1
|
Dhar D, Chaturvedi M, Sehwag S, Malhotra C, Udit, Saraf C, Chakrabarty M. Gray Matter Volume Correlates of Co-Occurring Depression in Autism Spectrum Disorder. J Autism Dev Disord 2024:10.1007/s10803-024-06602-0. [PMID: 39441477 DOI: 10.1007/s10803-024-06602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Autism Spectrum Disorder (ASD) involves neurodevelopmental syndromes with significant deficits in communication, motor behaviors, emotional and social comprehension. Often, individuals with ASD exhibit co-occurring depression characterized by a change in mood and diminished interest in previously enjoyable activities. Due to communicative challenges and a lack of appropriate assessments in this cohort, co-occurring depression can often go undiagnosed during routine clinical examinations and, thus, its management neglected. The literature on co-occurring depression in adults with ASD is limited. Therefore, understanding the neural basis of the co-occurring psychopathology of depression in ASD is crucial for identifying brain-based markers for its timely and effective management. Using structural MRI and phenotypic data from the Autism Brain Imaging Data Exchange (ABIDE II) repository, we examined the pattern of relationship regional grey matter volume (rGMV) has with co-occurring depression and autism severity within regions of a priori interest in adults with ASD (n = 44; age = 17-28 years). Further, we performed an exploratory analysis of the rGMV differences between ASD and matched typically developed (TD, n = 39; age = 18-31 years) samples. The severity of co-occurring depression correlated negatively with the rGMV of the right thalamus. Additionally, a significant interaction was evident between the severity of co-occurring depression and core ASD symptoms towards explaining the rGMV in the left cerebellum crus II. The results further the understanding of the neurobiological underpinnings of co-occurring depression in adults with ASD towards exploring neuroimaging-based biomarkers in the same cohort.
Collapse
Affiliation(s)
- Dolcy Dhar
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Manasi Chaturvedi
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
- Centre for Design and New Media, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
- School of Information, University of Texas at Austin, Texas 78712, USA
| | - Saanvi Sehwag
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Chehak Malhotra
- Department of Mathematics, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Udit
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Chetan Saraf
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Mrinmoy Chakrabarty
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India.
- Centre for Design and New Media, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India.
| |
Collapse
|
2
|
Yeung AWK. A citation analysis of (f)MRI papers that cited Lieberman and Cunningham (2009) to justify their statistical threshold. PLoS One 2024; 19:e0309813. [PMID: 39226265 PMCID: PMC11371206 DOI: 10.1371/journal.pone.0309813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
INTRODUCTION In current neuroimaging studies, the mainstream practice is to report results corrected for multiple comparisons to control for false positives. In 2009, Lieberman and Cunningham published a highly cited report that promotes the use of uncorrected statistical thresholds to balance Types I and II error rates. This paper aims to review recent studies that cited this report, investigating whether the citations were to justify the use of uncorrected statistical thresholds, and if their uncorrected thresholds adhered to the recommended defaults. METHODS The Web of Science Core Collection online database was queried to identify original articles published during 2019-2022 that cited the report. RESULTS It was found that the majority of the citing papers (152/225, 67.6%) used the citation to justify their statistical threshold setting. However, only 19.7% of these 152 papers strictly followed the recommended uncorrected P (Punc) < 0.005, k = 10 (15/152, 9.9%) or Punc < 0.005, k = 20 (15/152, 9.9%). Over half (78/152, 51.3%) used various cluster-extent based thresholds with Punc, with the predominant choices being Punc < 0.001, k = 50 and Punc < 0.001, k = 10, mostly without justifying their deviation from the default. Few papers matched the voxel size and smoothing kernel size used by the simulations from the report to derive the recommended thresholds. CONCLUSION This survey reveals a disconnect between the use and citation of Lieberman and Cunningham's report. Future studies should justify their chosen statistical thresholds based on rigorous statistical theory and study-specific parameters, rather than merely citing previous works. Furthermore, this paper encourages the neuroimaging community to publicly share their group-level statistical images and metadata to promote transparency and collaboration.
