1
|
Chang WK, Wang CJ, Tsai TH, Sun FJ, Chen CH, Kuo KC, Chung HP, Tang YH, Chen YT, Wu KL, Wu JC, Lin CY, Zhang HB. The clinical application of traditional Chinese medicine NRICM101 in hospitalized patients with COVID-19. Expert Rev Anti Infect Ther 2024; 22:587-595. [PMID: 38288986 DOI: 10.1080/14787210.2024.2313054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND The aim of this study was to assess the efficacy and safety of NRICM101 in hospitalized patients with COVID-19. RESEARCH DESIGN AND METHODS We conducted a retrospective study from 20 April 2021 to 8 July 2021, and evaluated the safety and outcomes (mortality, hospital stay, mechanical ventilation, oxygen support, diarrhea, serum potassium) in COVID-19 patients. Propensity score matching at a 1:2 ratio was performed to reduce confounding factors. RESULTS A total of 201 patients were analyzed. The experimental group (n = 67) received NRICM101 and standard care, while the control group (n = 134) received standard care alone. No significant differences were observed in mortality (10.4% vs. 14.2%), intubation (13.8% vs. 11%), time to intubation (10 vs. 11 days), mechanical ventilation days (0 vs. 9 days), or oxygen support duration (6 vs. 5 days). However, the experimental group had a shorter length of hospitalization (odds ratio = 0.12, p = 0.043) and fewer mechanical ventilation days (odds ratio = 0.068, p = 0.008) in initially severe cases, along with an increased diarrhea risk (p = 0.035). CONCLUSION NRICM101 did not reduce in-hospital mortality. However, it shortened the length of hospitalization and reduced mechanical ventilation days in initially severe cases. Further investigation is needed.
Collapse
Affiliation(s)
- Wen-Kuei Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Chieh-Jen Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Ju Sun
- Department of Medical Research, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Chao-Hsien Chen
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
| | - Kuan-Chih Kuo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Hsin-Pei Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Yen-Hsiang Tang
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yen-Ting Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Kuo-Lun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Jou-Chun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chang-Yi Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Hai-Bo Zhang
- Anesthesia, Medicine and Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Cui Z, Wang H, Zou H, Li L, Zhang Y, Chen W. Efficacy and safety of casirivimab and imdevimab for preventing and treating COVID-19: a systematic review and meta-analysis. J Thorac Dis 2024; 16:3606-3622. [PMID: 38983147 PMCID: PMC11228754 DOI: 10.21037/jtd-23-1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/26/2024] [Indexed: 07/11/2024]
Abstract
Background The ongoing global epidemic of coronavirus disease 2019 (COVID-19) has created a serious public health problem. The selection of safe and effective therapeutic agents is of paramount importance. This systematic review aims to evaluate the efficacy and safety of the combination of casirivimab and imdevimab in the treatment of global cases of COVID-19. Methods To identify randomized controlled trials (RCTs) investigating the combined administration of casirivimab and imdevimab for COVID-19 management, a comprehensive search was conducted across multiple databases including PubMed, Web of Science, Embase, and the Cochrane Library from their inception to September 10, 2022. Data on the efficacy and safety of casirivimab and imdevimab were extracted. Subgroup analyses and sensitivity analyses were performed. Results A total of 851 articles were searched. Twelve studies were finally included in the meta-analysis, with 27,179 participants. Dichotomous and continuous variables were presented as odds ratios (ORs) and weighted mean differences (WMDs) with their 95% confidence intervals (CIs), respectively. Compared to placebo or alternative medications, the combination of casirivimab and imdevimab reduced viral load (WMD: -0.73, 95% CI: -1.09 to -0.38, P<0.01), all-cause mortality (OR =0.90, 95% CI: 0.82-0.99, P=0.03), the incidence of any serious adverse events (OR =0.80, 95% CI: 0.67-0.95, P=0.01), the incidence of Grade 3 or more severe adverse events (OR =0.76, 95% CI: 0.62-0.92, P=0.01), the likelihood of contracting COVID-19, the incidence of hospitalization, emergency room visits, and mortality (OR =0.54, 95% CI: 0.32-0.93, P=0.03). Conclusions The monoclonal antibody combination of casirivimab and imdevimab is effective in treating patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as they can reduce viral load, all-cause mortality, infection rates, and the incidence of clinical outcomes of special interest after treatment, while maintaining a favorable safety profile.
Collapse
Affiliation(s)
- Zhifang Cui
- Department of Respiratory Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hongwu Wang
- Department of Respiratory Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Heng Zou
- Department of Respiratory Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Li
- Department of Respiratory Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ye Zhang
- Department of General Medicine, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenyu Chen
- Department of Respiratory Medicine, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
3
|
Lu CL, Yang LQ, Jin XY, Friedemann T, Li YF, Liu XH, Chen XY, Zou XY, Zhang BR, Wang FX, Lin YL, Tang YM, Cao ML, Jiang YL, Gao YF, Liu K, Tao ZG, Robinson N, Schröder S, Liu JP, Lu HZ. Chinese herbal medicine Shufeng Jiedu capsule for mild to moderate COVID-19: a multicenter, randomized, double-blind, placebo-controlled phase II trial. Front Pharmacol 2024; 15:1383831. [PMID: 38863976 PMCID: PMC11165997 DOI: 10.3389/fphar.2024.1383831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024] Open
Abstract
Background: The COVID-19 pandemic has had a profound global impact, although the majority of recently infected cases have presented with mild to moderate symptoms. Previous clinical studies have demonstrated that Shufeng Jiedu (SFJD) capsule, a Chinese herbal patent medicine, effectively alleviates symptoms associated with the common cold, H1N1 influenza, and COVID-19. This study aimed to assess the efficacy and safety of SFJD capsules in managing symptoms of mild to moderate COVID-19 infection. Methods: A randomized, double-blind, placebo-controlled trial was conducted from May to December 2022 at two hospitals in China. Mild and moderate COVID-19-infected patients presenting respiratory symptoms within 3 days from onset were randomly assigned to either the SFJD or placebo groups in a 1:1 ratio. Individuals received SFJD capsules or a placebo three times daily for five consecutive days. Participants were followed up for more than 14 days after their RT-PCR nucleoid acid test for SARS-CoV-2 turned negative. The primary outcome measure was time to alleviate COVID-19 symptoms from baseline until the end of follow-up. Results: A total of 478 participants were screened; ultimately, 407 completed the trial after randomization (SFJD, n = 203; placebo, n = 204). No statistically significant difference in baseline parameters was observed between the two groups. The median time to alleviate all symptoms was 7 days in the SFJD group compared to 8 days in the placebo group (p = 0.037). Notably, the SFJD group significantly attenuated fever/chills (p = 0.04) and headache (p = 0.016) compared to the placebo group. Furthermore, the median time taken to reach normal body temperature within 24 h was reduced by 7 hours in the SFJD group compared to the placebo group (p = 0.033). No deaths or instances of serious or critical conditions occurred during this trial period; moreover, no serious adverse events were reported. Conclusion: The trial was conducted in a unique controlled hospital setting, and the 5-day treatment with SFJD capsules resulted in a 1-day reduction in overall symptoms, particularly headache and fever/chills, among COVID-19-infected participants with mild or moderate symptoms. Compared to placebo, SFJD capsules were found to be safe with fewer side effects. SFJD capsules could potentially serve as an effective treatment for alleviating mild to moderate symptoms of COVID-19. Clinical Trial Registration: https://www.isrctn.com/, identifier ISRCTN14236594.
