1
|
Sisto M, Lisi S. Epigenetic Modulations of Non-Coding RNAs: A Novel Therapeutic Perspective in Sjӧgren's Syndrome. FRONT BIOSCI-LANDMRK 2024; 29:403. [PMID: 39735974 DOI: 10.31083/j.fbl2912403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 12/31/2024]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease that can be classified as an epithelitis based on the immune-mediated attack directed specifically at epithelial cells. SS predominantly affects women, is characterized by the production of highly specific circulating autoantibodies, and the major targets are the salivary and lachrymal glands. Although a genetic predisposition has been amply demonstrated for SS, the etiology remains unclear. The recent integration of epigenetic data relating to autoimmune diseases opens new therapeutic perspectives based on a better understanding of the molecular processes implicated. In the autoimmune field, non-coding RNA molecules (nc-RNA), which regulate gene expression by binding to mRNAs and could have a therapeutic value, have aroused great interest. The focus of this review is to summarize the biological functions of nc-RNAs in the pathogenesis of SS and decode molecular pathways implicated in the disease, in order to identify new therapeutic strategies.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
2
|
Zhao T, Zhang R, Li Z, Qin D, Wang X. A comprehensive review of Sjögren's syndrome: Classification criteria, risk factors, and signaling pathways. Heliyon 2024; 10:e36220. [PMID: 39286095 PMCID: PMC11403439 DOI: 10.1016/j.heliyon.2024.e36220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease that affects the exocrine glands and may lead to a range of systemic symptoms that impact various organs. Both innate and adaptive immune pathways might trigger the disease. Studying the signaling pathways underlying SS is crucial for enhancing diagnostic and therapeutic effectiveness. SS poses an ongoing challenge for medical professionals owing to the limited therapeutic options available. This review offers a comprehensive understanding of the intricate nature of SS, encompassing disease classification criteria, risk factors, and signaling pathways in immunity and inflammation. The advancements summarized herein have the potential to spark new avenues of research into SS.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Runrun Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhaofu Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Xinchang Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| |
Collapse
|
3
|
Dabravolski SA, Churov AV, Starodubtseva IA, Beloyartsev DF, Kovyanova TI, Sukhorukov VN, Orekhov NA. Vitamin D in Primary Sjogren's Syndrome (pSS) and the Identification of Novel Single-Nucleotide Polymorphisms Involved in the Development of pSS-Associated Diseases. Diagnostics (Basel) 2024; 14:2035. [PMID: 39335717 PMCID: PMC11431467 DOI: 10.3390/diagnostics14182035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disorder characterised by lymphocytic infiltration of the exocrine glands, which leads to dryness of the eyes and mouth; systemic manifestations such as arthritis, vasculitis, and interstitial lung disease; and increased risks of lymphoma and cardiovascular diseases. SS predominantly affects women, with a strong genetic component linked to sex chromosomes. Genome-wide association studies (GWASs) have identified numerous single-nucleotide polymorphisms (SNPs) associated with primary SS (pSS), revealing insights into its pathogenesis. The adaptive and innate immune systems are crucial to SS's development, with viral infections implicated as environmental triggers that exacerbate autoimmune responses in genetically susceptible individuals. Moreover, recent research has highlighted the role of vitamin D in modulating immune responses in pSS patients, suggesting its potential therapeutic implications. In this review, we focus on the recently identified SNPs in genes like OAS1, NUDT15, LINC00243, TNXB, and THBS1, which have been associated with increased risks of developing more severe symptoms and other diseases such as fatigue, lymphoma, neuromyelitis optica spectrum disorder (NMOSD), dry eye syndrome (DES), and adverse drug reactions. Future studies should focus on larger, multi-ethnic cohorts with standardised protocols to validate findings and identify new associations. Integrating genetic testing into clinical practise holds promise for improving SS management and treatment strategies, enabling personalised interventions based on comprehensive genetic profiles. By focusing on specific SNPs, vitamin D, and their implications, future research can lead to more effective and personalised approaches for managing pSS and its complications.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel
| | - Alexey V. Churov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
- Institute on Aging Research, Russian Gerontology Clinical Research Center, Pirogov Russian National Research Medical University, 16 1st Leonova Street, 129226 Moscow, Russia
| | - Irina A. Starodubtseva
- Department of Polyclinic Therapy, NN Burdenko Voronezh State Medical University, 10 Studencheskaya Street, 394036 Voronezh, Russia;
| | - Dmitry F. Beloyartsev
- Vascular Surgery Department, A. V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, 117997 Moscow, Russia;
| | - Tatiana I. Kovyanova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia
| | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
| | - Nikolay A. Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
| |
Collapse
|
4
|
Zeng L, Yang K, Wu Y, Yu G, Yan Y, Hao M, Song T, Li Y, Chen J, Sun L. Telitacicept: A novel horizon in targeting autoimmunity and rheumatic diseases. J Autoimmun 2024; 148:103291. [PMID: 39146891 DOI: 10.1016/j.jaut.2024.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BLyS and APRIL have the capability to bind to B cells within the body, allowing these cells to evade elimination when they should naturally be removed. While BLyS primarily plays a role in B cell development and maturation, APRIL is linked to B cell activation and the secretion of antibodies. Thus, in theory, inhibiting BLyS or APRIL could diminish the population of aberrant B cells that contribute to SLE and reduce disease activity in patients. Telitacicept functions by binding to and neutralizing the activities of both BLyS and APRIL, thus hindering the maturation and survival of plasma cells and fully developed B cells. The design of telitacicept is distinctive; it is not a monoclonal antibody but a TACI-Fc fusion protein generated through recombinant DNA technology. This fusion involves merging gene segments of the TACI protein, which can target BLyS/APRIL simultaneously, with the Fc gene segment of the human IgG protein. The TACI-Fc fusion protein exhibits the combined characteristics of both proteins. Currently utilized for autoimmune disease treatment, telitacicept is undergoing clinical investigations globally to assess its efficacy in managing various autoimmune conditions. This review consolidates information on the mechanistic actions, dosing regimens, pharmacokinetics, efficacy, and safety profile of telitacicept-a dual-targeted biological agent. It integrates findings from prior experiments and pharmacokinetic analyses in the treatment of RA and SLE, striving to offer a comprehensive overview of telitacicept's research advancements.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Yexing Yan
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Tian Song
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuwei Li
- School of Mathematics and Computational Science, Hunan University of Science and Technology, Hunan, China
| | - Junpeng Chen
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA; Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China; Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Soliman Wadan AH, Abdelsattar Ahmed M, Hussein Ahmed A, El-Sayed Ellakwa D, Hamed Elmoghazy N, Gawish A. The Interplay of Mitochondrial Dysfunction in Oral Diseases: Recent Updates in Pathogenesis and Therapeutic Implications. Mitochondrion 2024; 78:101942. [PMID: 39111357 DOI: 10.1016/j.mito.2024.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
Mitochondrial dysfunction is linked to various systemic and localized diseases, including oral diseases like periodontitis, oral cancer, and temporomandibular joint disorders. This paper explores the intricate mechanisms underlying mitochondrial dysfunction in oral pathologies, encompassing oxidative stress, inflammation, and impaired energy metabolism. Furthermore, it elucidates the bidirectional relationship between mitochondrial dysfunction and oral diseases, wherein the compromised mitochondrial function exacerbates disease progression, while oral pathologies, in turn, exacerbate mitochondrial dysfunction. Understanding these intricate interactions offers insights into novel therapeutic strategies targeting mitochondrial function for managing oral diseases. This paper pertains to the mechanisms underlying mitochondrial dysfunction, its implications in various oral pathological and inflammatory conditions, and emerging versatile treatment approaches. It reviews current therapeutic strategies to mitigate mitochondrial dysfunction, including antioxidants, mitochondrial-targeted agents, and metabolic modulators.
Collapse
Affiliation(s)
- Al-Hassan Soliman Wadan
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt.
| | - Mohamed Abdelsattar Ahmed
- Faculty of Dentistry, Sinai University, Kantra Branch, Ismailia, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt
| | - Abdelnaser Hussein Ahmed
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt
| | - Doha El-Sayed Ellakwa
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt
| | - Nourhan Hamed Elmoghazy
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt
| | - Abeer Gawish
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt; Faculty of Graduate Studies, Sinai University, Arish Branche, North Sinai, Egypt; Oral Medicine, Periodontology, Diagnosis and Radiology Department, Al Azhar University, Egypt
| |
Collapse
|
6
|
Al-Haidose A, Hassan S, Elhassan M, Ahmed E, Al-Riashi A, Alharbi YM, Ghunaim M, Alhejaili T, Abdallah AM. Role of ncRNAs in the Pathogenesis of Sjögren's Syndrome. Biomedicines 2024; 12:1540. [PMID: 39062113 PMCID: PMC11274537 DOI: 10.3390/biomedicines12071540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Sjögren's syndrome is a multisystemic autoimmune disease that mainly affects the exocrine glands, causing dryness of the eyes and the mouth as the principal symptoms. Non-coding RNAs (ncRNAs), once regarded as genomic "junk", are now appreciated as important molecular regulators of gene expression, not least in Sjögren's syndrome and other autoimmune diseases. Here we review research into the causative roles of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) on immunological responses, inflammation, and salivary gland epithelial cell function in Sjögren's syndrome patients. These ncRNAs represent promising new therapeutic targets for treating the disease and possibly as biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Amal Al-Haidose
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Sondoss Hassan
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Mahmoud Elhassan
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Eiman Ahmed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Abdulla Al-Riashi
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Yazeed M. Alharbi
- Department of Internal Medicine, Collage of Medicine, Taibah University, Madinah 42353, Saudi Arabia; (Y.M.A.); (M.G.)
| | - Monther Ghunaim
- Department of Internal Medicine, Collage of Medicine, Taibah University, Madinah 42353, Saudi Arabia; (Y.M.A.); (M.G.)
| | - Talal Alhejaili
- Department of Gastroenterology, King Salman Medical City, Madinah 42319, Saudi Arabia;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| |
Collapse
|
7
|
Qi W, Tian J, Wang G, Yan Y, Wang T, Wei Y, Wang Z, Zhang G, Zhang Y, Wang J. Advances in cellular and molecular pathways of salivary gland damage in Sjögren's syndrome. Front Immunol 2024; 15:1405126. [PMID: 39050857 PMCID: PMC11266040 DOI: 10.3389/fimmu.2024.1405126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Sjögren's Syndrome (SS) is an autoimmune disorder characterized by dysfunction of exocrine glands. Primarily affected are the salivary glands, which exhibit the most frequent pathological changes. The pathogenesis involves susceptibility genes, non-genetic factors such as infections, immune cells-including T and B cells, macrophage, dendritic cells, and salivary gland epithelial cells. Inflammatory mediators such as autoantibodies, cytokines, and chemokines also play a critical role. Key signaling pathways activated include IFN, TLR, BAFF/BAFF-R, PI3K/Akt/mTOR, among others. Comprehensive understanding of these mechanisms is crucial for developing targeted therapeutic interventions. Thus, this study explores the cellular and molecular mechanisms underlying SS-related salivary gland damage, aiming to propose novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Wenxia Qi
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Jiexiang Tian
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Gang Wang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Yanfeng Yan
- Fourth Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Respiratory and Critical Care Medicine, Lanzhou, China
| | - Tao Wang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Yong Wei
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Zhandong Wang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Guohua Zhang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Yuanyuan Zhang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Jia Wang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| |
Collapse
|
8
|
Chen S, Ye J, Lin Y, Chen W, Huang S, Yang Q, Qian H, Gao S, Hua C. Crucial Roles of RSAD2/viperin in Immunomodulation, Mitochondrial Metabolism and Autoimmune Diseases. Inflammation 2024:10.1007/s10753-024-02076-5. [PMID: 38909344 DOI: 10.1007/s10753-024-02076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Autoimmune diseases are typically characterized by aberrant activation of immune system that leads to excessive inflammatory reactions and tissue damage. Nevertheless, precise targeted and efficient therapies are limited. Thus, studies into novel therapeutic targets for the management of autoimmune diseases are urgently needed. Radical S-adenosyl methionine domain-containing 2 (RSAD2) is an interferon-stimulated gene (ISG) renowned for the antiviral properties of the protein it encodes, named viperin. An increasing number of studies have underscored the new roles of RSAD2/viperin in immunomodulation and mitochondrial metabolism. Previous studies have shown that there is a complex interplay between RSAD2/vipeirn and mitochondria and that binding of the iron-sulfur (Fe-S) cluster is necessary for the involvement of viperin in mitochondrial metabolism. Viperin influences the proliferation and development of immune cells as well as inflammation via different signaling pathways. However, the function of RSAD2/viperin varies in different studies and a comprehensive overview of this emerging theme is lacking. This review will describe the characteristics of RSAD2/viperin, decipher its function in immunometabolic processes, and clarify the crosstalk between RSAD2/viperin and mitochondria. Furthermore, we emphasize the crucial roles of RSAD2 in autoimmune diseases and its potential application value.