Collapse
Affiliation(s)
- Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Trubshaw M, Gohil C, Yoganathan K, Kohl O, Edmond E, Proudfoot M, Thompson AG, Talbot K, Stagg CJ, Nobre AC, Woolrich M, Turner MR. The cortical neurophysiological signature of amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae164. [PMID: 38779353 PMCID: PMC11109820 DOI: 10.1093/braincomms/fcae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/09/2024] [Indexed: 05/25/2024] Open
Abstract
The progressive loss of motor function characteristic of amyotrophic lateral sclerosis is associated with widespread cortical pathology extending beyond primary motor regions. Increasing muscle weakness reflects a dynamic, variably compensated brain network disorder. In the quest for biomarkers to accelerate therapeutic assessment, the high temporal resolution of magnetoencephalography is uniquely able to non-invasively capture micro-magnetic fields generated by neuronal activity across the entire cortex simultaneously. This study examined task-free magnetoencephalography to characterize the cortical oscillatory signature of amyotrophic lateral sclerosis for having potential as a pharmacodynamic biomarker. Eight to ten minutes of magnetoencephalography in the task-free, eyes-open state was recorded in amyotrophic lateral sclerosis (n = 36) and healthy age-matched controls (n = 51), followed by a structural MRI scan for co-registration. Extracted magnetoencephalography metrics from the delta, theta, alpha, beta, low-gamma, high-gamma frequency bands included oscillatory power (regional activity), 1/f exponent (complexity) and amplitude envelope correlation (connectivity). Groups were compared using a permutation-based general linear model with correction for multiple comparisons and confounders. To test whether the extracted metrics could predict disease severity, a random forest regression model was trained and evaluated using nested leave-one-out cross-validation. Amyotrophic lateral sclerosis was characterized by reduced sensorimotor beta band and increased high-gamma band power. Within the premotor cortex, increased disability was associated with a reduced 1/f exponent. Increased disability was more widely associated with increased global connectivity in the delta, theta and high-gamma bands. Intra-hemispherically, increased disability scores were particularly associated with increases in temporal connectivity and inter-hemispherically with increases in frontal and occipital connectivity. The random forest model achieved a coefficient of determination (R2) of 0.24. The combined reduction in cortical sensorimotor beta and rise in gamma power is compatible with the established hypothesis of loss of inhibitory, GABAergic interneuronal circuits in pathogenesis. A lower 1/f exponent potentially reflects a more excitable cortex and a pathology unique to amyotrophic lateral sclerosis when considered with the findings published in other neurodegenerative disorders. Power and complexity changes corroborate with the results from paired-pulse transcranial magnetic stimulation. Increased magnetoencephalography connectivity in worsening disability is thought to represent compensatory responses to a failing motor system. Restoration of cortical beta and gamma band power has significant potential to be tested in an experimental medicine setting. Magnetoencephalography-based measures have potential as sensitive outcome measures of therapeutic benefit in drug trials and may have a wider diagnostic value with further study, including as predictive markers in asymptomatic carriers of disease-causing genetic variants.
Collapse
Affiliation(s)
- Michael Trubshaw
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Chetan Gohil
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Katie Yoganathan
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Oliver Kohl
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Evan Edmond
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Malcolm Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Charlotte J Stagg
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Martin R Turner
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
4
|
Thakral PP, Cutting ER, Lawless KE. The dead salmon strikes again: Reports of unconscious processing in the hippocampus may reflect Type-I error. Cogn Neurosci 2024; 15:79-82. [PMID: 38647209 DOI: 10.1080/17588928.2024.2343667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Steinkrauss and Slotnick (2024) reviewed neuroimaging studies linking the hippocampus with implicit memory. They conclude that there is no convincing evidence that the hippocampus is associated with implicit memory because prior studies are confounded by explicit memory (among other factors). Here, we ask a different yet equally important question: do reports of unconscious hippocampal activity reflect a Type-I error (i.e. a false positive)? We find that 39% of studies linking the hippocampus with implicit memory (7 of 18) do not report correcting for multiple comparisons. These results indicate that many unconscious hippocampal effects may reflect a Type-I error.