Collapse
Affiliation(s)
- Chun-li Lu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Liu-qing Yang
- The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital to Southern University of Science and Technology, Shenzhen, China
| | - Xin-yan Jin
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Thomas Friedemann
- HanseMerkur Center for Traditional Chinese Medicine at the University Medical Center, Hamburg, Germany
| | - Yu-fei Li
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue-han Liu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-ying Chen
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-yun Zou
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bing-rui Zhang
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fu-xiang Wang
- The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital to Southern University of Science and Technology, Shenzhen, China
| | - Yuan-long Lin
- The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital to Southern University of Science and Technology, Shenzhen, China
| | - Yi-min Tang
- The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital to Southern University of Science and Technology, Shenzhen, China
| | - Meng-li Cao
- The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital to Southern University of Science and Technology, Shenzhen, China
| | | | | | - Kui Liu
- The People’s Hospital of Bozhou, Bozhou, China
| | - Zhen-gang Tao
- Zhongshan Hospital Affiliated of Fudan University, Shanghai, China
| | - Nicola Robinson
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Health and Social Care, London South Bank University, London, United Kingdom
| | - Sven Schröder
- HanseMerkur Center for Traditional Chinese Medicine at the University Medical Center, Hamburg, Germany
| | - Jian-ping Liu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hong-zhou Lu
- The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Kaur B, Blavo C, Parmar MS. Ivermectin: A Multifaceted Drug With a Potential Beyond Anti-parasitic Therapy. Cureus 2024; 16:e56025. [PMID: 38606261 PMCID: PMC11008553 DOI: 10.7759/cureus.56025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Ivermectin was first discovered in the 1970s by Japanese microbiologist Satoshi Omura and Irish parasitologist William C. Campbell. Ivermectin has become a versatile pharmaceutical over the past 50 years. Ivermectin is a derivative of avermectin originally used to treat parasitic infections. Emerging literature has suggested that its role goes beyond this and may help treat inflammatory conditions, viral infections, and cancers. Ivermectin's anti-parasitic, anti-inflammatory, anti-viral, and anticancer effects were explored. Its traditional mechanism of action in parasitic diseases, such as scabies and malaria, rests on its ability to interfere with the glutamate-gated chloride channels in invertebrates and the lack of P-glycoprotein in many parasites. More recently, it has been discovered that the ability of ivermectin to block the nuclear factor kappa-light-chain enhancer of the activated B (NF-κB) pathway that modulates the expression and production of proinflammatory cytokines is implicated in its role as an anti-inflammatory agent to treat rosacea. Ivermectin has also been evaluated for treating infections caused by viruses, such as SARS-CoV-2 and adenoviruses, through inhibition of viral protein transportation and acting on the importin α/β1 interface. It has also been suggested that ivermectin can inhibit the proliferation of tumorigenic cells through various pathways that lead to the management of certain cancers. The review aimed to evaluate its multifaceted effects and potential clinical applications beyond its traditional use as an anthelmintic agent.
Collapse
Affiliation(s)
- Baneet Kaur
- Department of Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, USA
| | - Cyril Blavo
- Department of Public Health, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, USA
| | - Mayur S Parmar
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, USA
| |
Collapse
|
5
|
Guo E, Gupta M, Deng J, Park YJ, Paget M, Naugler C. Automated Paper Screening for Clinical Reviews Using Large Language Models: Data Analysis Study. J Med Internet Res 2024; 26:e48996. [PMID: 38214966 PMCID: PMC10818236 DOI: 10.2196/48996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The systematic review of clinical research papers is a labor-intensive and time-consuming process that often involves the screening of thousands of titles and abstracts. The accuracy and efficiency of this process are critical for the quality of the review and subsequent health care decisions. Traditional methods rely heavily on human reviewers, often requiring a significant investment of time and resources. OBJECTIVE This study aims to assess the performance of the OpenAI generative pretrained transformer (GPT) and GPT-4 application programming interfaces (APIs) in accurately and efficiently identifying relevant titles and abstracts from real-world clinical review data sets and comparing their performance against ground truth labeling by 2 independent human reviewers. METHODS We introduce a novel workflow using the Chat GPT and GPT-4 APIs for screening titles and abstracts in clinical reviews. A Python script was created to make calls to the API with the screening criteria in natural language and a corpus of title and abstract data sets filtered by a minimum of 2 human reviewers. We compared the performance of our model against human-reviewed papers across 6 review papers, screening over 24,000 titles and abstracts. RESULTS Our results show an accuracy of 0.91, a macro F1-score of 0.60, a sensitivity of excluded papers of 0.91, and a sensitivity of included papers of 0.76. The interrater variability between 2 independent human screeners was κ=0.46, and the prevalence and bias-adjusted κ between our proposed methods and the consensus-based human decisions was κ=0.96. On a randomly selected subset of papers, the GPT models demonstrated the ability to provide reasoning for their decisions and corrected their initial decisions upon being asked to explain their reasoning for incorrect classifications. CONCLUSIONS Large language models have the potential to streamline the clinical review process, save valuable time and effort for researchers, and contribute to the overall quality of clinical reviews. By prioritizing the workflow and acting as an aid rather than a replacement for researchers and reviewers, models such as GPT-4 can enhance efficiency and lead to more accurate and reliable conclusions in medical research.
Collapse
Affiliation(s)
- Eddie Guo
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mehul Gupta
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jiawen Deng
- Temerty Faculty of Medicine, University of Toronto, Toronto, AB, Canada
| | - Ye-Jean Park
- Temerty Faculty of Medicine, University of Toronto, Toronto, AB, Canada
| | - Michael Paget
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
6
|
Salvador-Carrillo J, Campos-Loza L, Guillen-Carbajal D, Osada J, Zevallos A, Torres-Roman JS. Use of ivermectin and factors associated with the prevention and/or treatment of COVID-19: a cross-sectional online survey in the province of Chincha, Peru. F1000Res 2024; 12:149. [PMID: 38178941 PMCID: PMC10765097 DOI: 10.12688/f1000research.128675.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 01/06/2024] Open
Abstract
Background Peru has reported one of the highest mortality rates from COVID-19 worldwide. The Chincha province has been one of the most affected regions in Peru and the leading promoter of the use of ivermectin for the treatment of COVID-19. Therefore, our study aimed to evaluate the frequency of use and factors associated with the use of ivermectin for COVID-19 in Chincha. Methods A cross-sectional study was conducted during the second wave of COVID-19 in Peru. For statistical analyses, frequencies and percentages were reported. Prevalence ratios (PR) with a 95% confidence interval (CI), and a p-value of 0.05 were used to determine statistical significance. SPSS version 22 (IBM Corp) program was used for the analyses. Results A total of 432 participants were included in the study. A total of 67.6% (n = 292) of the participants used ivermectin during the COVID-19 pandemic. Of these, 20.20% (n=59) of the people used ivermectin for prophylactic purposes only, while 41.79% (n=122) used it as treatment for COVID-19 only, and 38.01% (n=111) used it for both reasons. The consumption of ivermectin was associated with being 50 years or older (PR:1.27, 95% CI:1.04-1.54), having a technical education level (PR:1.16, 95% CI:1.01-1.34), having had symptoms of COVID-19 with negative/no diagnosis (PR: 1.28, 95% CI: 1.07-1.53) or positive diagnosis (PR:1.38, 95% CI:1.18-1.61), or having had contact with infected people (PR:1.45, 95% CI:1.06-1.98). Conclusions Most people in Chincha used ivermectin during the second wave of the COVID-19 pandemic. The main factors associated with the use of ivermectin for the prevention/treatment of COVID-19 were age ≥50 years, having a technical education level, having had symptoms with negative/no diagnosis or positive diagnosis, and contact with people infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Jose Salvador-Carrillo