Collapse
Affiliation(s)
- Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiani Ye
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yinfang Lin
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Wenxiu Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Qianru Yang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Hengrong Qian
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
9
|
Zhang Y, Yang JY, Chen JQ, Liao JH, Huang ZW, Wu TH, He Q, Yu XB, Wang Q, Song WJ, Luo J, Tao QW. Disease Duration Affects the Clinical Phenotype of Primary Sjögren Syndrome: A Medical Records Review Study of 952 Cases. J Clin Rheumatol 2024; 30:151-158. [PMID: 38389137 DOI: 10.1097/rhu.0000000000002076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
OBJECTIVES To investigate the impact of disease duration on clinical phenotypes in Chinese patients with primary Sjögren syndrome (pSS) and examine the correlation between clinical phenotypes and onset age, age at diagnosis, and disease duration. METHODS Data from 952 patients diagnosed with pSS in China between January 2013 and March 2022 were analyzed based on medical records. Patients were categorized into 3 groups based on disease duration: short (<5 years), moderate (≥5 and <10 years), and long (≥10 years) group. Clinical characteristics were compared among the 3 groups, and pSS patients with a long disease duration were compared with the other patients after matching age at diagnosis and age at onset. RESULTS Among the patients, 20.4% had a disease duration over 10 years. After matching for age at onset and age at diagnosis, pSS patients with a long disease duration exhibited a significantly higher prevalence of dry mouth ( p <0.001), dry eyes ( p <0.001), fatigue ( p <0.001), arthralgia ( p <0.001), and dental caries ( p <0.001) and higher rates of anti-Sjögren syndrome A ( p < 0.05), anti-Ro52 ( p < 0.05), and anti-SSB ( p < 0.05) positivity than their control groups, with prevalence increasing with disease duration ( ptrend < 0.001). However, no differences were noted in the prevalence of interstitial lung disease and leukopenia between different disease duration groups after matching for age at onset, although differences were shown when matching for age at diagnosis. CONCLUSION Longer disease duration in pSS patients correlates with increased prevalence of sicca symptoms, fatigue, and arthralgia and higher positivity of autoantibodies associated with pSS. However, the prevalence of interstitial lung disease and leukopenia did not correlate with disease duration after matching for age at onset.
Collapse
Affiliation(s)
- Yan Zhang
- From the Graduate School, Beijing University of Chinese Medicine
| | - Jian-Ying Yang
- From the Graduate School, Beijing University of Chinese Medicine
| | - Jia-Qi Chen
- From the Graduate School, Beijing University of Chinese Medicine
| | - Jia-He Liao
- From the Graduate School, Beijing University of Chinese Medicine
| | - Zi-Wei Huang
- From the Graduate School, Beijing University of Chinese Medicine
| | - Tzu-Hua Wu
- From the Graduate School, Beijing University of Chinese Medicine
| | - Qian He
- From the Graduate School, Beijing University of Chinese Medicine
| | - Xin-Bo Yu
- From the Graduate School, Beijing University of Chinese Medicine
| | - Qin Wang
- From the Graduate School, Beijing University of Chinese Medicine
| | - Wei-Jiang Song
- Traditional Chinese Medicine Department, Peking University Third Hospital
| | | | | |
Collapse
|
10
|
Xie H, Deng YM, Li JY, Xie KH, Tao T, Zhang JF. Predicting the risk of primary Sjögren's syndrome with key N7-methylguanosine-related genes: A novel XGBoost model. Heliyon 2024; 10:e31307. [PMID: 38803884 PMCID: PMC11128997 DOI: 10.1016/j.heliyon.2024.e31307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Objectives N7-methylguanosine (m7G) plays a crucial role in mRNA metabolism and other biological processes. However, its regulators' function in Primary Sjögren's Syndrome (PSS) remains enigmatic. Methods We screened five key m7G-related genes across multiple datasets, leveraging statistical and machine learning computations. Based on these genes, we developed a prediction model employing the extreme gradient boosting decision tree (XGBoost) method to assess PSS risk. Immune infiltration in PSS samples was analyzed using the ssGSEA method, revealing the immune landscape of PSS patients. Results The XGBoost model exhibited high accuracy, AUC, sensitivity, and specificity in both training, test sets and extra-test set. The decision curve confirmed its clinical utility. Our findings suggest that m7G methylation might contribute to PSS pathogenesis through immune modulation. Conclusions m7G regulators play an important role in the development of PSS. Our study of m7G-realted genes may inform future immunotherapy strategies for PSS.
Collapse
Affiliation(s)
- Hui Xie
- Department of Radiotherapy, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, PR China
- Faulty of Applied Sciences, Macao Polytechnic University, Macao, 999078, PR China
| | - Yin-mei Deng
- Department of Nursing, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, PR China
| | - Jiao-yan Li
- Department of Rheumatology and Clinical Immunology, The First Hospital of Changsha, 410005, Changsha, PR China
| | - Kai-hong Xie
- Department of Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, PR China
| | - Tan Tao
- Faulty of Applied Sciences, Macao Polytechnic University, Macao, 999078, PR China
| | - Jian-fang Zhang
- Department of Physical Examination, Center for Disease Control and Prevention of Beihu District, Chenzhou, 423000, PR China
| |
Collapse
|
11
|
Liu S, Chen H, Tang L, Liu M, Chen J, Wang D. WGCNA and machine learning analysis identifi ed SAMD9 and IFIT3 as primary Sjögren's Syndrome key genes. Heliyon 2024; 10:e29652. [PMID: 38707449 PMCID: PMC11068537 DOI: 10.1016/j.heliyon.2024.e29652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Background Current treatments for primary Sjögren's Syndrome (pSS) are with limited effect, partially due to the heterogeneity and uncleared mechanism. Methods We got GSE40568 (Japan) and GSE40611 (USA), and analyzed them with WGCNA to find key Differentially expressed genes (DEGs) between pSS and healthy salivary glands (SG). Key pSS genes (KPGs) were further selected through 3 machine-learning methods. The expression of KPGs was validated via two other GEO datasets (GSE127952 and GSE154926). Infiltrated immune cells, ceRNA network, and potential compounds were explored. Results Our study identified 376 DEGs from the pSS patients, with 186 genes located in the "plum2" module, showing the strongest correlation with clinical characteristics. SAMD9 and IFIT3 emerged as KPGs with excellent diagnostic potential. SAMD9 demonstrated close association with immune cell infiltration. We constructed a lncRNA-miRNA-mRNA network comprising 2 KPGs, 12 miRNAs, 124 lncRNAs, and potential therapeutic targets. Conclusion In the investigation of pSS public datasets, our study revealed two potential critical mediators in the pathological process of pSS salivary glands, namely SAMD9 and IFIT3. Furthermore, we put forth a hypothesis regarding the ceRNA network and made predictions regarding potential therapeutic drugs targeting these two genes.
Collapse
Affiliation(s)
- Shu Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Hongzhen Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, China
| | - Lin Tang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Mian Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, China
| | - Jinfeng Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| |
Collapse
|
12
|
Chen X, Li M, Li H, Liu M, Su J, Ji Y. Implications of IFNγ SNP rs2069705 in primary Sjögren's syndrome: transcriptional activation and B cell infiltration. Am J Physiol Cell Physiol 2024; 326:C1494-C1504. [PMID: 38406824 PMCID: PMC11371360 DOI: 10.1152/ajpcell.00661.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Primary Sjögren's syndrome (pSS) is characterized by its autoimmune nature. This study investigates the role of the IFNγ SNP rs2069705 in modulating the susceptibility to pSS. Differential expression of IFNγ and BAFF was analyzed using the GEO database's mRNA microarray GSE84844. Genotyping of the IFNγ SNP rs2069705 was conducted via the dbSNP website. The JASPAR tool was used for predicting transcription factor bindings. Techniques such as dual-luciferase reporter assays, Chromatin immunoprecipitation, and analysis of a pSS mouse model were applied to study gene and protein interactions. A notable increase in the mutation frequency of IFNγ SNP rs2069705 was observed in MNCs from the exocrine glands of pSS mouse models. Bioinformatics analysis revealed elevated levels of IFNγ and BAFF in pSS samples. The model exhibited an increase in both CD20+ B cells and cells expressing IFNγ and BAFF. Knocking down IFNγ resulted in lowered BAFF expression and less lymphocyte infiltration, with BAFF overexpression reversing this suppression. Activation of the Janus kinase (JAK)/STAT1 pathway was found to enhance transcription in the BAFF promoter region, highlighting IFNγ's involvement in pSS. In addition, rs2069705 was shown to boost IFNγ transcription by promoting interaction between its promoter and STAT4. SNP rs2069705 in the IFNγ gene emerges as a pivotal element in pSS susceptibility, primarily by augmenting IFNγ transcription, activating the JAK/STAT1 pathway, and leading to B-lymphocyte infiltration in the exocrine glands.NEW & NOTEWORTHY The research employed a combination of bioinformatics analysis, genotyping, and experimental models, providing a multifaceted approach to understanding the complex interactions in pSS. We have uncovered that the rs2069705 SNP significantly affects the transcription of IFNγ, leading to altered immune responses and B-lymphocyte activity in pSS.
Collapse
Affiliation(s)
- Xi Chen
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Min Li
- Department of Immunology, Mianyang Central Hospital, Mianyang, China
| | - Honglin Li
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Miao Liu
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Jianrong Su
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Yuzhu Ji
- Department of Pathology, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
13
|
Wang Y, Riaz F, Wang W, Pu J, Liang Y, Wu Z, Pan S, Song J, Yang L, Zhang Y, Wu H, Han F, Tang J, Wang X. Functional significance of DNA methylation: epigenetic insights into Sjögren's syndrome. Front Immunol 2024; 15:1289492. [PMID: 38510251 PMCID: PMC10950951 DOI: 10.3389/fimmu.2024.1289492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Sjögren's syndrome (SjS) is a systemic, highly diverse, and chronic autoimmune disease with a significant global prevalence. It is a complex condition that requires careful management and monitoring. Recent research indicates that epigenetic mechanisms contribute to the pathophysiology of SjS by modulating gene expression and genome stability. DNA methylation, a form of epigenetic modification, is the fundamental mechanism that modifies the expression of various genes by modifying the transcriptional availability of regulatory regions within the genome. In general, adding a methyl group to DNA is linked with the inhibition of genes because it changes the chromatin structure. DNA methylation changes the fate of multiple immune cells, such as it leads to the transition of naïve lymphocytes to effector lymphocytes. A lack of central epigenetic enzymes frequently results in abnormal immune activation. Alterations in epigenetic modifications within immune cells or salivary gland epithelial cells are frequently detected during the pathogenesis of SjS, representing a robust association with autoimmune responses. The analysis of genome methylation is a beneficial tool for establishing connections between epigenetic changes within different cell types and their association with SjS. In various studies related to SjS, most differentially methylated regions are in the human leukocyte antigen (HLA) locus. Notably, the demethylation of various sites in the genome is often observed in SjS patients. The most strongly linked differentially methylated regions in SjS patients are found within genes regulated by type I interferon. This demethylation process is partly related to B-cell infiltration and disease progression. In addition, DNA demethylation of the runt-related transcription factor (RUNX1) gene, lymphotoxin-α (LTA), and myxovirus resistance protein A (MxA) is associated with SjS. It may assist the early diagnosis of SjS by serving as a potential biomarker. Therefore, this review offers a detailed insight into the function of DNA methylation in SjS and helps researchers to identify potential biomarkers in diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Farooq Riaz
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Wei Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Youwei Zhang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihong Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Wu L, Wang Q, Gao QC, Shi GX, Li J, Fan FR, Wu J, He PF, Yu Q. Potential mechanisms and drug prediction of Rheumatoid Arthritis and primary Sjögren's Syndrome: A public databases-based study. PLoS One 2024; 19:e0298447. [PMID: 38359008 PMCID: PMC10868835 DOI: 10.1371/journal.pone.0298447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Rheumatoid arthritis (RA) and primary Sjögren's syndrome (pSS) are the most common systemic autoimmune diseases, and they are increasingly being recognized as occurring in the same patient population. These two diseases share several clinical features and laboratory parameters, but the exact mechanism of their co-pathogenesis remains unclear. The intention of this study was to investigate the common molecular mechanisms involved in RA and pSS using integrated bioinformatic analysis. RNA-seq data for RA and pSS were picked up from the Gene Expression Omnibus (GEO) database. Co-expression genes linked with RA and pSS were recognized using weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis. Then, we screened two public disease-gene interaction databases (GeneCards and Comparative Toxicogenomics Database) for common targets associated with RA and pSS. The DGIdb database was used to predict therapeutic drugs for RA and pSS. The Human microRNA Disease Database (HMDD) was used to screen out the common microRNAs associated with RA and pSS. Finally, a common miRNA-gene network was created using Cytoscape. Four hub genes (CXCL10, GZMA, ITGA4, and PSMB9) were obtained from the intersection of common genes from WGCNA, differential gene analysis and public databases. Twenty-four drugs corresponding to hub gene targets were predicted in the DGIdb database. Among the 24 drugs, five drugs had already been reported for the treatment of RA and pSS. Other drugs, such as bortezomib, carfilzomib, oprozomib, cyclosporine and zidovudine, may be ideal drugs for the future treatment of RA patients with pSS. According to the miRNA-gene network, hsa-mir-21 may play a significant role in the mechanisms shared by RA and pSS. In conclusion, we identified commom targets as potential biomarkers in RA and pSS from publicly available databases and predicted potential drugs based on the targets. A new understanding of the molecular mechanisms associated with RA and pSS is provided according to the miRNA-gene network.
Collapse
Affiliation(s)
- Li Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Qi-chao Gao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Gao-xiang Shi
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anaesthesia, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Anesthesiology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Fu-rong Fan
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jing Wu
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Pei-Feng He
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
15
|
Maleki-Fischbach M, Kastsianok L, Koslow M, Chan ED. Manifestations and management of Sjögren's disease. Arthritis Res Ther 2024; 26:43. [PMID: 38331820 PMCID: PMC10851604 DOI: 10.1186/s13075-024-03262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
Sjögren's disease is a heterogeneous autoimmune disorder that may be associated with systemic manifestations such as pulmonary or articular involvement. Systemic complications have prognostic implications and need to be identified and managed in a timely manner. Treatment should be tailored to the type and severity of organ involvement, ideally based on multidisciplinary evaluation.