Collapse
Affiliation(s)
- Preston P Thakral
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
- Department of Psychology, Smith College, Northampton, MA, USA
| | - Elizabeth R Cutting
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| | - Kiera E Lawless
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
5
|
Qiu Z, Zhong X, Yang Q, Shi X, He L, Zhou H, Xu X. Altered spontaneous brain activity in lumbar disc herniation patients: insights from an ALE meta-analysis of neuroimaging data. Front Neurosci 2024; 18:1349512. [PMID: 38379762 PMCID: PMC10876805 DOI: 10.3389/fnins.2024.1349512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Objective To explore the characteristics of spontaneous brain activity changes in patients with lumbar disc herniation (LDH), and help reconcile the contradictory findings in the literature and enhance the understanding of LDH-related pain. Materials and methods PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure (CNKI), SinoMed, and Wanfang databases were searched for literature that studies the changes of brain basal activity in patients with LDH using regional homogeneity (ReHo) and amplitude of low-frequency fluctuation/fraction amplitude of low-frequency fluctuation (ALFF/fALFF) analysis methods. Activation likelihood estimation (ALE) was used to perform a meta-analysis of the brain regions with spontaneous brain activity changes in LDH patients compared with healthy controls (HCs). Results A total of 11 studies were included, including 7ALFF, 2fALFF, and 2ReHo studies, with a total of 269 LDH patients and 277 HCs. Combined with the data from the ALFF/fALFF and ReHo studies, the meta-analysis results showed that compared with HCs, LDH patients had increased spontaneous brain activity in the right middle frontal gyrus (MFG), left anterior cingulate cortex (ACC) and the right anterior lobe of the cerebellum, while they had decreased spontaneous brain activity in the left superior frontal gyrus (SFG). Meta-analysis using ALFF/fALFF data alone showed that compared with HCs, LDH patients had increased spontaneous brain activity in the right MFG and left ACC, but no decrease in spontaneous brain activity was found. Conclusion In this paper, through the ALE Meta-analysis method, based on the data of reported rs-fMRI whole brain studies, we found that LDH patients had spontaneous brain activity changes in the right middle frontal gyrus, left anterior cingulate gyrus, right anterior cerebellar lobe and left superior frontal gyrus. However, it is still difficult to assess whether these results are specific and unique to patients with LDH. Further neuroimaging studies are needed to compare the effects of LDH and other chronic pain diseases on the spontaneous brain activity of patients. Furthermore, the lateralization results presented in our study also require further LDH-related pain side-specific grouping study to clarify this causation. Systematic review registration PROSPERO, identifier CRD42022375513.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoxue Xu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
6
|
Doll A, Wegrzyn M, Woermann FG, Labudda K, Bien CG, Kissler J. MRI evidence for material-specific encoding deficits and mesial-temporal alterations in presurgical frontal lobe epilepsy patients. Epilepsia Open 2024; 9:355-367. [PMID: 38093701 PMCID: PMC10839294 DOI: 10.1002/epi4.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE Neuroimaging studies reveal frontal lobe (FL) contributions to memory encoding. Accordingly, memory impairments are documented in frontal lobe epilepsy (FLE). Still, little is known about the structural or functional correlates of such impairments. Particularly, material specificity of functional changes in cerebral activity during memory encoding in FLE is unclear. METHODS We compared 24 FLE patients (15 right-sided) undergoing presurgical evaluation with 30 healthy controls on a memory fMRI-paradigm of learning scenes, faces, and words followed by an out-of-scanner recognition task as well as regarding their mesial temporal lobe (mTL) volumes. We also addressed effects of FLE lateralization and performance level (normal vs. low). RESULTS FLE patients had poorer memory performance and larger left hippocampal volumes than controls. Volume increase seemed, however, irrelevant or even dysfunctional for memory performance. Further, functional changes in FLE patients were right-sided for scenes and faces and bilateral for words. In detail, during face encoding, FLE patients had, regardless of their performance level, decreased mTL activation, while during scene and word encoding only low performing FLE patients had decreased mTL along with decreased FL activation. Intact verbal memory performance was associated with higher right frontal activation in FLE patients but not in controls. SIGNIFICANCE Pharmacoresistant FLE has a distinct functional and structural impact on the mTL. Effects vary with the encoded material and patients' performance levels. Thus, in addition to the direct effect of the FL, memory impairment in FLE is presumably to a large part due to functional mTL changes triggered by disrupted FL networks. PLAIN LANGUAGE SUMMARY Frontal lobe epilepsy (FLE) patients may suffer from memory impairment. Therefore, we asked patients to perform a memory task while their brain was scanned by MRI in order to investigate possible changes in brain activation during learning. FLE patients showed changes in brain activation during learning and also structural changes in the mesial temporal lobe, which is a brain region especially relevant for learning but not the origin of the seizures in FLE. We conclude that FLE leads to widespread changes that contribute to FLE patients' memory impairment.