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Filial Chincha, Ica, Peru
| | - Luz Campos-Loza
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Filial Chincha, Ica, Peru
| | - David Guillen-Carbajal
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Filial Chincha, Ica, Peru
| | - Jorge Osada
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Filial Chincha, Ica, Peru
| | - Alejandra Zevallos
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Filial Chincha, Ica, Peru
| | | |
Collapse
|
7
|
Deng J, Heybati K, Ramaraju HB, Zhou F, Rayner D, Heybati S. Differential efficacy and safety of anti-SARS-CoV-2 antibody therapies for the management of COVID-19: a systematic review and network meta-analysis. Infection 2023; 51:21-35. [PMID: 35438413 PMCID: PMC9016212 DOI: 10.1007/s15010-022-01825-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/01/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE To assess and compare the relative efficacy and safety of anti-SARS-CoV-2 antibody regimens for COVID-19. METHODS This systematic review and random-effects network meta-analysis was conducted according to PRISMA-NMA. Literature searches were conducted across MEDLINE, EMBASE, PubMed, Web of Science, CENTRAL, and CNKI up to February 20th, 2022. Interventions were ranked using P scores. RESULTS Fifty-five RCTs (N = 45,005) were included in the review. Bamlanivimab + etesevimab (OR 0.13, 95% CI 0.02-0.77) was associated with a significant reduction in mortality compared to standard of care/placebo. Casirivimab + imdevimab reduced mortality (OR 0.67, 95% CI 0.50-0.91) in baseline seronegative patients only. Four different regimens led to a significant decrease in the incidence of hospitalization compared to standard of care/placebo with sotrovimab ranking first in terms of efficacy (OR 0.20, 95% CI 0.08-0.48). No treatment improved incidence of mechanical ventilation, duration of hospital/ICU stay, and time to viral clearance. Convalescent plasma and anti-COVID IVIg both led to a significant increase in adverse events compared to standard of care/placebo, but no treatment increased the odds of serious adverse events. CONCLUSION Anti-SARS-CoV-2 mAbs are safe, and could be effective in improving mortality and incidence of hospitalization. Convalescent plasma and anti-COVID IVIg were not efficacious and could increase odds of adverse events. Future trials should further examine the effect of baseline seronegativity, disease severity, patient risk factors, and SARS-CoV-2 strain variation on the efficacy of these regimes. REGISTRATION PROSPERO-CRD42021289903.
Collapse
Affiliation(s)
- Jiawen Deng
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada.
| | - Kiyan Heybati
- Mayo Clinic Alix School of Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | | | - Fangwen Zhou
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Daniel Rayner
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Shayan Heybati
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
8
|
Hoang R, Temple C, Correia MS, Clemons J, Hendrickson RG. Characteristics of ivermectin toxicity in patients taking veterinary and human formulations for the prevention and treatment of COVID-19. Clin Toxicol (Phila) 2022; 60:1350-1355. [PMID: 36374218 DOI: 10.1080/15563650.2022.2134788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND US poison control centers reported increased cases of ivermectin toxicity during the COVID-19 pandemic. Previous descriptions of ivermectin toxicity have evaluated heterogeneous groups with a variety of ivermectin sources and dosage patterns. We sought to compare the clinical effects of ivermectin toxicity in patients taking human- vs. veterinary-formulations and acute- vs. chronic-ingestion patterns. METHODS We performed a retrospective analysis of cases from the Oregon Poison Center of ivermectin exposures for the prevention or treatment of COVID-19 that resulted in a healthcare visit over a 24-week period (14 August 2021 - 31 January 2022). RESULTS We identified 37 cases of ivermectin toxicity. The median age of patients was 64 years, and most patients were male. The majority of patients were hospitalized (21) or treated in an emergency department (13). A minority were treated in an outpatient setting (3) and one patient died. Seventeen ingested veterinary formulations and fifteen ingested prescription tablets. Patients reported taking ivermectin for treatment (23) and prevention (14) of COVID-19. Clinical effects included neurotoxicity (30), gastrointestinal symptoms (14), and musculoskeletal complaints (7). Patients taking veterinary products took higher doses of ivermectin and had higher rates of altered mental status than those taking prescription tablets. Patients taking ivermectin chronically took smaller doses (daily dose of 13.5 mg) over a prolonged period (median 3.8 weeks) and developed toxicity that was milder than those with acute ingestions. CONCLUSION Ivermectin toxicity developed in predominantly male patients >60 years old who ingested higher than recommended doses and developed neurologic symptoms. Patients who took a veterinary formulation of ivermectin ingested large single doses or large daily doses for several days and developed rapid onset of neurotoxicity. Patients with chronic toxicity developed milder symptoms and tended to take typical therapeutic doses, but continued therapy for weeks rather than days.
Collapse
Affiliation(s)
- Ruby Hoang
- Department of Emergency Medicine, Division of Medical Toxicology, Oregon Health and Science University, Portland, OR, USA.,Oregon Poison Center, Oregon Health and Science University, Portland, OR, USA
| | - Courtney Temple
- Department of Emergency Medicine, Division of Medical Toxicology, Oregon Health and Science University, Portland, OR, USA.,Oregon Poison Center, Oregon Health and Science University, Portland, OR, USA
| | - Matthew S Correia
- Department of Emergency Medicine, Division of Medical Toxicology, Oregon Health and Science University, Portland, OR, USA.,Oregon Poison Center, Oregon Health and Science University, Portland, OR, USA
| | - Joseph Clemons
- Department of Emergency Medicine, Division of Medical Toxicology, Oregon Health and Science University, Portland, OR, USA.,Oregon Poison Center, Oregon Health and Science University, Portland, OR, USA
| | - Robert G Hendrickson
- Department of Emergency Medicine, Division of Medical Toxicology, Oregon Health and Science University, Portland, OR, USA.,Oregon Poison Center, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
9
|
Neris Almeida Viana S, do Reis Santos Pereira T, de Carvalho Alves J, Tianeze de Castro C, Santana C da Silva L, Henrique Sousa Pinheiro L, Nougalli Roselino M. Benefits of probiotic use on COVID-19: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2022; 64:2986-2998. [PMID: 36178362 DOI: 10.1080/10408398.2022.2128713] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
SARS-CoV-2 is the virus that causes the new global pandemic, which has already resulted in millions of deaths, affecting the world's health and economy. Probiotics have shown benefits in a variety of diseases, including respiratory infections, and may be beneficial in the adjunctive treatment of COVID-19. This study analyzed the effectiveness of probiotics as adjunctive treatment in reducing symptoms of patients with COVID-19, through a systematic review with meta-analysis. The EMBASE (Elsevier), Pubmed, Scopus, Web of Science and International Clinical Trials Registry Platform (ICTRP) were searched through March 16, 2022. The risk ratio (RR) with 95% confidence intervals (CIs) was estimated using a fixed-effect model. RoB 2 and ROBINS I were used to assess the risk of bias of the included studies. Nine studies were included (7 clinical trials and 2 cohorts), of which three clinical trials comprised the meta-analysis. Results showed that probiotics were associated with a significant 51% reduction in symptoms reported by COVID-19 patients (RR 0.49, 95% CI 0.40-0.61). There was a significant improvement in cough (RR 0.56, 95% CI 0.37-0.83), headaches (RR 0.17, 95% CI 0.05-0.65), and diarrhea (RR 0. 33, 95% CI 0.12-0.96) of patients on probiotic therapy. These findings suggest that probiotic supplementation is effective in improving symptoms of COVID-19.