Collapse
Affiliation(s)
- Mehrnaz Maleki-Fischbach
- Division of Rheumatology and Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.
| | - Liudmila Kastsianok
- Division of Rheumatology and Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Matthew Koslow
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Edward D Chan
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
- Pulmonary Section, Rocky Mountain Regional Veterans Affairs Medical Center Aurora, Aurora, CO, USA
| |
Collapse
|
16
|
Kwon G, Wiedemann A, Steinheuer LM, Stefanski AL, Szelinski F, Racek T, Frei AP, Hatje K, Kam-Thong T, Schubert D, Schindler T, Dörner T, Thurley K. Transcriptional profiling upon T cell stimulation reveals down-regulation of inflammatory pathways in T and B cells in SLE versus Sjögren's syndrome. NPJ Syst Biol Appl 2023; 9:62. [PMID: 38102122 PMCID: PMC10724199 DOI: 10.1038/s41540-023-00319-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) share clinical as well as pathogenic similarities. Although previous studies suggest various abnormalities in different immune cell compartments, dedicated cell-type specific transcriptomic signatures are often masked by patient heterogeneity. Here, we performed transcriptional profiling of isolated CD4, CD8, CD16 and CD19 lymphocytes from pSS and SLE patients upon T cell stimulation, in addition to a steady-state condition directly after blood drawing, in total comprising 581 sequencing samples. T cell stimulation, which induced a pronounced inflammatory response in all four cell types, gave rise to substantial re-modulation of lymphocyte subsets in the two autoimmune diseases compared to healthy controls, far exceeding the transcriptomic differences detected at steady-state. In particular, we detected cell-type and disease-specific down-regulation of a range of pro-inflammatory cytokine and chemokine pathways. Such differences between SLE and pSS patients are instrumental for selective immune targeting by future therapies.
Collapse
Affiliation(s)
- Gino Kwon
- Systems Biology of Inflammation, German Rheumatism Research Center, a Leibniz-Institute, Berlin, Germany
| | - Annika Wiedemann
- Rheumatology and Clinical Immunology, Department of Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa M Steinheuer
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Ana-Luisa Stefanski
- Rheumatology and Clinical Immunology, Department of Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Franziska Szelinski
- Rheumatology and Clinical Immunology, Department of Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tomas Racek
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Andreas Philipp Frei
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Klas Hatje
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tony Kam-Thong
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - David Schubert
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Thomas Schindler
- Product Development Immunology, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Thomas Dörner
- Rheumatology and Clinical Immunology, Department of Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Kevin Thurley
- Systems Biology of Inflammation, German Rheumatism Research Center, a Leibniz-Institute, Berlin, Germany.
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
17
|
Wu J, Liu G, Jia R, Guo J. Salivary Extracellular Vesicles: Biomarkers and Beyond in Human Diseases. Int J Mol Sci 2023; 24:17328. [PMID: 38139157 PMCID: PMC10743646 DOI: 10.3390/ijms242417328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Extracellular vesicles, as bioactive molecules, have been extensively studied. There are abundant studies in the literature on their biogenesis, secretion, structure, and content, and their roles in pathophysiological processes. Extracellular vesicles have been reviewed as biomarkers for use in diagnostic tools. Saliva contains many extracellular vesicles, and compared with other body fluids, it is easier to obtain in a non-invasive way, making its acquisition more easily accepted by patients. In recent years, there have been numerous new studies investigating the role of salivary extracellular vesicles as biomarkers. These studies have significant implications for future clinical diagnosis. Therefore, in this paper, we summarize and review the potential applications of salivary extracellular vesicles as biomarkers, and we also describe their other functions (e.g., hemostasis, innate immune defense) in both oral and non-oral diseases.
Collapse
Affiliation(s)
- Jialing Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Gege Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
18
|
He W, Lu Y, Shi R, An Q, Zhao J, Gao X, Zhang L, Ma D. Application of omics in Sjögren's syndrome. Inflamm Res 2023; 72:2089-2109. [PMID: 37878024 DOI: 10.1007/s00011-023-01797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 10/26/2023] Open
Abstract
OBJECTIVE The pathogenesis, diagnosis, and treatment of Sjögren's syndrome (SS) face many challenges, and there is an urgent need to develop new technologies to improve our understanding of SS. METHODS By searching the literature published domestically and internationally in the past 20 years, this artical reviewed the research of various omics techniques in SS. RESULTS Omics technology provided valuable insights into the pathogenesis, early diagnosis, condition and efficacy evaluation of SS. It is helpful to reveal the pathogenesis of the disease and explore new treatment schemes, which will open a new era for the study of SS. CONCLUSION At present, omics research has made some gratifying achievements, but there are still many uncertainties. Therefore, in the future, we should improve research techniques, standardize the collection of samples, and adopt a combination of multi-omics techniques to jointly study the pathogenesis of SS and provide new schemes for its treatment.
Collapse
Affiliation(s)
- Wenqin He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Yangyang Lu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Rongjing Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China.
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China.
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China.
| |
Collapse
|
19
|
Alqahtani B, Daghestani M, Omair MA, Alenzi F, Alhamad EH, Tashkandy Y, Othman N, Warsy A, Halwani R. Single nucleotide polymorphisms in cytokine genes and their association with primary Sjögren's syndrome in Saudi patients: A cross-sectional study. Saudi Med J 2023; 44:1232-1239. [PMID: 38016737 PMCID: PMC10712798 DOI: 10.15537/smj.2023.44.12.20230490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVES To determine the allelic frequencies and effects of genotypic variations in cytokine gene polymorphisms in a Saudi Arabian population. METHODS This cross-sectional study involved 41 patients with Primary Sjögren's syndrome (pSS) and 71 healthy controls between October 2018 and May 2019. Single nucleotide polymorphisms genotyping was performed using the SEQUENOM MassARRAY® System, targeting nine polymorphisms in different cytokine genes. Chi-square tests were used to compare the patients and controls. RESULTS The interleukin-1 beta (IL-1β) rs1143627 CT (control, 52.7%; patients, 21.2%) and TT + CT (p= 0.003; p=0.033) genotypes were less frequent in patients with pSS than in healthy controls. The C allele in rs10488631 in the interferon regulatory factor 5 (IRF5) gene and the A allele in rs12583006 in the B-cell activating factor (BAFF) gene were associated with an increased risk of pSS development in the patient group. CONCLUSION The CT genotype at -31 (rs1143627) in the IL-1β gene was not associated with a high risk of pSS development in the Saudi population, in contrast to what has been verified in other ethnicities. However, the C allele in rs10488631 in IRF-5 and the A allele in rs12583006 in BAFF were associated.
Collapse
Affiliation(s)
- Bashaer Alqahtani
- From the Department of Zoology (Alqahtani, Daghestani); from the Department of Medicine (Omair), Rheumatology Division; from the Department of Medicine (Alhamad), Pulmonary Division; from the Department of Statistics and Operations Research (Tashkandy), College of Sciences; from the Central Laboratory (Othman); from the Department of Biochemistry (Warsy), King Saud University; from the Department of Clinical Sciences (Alenzi), College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia; and from Department of Clinical Sciences (Halwani), Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Maha Daghestani
- From the Department of Zoology (Alqahtani, Daghestani); from the Department of Medicine (Omair), Rheumatology Division; from the Department of Medicine (Alhamad), Pulmonary Division; from the Department of Statistics and Operations Research (Tashkandy), College of Sciences; from the Central Laboratory (Othman); from the Department of Biochemistry (Warsy), King Saud University; from the Department of Clinical Sciences (Alenzi), College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia; and from Department of Clinical Sciences (Halwani), Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Mohammed A. Omair
- From the Department of Zoology (Alqahtani, Daghestani); from the Department of Medicine (Omair), Rheumatology Division; from the Department of Medicine (Alhamad), Pulmonary Division; from the Department of Statistics and Operations Research (Tashkandy), College of Sciences; from the Central Laboratory (Othman); from the Department of Biochemistry (Warsy), King Saud University; from the Department of Clinical Sciences (Alenzi), College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia; and from Department of Clinical Sciences (Halwani), Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Fahidah Alenzi
- From the Department of Zoology (Alqahtani, Daghestani); from the Department of Medicine (Omair), Rheumatology Division; from the Department of Medicine (Alhamad), Pulmonary Division; from the Department of Statistics and Operations Research (Tashkandy), College of Sciences; from the Central Laboratory (Othman); from the Department of Biochemistry (Warsy), King Saud University; from the Department of Clinical Sciences (Alenzi), College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia; and from Department of Clinical Sciences (Halwani), Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Esam H. Alhamad
- From the Department of Zoology (Alqahtani, Daghestani); from the Department of Medicine (Omair), Rheumatology Division; from the Department of Medicine (Alhamad), Pulmonary Division; from the Department of Statistics and Operations Research (Tashkandy), College of Sciences; from the Central Laboratory (Othman); from the Department of Biochemistry (Warsy), King Saud University; from the Department of Clinical Sciences (Alenzi), College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia; and from Department of Clinical Sciences (Halwani), Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Yusra Tashkandy
- From the Department of Zoology (Alqahtani, Daghestani); from the Department of Medicine (Omair), Rheumatology Division; from the Department of Medicine (Alhamad), Pulmonary Division; from the Department of Statistics and Operations Research (Tashkandy), College of Sciences; from the Central Laboratory (Othman); from the Department of Biochemistry (Warsy), King Saud University; from the Department of Clinical Sciences (Alenzi), College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia; and from Department of Clinical Sciences (Halwani), Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Nashwa Othman
- From the Department of Zoology (Alqahtani, Daghestani); from the Department of Medicine (Omair), Rheumatology Division; from the Department of Medicine (Alhamad), Pulmonary Division; from the Department of Statistics and Operations Research (Tashkandy), College of Sciences; from the Central Laboratory (Othman); from the Department of Biochemistry (Warsy), King Saud University; from the Department of Clinical Sciences (Alenzi), College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia; and from Department of Clinical Sciences (Halwani), Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Arjumand Warsy
- From the Department of Zoology (Alqahtani, Daghestani); from the Department of Medicine (Omair), Rheumatology Division; from the Department of Medicine (Alhamad), Pulmonary Division; from the Department of Statistics and Operations Research (Tashkandy), College of Sciences; from the Central Laboratory (Othman); from the Department of Biochemistry (Warsy), King Saud University; from the Department of Clinical Sciences (Alenzi), College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia; and from Department of Clinical Sciences (Halwani), Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Rabih Halwani
- From the Department of Zoology (Alqahtani, Daghestani); from the Department of Medicine (Omair), Rheumatology Division; from the Department of Medicine (Alhamad), Pulmonary Division; from the Department of Statistics and Operations Research (Tashkandy), College of Sciences; from the Central Laboratory (Othman); from the Department of Biochemistry (Warsy), King Saud University; from the Department of Clinical Sciences (Alenzi), College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia; and from Department of Clinical Sciences (Halwani), Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
20
|
Dong Z, Wu L, Hong H. Mitochondrial Dysfunction in the Pathogenesis and Treatment of Oral Inflammatory Diseases. Int J Mol Sci 2023; 24:15483. [PMID: 37895162 PMCID: PMC10607498 DOI: 10.3390/ijms242015483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Oral inflammatory diseases (OIDs) include many common diseases such as periodontitis and pulpitis. The causes of OIDs consist microorganism, trauma, occlusal factors, autoimmune dis-eases and radiation therapy. When treated unproperly, such diseases not only affect oral health but also pose threat to people's overall health condition. Therefore, identifying OIDs at an early stage and exploring new therapeutic strategies are important tasks for oral-related research. Mitochondria are crucial organelles for many cellular activities and disruptions of mitochondrial function not only affect cellular metabolism but also indirectly influence people's health and life span. Mitochondrial dysfunction has been implicated in many common polygenic diseases, including cardiovascular and neurodegenerative diseases. Recently, increasing evidence suggests that mitochondrial dysfunction plays a critical role in the development and progression of OIDs and its associated systemic diseases. In this review, we elucidated the critical insights into mitochondrial dysfunction and its involvement in the inflammatory responses in OIDs. We also summarized recent research progresses on the treatment of OIDs targeting mitochondrial dysfunction and discussed the underlying mechanisms.
Collapse
Affiliation(s)
- Zhili Dong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Z.D.); (L.W.)
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Liping Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Z.D.); (L.W.)
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hong Hong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Z.D.); (L.W.)
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
21
|
Wiley MM, Khatri B, Joachims ML, Tessneer KL, Stolarczyk AM, Rasmussen A, Anaya JM, Aqrawi LA, Bae SC, Baecklund E, Björk A, Brun JG, Bucher SM, Dand N, Eloranta ML, Engelke F, Forsblad-d’Elia H, Fugmann C, Glenn SB, Gong C, Gottenberg JE, Hammenfors D, Imgenberg-Kreuz J, Jensen JL, Johnsen SJA, Jonsson MV, Kelly JA, Khanam S, Kim K, Kvarnström M, Mandl T, Martín J, Morris DL, Nocturne G, Norheim KB, Olsson P, Palm Ø, Pers JO, Rhodus NL, Sjöwall C, Skarstein K, Taylor KE, Tombleson P, Thorlacius GE, Venuturupalli S, Vital EM, Wallace DJ, Grundahl KM, Radfar L, Brennan MT, James JA, Scofield RH, Gaffney PM, Criswell LA, Jonsson R, Appel S, Eriksson P, Bowman SJ, Omdal R, Rönnblom L, Warner BM, Rischmueller M, Witte T, Farris AD, Mariette X, Shiboski CH, Wahren-Herlenius M, Alarcón-Riquelme ME, Ng WF, Sivils KL, Guthridge JM, Adrianto I, Vyse TJ, Tsao BP, Nordmark G, Lessard CJ. Variants in the DDX6-CXCR5 autoimmune disease risk locus influence the regulatory network in immune cells and salivary gland. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561076. [PMID: 39071447 PMCID: PMC11275775 DOI: 10.1101/2023.10.05.561076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Fine mapping and bioinformatic analysis of the DDX6-CXCR5 genetic risk association in Sjögren's Disease (SjD) and Systemic Lupus Erythematosus (SLE) identified five common SNPs with functional evidence in immune cell types: rs4938573, rs57494551, rs4938572, rs4936443, rs7117261. Functional interrogation of nuclear protein binding affinity, enhancer/promoter regulatory activity, and chromatin-chromatin interactions in immune, salivary gland epithelial, and kidney epithelial cells revealed cell type-specific allelic effects for all five SNPs that expanded regulation beyond effects on DDX6 and CXCR5 expression. Mapping the local chromatin regulatory network revealed several additional genes of interest, including lnc-PHLDB1-1. Collectively, functional characterization implicated the risk alleles of these SNPs as modulators of promoter and/or enhancer activities that regulate cell type-specific expression of DDX6, CXCR5, and lnc-PHLDB1-1, among others. Further, these findings emphasize the importance of exploring the functional significance of SNPs in the context of complex chromatin architecture in disease-relevant cell types and tissues.