Collapse
Affiliation(s)
- Anna Doll
- Department of Epileptology (Krankenhaus Mara)Medical School, Bielefeld UniversityBielefeldGermany
- Department of PsychologyBielefeld UniversityBielefeldGermany
| | - Martin Wegrzyn
- Department of PsychologyBielefeld UniversityBielefeldGermany
| | - Friedrich G. Woermann
- Department of Epileptology (Krankenhaus Mara)Medical School, Bielefeld UniversityBielefeldGermany
| | - Kirsten Labudda
- Department of Epileptology (Krankenhaus Mara)Medical School, Bielefeld UniversityBielefeldGermany
- Department of PsychologyBielefeld UniversityBielefeldGermany
| | - Christian G. Bien
- Department of Epileptology (Krankenhaus Mara)Medical School, Bielefeld UniversityBielefeldGermany
| | - Johanna Kissler
- Department of PsychologyBielefeld UniversityBielefeldGermany
- Center for Cognitive Interaction Technology (CITEC)Bielefeld UniversityBielefeldGermany
| |
Collapse
|
7
|
Raji CA, Meysami S, Hashemi S, Garg S, Akbari N, Gouda A, Chodakiewitz YG, Nguyen TD, Niotis K, Merrill DA, Attariwala R. Exercise-Related Physical Activity Relates to Brain Volumes in 10,125 Individuals. J Alzheimers Dis 2024; 97:829-839. [PMID: 38073389 PMCID: PMC10874612 DOI: 10.3233/jad-230740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND The potential neuroprotective effects of regular physical activity on brain structure are unclear, despite links between activity and reduced dementia risk. OBJECTIVE To investigate the relationships between regular moderate to vigorous physical activity and quantified brain volumes on magnetic resonance neuroimaging. METHODS A total of 10,125 healthy participants underwent whole-body MRI scans, with brain sequences including isotropic MP-RAGE. Three deep learning models analyzed axial, sagittal, and coronal views from the scans. Moderate to vigorous physical activity, defined by activities increasing respiration and pulse rate for at least 10 continuous minutes, was modeled with brain volumes via partial correlations. Analyses adjusted for age, sex, and total intracranial volume, and a 5% Benjamini-Hochberg False Discovery Rate addressed multiple comparisons. RESULTS Participant average age was 52.98±13.04 years (range 18-97) and 52.3% were biologically male. Of these, 7,606 (75.1%) reported engaging in moderate or vigorous physical activity approximately 4.05±3.43 days per week. Those with vigorous activity were slightly younger (p < 0.00001), and fewer women compared to men engaged in such activities (p = 3.76e-15). Adjusting for age, sex, body mass index, and multiple comparisons, increased days of moderate to vigorous activity correlated with larger normalized brain volumes in multiple regions including: total gray matter (Partial R = 0.05, p = 1.22e-7), white matter (Partial R = 0.06, p = 9.34e-11), hippocampus (Partial R = 0.05, p = 5.96e-7), and frontal, parietal, and occipital lobes (Partial R = 0.04, p≤1.06e-5). CONCLUSIONS Exercise-related physical activity is associated with increased brain volumes, indicating potential neuroprotective effects.