Collapse
Affiliation(s)
- Suelen Neris Almeida Viana
- Postgraduate Program in Food Science, Laboratory of Studies in Food Microbiology, Faculty of Pharmacy, Federal University of Bahia, Salvador-Bahia, Brazil
| | - Tamires do Reis Santos Pereira
- Postgraduate Program in Food Science, Laboratory of Studies in Food Microbiology, Faculty of Pharmacy, Federal University of Bahia, Salvador-Bahia, Brazil
| | - Janaína de Carvalho Alves
- Graduate Program in Biotechnology, Laboratory of Studies in Food Microbiology, Faculty of Pharmacy, Federal University of Bahia, Salvador-Bahia, Brazil
| | - Caroline Tianeze de Castro
- Postgraduate Program in Collective Health, Institute of Collective Health, Federal University of Bahia, Salvador-Bahia, Brazil
| | | | | | - Mariana Nougalli Roselino
- Laboratory of Studies in Food Microbiology, Faculty of Pharmacy, Federal University of Bahia, Salvador-Bahia, Brazil
| |
Collapse
|
10
|
Ogunleye OO, Godman B, Fadare JO, Mudenda S, Adeoti AO, Yinka-Ogunleye AF, Ogundele SO, Oyawole MR, Schönfeldt M, Rashed WM, Galal AM, Masuka N, Zaranyika T, Kalungia AC, Malande OO, Kibuule D, Massele A, Chikowe I, Khuluza F, Taruvinga T, Alfadl A, Malik E, Oluka M, Opanga S, Ankrah DNA, Sefah IA, Afriyie D, Tagoe ET, Amu AA, Msibi MP, Etando A, Alabi ME, Okwen P, Niba LL, Mwita JC, Rwegerera GM, Kgatlwane J, Jairoun AA, Ejekam C, Mavenyengwa RT, Murimi-Worstell I, Campbell SM, Meyer JC. Coronavirus Disease 2019 (COVID-19) Pandemic across Africa: Current Status of Vaccinations and Implications for the Future. Vaccines (Basel) 2022; 10:1553. [PMID: 36146631 PMCID: PMC9504201 DOI: 10.3390/vaccines10091553] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022] Open
Abstract
The introduction of effective vaccines in December 2020 marked a significant step forward in the global response to COVID-19. Given concerns with access, acceptability, and hesitancy across Africa, there is a need to describe the current status of vaccine uptake in the continent. An exploratory study was undertaken to investigate these aspects, current challenges, and lessons learnt across Africa to provide future direction. Senior personnel across 14 African countries completed a self-administered questionnaire, with a descriptive analysis of the data. Vaccine roll-out commenced in March 2021 in most countries. COVID-19 vaccination coverage varied from low in Cameroon and Tanzania and up to 39.85% full coverage in Botswana at the end of 2021; that is, all doses advocated by initial protocols versus the total population, with rates increasing to 58.4% in Botswana by the end of June 2022. The greatest increase in people being fully vaccinated was observed in Uganda (20.4% increase), Botswana (18.5% increase), and Zambia (17.9% increase). Most vaccines were obtained through WHO-COVAX agreements. Initially, vaccination was prioritised for healthcare workers (HCWs), the elderly, adults with co-morbidities, and other at-risk groups, with countries now commencing vaccination among children and administering booster doses. Challenges included irregular supply and considerable hesitancy arising from misinformation fuelled by social media activities. Overall, there was fair to reasonable access to vaccination across countries, enhanced by government initiatives. Vaccine hesitancy must be addressed with context-specific interventions, including proactive programmes among HCWs, medical journalists, and the public.
Collapse
Affiliation(s)
- Olayinka O. Ogunleye
- Department of Pharmacology, Therapeutics and Toxicology, Lagos State University College of Medicine, Lagos 100271, Nigeria
- Department of Medicine, Lagos State University Teaching Hospital, Lagos 100271, Nigeria
| | - Brian Godman
- Department of Pharmacoepidemiology, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 02084, South Africa
| | - Joseph O. Fadare
- Department of Pharmacology and Therapeutics, Ekiti State University, Ado Ekiti 362103, Nigeria
- Department of Medicine, Ekiti State University Teaching Hospital, Ado Ekiti 360211, Nigeria
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Adekunle O. Adeoti
- Department of Medicine, Ekiti State University Teaching Hospital, Ado Ekiti 360211, Nigeria
| | | | - Sunday O. Ogundele
- Department of Pharmacology, Therapeutics and Toxicology, Lagos State University College of Medicine, Lagos 100271, Nigeria
- Department of Medicine, Lagos State University Teaching Hospital, Lagos 100271, Nigeria
| | - Modupe R. Oyawole
- Department of Pharmacy, Lagos State University Teaching Hospital, Lagos 100271, Nigeria
| | - Marione Schönfeldt
- Child, Youth and School Health Directorate, National Department of Health, Pretoria 0083, South Africa
| | - Wafaa M. Rashed
- Children’s Cancer Hospital, Egypt-57357 (CCHE-57357), Cairo 11441, Egypt
| | - Ahmad M. Galal
- Biomedical Research Department, Armed Forces College of Medicine, Cairo 11774, Egypt
| | - Nyasha Masuka
- CIMAS, Cimas House, Borrowdale Office Park, Borrowdale Road, Harare P.O. Box 1243, Zimbabwe
| | - Trust Zaranyika
- Department of Medicine, University of Zimbabwe College of Health Sciences, Harare P.O. Box MP167, Zimbabwe
| | - Aubrey C. Kalungia
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia
| | - Oliver O. Malande
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 02084, South Africa
- Department of Child Health and Paediatrics, Egerton University, Nakuru P.O.Box 536, Kenya
- East Africa Centre for Vaccines and Immunization (ECAVI), Namela House, Naguru, Kampala P.O. Box 3040, Uganda
| | - Dan Kibuule
- Department of Pharmacology & Therapeutics, Busitema University, Mbale P.O. Box 236, Uganda
| | - Amos Massele
- Department of Clinical Pharmacology and Therapeutics, Hurbert Kairuki Memorial University, 70 Chwaku Road Mikocheni, Dar Es Salaam P.O. Box 65300, Tanzania
| | - Ibrahim Chikowe
- Pharmacy Department, Formerly College of Medicine, Kamuzu University of Health Sciences (KUHeS), Blantyre P.O. Box 278, Malawi
| | - Felix Khuluza
- Pharmacy Department, Formerly College of Medicine, Kamuzu University of Health Sciences (KUHeS), Blantyre P.O. Box 278, Malawi
| | - Tinotenda Taruvinga
- Department of Global Health and Development (GHD), London School of Hygiene and Tropical Medicine (LSHTM), London WC1E 7TH, UK
| | - Abubakr Alfadl
- National Medicines and Poisons Board, Federal Ministry of Health, Khartoum P.O. Box 303, Sudan
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Elfatih Malik
- Department of Community Medicine, Faculty of Medicine, University of Khartoum, Khartoum 11111, Sudan
| | - Margaret Oluka
- Department of Pharmacology & Pharmacognosy, School of Pharmacy, University of Nairobi, Nairobi P.O. Box 19676-00202, Kenya
| | - Sylvia Opanga
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy, University of Nairobi, Nairobi P.O. Box 19676-00202, Kenya
| | - Daniel N. A. Ankrah
- Department of Pharmacy, Korle Bu Teaching Hospital, Accra P.O. Box 77, Ghana
| | - Israel A. Sefah
- Pharmacy Practice Department, School of Pharmacy, University of Health and Allied Sciences, Hohoe PMB 31, Ghana
| | - Daniel Afriyie
- Pharmacy Department, Ghana Police Hospital, Accra P.O. Box CT104, Ghana
| | - Eunice T. Tagoe
- Department of Management Science, University of Strathclyde, Glasgow G4 0QU, UK
| | - Adefolarin A. Amu
- Pharmacy Department, Eswatini Medical Christian University, P.O. Box A624, Swazi Plaza, Mbabane H100, Eswatini
| | - Mlungisi P. Msibi
- Faculty of Health Sciences, Department of Medical Laboratory Sciences, Eswatini Medical Christian University, Swazi Plaza P.O. Box A624, Mbabane H100, Eswatini