Collapse
Affiliation(s)
- Mandi M. Wiley
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Bhuwan Khatri
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Michelle L. Joachims
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | - Kandice L. Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Anna M. Stolarczyk
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Astrid Rasmussen
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | | | - Lara A. Aqrawi
- Department of Health Sciences, Kristiania University College, Oslo, Norway
- University of Oslo, Norway
| | | | | | | | - Johan G. Brun
- University of Bergen, Bergen, Norway
- Haukeland University Hospital, Bergen, Norway
| | | | - Nick Dand
- King’s College London, London, United Kingdom
| | | | | | | | | | - Stuart B. Glenn
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Chen Gong
- King’s College London, London, United Kingdom
| | | | | | | | | | | | | | - Jennifer A. Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Sharmily Khanam
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | | | | | | | - Javier Martín
- Instituto de Biomedicina y Parasitología López-Neyra, Granada, Spain
| | | | - Gaetane Nocturne
- Université Paris-Saclay, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital Bicêtre, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kiely M. Grundahl
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | - Lida Radfar
- University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA
| | | | - Judith A. James
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - R. Hal Scofield
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- US Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Patrick M. Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lindsey A. Criswell
- University of California San Francisco, San Francisco, California, USA
- National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | - Simon J. Bowman
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Roald Omdal
- University of Bergen, Bergen, Norway
- Stavanger University Hospital, Stavanger, Norway
| | | | - Blake M. Warner
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | | | | | - A. Darise Farris
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xavier Mariette
- Université Paris-Saclay, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital Bicêtre, Paris, France
| | | | | | | | - Marta E. Alarcón-Riquelme
- Karolinska Institutet, Solna, Sweden
- Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Spain
| | | | - Wan-Fai Ng
- NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Kathy L. Sivils
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | - Joel M. Guthridge
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Indra Adrianto
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Betty P. Tsao
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Christopher J. Lessard
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
22
|
Huang Y, Xue Q, Chang J, Wang Y, Cheng C, Xu S, Wang X, Miao C. M6A methylation modification in autoimmune diseases, a promising treatment strategy based on epigenetics. Arthritis Res Ther 2023; 25:189. [PMID: 37784134 PMCID: PMC10544321 DOI: 10.1186/s13075-023-03149-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) methylation modification is involved in the regulation of various biological processes, including inflammation, antitumor, and antiviral immunity. However, the role of m6A modification in the pathogenesis of autoimmune diseases has been rarely reported. METHODS Based on a description of m6A modification and the corresponding research methods, this review systematically summarizes current insights into the mechanism of m6A methylation modification in autoimmune diseases, especially its contribution to rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). RESULTS By regulating different biological processes, m6A methylation is involved in the pathogenesis of autoimmune diseases and provides a promising biomarker for the diagnosis and treatment of such diseases. Notably, m6A methylation modification is involved in regulating a variety of immune cells and mitochondrial energy metabolism. In addition, m6A methylation modification plays a role in the pathological processes of RA, and m6A methylation-related genes can be used as potential targets in RA therapy. CONCLUSIONS M6A methylation modification plays an important role in autoimmune pathological processes such as RA and SLE and represents a promising new target for clinical diagnosis and treatment, providing new ideas for the treatment of autoimmune diseases by targeting m6A modification-related pathways.
Collapse
Affiliation(s)
- Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Jun Chang
- Department of Orthopaedics, the First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
- Anhui Public Health Clinical Center, Hefei, China.
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230027, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China.
| |
Collapse
|
23
|
Long Z, Zeng L, He Q, Yang K, Xiang W, Ren X, Deng Y, Chen H. Research progress on the clinical application and mechanism of iguratimod in the treatment of autoimmune diseases and rheumatic diseases. Front Immunol 2023; 14:1150661. [PMID: 37809072 PMCID: PMC10552782 DOI: 10.3389/fimmu.2023.1150661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/04/2023] [Indexed: 10/10/2023] Open
Abstract
Autoimmune diseases are affected by complex pathophysiology involving multiple cell types, cytokines, antibodies and mimicking factors. Different drugs are used to improve these autoimmune responses, including nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, antibodies, and small molecule drugs (DMARDs), which are prevalent clinically in the treatment of rheumatoid arthritis (RA), etc. However, low cost-effectiveness, reduced efficacy, adverse effects, and patient non-response are unattractive factors driving the development of new drugs such as iguratimod. As a new disease-modifying antirheumatic drug, iguratimod has pharmacological activities such as regulating autoimmune disorders, inflammatory cytokines, regulating immune cell activation, differentiation and proliferation, improving bone metabolism, and inhibiting fibrosis. In recent years, clinical studies have found that iguratimod is effective in the treatment of RA, SLE, IGG4-RD, Sjogren 's syndrome, ankylosing spondylitis, interstitial lung disease, and other autoimmune diseases and rheumatic diseases. The amount of basic and clinical research on other autoimmune diseases is also increasing. Therefore, this review systematically reviews the latest relevant literature in recent years, reviews the research results in recent years, and summarizes the research progress of iguratimod in the treatment of related diseases. This review highlights the role of iguratimod in the protection of autoimmune and rheumatic bone and related immune diseases. It is believed that iguratimod's unique mode of action and its favorable patient response compared to other DMARDs make it a suitable antirheumatic and bone protective agent in the future.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Xiang Ren
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Hua Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
24
|
Longobardi S, Lopez-Davis C, Khatri B, Georgescu C, Pritchett-Frazee C, Lawrence C, Rasmussen A, Radfar L, Scofield RH, Baer AN, Robinson SA, Darrah E, Axtell RC, Pardo G, Wren JD, Koelsch KA, Guthridge JM, James JA, Lessard CJ, Farris AD. Autoantibodies identify primary Sjögren's syndrome in patients lacking serum IgG specific for Ro/SS-A and La/SS-B. Ann Rheum Dis 2023; 82:1181-1190. [PMID: 37147113 PMCID: PMC10546962 DOI: 10.1136/ard-2022-223105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
OBJECTIVE Identify autoantibodies in anti-Ro/SS-A negative primary Sjögren's syndrome (SS). METHODS This is a proof-of-concept, case-control study of SS, healthy (HC) and other disease (OD) controls. A discovery dataset of plasma samples (n=30 SS, n=15 HC) was tested on human proteome arrays containing 19 500 proteins. A validation dataset of plasma and stimulated parotid saliva from additional SS cases (n=46 anti-Ro+, n=50 anti-Ro-), HC (n=42) and OD (n=54) was tested on custom arrays containing 74 proteins. For each protein, the mean+3 SD of the HC value defined the positivity threshold. Differences from HC were determined by Fisher's exact test and random forest machine learning using 2/3 of the validation dataset for training and 1/3 for testing. Applicability of the results was explored in an independent rheumatology practice cohort (n=38 Ro+, n=36 Ro-, n=10 HC). Relationships among antigens were explored using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) interactome analysis. RESULTS Ro+ SS parotid saliva contained autoantibodies binding to Ro60, Ro52, La/SS-B and muscarinic receptor 5. SS plasma contained 12 novel autoantibody specificities, 11 of which were detected in both the discovery and validation datasets. Binding to ≥1 of the novel antigens identified 54% of Ro- SS and 37% of Ro+ SS cases, with 100% specificity in both groups. Machine learning identified 30 novel specificities showing receiver operating characteristic area under the curve of 0.79 (95% CI 0.64 to 0.93) for identifying Ro- SS. Sera from Ro- cases of an independent cohort bound 17 of the non-canonical antigens. Antigenic targets in both Ro+ and Ro- SS were part of leukaemia cell, ubiquitin conjugation and antiviral defence pathways. CONCLUSION We identified antigenic targets of the autoantibody response in SS that may be useful for identifying up to half of Ro seronegative SS cases.
Collapse
Affiliation(s)
- Sherri Longobardi
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Charmaine Lopez-Davis
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Bhuwan Khatri
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Constantin Georgescu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Cherilyn Pritchett-Frazee
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Christina Lawrence
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Astrid Rasmussen
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Lida Radfar
- College of Dentistry, Department of Oral Diagnosis and Radiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Robert Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alan N Baer
- Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan A Robinson
- Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erika Darrah
- Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert C Axtell
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Gabriel Pardo
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jonathan D Wren
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kristi A Koelsch
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Judith A James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christopher J Lessard
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Amy Darise Farris
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
25
|
Ming B, Zhu Y, Zhong J, Dong L. Regulatory T cells: a new therapeutic link for Sjögren syndrome? Rheumatology (Oxford) 2023; 62:2963-2970. [PMID: 36790059 DOI: 10.1093/rheumatology/kead070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
Great advancements have been made in understanding the pathogenesis of SS, but there remain unmet needs for effective and targeted treatments. Glandular and extraglandular dysfunction in SS is associated with autoimmune lymphocytic infiltration that invades the epithelial structures of affected organs. Regulatory T (Treg) cells are a subset of CD4+ T lymphocytes that maintain self-tolerance during physiological conditions. Besides inhibiting excessive inflammation and autoimmune response by targeting various immune cell subsets and tissues, Treg cells have also been shown to promote tissue repair and regeneration in pathogenic milieus. The changes of quantity and function of Treg cells in various autoimmune and chronic inflammatory disorders have been reported, owing to their effects on immune regulation. Here we summarize the recent findings from murine models and clinical data about the dysfunction of Treg cells in SS pathogenesis and discuss the therapeutic strategies of direct or indirect targeting of Treg cells in SS. Understanding the current knowledge of Treg cells in the development of SS will be important to elucidate disease pathogenesis and may guide research for successful therapeutic intervention in this disease.
Collapse
Affiliation(s)
- Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaowu Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Mieliauskaitė D, Kontenis V, Šiaurys A. Lessons from Animal Models in Sjögren's Syndrome. Int J Mol Sci 2023; 24:12995. [PMID: 37629175 PMCID: PMC10454747 DOI: 10.3390/ijms241612995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is a connective tissue disease characterized by a wide spectrum of clinical features, extending from a benign glandular disease to an aggressive systemic disorder and/or lymphoma. The pathogenesis of Sjögren's syndrome (SS) is not completely understood, but it is assumed that pathogenesis of SS is multifactorial. The studies based on the animal models of SS provided significant insight in SS disease pathogenesis and management. The aim of this review is to summarize current studies on animal models with primary SS-like symptoms and discuss the impact of these studies on better understanding pathogenesis and management of Sjögren's syndrome. Databases PubMed, Web of Science, Scopus and Cochrane library were searched for summarizing studies on animal models in SS. Available data demonstrate that animal models are highly important for our understanding of SS disease.
Collapse
Affiliation(s)
- Diana Mieliauskaitė
- State Research Institute Center for Innovative Medicine, Department of Experimental, Preventive and Clinical Medicine, LT-08406 Vilnius, Lithuania;
| | - Vilius Kontenis
- State Research Institute Center for Innovative Medicine, Department of Experimental, Preventive and Clinical Medicine, LT-08406 Vilnius, Lithuania;
| | - Almantas Šiaurys
- State Research Institute Center for Innovative Medicine, Department of Immunology, LT-08406 Vilnius, Lithuania;
| |
Collapse
|
27
|
Cui Y, Zhang H, Wang Z, Gong B, Al-Ward H, Deng Y, Fan O, Wang J, Zhu W, Sun YE. Exploring the shared molecular mechanisms between systemic lupus erythematosus and primary Sjögren's syndrome based on integrated bioinformatics and single-cell RNA-seq analysis. Front Immunol 2023; 14:1212330. [PMID: 37614232 PMCID: PMC10442653 DOI: 10.3389/fimmu.2023.1212330] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) are common systemic autoimmune diseases that share a wide range of clinical manifestations and serological features. This study investigates genes, signaling pathways, and transcription factors (TFs) shared between SLE and pSS. Methods Gene expression profiles of SLE and pSS were obtained from the Gene Expression Omnibus (GEO). Weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis were conducted to identify shared genes related to SLE and pSS. Overlapping genes were then subject to Gene Ontology (GO) and protein-protein interaction (PPI) network analyses. Cytoscape plugins cytoHubba and iRegulon were subsequently used to screen shared hub genes and predict TFs. In addition, gene set variation analysis (GSVA) and CIBERSORTx were used to calculate the correlations between hub genes and immune cells as well as related pathways. To confirm these results, hub genes and TFs were verified in microarray and single-cell RNA sequencing (scRNA-seq) datasets. Results Following WGCNA and limma analysis, 152 shared genes were identified. These genes were involved in interferon (IFN) response and cytokine-mediated signaling pathway. Moreover, we screened six shared genes, namely IFI44L, ISG15, IFIT1, USP18, RSAD2 and ITGB2, out of which three genes, namely IFI44L, ISG15 and ITGB2 were found to be highly expressed in both microarray and scRNA-seq datasets. IFN response and ITGB2 signaling pathway were identified as potentially relevant pathways. In addition, STAT1 and IRF7 were identified as common TFs in both diseases. Conclusion This study revealed IFI44L, ISG15 and ITGB2 as the shared genes and identified STAT1 and IRF7 as the common TFs of SLE and pSS. Notably, the IFN response and ITGB2 signaling pathway played vital roles in both diseases. Our study revealed common pathogenetic characteristics of SLE and pSS. The particular roles of these pivotal genes and mutually overlapping pathways may provide a basis for further mechanistic research.