Collapse
Affiliation(s)
- Cyrus A. Raji
- Washington University School of Medicine in St Louis, Mallinckrodt Institute of Radiology, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, MO, USA
| | - Somayeh Meysami
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Sam Hashemi
- Prenuvo, Vancouver, Canada
- Voxelwise Imaging Technology, Vancouver, Canada
| | | | - Nasrin Akbari
- Prenuvo, Vancouver, Canada
- Voxelwise Imaging Technology, Vancouver, Canada
| | - Ahmed Gouda
- Prenuvo, Vancouver, Canada
- Voxelwise Imaging Technology, Vancouver, Canada
| | | | - Thanh Duc Nguyen
- Prenuvo, Vancouver, Canada
- Voxelwise Imaging Technology, Vancouver, Canada
| | - Kellyann Niotis
- Early Medical, Austin, TX, USA
- The Institute for Neurodegenerative Diseases-Florida, Boca Raton, FL, USA
| | - David A. Merrill
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Rajpaul Attariwala
- Prenuvo, Vancouver, Canada
- Voxelwise Imaging Technology, Vancouver, Canada
- AIM Medical Imaging, Vancouver, Canada
| |
Collapse
|
8
|
Yi X, Fu Y, Ding J, Jiang F, Han Z, Zhang Y, Zhang Z, Xiao Q, Chen BT. Altered gray matter volume and functional connectivity in adolescent borderline personality disorder with non-suicidal self-injury behavior. Eur Child Adolesc Psychiatry 2024; 33:193-202. [PMID: 36754875 DOI: 10.1007/s00787-023-02161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Non-suicidal self-injury (NSSI) behavior is one of the characteristics of borderline personality disorder (BPD) in adolescents. Prior studies have shown that adolescents with BPD may have a unique pattern of brain alterations. The purpose of this study was to investigate the alterations in brain structure and function including gray matter volume and resting-state functional connectivity in adolescents with BPD, and to assess the association between NSSI behavior and brain changes on neuroimaging in adolescents with BPD. METHODS 53 adolescents with BPD aged 12-17 years and 39 age-gender matched healthy controls (HCs) were enrolled into this study. Brain magnetic resonance imaging (MRI) was acquired with both 3D-T1 weighted structural imaging and resting-state functional imaging. Voxel-based morphometry (VBM) analysis for gray matter volume and seed-based functional connectivity (FC) analysis were performed for assessing gray matter volume and FC. Clinical assessment for NSSI, mood, and depression was also obtained. Correlative analysis of gray matter alterations with self-injury or mood scales were performed. RESULTS There were reductions of gray matter volume in the limbic-cortical circuit and default mode network in adolescents with BPD as compared to HCs (FWE P < 0.05, cluster size ≥ 1000). The diminished gray matter volumes in the left putamen and left middle occipital gyrus were negatively correlated with NSSI in adolescents with BPD (r = - 0.277 and P = 0.045, r = - 0.422 and P = 0.002, respectively). Furthermore, there were alterations of FC in these two regions with diminished gray matter volumes (voxel P < 0.001, cluster P < 0.05, FWE corrected). CONCLUSIONS Our results suggest that diminished gray matter volume of the limbic-cortical circuit and default mode network may be an important neural correlate in adolescent BPD. In addition, the reduced gray matter volume and the altered functional connectivity may be associated with NSSI behavior in adolescents with BPD.
Collapse
Affiliation(s)
- Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, Hunan, People's Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yan Fu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Jun Ding
- Department of Public Health, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Furong Jiang
- Mental Health Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Zaide Han
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yinping Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Zhejia Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| | - Qian Xiao
- Mental Health Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
9
|
Schilling A, Sedley W, Gerum R, Metzner C, Tziridis K, Maier A, Schulze H, Zeng FG, Friston KJ, Krauss P. Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception. Brain 2023; 146:4809-4825. [PMID: 37503725 PMCID: PMC10690027 DOI: 10.1093/brain/awad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/27/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023] Open
Abstract
Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mechanism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be misinterpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain framework, where the percept (posterior) assimilates a prior prediction (brain's expectations) and likelihood (bottom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the posterior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary machine learning techniques.