| | - Ayukafangha Etando
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Eswatini Medical Christian University, Swazi Plaza P.O. Box A624, Mbabane H100, Eswatini
| | - Mobolaji E. Alabi
- School of Pharmaceutical Sciences, College of Health Sciences, University of Kwazulu-natal (UKZN), Durban 4001, South Africa
| | - Patrick Okwen
- Effective Basic Services (eBASE) Africa, Ndamukong Street, Bamenda 5175, Cameroon
- Faculty of Health and Medical Sciences, Adelaide University, Adelaide 5005, Australia
| | - Loveline Lum Niba
- Effective Basic Services (eBASE) Africa, Ndamukong Street, Bamenda 5175, Cameroon
- Department of Public Health, University of Bamenda, Bambili P.O. Box 39, Cameroon
| | - Julius C. Mwita
- Department of Internal Medicine, Faculty of Medicine, University of Botswana, Gaborone P.O. Box 70480, Botswana
| | - Godfrey M. Rwegerera
- Department of Medicine, Sir Ketumile Masire Teaching Hospital, Gaborone P.O. Box 70480, Botswana
| | - Joyce Kgatlwane
- Department of Pharmacy, University of Botswana, Gaborone P.O. Box 70480, Botswana
| | - Ammar A. Jairoun
- Health and Safety Department, Dubai Municipality, Dubai P.O. Box 67, United Arab Emirates
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Chioma Ejekam
- Department of Community Health, Lagos University Teaching Hospital, Idi-Araba, Lagos PMB 21266, Nigeria
| | - Rooyen T. Mavenyengwa
- Medical Microbiology Unit, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare P.O. Box MP167, Zimbabwe
| | - Irene Murimi-Worstell
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Stephen M. Campbell
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 02084, South Africa
- Centre for Epidemiology and Public Health, School of Health Sciences, University of Manchester, Manchester M13 9PL, UK
- NIHR Greater Manchester Patient Safety Translational Research Centre, School of Health Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Johanna C. Meyer
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 02084, South Africa
| |
Collapse
|
11
|
Castillejos-López M, Torres-Espíndola LM, Huerta-Cruz JC, Flores-Soto E, Romero-Martinez BS, Velázquez-Cruz R, Higuera-Iglesias A, Camarena Á, Torres-Soria AK, Salinas-Lara C, Fernández-Plata R, Alvarado-Vásquez N, Solís-Chagoyán H, Ruiz V, Aquino-Gálvez A. Ivermectin: A Controversial Focal Point during the COVID-19 Pandemic. Life (Basel) 2022; 12:1384. [PMID: 36143420 PMCID: PMC9502658 DOI: 10.3390/life12091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 pandemic has confirmed the apocalyptic predictions that virologists have been making for several decades. The challenge the world is facing is that of trying to find a possible treatment, and a viable and expedient option for addressing this challenge is the repurposing of drugs. However, in some cases, although these drugs are approved for use in humans, the mechanisms of action involved are unknown. In this sense, to justify its therapeutic application to a new disease, it is ideal, but not necessary, to know the basic mechanisms of action involved in a drug's biological effects. This review compiled the available information regarding the various effects attributed to Ivermectin. The controversy over its use for the treatment of COVID-19 is demonstrated by this report that considers the proposal unfeasible because the therapeutic doses proposed to achieve this effect cannot be achieved. However, due to the urgent need to find a treatment, an exhaustive and impartial review is necessary in order to integrate the knowledge that exists, to date, of the possible mechanisms through which the treatment may be helpful in defining safe doses and schedules of Ivermectin.
Collapse
Affiliation(s)
- Manuel Castillejos-López
- Departamento de Epidemiología y Estadística, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | | | - Juan Carlos Huerta-Cruz
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Bianca S. Romero-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | - Anjarath Higuera-Iglesias
- Departamento de Investigación en Epidemiología Clínica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ángel Camarena
- Laboratorio de HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ana Karen Torres-Soria
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala UNAM, Mexico City 54090, Mexico
| | - Citlaltepetl Salinas-Lara
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala UNAM, Mexico City 54090, Mexico
| | - Rosario Fernández-Plata
- Departamento de Epidemiología y Estadística, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Noé Alvarado-Vásquez
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Héctor Solís-Chagoyán
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Víctor Ruiz
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
12
|
Abstract
The Covid-19 pandemic appeared in China in December 2019 as a cluster of transmissible pneumonia caused by a new betacoronavirus. On March 11, 2020, the World Health Organization (WHO) declared it a pandemic. Covid-19 is a mild infection in 80% of cases, serious in 15% and critical in 5%. Symptomatic forms include a first phase of flu-like viral invasion, and at times a second phase, dysimmune and inflammatory, with acute respiratory distress syndrome, multiorgan failure and thromboembolic complications. Degree of severity is related to age and comorbidities. SARS-CoV-2 is the third highly pathogenic Betacoronavirus to cross the species barrier. Its genome, an RNA of 29,903 nucleotides, shows strong homogeneity with bat coronaviruses from southern China, but the conditions for its passage in humans have yet to be elucidated. Mutations can give rise to variants of concern (VOC) that are more transmissible and able to evade the host's immune response. Several VOCs have succeeded and replaced one another: Alpha in October 2020, Beta and Gamma in December 2020, Delta in spring 2021 and Omicron in November 2021. The Covid-19 pandemic has evolved in five waves of unequal amplitude and severity, with geographical disparities. Worldwide, it has caused 395,000,000 confirmed cases including 5,700,000 deaths. Epidemiological surveillance applies several indicators (incidence rate, test positivity rate, effective R and occupancy rate of intensive care beds) supplemented by genomic monitoring to detect variants by sequencing. Non-pharmacological measures, particularly face mask wearing, have been effective in preventing the transmission of SARS-CoV-2. Few currently available drugs have proven useful, with the exception of dexamethazone for patients requiring oxygen therapy. Development of SARS-CoV-2 vaccines began early on many platforms. Innovation was brought about by the Pfizer-BioNTech and Moderna messenger RNA vaccines, which claim protective efficacy of 95% and 94.1% respectively, far higher than the 70% minimum set by the WHO. Governments have hesitated between two strategies, mitigation and suppression. The second has been favored in critical periods such as April 2020, when 2.5 billion people throughout the world were confined. Vaccination campaigns got underway at the end of December 2020 and progressed without reaching sufficient herd immunity, leading some nations to consider compulsory vaccination or to require a vaccine or health pass, in order for persons to access different activities. Will the pandemic stop with Omicron and become endemic? This part of the Covid-19 story remains to be told.
