutions in the F protein found in MeV isolates from SSPE patients are critical for MeV neuropathogenicity by rendering the protein unstable and hyperfusogenic. Recombinant MeVs possessing the F proteins with such substitutions can spread in primary human neurons and in the brains of mice and hamsters and induce cell-cell fusion in cells lacking SLAM and nectin-4. Here, we show that receptor-blind mutant H proteins that have decreased binding affinities to receptors can support membrane fusion mediated by hyperfusogenic mutant F proteins, but not the wild-type F protein, in cells expressing the corresponding receptors. The results suggest that weak interactions of the H protein with certain molecules (putative neuron receptors) trigger hyperfusogenic F proteins in SSPE patients. Notably, where cell-cell contacts are ensured, the weak cis interaction of the H protein with SLAM on the same cell surface also could trigger hyperfusogenic F proteins. Some enveloped viruses may exploit such cis interactions with receptors to infect target cells, especially in cell-to-cell transmission.IMPORTANCE Measles virus (MeV) may persist in the brain, causing incurable subacute sclerosing panencephalitis (SSPE). Because neurons, the main target in SSPE, do not express receptors for wild-type (WT) MeV, how MeV propagates in the brain is a key question for the disease. Recent studies have demonstrated that specific substitutions in the MeV fusion (F) protein are critical for neuropathogenicity. Here, we show that weak cis and trans interactions of the MeV attachment protein with receptors that are not sufficient to trigger the WT MeV F protein can trigger the mutant F proteins from neuropathogenic MeV isolates. Our study not only provides an important clue to understand MeV neuropathogenicity but also reveals a novel viral strategy to expand cell tropism.
Collapse
Affiliation(s)
- Yuta Shirogane
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Takao Hashiguchi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| |
Collapse
|