Collapse
Affiliation(s)
- Achim Schilling
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
- Cognitive Computational Neuroscience Group, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Richard Gerum
- Cognitive Computational Neuroscience Group, University Erlangen-Nürnberg, 91058 Erlangen, Germany
- Department of Physics and Astronomy and Center for Vision Research, York University, Toronto, ON M3J 1P3, Canada
| | - Claus Metzner
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
| | | | - Andreas Maier
- Pattern Recognition Lab, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Holger Schulze
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Fan-Gang Zeng
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology–Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, USA
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Patrick Krauss
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
- Cognitive Computational Neuroscience Group, University Erlangen-Nürnberg, 91058 Erlangen, Germany
- Pattern Recognition Lab, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
10
|
Díaz-Barriga Yáñez A, Longo L, Chesnokova H, Poletti C, Thevenot C, Prado J. Neural evidence for procedural automatization during cognitive development: Intraparietal response to changes in very-small addition problem-size increases with age. Dev Cogn Neurosci 2023; 64:101310. [PMID: 37806070 PMCID: PMC10570710 DOI: 10.1016/j.dcn.2023.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023] Open
Abstract
Cognitive development is often thought to depend on qualitative changes in problem-solving strategies, with early developing algorithmic procedures (e.g., counting when adding numbers) considered being replaced by retrieval of associations (e.g., between operands and answers of addition problems) in adults. However, algorithmic procedures might also become automatized with practice. In a large cross-sectional fMRI study from age 8 to adulthood (n = 128), we evaluate this hypothesis by measuring neural changes associated with age-related reductions in a behavioral hallmark of mental addition, the problem-size effect (an increase in solving time as problem sum increases). We found that age-related decreases in problem-size effect were paralleled by age-related increases of activity in a region of the intraparietal sulcus that already supported the problem-size effect in 8- to 9-year-olds, at an age the effect is at least partly due to explicit counting. This developmental effect, which was also observed in the basal ganglia and prefrontal cortex, was restricted to problems with operands ≤ 4. These findings are consistent with a model positing that very-small arithmetic problems-and not larger problems-might rely on an automatization of counting procedures rather than a shift towards retrieval, and suggest a neural automatization of procedural knowledge during cognitive development.
Collapse
Affiliation(s)
- Andrea Díaz-Barriga Yáñez
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France
| | - Léa Longo
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France
| | - Hanna Chesnokova
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France
| | - Céline Poletti
- Institut de Psychologie, Université de Lausanne, Switzerland
| | | | - Jérôme Prado
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France.
| |
Collapse
|
11
|
Miller J, Mills KL, Vuorre M, Orben A, Przybylski AK. Impact of digital screen media activity on functional brain organization in late childhood: Evidence from the ABCD study. Cortex 2023; 169:290-308. [PMID: 37976871 DOI: 10.1016/j.cortex.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023]
Abstract
The idea that the increased ubiquity of digital devices negatively impacts neurodevelopment is as compelling as it is disturbing. This study investigated this concern by systematically evaluating how different profiles of screen-based engagement related to functional brain organization in late childhood. We studied participants from a large and representative sample of young people participating in the first two years of the ABCD study (ages 9-12 years) to investigate the relations between self-reported use of various digital screen media activity (SMA) and functional brain organization. A series of generalized additive mixed models evaluated how these relationships related to functional outcomes associated with health and cognition. Of principal interest were two hypotheses: First, that functional brain organization (assessed through resting state functional connectivity MRI; rs-fcMRI) is related to digital screen engagement; and second, that children with higher rates of engagement will have functional brain organization profiles related to maladaptive functioning. Results did not support either of these predictions for SMA. Further, exploratory analyses predicting how screen media activity impacted neural trajectories showed no significant impact of SMA on neural maturation over a two-year period.
Collapse
Affiliation(s)
- Jack Miller
- Oxford Internet Institute, University of Oxford, UK.
| | | | - Matti Vuorre
- Oxford Internet Institute, University of Oxford, UK; Tilburg School of Social and Behavioral Sciences, Tilburg University, The Netherlands
| | - Amy Orben
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | | |
Collapse
|
12
|
Garcea FE, Buxbaum LJ. Mechanisms and neuroanatomy of response selection in tool and non-tool action tasks: Evidence from left-hemisphere stroke. Cortex 2023; 167:335-350. [PMID: 37598647 PMCID: PMC10543550 DOI: 10.1016/j.cortex.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 06/18/2023] [Indexed: 08/22/2023]
Abstract
The ability to select between potential actions is central to the complex process of tool use. After left hemisphere stroke, individuals with limb apraxia make more hand action errors when gesturing the use of tools with conflicting hand actions for grasping-to-move and use (e.g., screwdriver) relative to tools that are grasped-to-move and used with the same hand action (e.g., hammer). Prior research indicates that this grasp-use interference effect is driven by abnormalities in the competitive action selection process. The goal of this project was to determine whether common mechanisms and neural substrates support the competitive selection of task-appropriate responses in both tool and non-tool domains. If so, the grasp-use interference effect in a tool use gesturing task should be correlated with response interference effects in the classic Eriksen flanker and Simon tasks, and at least partly overlapping neural regions should subserve the 3 tasks. Sixty-four left hemisphere stroke survivors (33 with apraxia) participated in the tool- and non-tool interference tasks and underwent T1 anatomical MRI. There were robust grasp-use interference effects (grasp-use conflict test) and response interference effects (Eriksen flanker and Simon tasks), but these effects were not correlated. Lesion-symptom mapping analyses showed that lesions to the left inferior parietal lobule, ventral premotor cortex, and insula were associated with grasp-use interference. Lesions to the left inferior parietal lobule, postcentral gyrus, insula, caudate, and putamen were associated with response interference in the Eriksen flanker task. Lesions to the left caudate and putamen were also associated with response interference in the Simon task. Our results suggest that the selection of hand posture for tool use is mediated by distinct cognitive mechanisms and partly distinct neuroanatomic substrates from those mapping a stimulus to an appropriate motor response in non-tool domains.