Collapse
Affiliation(s)
- Yves Buisson
- Académie nationale de médecine, 4ème division, 16, rue Bonaparte, 75272 Paris Cedex06, France.
| |
Collapse
|
13
|
Donnelly SC. QJM Impact Factor now 14.04. QJM 2022; 115:505. [PMID: 35962984 DOI: 10.1093/qjmed/hcac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Hentschke-Lopes M, Botton MR, Borges P, Freitas M, Mancuso ACB, Matte U. Sales of "COVID kit" drugs and adverse drug reactions reported by the Brazilian Health Regulatory Agency. CAD SAUDE PUBLICA 2022; 38:e00001022. [PMID: 35894360 DOI: 10.1590/0102-311xen001022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Off-label use of azithromycin, hydroxychloroquine, and ivermectin (the "COVID kit") has been suggested for COVID-19 treatment in Brazil without clinical or scientific evidence of efficacy. These drugs have known adverse drug reactions (ADR). This study aimed to analyze if the sales of drugs in the "COVID kit" are correlated to the reported number of ADR after the COVID-19 pandemic began. Data was obtained from the Brazilian Health Regulatory Agency (Anvisa) website on reported sales and ADRs for azithromycin, hydroxychloroquine, and ivermectin for all Brazilian states. The period from March 2019 to February 2020 (before the pandemic) was compared to that from March 2020 to February 2021 (during the pandemic). Trend adjustment was performed for time series data and cross-correlation analysis to investigate correlation between sales and ADR within the same month (lag 0) and in the following months (lag 1 and lag 2). Spearman's correlation coefficient was used to assess the magnitude of the correlations. After the pandemic onset, sales of all investigated drugs increased significantly (69.75% for azithromycin, 10,856,481.39% for hydroxychloroquine, and 12,291,129.32% for ivermectin). ADR levels of all medications but azithromycin were zero before the pandemic, but increased after its onset. Cross-correlation analysis was significant in lag 1 for all drugs nationwide. Spearman's correlation was moderate for azithromycin and hydroxychloroquine but absent for ivermectin. Data must be interpreted cautiously since no active search for ADR was performed. Our results show that the increased and indiscriminate use of "COVID kit" during the pandemic correlates to an increased occurrence of ADRs.
Collapse
Affiliation(s)
- Marina Hentschke-Lopes
- Laboratório de Células, Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brasil.,Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Mariana R Botton
- Laboratório de Células, Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brasil
| | - Pâmella Borges
- Laboratório de Células, Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brasil
| | - Martiela Freitas
- Laboratório de Células, Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brasil.,Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | - Ursula Matte
- Laboratório de Células, Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brasil.,Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| |
Collapse
|
15
|
Donnelly SC. Community-acquired pneumonia and non-invasive ventilation-a valid ICU avoidance strategy? QJM 2022; 115:427. [PMID: 35809018 DOI: 10.1093/qjmed/hcac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Shafiee A, Teymouri Athar MM, Kohandel Gargari O, Jafarabady K, Siahvoshi S, Mozhgani SH. Ivermectin under scrutiny: a systematic review and meta-analysis of efficacy and possible sources of controversies in COVID-19 patients. Virol J 2022; 19:102. [PMID: 35698151 PMCID: PMC9191543 DOI: 10.1186/s12985-022-01829-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/02/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND We conducted a systematic review and meta-analysis to evaluate the efficacy of ivermectin for COVID-19 patients based on current peer-reviewed RCTs and to address disputes over the existing evidence. METHODS MEDLINE (Pubmed), Scopus, Web of Science, Cochrane library, Google scholar and Clinicaltrials.gov were searched for RCTs assessing the efficacy of Ivermectin up to 20 February 2022. A systematic review and meta-analysis of studies was performed based on the PRISMA 2020 statement criteria. RESULTS 19 and 17 studies were included in this systematic review and meta-analysis, respectively. There was no significant difference in progression to severe disease (log OR - 0.27 [95% CI - 0.61 to 0.08], I2 = 42.29%), negative RT-PCR (log OR 0.25 [95% CI - 0.18-0.68], I2 = 58.73%), recovery (log OR 0.11 [95% CI - 0.22-0.45], I2 = 13.84%), duration of hospitalization (SMD - 0.40 [95% CI - 0.85-0.06], I2 = 88.90%), time to negative RT-PCR (SMD - 0.36 [95% CI - 0.89-0.17], I2 = 46.2%), and viral load (SMD -0.17 [95% CI -0.45 to 0.12], I^2 = 0%). It is worth noting that, based on low-certainty evidence, ivermectin may possibly reduce mortality (log OR - 0.67 [95% CI - 1.20 to - 0.13], I2 = 28.96%). However, studies with a higher risk of bias were more likely to indicate positive effects on the efficacy of this drug, according to our subgroup analyses based on study quality. CONCLUSION Ivermectin did not have any significant effect on outcomes of COVID-19 patients and as WHO recommends, use of ivermectin should be limited to clinical trials.
Collapse
Affiliation(s)
- Arman Shafiee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | - Kyana Jafarabady
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sepehr Siahvoshi
- Dental Materials Research Center, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
17
|
Co-Infections, Secondary Infections, and Antimicrobial Use in Patients Hospitalized with COVID-19 during the First Five Waves of the Pandemic in Pakistan; Findings and Implications. Antibiotics (Basel) 2022; 11:antibiotics11060789. [PMID: 35740195 PMCID: PMC9219883 DOI: 10.3390/antibiotics11060789] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/01/2023] Open
Abstract
Background: COVID-19 patients are typically prescribed antibiotics empirically despite concerns. There is a need to evaluate antibiotic use among hospitalized COVID-19 patients during successive pandemic waves in Pakistan alongside co-infection rates. Methods: A retrospective review of patient records among five tertiary care hospitals during successive waves was conducted. Data were collected from confirmed COVID-19 patients during the first five waves. Results: 3221 patients were included. The majority were male (51.53%), residents from urban areas (56.35%) and aged >50 years (52.06%). Cough, fever and a sore throat were the clinical symptoms in 20.39%, 12.97% and 9.50% of patients, respectively. A total of 23.62% of COVID-19 patients presented with typically mild disease and 45.48% presented with moderate disease. A high prevalence of antibiotic prescribing (89.69%), averaging 1.66 antibiotics per patient despite there only being 1.14% bacterial co-infections and 3.14% secondary infections, was found. Antibiotic use significantly increased with increasing severity, elevated WBCs and CRP levels, a need for oxygen and admittance to the ICU; however, this decreased significantly after the second wave (p < 0.001). Commonly prescribed antibiotics were piperacillin plus an enzyme inhibitor (20.66%), azithromycin (17.37%) and meropenem (15.45%). Common pathogens were Staphylococcus aureus (24.19%) and Streptococcus pneumoniae (20.96%). The majority of the prescribed antibiotics (93.35%) were from the WHO’s “Watch” category. Conclusions: Excessive prescribing of antibiotics is still occurring among COVID-19 patients in Pakistan; however, rates are reducing. Urgent measures are needed for further reductions.