Collapse
Affiliation(s)
- Yanling Cui
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huina Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Wang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bangdong Gong
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai, China
| | - Hisham Al-Ward
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaxuan Deng
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Orion Fan
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junbang Wang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenmin Zhu
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Nishihata SY, Shimizu T, Umeda M, Furukawa K, Ohyama K, Kawakami A, Nakamura H. The Toll-like Receptor 7-Mediated Ro52 Antigen-Presenting Pathway in the Salivary Gland Epithelial Cells of Sjögren's Syndrome. J Clin Med 2023; 12:4423. [PMID: 37445456 DOI: 10.3390/jcm12134423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVE To investigate whether stimulation with toll-like receptor (TLR) 7 leads to pathways that proceed to tripartite motif-containing protein 21 (TRIM21) or Ro52/SS-A antigen presentation through major histocompatibility complex (MHC) class I in salivary gland epithelial cells (SGECs) from Sjögren's syndrome (SS) patients. DESIGN AND METHODS Cultured SGECs from SS patients were stimulated with TLR7 agonist, loxoribine, and interferon-β. Cell lysates immunoprecipitated by anti-MHC class I antibody were analyzed by Western blotting. The immunofluorescence of salivary gland tissue from SS and non-SS subjects and cultured TLR7-stimulated SGECs was examined. RESULTS Significantly increased MHC class I expression was observed in SS patients' ducts versus non-SS ducts; no significant difference was detected for ubiquitin. Upregulated MHC class I in the cell membrane and cytoplasm and augmented Ro52 expression were observed in SGECs stimulated with TLR7. The formation of peptide-loading complex (PLC), including tapasin, calreticulin, transporter associated with antigen processing 1, and endoplasmic reticulum-resident protein 57 in labial salivary glands (LSGs) from SS patients, was dominantly observed and colocalized with MHC class I, which was confirmed in TLR7-stimulated SGEC samples. CONCLUSION These findings suggest that the TLR7 stimulation of SS patients' SGECs advances the process toward the antigen presentation of TRIM21/Ro52-SS-A via MHC class I.
Collapse
Affiliation(s)
- Shin-Ya Nishihata
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Masataka Umeda
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Kaori Furukawa
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Kaname Ohyama
- Department of Molecular Pathochemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hideki Nakamura
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 113-8602, Japan
| |
Collapse
|
29
|
Mihai A, Caruntu C, Jurcut C, Blajut FC, Casian M, Opris-Belinski D, Ionescu R, Caruntu A. The Spectrum of Extraglandular Manifestations in Primary Sjögren's Syndrome. J Pers Med 2023; 13:961. [PMID: 37373950 DOI: 10.3390/jpm13060961] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Extraglandular manifestations (EGMs) in primary Sjogren's syndrome (pSS) represent the clinical expression of the systemic involvement in this disease. EGMs are characterized by a wide heterogeneity; virtually any organ or system can be affected, with various degrees of dysfunction. The existing gaps of knowledge in this complex domain of extraglandular extension in pSS need to be overcome in order to increase the diagnostic accuracy of EGMs in pSS. The timely identification of EGMs, as early as from subclinical stages, can be facilitated using highly specific biomarkers, thus preventing decompensated disease and severe complications. To date, there is no general consensus on the diagnostic criteria for the wide range of extraglandular involvement in pSS, which associates important underdiagnosing of EGMs, subsequent undertreatment and progression to severe organ dysfunction in these patients. This review article presents the most recent basic and clinical science research conducted to investigate pathogenic mechanisms leading to EGMs in pSS patients. In addition, it presents the current diagnostic and treatment recommendations and the trends for future therapeutic strategies based on personalized treatment, as well as the latest research in the field of diagnostic and prognostic biomarkers for extraglandular involvement in pSS.
Collapse
Affiliation(s)
- Ancuta Mihai
- Department of Internal Medicine, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Rheumatology, Faculty of General Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Ciprian Jurcut
- Department of Internal Medicine, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Florin Cristian Blajut
- Department of General Surgery, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Medical-Surgical Specialties, "Titu Maiorescu" University of Bucharest, 040441 Bucharest, Romania
| | - Mihnea Casian
- Emergency Institute for Cardiovascular Diseases Prof. Dr. C.C. Iliescu, 022328 Bucharest, Romania
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Opris-Belinski
- Internal Medicine and Rheumatology Department, Sfanta Maria Clinical Hospital, 011172 Bucharest, Romania
- Internal Medicine and Rheumatology Department, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ruxandra Ionescu
- Internal Medicine and Rheumatology Department, Sfanta Maria Clinical Hospital, 011172 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| |
Collapse
|
30
|
Ma J, Wang X, Yang X, Wang X, Tan T, Fang H, Zhong Y, Zhang Q. Increased METTL3 expression and m 6A RNA methylation may contribute to the development of dry eye in primary Sjögren's syndrome. BMC Ophthalmol 2023; 23:252. [PMID: 37277716 DOI: 10.1186/s12886-023-02988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/23/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Primary Sjögren's syndrome (pSS) is a chronic autoimmune disorder defined by xerostomia and keratoconjunctivitis sicca, and its etiology remains unknown. N6-methyladenosine (m6A) is the predominant posttranscriptional modification in eukaryotic mRNAs and is dynamically regulated by m6A regulators. Dysregulation of m6A modification is closely associated with several autoimmune disorders, but the role of m6A modification in pSS remains unknown. This study investigated the potential role of m6A and m6A-related regulators in pSS patients with dry eye. METHODS This cross-sectional study included forty-eight pSS patients with dry eye and forty healthy controls (HCs). Peripheral blood mononuclear cells (PBMCs) were isolated, and the level of m6A in total RNA was measured. The expression of m6A regulators was determined utilizing real-time PCR and western blotting. The serological indicators detected included autoantibodies, immunoglobulins (Igs), complement factors (Cs), and inflammatory indicators. Dry eye symptoms and signs were measured, including the ocular surface disease index, Schirmer's test (ST), corneal fluorescein staining score (CFS), and tear break-up time. Spearman's correlation coefficient was employed to assess the associations of m6A and m6A-related regulator expression with clinical characteristics. RESULTS The expression level of m6A was markedly increased in the PBMCs of pSS patients with dry eye compared to HCs (P value<0.001). The relative mRNA and protein expression levels of the m6A regulators methyltransferase-like 3 (METTL3) and YT521-B homology domains 1 were markedly elevated in pSS patients with dry eye (both P value<0.01). The m6A RNA level was found to be positively related to METTL3 expression in pSS patients (r = 0.793, P value<0.001). Both the m6A RNA level and METTL3 mRNA expression correlated with the anti-SSB antibody, IgG, ST, and CFS (all P values < 0.05). The m6A RNA level was associated with C4 (r = -0.432, P value = 0.002), while METTL3 mRNA expression was associated with C3 (r = -0.313, P value = 0.030). CONCLUSIONS Our work revealed that the upregulation of m6A and METTL3 was associated with the performance of serological indicators and dry eye signs in pSS patients with dry eye. METTL3 may contribute to the pathogenesis of dry eye related to pSS.
Collapse
Affiliation(s)
- Jun Ma
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xue Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xi Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Tongshan Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hongping Fang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yu Zhong
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Qi Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China.
- Chongqing Eye Institute, Chongqing, China.
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China.
| |
Collapse
|
31
|
Wang X, Zhu L, Ying S, Liao X, Zheng J, Liu Z, Gao J, Niu M, Xu X, Zhou Z, Xu H, Wu J. Increased RNA editing sites revealed as potential novel biomarkers for diagnosis in primary Sjögren's syndrome. J Autoimmun 2023; 138:103035. [PMID: 37216868 DOI: 10.1016/j.jaut.2023.103035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Transcriptome-wide aberrant RNA editing has been shown to contribute to autoimmune diseases, but its extent and significance in primary Sjögren's syndrome (pSS) are currently poorly understood. METHODS We systematically characterized the global pattern and clinical relevance of RNA editing in pSS by performing large-scale RNA sequencing of minor salivary gland tissues obtained from 439 pSS patients and 130 non-pSS or healthy controls. FINDINGS Compared with controls, pSS patients displayed increased global RNA-editing levels, which were significantly correlated and clinically relevant to various immune features in pSS. The elevated editing levels were likely explained by significantly increased expression of adenosine deaminase acting on RNA 1 (ADAR1) p150 in pSS, which was associated with disease features. In addition, genome-wide differential RNA editing (DRE) analysis between pSS and non-pSS showed that most (249/284) DRE sites were hyper-edited in pSS, especially the top 10 DRE sites dominated by hyper-edited sites and assigned to nine unique genes involved in the inflammatory response or immune system. Interestingly, among all DRE sites, six RNA editing sites were only detected in pSS and resided in three unique genes (NLRC5, IKZF3 and JAK3). Furthermore, these six specific DRE sites with significant clinical relevance in pSS showed a strong capacity to distinguish between pSS and non-pSS, reflecting powerful diagnostic efficacy and accuracy. CONCLUSION These findings reveal the potential role of RNA editing in contributing to the risk of pSS and further highlight the important prognostic value and diagnostic potential of RNA editing in pSS.
Collapse
Affiliation(s)
- Xiaobing Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lingxiao Zhu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Senhong Ying
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Liao
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Zheng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jianxia Gao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Miaomiao Niu
- Ningbo Health Gene Technologies Co, Ningbo, China
| | - Xin Xu
- Shandong Cancer Hospital and Institute, Jinan, China
| | - Zihao Zhou
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China; Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China; School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
32
|
Thorlacius GE, Björk A, Wahren-Herlenius M. Genetics and epigenetics of primary Sjögren syndrome: implications for future therapies. Nat Rev Rheumatol 2023; 19:288-306. [PMID: 36914790 PMCID: PMC10010657 DOI: 10.1038/s41584-023-00932-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
In primary Sjögren syndrome (pSS), chronic inflammation of exocrine glands results in tissue destruction and sicca symptoms, primarily of the mouth and eyes. Fatigue, arthralgia and myalgia are also common symptoms, whereas extraglandular manifestations that involve the respiratory, nervous and vascular systems occur in a subset of patients. The disease predominantly affects women, with an estimated female to male ratio of 14 to 1. The aetiology of pSS, however, remains incompletely understood, and effective treatment is lacking. Large-scale genetic and epigenetic investigations have revealed associations between pSS and genes in both innate and adaptive immune pathways. The genetic variants mediate context-dependent effects, and both sex and environmental factors can influence the outcome. As such, genetic and epigenetic studies can provide insight into the dysregulated molecular mechanisms, which in turn might reveal new therapeutic possibilities. This Review discusses the genetic and epigenetic features that have been robustly connected with pSS, putting them into the context of cellular function, carrier sex and environmental challenges. In all, the observations point to several novel opportunities for early detection, treatment development and the pathway towards personalized medicine.
Collapse
Affiliation(s)
- Gudny Ella Thorlacius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Albin Björk
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
33
|
Latini A, De Benedittis G, Colafrancesco S, Perricone C, Novelli G, Novelli L, Priori R, Ciccacci C, Borgiani P. PCSK3 Overexpression in Sjögren's Syndrome Patients May Be Regulated by rs4932178 SNP in Its Promoter Region and Correlates with IFN-γ Gene Expression. Genes (Basel) 2023; 14:genes14050981. [PMID: 37239341 DOI: 10.3390/genes14050981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The PCSK3 gene encodes for the protease enzyme Furin, which promotes proteolytic maturation of important regulators of the immune response, and also enhances the secretion of interferon-γ (IFN). Several studies have suggested its possible involvement in the pathogenesis of chronic inflammatory diseases. METHODS We investigated the PCSK3 gene expression level in peripheral blood mononuclear cells isolated from Sjögren's Syndrome (SS) patients and healthy controls and we evaluated a possible correlation with IFN-γ gene expression. Moreover, we also explored the variability of two PCSK3 genetic polymorphisms (rs4932178 and rs4702) to evaluate a possible association between these polymorphisms and the expression levels of this gene. RESULTS We observed, by RT-qPCR, that the PCSK3 expression level was significantly higher in SS patients compared to the controls (p = 0.028), and we confirmed a positive correlation between PCSK3 and IFN-γ expression levels (p < 0.001). Moreover, we reported that the variant homozygous genotype of rs4932178 SNP is associated with a higher expression of the PCSK3 gene (p = 0.038) and with the SS susceptibility (p = 0.016). CONCLUSIONS Our data suggest that Furin could play a role in SS development, also promoting IFN-γ secretion.
Collapse
Affiliation(s)
- Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giada De Benedittis
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Serena Colafrancesco
- Division of Rheumatology, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University, 00133 Rome, Italy
| | - Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini 1, 06129 Perugia, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy
- IRCCS NEUROMED, 86077 Pozzilli, Italy
- School of Medicine, Department of Pharmacology, University of Nevada, Reno, NV 89557, USA
| | - Lucia Novelli
- UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Roberta Priori
- UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
- AOU Policlinico Umberto 1, 00161 Rome, Italy
| | - Cinzia Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
34
|
Acuna K, Choudhary A, Locatelli E, Rodriguez DA, Martin ER, Levitt RC, Galor A. Impact of Tumor Necrosis Factor Receptor 1 ( TNFR1) Polymorphism on Dry Eye Disease. Biomolecules 2023; 13:262. [PMID: 36830631 PMCID: PMC9953194 DOI: 10.3390/biom13020262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/02/2023] Open
Abstract
The goal of the study was to examine whether a genetic polymorphism in tumor necrosis factor receptor 1 (TNFR1) gene impacted the dry eye disease (DED) phenotype and response to anti-inflammatory therapy. The prospective study included 328 individuals with various dry eye (DE) symptoms and signs recruited from the Miami Veterans Hospital eye clinic between October 2013 and October 2017. The population underwent genetic profiling for a polymorphism within the TNFR1 gene (rs1800693 [TT, TC, CC]). The study examined the genotype distribution and relationships between the genotype, phenotype, and response to anti-inflammatory therapy. The mean age of the population was 61.7 ± 9.8 years. Here, 92% self-identified as male, 44% as White, and 21% as Hispanic; 13% (n = 42) of individuals had a CC genotype. DED symptoms and signs were similar across the three genotype groups. Thirty individuals (four with CC) were subsequently treated with an anti-inflammatory agent. There was a non-significant trend for individuals with CC genotype to have a partial or complete symptomatic response to treatment compared with the other two groups (100% for CC vs. 40% for TT and 36.4% for TC, p = 0.22). In conclusion, the presence of homozygosity of minor allele C (CC genotype) in a single nucleotide polymorphism (SNP) within TNFR1 was noted in a minority of individuals with various aspects of DED, but did not impact the DED phenotype. Our findings suggest that the current phenotyping strategies for DED are insufficient to identify underlying disease contributors, including potential genetic contributors.