Collapse
|
18
|
Deng J, Heybati K, Hou W, Zuo QK. Safety cannot justify the use of ivermectin for the management of COVID-19. QJM 2022; 115:194-195. [PMID: 35080630 DOI: 10.1093/qjmed/hcac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- J Deng
- From the Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - K Heybati
- Mayo Clinic Alix School of Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - W Hou
- From the Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Q K Zuo
- Department of Anesthesiology, Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
- Faculty of Science, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G5, Canada
| |
Collapse
|
19
|
Eslami N, Aghbash PS, Shamekh A, Entezari-Maleki T, Nahand JS, Sales AJ, Baghi HB. SARS-CoV-2: Receptor and Co-receptor Tropism Probability. Curr Microbiol 2022; 79:133. [PMID: 35292865 PMCID: PMC8923825 DOI: 10.1007/s00284-022-02807-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
The recent pandemic which arose from China, is caused by a pathogenic virus named "severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2)". Its rapid global expansion has inflicted an extreme public health concern. The attachment of receptor-binding domains (RBD) of the spike proteins (S) to the host cell's membrane, with or without the help of other cellular components such as proteases and especially co-receptors, is required for the first stage of its pathogenesis. In addition to humans, angiotensin-converting enzyme 2 (ACE2) is found on a wide range of vertebrate host's cellular surface. SARS-CoV-2 has a broad spectrum of tropism; thus, it can infect a vast range of tissues, organs, and hosts; even though the surface amino acids of the spike protein conflict in the receptor-binding region. Due to the heterogeneous ACE2 distribution and the presence of different domains on the SARS-CoV-2 spike protein for binding, the virus entry into diverse host cell types may depend on the host cells' receptor presentation with or without co-receptors. This review investigates multiple current types of receptor and co-receptor tropisms, with other molecular factors alongside their respective mechanisms, which facilitate the binding and entry of SARS-CoV-2 into the cells, extending the severity of the coronavirus disease 2019 (COVID-19). Understanding the pathogenesis of COVID-19 from this perspective can effectively help prevent this disease and provide more potent treatment strategies, particularly in vulnerable people with various cellular-level susceptibilities.
Collapse
Affiliation(s)
- Narges Eslami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 5166/15731, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Jafari Sales
- Department of Microbiology School of Basic Sciences, Islamic Azad University, Kazerun BranchKazerun, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 5166/15731, Tabriz, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Kountouras J, Gialamprinou D, Kotronis G, Papaefthymiou A, Economidou E, Soteriades ES, Vardaka E, Chatzopoulos D, Tzitiridou-Chatzopoulou M, Papazoglou DD, Doulberis M. Ofeleein i mi Vlaptin-Volume II: Immunity Following Infection or mRNA Vaccination, Drug Therapies and Non-Pharmacological Management at Post-Two Years SARS-CoV-2 Pandemic. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:309. [PMID: 35208631 PMCID: PMC8874934 DOI: 10.3390/medicina58020309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/06/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
The persistence of the coronavirus disease 2019 (COVID-19) pandemic has triggered research into limiting transmission, morbidity and mortality, thus warranting a comprehensive approach to guide balanced healthcare policies with respect to people's physical and mental health. The mainstay priority during COVID-19 is to achieve widespread immunity, which could be established through natural contact or vaccination. Deep knowledge of the immune response combined with recent specific data indicates the potential inferiority of induced immunity against infection. Moreover, the prevention of transmission has been founded on general non-pharmacological measures of protection, albeit debate exists considering their efficacy and, among other issues, their socio-psychological burden. The second line of defense is engaged after infection and is supported by a plethora of studied agents, such as antibiotics, steroids and non-steroid anti-inflammatory drugs, antiviral medications and other biological agents that have been proposed, though variability in terms of benefits and adverse events has not allowed distinct solutions, albeit certain treatments might have a role in prevention and/or treatment of the disease. This narrative review summarizes the existing literature on the advantages and weaknesses of current COVID-19 management measures, thus underlining the necessity of acting based on the classical principle of "ofeleein i mi vlaptin", that is, to help or not to harm.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54652 Thessaloniki, Central Macedonia, Greece; (A.P.); (E.V.); (D.C.); (M.T.-C.); (M.D.)
| | - Dimitra Gialamprinou
- Second Neonatal Department and NICU, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Central Macedonia, Greece;
| | - Georgios Kotronis
- Department of Internal Medicine, General Hospital Aghios Pavlos of Thessaloniki, 55134 Thessaloniki, Central Macedonia, Greece;
| | - Apostolis Papaefthymiou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54652 Thessaloniki, Central Macedonia, Greece; (A.P.); (E.V.); (D.C.); (M.T.-C.); (M.D.)
- Department of Gastroenterology, University Hospital of Larisa, Mezourlo, 41110 Larisa, Thessaly, Greece
| | - Eleftheria Economidou
- School of Economics and Management, Healthcare Management Program, Open University of Cyprus, Nicosia 12794, Cyprus; (E.E.); (E.S.S.)
| | - Elpidoforos S. Soteriades
- School of Economics and Management, Healthcare Management Program, Open University of Cyprus, Nicosia 12794, Cyprus; (E.E.); (E.S.S.)
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Environmental and Occupational Medicine and Epidemiology (EOME), Boston, MA 02115, USA
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54652 Thessaloniki, Central Macedonia, Greece; (A.P.); (E.V.); (D.C.); (M.T.-C.); (M.D.)
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Central Macedonia, Greece
| | - Dimitrios Chatzopoulos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54652 Thessaloniki, Central Macedonia, Greece; (A.P.); (E.V.); (D.C.); (M.T.-C.); (M.D.)
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54652 Thessaloniki, Central Macedonia, Greece; (A.P.); (E.V.); (D.C.); (M.T.-C.); (M.D.)
- Midwifery Department, School of Healthcare Sciences, University of West Macedonia, Koila, 50100 Kozani, Central Macedonia, Greece
| | - Dimitrios David Papazoglou
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54652 Thessaloniki, Central Macedonia, Greece; (A.P.); (E.V.); (D.C.); (M.T.-C.); (M.D.)
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001 Aarau, Switzerland
| |
Collapse
|
21
|
Chabert C, Vitte AL, Iuso D, Chuffart F, Trocme C, Buisson M, Poignard P, Lardinois B, Debois R, Rousseaux S, Pepin JL, Martinot JB, Khochbin S. AKR1B10, One of the Triggers of Cytokine Storm in SARS-CoV2 Severe Acute Respiratory Syndrome. Int J Mol Sci 2022; 23:ijms23031911. [PMID: 35163833 PMCID: PMC8836815 DOI: 10.3390/ijms23031911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023] Open
Abstract
Preventing the cytokine storm observed in COVID-19 is a crucial goal for reducing the occurrence of severe acute respiratory failure and improving outcomes. Here, we identify Aldo-Keto Reductase 1B10 (AKR1B10) as a key enzyme involved in the expression of pro-inflammatory cytokines. The analysis of transcriptomic data from lung samples of patients who died from COVID-19 demonstrates an increased expression of the gene encoding AKR1B10. Measurements of the AKR1B10 protein in sera from hospitalised COVID-19 patients suggests a significant link between AKR1B10 levels and the severity of the disease. In macrophages and lung cells, the over-expression of AKR1B10 induces the expression of the pro-inflammatory cytokines Interleukin-6 (IL-6), Interleukin-1β (IL-1β) and Tumor Necrosis Factor a (TNFα), supporting the biological plausibility of an AKR1B10 involvement in the COVID-19-related cytokine storm. When macrophages were stressed by lipopolysaccharides (LPS) exposure and treated by Zopolrestat, an AKR1B10 inhibitor, the LPS-induced production of IL-6, IL-1β, and TNFα is significantly reduced, reinforcing the hypothesis that the pro-inflammatory expression of cytokines is AKR1B10-dependant. Finally, we also show that AKR1B10 can be secreted and transferred via extracellular vesicles between different cell types, suggesting that this protein may also contribute to the multi-organ systemic impact of COVID-19. These experiments highlight a relationship between AKR1B10 production and severe forms of COVID-19. Our data indicate that AKR1B10 participates in the activation of cytokines production and suggest that modulation of AKR1B10 activity might be an actionable pharmacological target in COVID-19 management.