Collapse
Affiliation(s)
- Kelly Acuna
- Department of Ophthalmology, Miami VA Medical Center, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| | - Anjalee Choudhary
- Department of Ophthalmology, Miami VA Medical Center, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| | - Elyana Locatelli
- Department of Ophthalmology, Miami VA Medical Center, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| | - Daniel A. Rodriguez
- Department of Ophthalmology, Miami VA Medical Center, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| | - Eden R. Martin
- John T. MacDonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Roy C. Levitt
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
- John T. MacDonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anat Galor
- Department of Ophthalmology, Miami VA Medical Center, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
35
|
Wu KY, Kulbay M, Tanasescu C, Jiao B, Nguyen BH, Tran SD. An Overview of the Dry Eye Disease in Sjögren's Syndrome Using Our Current Molecular Understanding. Int J Mol Sci 2023; 24:1580. [PMID: 36675090 PMCID: PMC9866656 DOI: 10.3390/ijms24021580] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Sjögren's syndrome is a chronic and insidious auto-immune disease characterized by lymphocyte infiltration of exocrine glands. The patients typically present with ocular surface diseases related to dry eye and other systemic manifestations. However, due to the high prevalence of dry eye disease and the lack of objective and clinically reliable diagnostic tools, discriminating Sjögren's syndrome dry eye (SSDE) from non-Sjögren's syndrome dry eye (NSSDE) remains a challenge for clinicians. Diagnosing SS is important to improve the quality of life of patients through timely referral for systemic workups, as SS is associated with serious systemic complications such as lymphoma and other autoimmune diseases. The purpose of this article is to describe the current molecular understanding of Sjögren's syndrome and its implications for novel diagnostic modalities on the horizon. A literature review of the pre-clinical and clinical studies published between 2016 and 2022 was conducted. The SSDE pathophysiology and immunology pathways have become better understood in recent years. Novel diagnostic modalities, such as tear and saliva proteomics as well as exosomal biomarkers, provide hope on the horizon.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Cristina Tanasescu
- School of Optometry, University of Montreal, Montreal, QC H3T 1P1, Canada
| | - Belinda Jiao
- Department of Medicine, Division of Internal Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Bich H. Nguyen
- CHU Sainte Justine Hospital, Montreal, QC H3T 1C5, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
36
|
Safonova TN, Zaitseva GV, Loginov VI, Burdennyy AM. [Predictive significance of genetic analysis of the development of dry eye disease of different origin]. Vestn Oftalmol 2023; 139:13-18. [PMID: 38235625 DOI: 10.17116/oftalma202313906113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
One of the etiological causes of dry eye disease (DED) is systemic autoimmune diseases (AID): primary Sjögren's syndrome (PSS), rheumatoid arthritis (RA); their manifestation may begin with ophthalmic symptoms. The relationship of PSS and RA with genetic factors is proven. The contribution of polymorphic markers of the genes THBS1, MUC1, TRIM21, STAT4, PTPN22 in the development of these diseases is established, as well as their connection with the development of DED. A panel of genetic markers for evaluating the risk of developing DED in PSS and RA is developed, and its sensitivity and specificity is determined. PURPOSE The aim of the study was to determine the prognostic significance of a panel of polymorphic gene markers in the development of dry eye syndrome in patients with primary Sjögren's syndrome and rheumatoid arthritis over a five-year follow-up period. MATERIAL AND METHODS Patients with a verified diagnosis of PSS and RA without signs of DED were examined (n=35 and n=42, respectively). The control group included 82 volunteers without AID and DED. The observation period was 5 years. Every year all study subjects underwent an ophthalmological clinical and functional examination. RESULTS Dry eye disease had developed in groups of patients with AID with predisposing genotypes of polymorphic markers of the genes THBS1, MUC1, TRIM21, STAT4, PTPN22. The peak of DED development in these patients was in the third year of the follow-up. As a result of ROC analysis, it was found that the sensitivity and specificity of determining the predisposing genotypes of polymorphic markers of the THBS1, MUC1, TRIM21, STAT4, PTPN22 genes was 68 and 87%, respectively (p<0.0001). CONCLUSION Genetic research methods are essential for minimally invasive early diagnosis of dry eye disease, and can subsequently become the basis for a personalized approach to its treatment.
Collapse
Affiliation(s)
- T N Safonova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - G V Zaitseva
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - V I Loginov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - A M Burdennyy
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
37
|
Jin L, Dai M, Li C, Wang J, Wu B. Risk factors for primary Sjögren's Syndrome: a systematic review and meta-analysis. Clin Rheumatol 2023; 42:327-338. [PMID: 36534351 PMCID: PMC9873717 DOI: 10.1007/s10067-022-06474-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The aim of this study was to analyze the risk factors for primary Sjögren's Syndrome (pSS) by conducting a meta-analysis of observational studies. METHODS Four electronic databases were searched from inception to August 2022. The search strategy included medical subject headings (MeSH) and text words. Outcomes were calculated and reported as the odds ratio (OR) and 95% confidence interval (CI). RESULTS Twelve studies consisting of nine case-control and three cohort studies were analyzed. Significant positive relationships between infection, a family history of autoimmune disease in first-degree relatives, negative stressful life events, CGGGG insertion/deletion polymorphisms in the IRF5 gene and the onset of pSS were found, with pooled ORs and 95% CIs of 2.73 (1.93, 3.86), 5.93 (3.34, 10.52), 1.69 (1.27, 2.24) and 2.69 (1.97, 3.66), respectively. In contrast, the results showed that a history of smoking was not associated with the onset of pSS, with a pooled OR and 95% CI of 1.39 (0.76, 2.53). However, a statistically significant negative association between current smoking and pSS was detected, with a pooled OR and 95% CI of 0.4 (0.29, 0.83). CONCLUSIONS Our research indicated that infection, a family history of autoimmune disease in first-degree relatives, negative stressful life events and CGGGG insertion/deletion polymorphisms in the IRF5 gene might be risk factors for pSS. In contrast, our study demonstrated that a history of smoking was not associated with the onset of pSS, whereas current smoking was negatively associated with pSS onset. SYSTEMATIC REVIEW REGISTRATION We registered this review on INPLASY ( https://inplasy.com/ ) under registration number INPLASY202230005.
Collapse
Affiliation(s)
- Liang Jin
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, No. 6, Pan Xi Qi Zhi Road, Jiangbei District, Chongqing, 400021 China ,Shenzhen Hospital of Guangzhou University of Traditional Chinese Medicine, No.6001, Beihuan Avenue, Futian District, Shenzhen, 518000 China
| | - Min Dai
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, No. 6, Pan Xi Qi Zhi Road, Jiangbei District, Chongqing, 400021 China
| | - Chengyin Li
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, No. 6, Pan Xi Qi Zhi Road, Jiangbei District, Chongqing, 400021 China
| | - Jing Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, No. 6, Pan Xi Qi Zhi Road, Jiangbei District, Chongqing, 400021 China
| | - Bin Wu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, No. 6, Pan Xi Qi Zhi Road, Jiangbei District, Chongqing, 400021 China
| |
Collapse
|
38
|
Yu S, Wang H, Liu M, Pei F, Liu H, Zhang J, Zhang L, Li Q, Chen Z. Loss of ATG5 in KRT14 + cells leads to accumulated functional impairments of salivary glands via pyroptosis. FASEB J 2022; 36:e22631. [PMID: 36342387 DOI: 10.1096/fj.202200946r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
Macroautophagy/autophagy is critically involved in the process of salivary gland (SG) diseases such as xerostomia, which has a serious impact on quality of life. KRT14+ progenitor cells are found to be the main progenitors for maintaining the ductal homeostasis of the submandibular SGs. In this study, we investigated the role of ATG5 in SG KRT14+ cells in mice and humans. Human labial salivary glands (LSG) from primary Sjogren's syndrome (pSS) and non-pSS patients (normal), and submandibular glands (SMG) from Atg5flox/flox ; Krt14-Cre (cKO) mice were used. ATG5+ KRT14+ and p62+ KRT14+ cells were detected by immunofluorescence staining in LSG. TUNEL, immunofluorescence, immunohistochemistry, and western blot were performed to detect cell death in SMG. Saliva was collected in 12-week-old (12 W) and 32-week-old (32 W) mice, then the concentration of calcium and buffering capacity were detected to analyze the function of SG. We found that LSG from pSS patients showed increased p62 and decreased ATG5 in KRT14+ cells. We further revealed that in 32 W, (1) the function of salivary glands was significantly impaired in cKO mice, (2) cell death increased in cKO mice, but cl-Caspase 3 was not significantly changed, and (3) cleaved gasdermin D increased and was highly expressed in KRT14+ cells of cKO mice. After applying a pyroptosis inhibitor to 32 W mice, the reduced saliva flow rate was rescued. In addition, pyroptosis was also found in KRT14+ cells of pSS patients. Collectively, our results indicate that Atg5 deficiency would induce pyroptosis in mice SG, which could lead to functional impairments of SG.
Collapse
Affiliation(s)
- Siqi Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haisheng Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ming Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fei Pei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Cariology & Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huan Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiali Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Pathology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Cariology & Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qiuhui Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Cariology & Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
39
|
Xiao Q, Wu X, Deng C, Zhao L, Peng L, Zhou J, Zhang W, Zhao Y, Fei Y. The potential role of RNA N6-methyladenosine in primary Sjögren's syndrome. Front Med (Lausanne) 2022; 9:959388. [PMID: 36465909 PMCID: PMC9710536 DOI: 10.3389/fmed.2022.959388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/24/2022] [Indexed: 07/28/2023] Open
Abstract
Objective The pathogenesis of primary Sjögren's syndrome (pSS) remains incompletely understood. The N6-methyladenosine (m6A) RNA modification, the most abundant internal transcript modification, has close associations with multiple diseases. This study aimed to investigate the role of m6A in patients with pSS. Materials and methods This study enrolled 44 patients with pSS, 50 age- and gender-matched healthy controls (HCs), and 11 age- and gender-matched patients with non-SS sicca. We detected the messenger RNA (mRNA) levels of m6A elements (including METTL3, WTAP, RBM15, ALKBH5, FTO, YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2), ISG15, and USP18 in peripheral blood mononuclear cells (PBMCs) from patients with pSS, patients with non-SS sicca, and HCs. The clinical characteristics and laboratory findings of patients with pSS and patients with non-SS sicca were also collected. We used binary logistic regression to determine if m6A elements were risk factors for pSS. Results The mRNA levels of m6A writers (METTL3 and RBM15), erasers (ALKBH5 and FTO), and readers (YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2) were all significantly higher in PBMCs from patients with pSS than in HCs. The mRNA levels of m6A writers (METTL3 and WTAP) and readers (YTHDF2, YTHDF3, and YTHDC2) were lower in PBMCs from patients with pSS compared to patients with non-SS sicca. The expression of METTL3, RBM15, FTO, YTHDF1, YTHDF2, YTHDC1, and YTHDC2 was positively correlated with the level of C-reactive protein (CRP) of patients with pSS. The mRNA level of YTHDF1 in PBMCs from patients with pSS was negatively correlated with the EULAR Sjögren's syndrome disease activity index (ESSDAI) score. In patients with pSS, FTO, YTHDC1, and YTHDC2 were also related to white blood cells (WBCs), neutrophils, lymphocytes, and monocytes. Increased mRNA level of ALKBH5 in PBMCs was a risk factor for pSS, as determined by binary logistic regression analysis. The mRNA level of ISG15 was positively correlated with that of FTO, YTHDF2, YTHDF3, and YTHDC2 in patients with pSS. Conclusion Compared with HCs, the expression of METTL3, RBM15, ALKBH5, FTO, YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 was considerably higher in PBMCs from patients with pSS. In comparison with patients with non-SS sicca, the expression of METTL3, WTAP, YTHDF2, YTHDF3, and YTHDC2 was reduced in PBMCs from patients with pSS. The m6A elements correlating with clinical variables may indicate the disease activity and inflammation status of pSS. Elevated expression of ALKBH5 was a risk factor for pSS. The dynamic process of m6A modification is active in pSS. m6A elements (FTO, YTHDF2, YTHDF3, or YTHDC2) might target ISG15, stimulate the expression of ISG15, and activate the type I IFN signaling pathway, playing an active role in initiating the autoimmunity in pSS.