Collapse
Affiliation(s)
- Clovis Chabert
- Institute for Advanced Biosciences—UGA—INSERM U1209—CNRS UMR 5309, 38700 La Tronche, France; (A.-L.V.); (D.I.); (F.C.); (S.R.); (S.K.)
- Correspondence: ; Tel.: +33-6-8898-4506
| | - Anne-Laure Vitte
- Institute for Advanced Biosciences—UGA—INSERM U1209—CNRS UMR 5309, 38700 La Tronche, France; (A.-L.V.); (D.I.); (F.C.); (S.R.); (S.K.)
| | - Domenico Iuso
- Institute for Advanced Biosciences—UGA—INSERM U1209—CNRS UMR 5309, 38700 La Tronche, France; (A.-L.V.); (D.I.); (F.C.); (S.R.); (S.K.)
| | - Florent Chuffart
- Institute for Advanced Biosciences—UGA—INSERM U1209—CNRS UMR 5309, 38700 La Tronche, France; (A.-L.V.); (D.I.); (F.C.); (S.R.); (S.K.)
| | - Candice Trocme
- Laboratoire BEP (Biochimie des Enzymes et les Protéines), Institut de Biologie et de Pathologie, CHU Grenoble Alpes, 38700 La Tronche, France;
| | - Marlyse Buisson
- Institut de Biologie Structurale, CEA, CNRS and Centre Hospitalier Universitaire Grenoble Alpes, Université Grenoble Alpes, 38000 Grenoble, France; (M.B.); (P.P.)
| | - Pascal Poignard
- Institut de Biologie Structurale, CEA, CNRS and Centre Hospitalier Universitaire Grenoble Alpes, Université Grenoble Alpes, 38000 Grenoble, France; (M.B.); (P.P.)
| | - Benjamin Lardinois
- Laboratory Department, CHU UCL Namur Site de Ste Elisabeth, 5000 Namur, Belgium; (B.L.); (R.D.)
| | - Régis Debois
- Laboratory Department, CHU UCL Namur Site de Ste Elisabeth, 5000 Namur, Belgium; (B.L.); (R.D.)
| | - Sophie Rousseaux
- Institute for Advanced Biosciences—UGA—INSERM U1209—CNRS UMR 5309, 38700 La Tronche, France; (A.-L.V.); (D.I.); (F.C.); (S.R.); (S.K.)
| | - Jean-Louis Pepin
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, 38000 Grenoble, France;
- Sleep Laboratory, Pole Thorax et Vaisseaux, Grenoble Alpes University Hospital, 38000 Grenoble, France
| | - Jean-Benoit Martinot
- Sleep Laboratory and Pulmonology and Allergy Department—CHU UCL Namur, St. Elisabeth Site, 5000 Namur, Belgium;
- Institute of Experimental and Clinical Research, UCL Bruxelles Woluwe, 1200 Brussels, Belgium
| | - Saadi Khochbin
- Institute for Advanced Biosciences—UGA—INSERM U1209—CNRS UMR 5309, 38700 La Tronche, France; (A.-L.V.); (D.I.); (F.C.); (S.R.); (S.K.)
| |
Collapse
|
22
|
Taccone FS, Hites M, Dauby N. From hydroxychloroquine to ivermectin: how unproven “cures” can go viral. Clin Microbiol Infect 2022; 28:472-474. [PMID: 35124262 PMCID: PMC8810517 DOI: 10.1016/j.cmi.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/08/2022] [Accepted: 01/16/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
| | - Maya Hites
- Department of Infectious Disease, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Dauby
- Department of Infectious Diseases, St. Pierre Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
23
|
Does anti-viral treatment in acute COVID infection decrease the risk of developing the Long-COVID Syndrome? QJM 2022; 114:841-842. [PMID: 35020945 DOI: 10.1093/qjmed/hcab319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Rothrock SG, Weber KD, Giordano PA, Barneck MD. Meta-Analyses Do Not Establish Improved Mortality With Ivermectin Use in COVID-19. Am J Ther 2022; 29:e87-e94. [DOI: 10.1097/mjt.0000000000001461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Semiz S. SIT1 transporter as a potential novel target in treatment of COVID-19. Biomol Concepts 2021; 12:156-163. [PMID: 34969185 DOI: 10.1515/bmc-2021-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Studies published earlier this year demonstrated the association of the solute carrier SLC6A20 gene with the risk and severity of COVID-19. The SLC6A20 protein product (Sodium-dependent Imino Transporter 1 (SIT1)) is involved in the transport of amino acids, including glycine. Here we summarized the results of recent studies demonstrating the interaction of SIT1 with the ACE2 receptor for SARS-CoV-2 as well as an observed association of SLC6A20 with the risk and traits of Type 2 diabetes (T2D). Recently, it was also proposed that SLC6A20 represents the novel regulator of glycine levels and that glycine has beneficial effects against the proinflammatory cytokine secretion induced by SARS-CoV-2 infection. Ivermectin, as a partial agonist of glycine-gated chloride channels, was also recently suggested to interfere with the COVID-19 cytokine storm by inducing the activation of glycine receptors. Furthermore, plasma glycine levels are found to be decreased in diabetic patients. Thus, further clinical trials are warranted to confirm the potential favorable effects of targeting the SIT1 transporter and glycine levels in the treatment of COVID-19, particularly for the severe case of disease associated with hyperglycemia, inflammation, and T2D. These findings suggest that SIT1 may potentially represent one of the missing pieces in the complex puzzle observed between these two pandemic diseases and the potential novel target for their efficient treatment.
Collapse
Affiliation(s)
- Sabina Semiz
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Association South East European Network for Medical Research-SOVE, E-mail:
| |
Collapse
|
26
|
Endo T, Takemae H, Sharma I, Furuya T. Multipurpose Drugs Active Against Both Plasmodium spp. and Microorganisms: Potential Application for New Drug Development. Front Cell Infect Microbiol 2021; 11:797509. [PMID: 35004357 PMCID: PMC8740689 DOI: 10.3389/fcimb.2021.797509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022] Open
Abstract
Malaria, a disease caused by the protozoan parasites Plasmodium spp., is still causing serious problems in endemic regions in the world. Although the WHO recommends artemisinin combination therapies for the treatment of malaria patients, the emergence of artemisinin-resistant parasites has become a serious issue and underscores the need for the development of new antimalarial drugs. On the other hand, new and re-emergences of infectious diseases, such as the influenza pandemic, Ebola virus disease, and COVID-19, are urging the world to develop effective chemotherapeutic agents against the causative viruses, which are not achieved to the desired level yet. In this review article, we describe existing drugs which are active against both Plasmodium spp. and microorganisms including viruses, bacteria, and fungi. We also focus on the current knowledge about the mechanism of actions of these drugs. Our major aims of this article are to describe examples of drugs that kill both Plasmodium parasites and other microbes and to provide valuable information to help find new ideas for developing novel drugs, rather than merely augmenting already existing drug repurposing efforts.
Collapse
Affiliation(s)
- Takuro Endo
- Laboratory of Veterinary Infectious Diseases, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Indu Sharma
- Department of Biological Sciences, Hampton University, Hampton, VA, United States
| | - Tetsuya Furuya
- Laboratory of Veterinary Infectious Diseases, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
27
|
Deng J, Zhou F, Heybati K, Kavanagh K. Caution should be exercised when assessing ivermectin for the treatment of COVID-19 in systematic reviews. Rev Med Virol 2021; 32:e2317. [PMID: 34888992 DOI: 10.1002/rmv.2317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiawen Deng
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Fangwen Zhou
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kiyan Heybati
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kyra Kavanagh
- Faculty of Science, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|