Collapse
Affiliation(s)
- Qiufeng Xiao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xunyao Wu
- Clinical Biobank, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuiwen Deng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Linyi Peng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yunyun Fei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
40
|
Joachims ML, Khatri B, Li C, Tessneer KL, Ice JA, Stolarczyk AM, Means N, Grundahl KM, Glenn SB, Kelly JA, Lewis DM, Radfar L, Stone DU, Guthridge JM, James JA, Scofield RH, Wiley GB, Wren JD, Gaffney PM, Montgomery CG, Sivils KL, Rasmussen A, Farris AD, Adrianto I, Lessard CJ. Dysregulated long non-coding RNA in Sjögren's disease impacts both interferon and adaptive immune responses. RMD Open 2022; 8:e002672. [PMID: 36456101 PMCID: PMC9717416 DOI: 10.1136/rmdopen-2022-002672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Sjögren's disease (SjD) is an autoimmune disease characterised by inflammatory destruction of exocrine glands. Patients with autoantibodies to Ro/SSA (SjDRo+) exhibit more severe disease. Long non-coding RNAs (lncRNAs) are a functionally diverse class of non-protein-coding RNAs whose role in autoimmune disease pathology has not been well characterised. METHODS Whole blood RNA-sequencing (RNA-seq) was performed on SjD cases (n=23 Ro/SSA negative (SjDRo-); n=27 Ro/SSA positive (SjDRo+) and healthy controls (HCs; n=27). Bioinformatics and pathway analyses of differentially expressed (DE) transcripts (log2 fold change ≥2 or ≤0.5; padj<0.05) were used to predict lncRNA function. LINC01871 was characterised by RNA-seq analyses of HSB-2 cells with CRISPR-targeted LINC01871 deletion (LINC01871-/ -) and in vitro stimulation assays. RESULTS Whole blood RNA-seq revealed autoantibody-specific transcription profiles and disproportionate downregulation of DE transcripts in SjD cases relative to HCs. Sixteen DE lncRNAs exhibited correlated expression with the interferon (IFN)-regulated gene, RSAD2, in SjDRo+ (r≥0.65 or ≤-0.6); four antisense lncRNAs exhibited IFN-regulated expression in immune cell lines. LINC01871 was upregulated in all SjD cases. RNA-seq and pathway analyses of LINC01871-/ - cells implicated roles in cytotoxic function, differentiation and IFNγ induction. LINC01871 was induced by IFNγ in a myeloid cell line and regulated by calcineurin/NFAT pathway and T cell receptor (TCR) signalling in primary human T cells. CONCLUSION LINC01871 influences expression of many immune cell genes and growth factors, is IFNγ inducible, and regulated by calcineurin signalling and TCR ligand engagement. Altered LINC01871 expression may influence the dysregulated T cell inflammatory pathways implicated in SjD.
Collapse
Affiliation(s)
- Michelle L Joachims
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Bhuwan Khatri
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Chuang Li
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kandice L Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - John A Ice
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Anna M Stolarczyk
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Nicolas Means
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kiely M Grundahl
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Stuart B Glenn
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jennifer A Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - David M Lewis
- Department of Oral and Maxillofacial Pathology, The University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA
| | - Lida Radfar
- Oral Diagnosis and Radiology Department, The University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA
| | - Donald U Stone
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Judith A James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- US Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Graham B Wiley
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jonathan D Wren
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Patrick M Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Courtney G Montgomery
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kathy L Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Astrid Rasmussen
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Indra Adrianto
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | - Christopher J Lessard
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
41
|
De Benedittis G, Latini A, Colafrancesco S, Priori R, Perricone C, Novelli L, Borgiani P, Ciccacci C. Alteration of Mitochondrial DNA Copy Number and Increased Expression Levels of Mitochondrial Dynamics-Related Genes in Sjögren's Syndrome. Biomedicines 2022; 10:2699. [PMID: 36359219 PMCID: PMC9687724 DOI: 10.3390/biomedicines10112699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/26/2023] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune multifactorial disease characterized by inflammation and lymphocytic infiltration of the exocrine glands. Several studies have highlighted the involvement of oxidative stress in this pathology, suggesting that it could induce mitochondrial dysfunctions. Mitochondria could have a role in inflammatory and immune processes. Since the mitochondrial DNA (mtDNA) copy number could change in response to physiological or environmental stimuli, this study aimed to evaluate possible alterations in the mtDNA copy number in SS. We have analyzed the amount of mtDNA in the peripheral blood of 74 SS patients and 61 healthy controls by qPCR. Then, since mitochondrial fusion and fission play a crucial role in maintaining the number of mitochondria, we investigated the expression variability of the genes most commonly involved in mitochondrial dynamics in a subgroup of SS patients and healthy controls. Interestingly, we observed a highly significant decrease in mtDNA copies in the SS patients compared to healthy controls (p = 1.44 × 10-12). Expression levels of mitochondrial fission factor (MFF), mitofusin-1 (MFN1), and mitochondrial transcription factor A (TFAM) genes were analyzed, showing a statistically significant increase in the expression of MFF (p = 0.003) and TFAM (p = 0.022) in the SS patients compared to healthy controls. These results give further insight into the possible involvement of mitochondrial dysfunctions in SS disease.
Collapse
Affiliation(s)
- Giada De Benedittis
- Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Andrea Latini
- Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Serena Colafrancesco
- Division of Rheumatology, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University, 00133 Rome, Italy
| | - Roberta Priori
- Division of Rheumatology, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University, 00133 Rome, Italy
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Carlo Perricone
- Rheumatology Department of Medicine, University of Perugia, Piazzale Giorgio Menghini 1, 06129 Perugia, Italy
| | - Lucia Novelli
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Paola Borgiani
- Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cinzia Ciccacci
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|
42
|
Mazur A, Frączek P, Tabarkiewicz J. Vitamin D as a Nutri-Epigenetic Factor in Autoimmunity-A Review of Current Research and Reports on Vitamin D Deficiency in Autoimmune Diseases. Nutrients 2022; 14:nu14204286. [PMID: 36296970 PMCID: PMC9611618 DOI: 10.3390/nu14204286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Epigenetics is a series of alterations regulating gene expression without disrupting the DNA sequence of bases. These regulatory mechanisms can result in embryogenesis, cellular differentiation, X-chromosome inactivation, and DNA-protein interactions. The main epigenetic mechanisms considered to play a major role in both health and disease are DNA methylation, histone modifications, and profiling of non-coding RNA. When the fragile balance between these simultaneously occurring phenomena is disrupted, the risk of pathology increases. Thus, the factors that determine proper epigenetic modeling are defined and those with disruptive influence are sought. Several such factors with proven negative effects have already been described. Diet and nutritional substances have recently been one of the most interesting targets of exploration for epigenetic modeling in disease states, including autoimmunity. The preventive role of proper nutrition and maintaining sufficient vitamin D concentration in maternal blood during pregnancy, as well as in the early years of life, is emphasized. Opportunities are also being investigated for affecting the course of the disease by exploring nutriepigenetics. The authors aim to review the literature presenting vitamin D as one of the important nutrients potentially modeling the course of disease in selected autoimmune disorders.
Collapse
Affiliation(s)
- Artur Mazur
- Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszow, Poland
| | - Paulina Frączek
- Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszow, Poland
- Correspondence:
| | - Jacek Tabarkiewicz
- Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszow, Poland
- Centre for Innovative Research in Medical and Natural Sciences, Medical Faculty, University of Rzeszów, 35-310 Rzeszow, Poland
| |
Collapse
|
43
|
Tcholakov B, Qasim H. The Relationship Between Sjogren's Syndrome and Sleep Disturbance: A Case Report. Cureus 2022; 14:e30321. [PMID: 36407133 PMCID: PMC9662757 DOI: 10.7759/cureus.30321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2022] [Indexed: 06/16/2023] Open
Abstract
Sjogren's syndrome is an autoimmune disorder characterized by the infiltration and disruption of exocrine glands by the host's immune cells. It is the third most common autoimmune syndrome after systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). This syndrome most commonly affects females. This disorder most typically presents as sicca symptoms, though plenty of other symptoms can exist. One of these other symptoms is the disturbance of sleep. The insomnia component of Sjogren's syndrome is the focus of this case report.
Collapse
Affiliation(s)
| | - Hodan Qasim
- Internal Medicine, Alfaisal University, Riyadh, SAU
| |
Collapse
|
44
|
Ehnes DD, Alghadeer A, Hanson-Drury S, Zhao YT, Tilmes G, Mathieu J, Ruohola-Baker H. Sci-Seq of Human Fetal Salivary Tissue Introduces Human Transcriptional Paradigms and a Novel Cell Population. FRONTIERS IN DENTAL MEDICINE 2022; 3:887057. [PMID: 36540608 PMCID: PMC9762771 DOI: 10.3389/fdmed.2022.887057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Multiple pathologies and non-pathological factors can disrupt the function of the non-regenerative human salivary gland including cancer and cancer therapeutics, autoimmune diseases, infections, pharmaceutical side effects, and traumatic injury. Despite the wide range of pathologies, no therapeutic or regenerative approaches exist to address salivary gland loss, likely due to significant gaps in our understanding of salivary gland development. Moreover, identifying the tissue of origin when diagnosing salivary carcinomas requires an understanding of human fetal development. Using computational tools, we identify developmental branchpoints, a novel stem cell-like population, and key signaling pathways in the human developing salivary glands by analyzing our human fetal single-cell sequencing data. Trajectory and transcriptional analysis suggest that the earliest progenitors yield excretory duct and myoepithelial cells and a transitional population that will yield later ductal cell types. Importantly, this single-cell analysis revealed a previously undescribed population of stem cell-like cells that are derived from SD and expresses high levels of genes associated with stem cell-like function. We have observed these rare cells, not in a single niche location but dispersed within the developing duct at later developmental stages. Our studies introduce new human-specific developmental paradigms for the salivary gland and lay the groundwork for the development of translational human therapeutics.
Collapse
Affiliation(s)
- Devon Duron Ehnes
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ammar Alghadeer
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Sesha Hanson-Drury
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Yan Ting Zhao
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Gwen Tilmes
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
45
|
Kelly AL, Nelson RJ, Sara R, Alberto S. Sjögren Syndrome: New Insights in the Pathogenesis and Role of Nuclear Medicine. J Clin Med 2022; 11:5227. [PMID: 36079157 PMCID: PMC9456759 DOI: 10.3390/jcm11175227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/18/2022] Open
Abstract
In the last years, new insights into the molecular basis of rheumatic conditions have been described, which have generated particular interest in understanding the pathophysiology of these diseases, in which lies the explanation of the diversity of clinical presentation and the difficulty in diagnostic and therapeutic approaches. In this review, we focus on the new pathophysiological findings for Sjögren syndrome and on the derived new SPECT and PET radiopharmaceuticals to detect inflammation of immunological origin, focusing on their role in diagnosis, prognosis, and the evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Anzola Luz Kelly
- Nuclear Medicine Unit, Clinica Universitaria Colombia, Bogotá 111321, Colombia
- Nuclear Medicine Unit, Clinica Reina Sofia, Bogotá 110121, Colombia
- Fundacion Universitaria Sanitas, Bogotá 110111, Colombia
| | - Rivera Jose Nelson
- Internal Medicine Department Clinica Reina Sofia, Bogotá 110121, Colombia
| | - Ramírez Sara
- Fundacion Universitaria Sanitas, Bogotá 110111, Colombia
| | - Signore Alberto
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University, 00185 Rome, Italy
| |
Collapse
|
46
|
Khatri B, Tessneer KL, Rasmussen A, Aghakhanian F, Reksten TR, Adler A, Alevizos I, Anaya JM, Aqrawi LA, Baecklund E, Brun JG, Bucher SM, Eloranta ML, Engelke F, Forsblad-d’Elia H, Glenn SB, Hammenfors D, Imgenberg-Kreuz J, Jensen JL, Johnsen SJA, Jonsson MV, Kvarnström M, Kelly JA, Li H, Mandl T, Martín J, Nocturne G, Norheim KB, Palm Ø, Skarstein K, Stolarczyk AM, Taylor KE, Teruel M, Theander E, Venuturupalli S, Wallace DJ, Grundahl KM, Hefner KS, Radfar L, Lewis DM, Stone DU, Kaufman CE, Brennan MT, Guthridge JM, James JA, Scofield RH, Gaffney PM, Criswell LA, Jonsson R, Eriksson P, Bowman SJ, Omdal R, Rönnblom L, Warner B, Rischmueller M, Witte T, Farris AD, Mariette X, Alarcon-Riquelme ME, Shiboski CH, Wahren-Herlenius M, Ng WF, Sivils KL, Adrianto I, Nordmark G, Lessard CJ. Genome-wide association study identifies Sjögren's risk loci with functional implications in immune and glandular cells. Nat Commun 2022; 13:4287. [PMID: 35896530 PMCID: PMC9329286 DOI: 10.1038/s41467-022-30773-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sjögren's disease is a complex autoimmune disease with twelve established susceptibility loci. This genome-wide association study (GWAS) identifies ten novel genome-wide significant (GWS) regions in Sjögren's cases of European ancestry: CD247, NAB1, PTTG1-MIR146A, PRDM1-ATG5, TNFAIP3, XKR6, MAPT-CRHR1, RPTOR-CHMP6-BAIAP6, TYK2, SYNGR1. Polygenic risk scores yield predictability (AUROC = 0.71) and relative risk of 12.08. Interrogation of bioinformatics databases refine the associations, define local regulatory networks of GWS SNPs from the 95% credible set, and expand the implicated gene list to >40. Many GWS SNPs are eQTLs for genes within topologically associated domains in immune cells and/or eQTLs in the main target tissue, salivary glands.
Collapse
Affiliation(s)
- Bhuwan Khatri
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Kandice L. Tessneer
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Astrid Rasmussen
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Farhang Aghakhanian
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Tove Ragna Reksten
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Adam Adler
- grid.274264.10000 0000 8527 6890NGS Core Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Ilias Alevizos
- grid.419633.a0000 0001 2205 0568Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD USA
| | - Juan-Manuel Anaya
- grid.412191.e0000 0001 2205 5940Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogotá, Colombia
| | - Lara A. Aqrawi
- grid.5510.10000 0004 1936 8921Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway ,grid.457625.70000 0004 0383 3497Department of Health Sciences, Kristiania University College, Oslo, Norway
| | - Eva Baecklund
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan G. Brun
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sara Magnusson Bucher
- grid.15895.300000 0001 0738 8966Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Maija-Leena Eloranta
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fiona Engelke
- grid.10423.340000 0000 9529 9877Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Helena Forsblad-d’Elia
- grid.8761.80000 0000 9919 9582Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Stuart B. Glenn
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Daniel Hammenfors
- grid.412008.f0000 0000 9753 1393Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Juliana Imgenberg-Kreuz
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Janicke Liaaen Jensen
- grid.5510.10000 0004 1936 8921Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Svein Joar Auglænd Johnsen
- grid.412835.90000 0004 0627 2891Department of Internal Medicine, Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - Malin V. Jonsson
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.7914.b0000 0004 1936 7443Section for Oral and Maxillofacial Radiology, Department of Clinical Dentistry, Medical Faculty, University of Bergen, Bergen, Norway
| | - Marika Kvarnström
- grid.4714.60000 0004 1937 0626Rheumatology Unity, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden ,grid.425979.40000 0001 2326 2191Academic Specialist Center, Center for Rheumatology and Studieenheten, Stockholm Health Services, Region Stockholm, Sweden
| | - Jennifer A. Kelly
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - He Li
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.505430.7Translational Sciences, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA USA
| | - Thomas Mandl
- grid.4514.40000 0001 0930 2361Rheumatology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Javier Martín
- grid.4711.30000 0001 2183 4846Instituto de Biomedicina y Parasitología López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Gaétane Nocturne
- grid.413784.d0000 0001 2181 7253Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1184, Le Kremlin Bicêtre, France
| | - Katrine Brække Norheim
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412835.90000 0004 0627 2891Department of Rheumatology, Stavanger University Hospital, Stavanger, Norway
| | - Øyvind Palm
- grid.5510.10000 0004 1936 8921Department of Rheumatology, University of Oslo, Oslo, Norway
| | - Kathrine Skarstein
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412008.f0000 0000 9753 1393Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Anna M. Stolarczyk
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Kimberly E. Taylor
- grid.266102.10000 0001 2297 6811Department of Medicine, Russell/Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, California USA
| | - Maria Teruel
- grid.4489.10000000121678994Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Elke Theander
- grid.411843.b0000 0004 0623 9987Department of Rheumatology, Skåne University Hospital, Malmö, Sweden ,Medical Affairs, Jannsen-Cilag EMEA (Europe/Middle East/Africa), Beerse, Belgium
| | - Swamy Venuturupalli
- grid.50956.3f0000 0001 2152 9905Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Daniel J. Wallace
- grid.50956.3f0000 0001 2152 9905Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Kiely M. Grundahl
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | | | - Lida Radfar
- grid.266900.b0000 0004 0447 0018Oral Diagnosis and Radiology Department, University of Oklahoma College of Dentistry, Oklahoma City, OK USA
| | - David M. Lewis
- grid.266900.b0000 0004 0447 0018Department of Oral and Maxillofacial Pathology, University of Oklahoma College of Dentistry, Oklahoma City, OK USA
| | - Donald U. Stone
- grid.266902.90000 0001 2179 3618Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - C. Erick Kaufman
- grid.266902.90000 0001 2179 3618Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Michael T. Brennan
- grid.239494.10000 0000 9553 6721Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC USA ,grid.241167.70000 0001 2185 3318Department of Otolaryngology/Head and Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Joel M. Guthridge
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Judith A. James
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - R. Hal Scofield
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA ,grid.413864.c0000 0004 0420 2582US Department of Veterans Affairs Medical Center, Oklahoma City, OK USA
| | - Patrick M. Gaffney
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Lindsey A. Criswell
- grid.266102.10000 0001 2297 6811Department of Medicine, Russell/Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, California USA ,grid.266102.10000 0001 2297 6811Institute of Human Genetics (IHG), University of California San Francisco, San Francisco, CA USA ,grid.280128.10000 0001 2233 9230Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, NIH, Bethesda, MD USA
| | - Roland Jonsson
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412008.f0000 0000 9753 1393Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Per Eriksson
- grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
| | - Simon J. Bowman
- grid.412563.70000 0004 0376 6589Rheumatology Department, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK ,grid.6572.60000 0004 1936 7486Rheumatology Research Group, Institute of Inflammation & Ageing, University of Birmingham, Birmingham, UK ,grid.415667.7Rheumatology Department, Milton Keynes University Hospital, Milton Keynes, UK
| | - Roald Omdal
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412835.90000 0004 0627 2891Department of Internal Medicine, Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - Lars Rönnblom
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Blake Warner
- grid.419633.a0000 0001 2205 0568Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD USA
| | - Maureen Rischmueller
- grid.278859.90000 0004 0486 659XRheumatology Department, The Queen Elizabeth Hospital, Woodville, South Australia ,grid.1010.00000 0004 1936 7304University of Adelaide, Adelaide, South Australia
| | - Torsten Witte
- grid.10423.340000 0000 9529 9877Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - A. Darise Farris
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Xavier Mariette
- grid.413784.d0000 0001 2181 7253Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1184, Le Kremlin Bicêtre, France
| | - Marta E. Alarcon-Riquelme
- grid.4489.10000000121678994Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | | | - Caroline H. Shiboski
- grid.266102.10000 0001 2297 6811Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA USA
| | | | - Marie Wahren-Herlenius
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.4714.60000 0004 1937 0626Rheumatology Unity, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Wan-Fai Ng
- grid.1006.70000 0001 0462 7212Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK ,grid.420004.20000 0004 0444 2244NIHR Newcastle Biomedical Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Kathy L. Sivils
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.505430.7Translational Sciences, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA USA
| | - Indra Adrianto
- grid.239864.20000 0000 8523 7701Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health System, Detroit, MI USA
| | - Gunnel Nordmark
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Christopher J. Lessard
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
47
|
Martin-Gutierrez L, Wilson R, Castelino M, Jury EC, Ciurtin C. Multi-Omic Biomarkers for Patient Stratification in Sjogren's Syndrome-A Review of the Literature. Biomedicines 2022; 10:1773. [PMID: 35892673 PMCID: PMC9332255 DOI: 10.3390/biomedicines10081773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Sjögren's syndrome (SS) is a heterogeneous autoimmune rheumatic disease (ARD) characterised by dryness due to the chronic lymphocytic infiltration of the exocrine glands. Patients can also present other extra glandular manifestations, such as arthritis, anaemia and fatigue or various types of organ involvement. Due to its heterogenicity, along with the lack of effective treatments, the diagnosis and management of this disease is challenging. The objective of this review is to summarize recent multi-omic publications aiming to identify biomarkers in tears, saliva and peripheral blood from SS patients that could be relevant for their better stratification aiming at improved treatment selection and hopefully better outcomes. We highlight the relevance of pro-inflammatory cytokines and interferon (IFN) as biomarkers identified in higher concentrations in serum, saliva and tears. Transcriptomic studies confirmed the upregulation of IFN and interleukin signalling in patients with SS, whereas immunophenotyping studies have shown dysregulation in the immune cell population frequencies, specifically CD4+and C8+T activated cells, and their correlations with clinical parameters, such as disease activity scores. Lastly, we discussed emerging findings derived from different omic technologies which can provide integrated knowledge about SS pathogenesis and facilitate personalised medicine approaches leading to better patient outcomes in the future.
Collapse
Affiliation(s)
- Lucia Martin-Gutierrez
- Centre for Rheumatology Research, Division of Medicine, University College London, London WC1E 6JF, UK; (L.M.-G.); (E.C.J.)
| | - Robert Wilson
- Department of Rheumatology, University College London Hospitals NHS Trust, London NW1 2PG, UK; (R.W.); (M.C.)
| | - Madhura Castelino
- Department of Rheumatology, University College London Hospitals NHS Trust, London NW1 2PG, UK; (R.W.); (M.C.)
| | - Elizabeth C. Jury
- Centre for Rheumatology Research, Division of Medicine, University College London, London WC1E 6JF, UK; (L.M.-G.); (E.C.J.)
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London WC1E 6JF, UK
| |
Collapse
|
48
|
Santillán-López E, Muñoz-Valle JF, Oregon-Romero E, Espinoza-García N, Treviño-Talavera BA, Salazar-Camarena DC, Marín-Rosales M, Cruz A, Alvarez-Gómez JA, Sagrero-Fabela N, Cerpa-Cruz S, Palafox-Sánchez CA. Analysis of TNFSF13B polymorphisms and BAFF expression in rheumatoid arthritis and primary Sjögren's syndrome patients. Mol Genet Genomic Med 2022; 10:e1950. [PMID: 35411715 PMCID: PMC9184664 DOI: 10.1002/mgg3.1950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 11/11/2022] Open
Abstract
Background The increased expression of B cell‐activating factor (BAFF) has been linked to autoantibody production in autoimmune diseases (ADs). The aim of this study was to investigate the association among TNFSF13B gene (OMIM: 603969) single nucleotide polymorphisms (SNPs), TNFSF13B mRNA, and soluble BAFF (sBAFF) expression in patients with rheumatoid arthritis (RA) and primary Sjögren's syndrome (pSS). The diagnostic value of sBAFF also was evaluated by the area under the curve (AUC) of receiver operating characteristic or receptor (ROC) curves. Methods Genotypes of the TNFSF13B rs9514827 (−2841 T > C), rs1041569 (−2701 A > T) and rs9514828 (−871 C > T) SNPs were determined by PCR‐RFLP assay. TNFSF13B mRNA and sBAFF expression were performed by RT‐qPCR and ELISA, respectively. The study included 320 RA patients, 101 pSS patients, and 309 healthy subjects (HS). Results The rs9514828 T allele and the TAT haplotype were associated with an increased risk to develop RA. In both ADs, the TNFSF13B mRNA levels were increased in comparison with HS. The rs9514828 (−871 C > T) polymorphism was associated with increased gene expression in RA patients. Also, sBAFF levels were higher in both ADs, however pSS patients showed the highest sBAFF levels. sBAFF showed higher diagnostic performance for pSS with an AUC of 0.968, with a similar accuracy of anti‐SSA/Ro antibody diagnosis (AUC = 0.974). Conclusions Our findings demonstrate that the TNFSF13B rs9514828 (−871 C > T) polymorphism is a risk factor for RA in the western Mexican population. sBAFF levels may be a potential diagnosis biomarker in pSS.
Collapse
Affiliation(s)
- Enrique Santillán-López
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Edith Oregon-Romero
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Noemí Espinoza-García
- Doctorado en Ciencias en Biología Molecular en Medicina (DCBMM), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Miguel Marín-Rosales
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico.,Hospital General de Occidente, Secretaría de Salud Jalisco, Guadalajara, Mexico
| | - Alvaro Cruz
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jhonatan Antonio Alvarez-Gómez
- Doctorado en Ciencias en Biología Molecular en Medicina (DCBMM), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Nefertari Sagrero-Fabela
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Sergio Cerpa-Cruz
- Servicio de Reumatología, O.P.D. Hospital Civil de Guadalajara "Fray Antonio Alcalde", Guadalajara, Mexico
| | - Claudia Azucena Palafox-Sánchez
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico.,Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
49
|
Chen M, Lin W, Gan J, Lu W, Wang M, Wang X, Yi J, Zhao Z. Transcriptomic Mapping of Human Parotid Gland at Single-Cell Resolution. J Dent Res 2022; 101:972-982. [PMID: 35220796 DOI: 10.1177/00220345221076069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As the largest salivary gland in oral cavity, the parotid gland plays an important role in initial digesting and lubricating food. The abnormal secretory function of the parotid gland can lead to dental caries and oral mucosal inflammation. In recent years, single-cell RNA sequencing (scRNA-seq) has been used to explore the heterogeneity and diversity of cells in various organs and tissues. However, the transcription profile of the human parotid gland at single-cell resolution has not been reported yet. In this study, we constructed the cell atlas of human parotid gland using the 10× Genomics platform. Characteristic gene analysis identified the biological functions of serous acinar cell populations in secreting digestive enzymes and antibacterial proteins. We revealed the specificity and similarity of the parotid gland compared to other digestive glands through comparative analyses of other published scRNA-seq data sets. We also identified the cell-specific expression of hub genes for Sjögren syndrome in the human parotid gland by integrating the results of genome-wide association studies and bulk RNA-seq, which highlighted the importance of immune cell dysfunction in parotid Sjögren syndrome pathogenesis.
Collapse
Affiliation(s)
- M. Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - W. Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J. Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - W. Lu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M. Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X. Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J. Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Z. Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Jonsson R. Disease mechanisms in Sjögren's syndrome: what do we know? Scand J Immunol 2022; 95:e13145. [PMID: 35073430 DOI: 10.1111/sji.13145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Why should we explore and study disease mechanisms? This is particularly important when we are dealing with complex pathogenesis without a direct causal agent e.g. syndromes with multiple organ involvements. Sjögren's syndrome is definitely such an entity. Also, there are a number of reasons for such studies such as disclosing the aetiology, to identify biomarkers for diagnosis and assessment of the disease process and monitor response to treatment, to determine targets for treatment, to define critical items in classification criteria, among others. Samples available for the study of disease mechanisms in Sjögren's syndrome have included serum (autoantibodies, cytokines), DNA (gene profiling, GWAS), cells (phenotypes/flow cytometry, proportion of cells/CyTOF), tissue (focal inflammation, germinal centres, mass cytometry), saliva (proteomics, biochemistry, mucosal immunity). An original explanatory concept for the pathogenesis of Sjögren's syndrome proposed a specific and self-perpetuating immune mediated loss of exocrine tissue as the principal cause of glandular hypofunction. This hypothesis however falls short of accommodating several Sjögren's syndrome-related phenomena and experimental findings. Today, the emergence of advanced bio-analytical platforms has further enabled the identification of central pathogenic processes and potential biomarkers. The purpose of this minor review is to highlight a selection of previous but also recent and novel aspects on the disease mechanisms in Sjögren's syndrome.
Collapse
Affiliation(s)
- Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|