Collapse
Affiliation(s)
- Frank E Garcea
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA; Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; Department of Rehabilitation Medicine, Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Motta C, Di Donna MG, Bonomi CG, Assogna M, Chiaravalloti A, Mercuri NB, Koch G, Martorana A. Different associations between amyloid-βeta 42, amyloid-βeta 40, and amyloid-βeta 42/40 with soluble phosphorylated-tau and disease burden in Alzheimer's disease: a cerebrospinal fluid and fluorodeoxyglucose-positron emission tomography study. Alzheimers Res Ther 2023; 15:144. [PMID: 37649105 PMCID: PMC10466826 DOI: 10.1186/s13195-023-01291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Despite the high sensitivity of cerebrospinal fluid (CSF) amyloid beta (Aβ)42 to detect amyloid pathology, the Aβ42/Aβ40 ratio (amyR) better estimates amyloid load, with higher specificity for Alzheimer's disease (AD). However, whether Aβ42 and amyR have different meanings and whether Aβ40 represents more than an Aβ42-corrective factor remain to be clarified. Our study aimed to compare the ability of Aβ42 and amyR to detect AD pathology in terms of p-tau/Aβ42 ratio and brain glucose metabolic patterns using fluorodeoxyglucose-positron emission tomography (FDG-PET). METHODS CSF biomarkers were analyzed with EUROIMMUN ELISA. We included 163 patients showing pathological CSF Aβ42 and normal p-tau (A + T - = 98) or pathological p-tau levels (A + T + = 65) and 36 control subjects (A - T -). A + T - patients were further stratified into those with normal (CSFAβ42 + /amyR - = 46) and pathological amyR (CSFAβ42 + /amyR + = 52). We used two distinct cut-offs to determine pathological values of p-tau/Aβ42: (1) ≥ 0.086 and (2) ≥ 0.122. FDG-PET patterns were evaluated in a subsample of patients (n = 46) and compared to 24 controls. RESULTS CSF Aβ40 levels were the lowest in A - T - and in CSFAβ42 + /amyR - , higher in CSFAβ42 + /amyR + and highest in A + T + (F = 50.75; p < 0.001), resembling CSF levels of p-tau (F = 192; p < 0.001). We found a positive association between Aβ40 and p-tau in A - T - (β = 0.58; p < 0.001), CSFAβ42 + /amyR - (β = 0.47; p < 0.001), and CSFAβ42 + /amyR + patients (β = 0.48; p < 0.001) but not in A + T + . Investigating biomarker changes as a function of amyR, we observed a weak variation in CSF p-tau (+ 2 z-scores) and Aβ40 (+ 0.8 z-scores) in the normal amyR range, becoming steeper over the pathological threshold of amyR (p-tau: + 5 z-scores, Aβ40: + 4.5 z-score). CSFAβ42 + /amyR + patients showed a significantly higher probability of having pathological p-tau/Aβ42 than CSFAβ42 + /amyR - (cut-off ≥ 0.086: OR 23.3; cut-off ≥ 0.122: OR 8.8), which however still showed pathological values of p-tau/Aβ42 in some cases (cut-off ≥ 0.086: 35.7%; cut-off ≥ 0.122: 17.3%) unlike A - T - . Accordingly, we found reduced FDG metabolism in the temporoparietal regions of CSFAβ42 + /amyR - compared to controls, and further reduction in frontal areas in CSFAβ42 + /amyR + , like in A + T + . CONCLUSIONS Pathological p-tau/Aβ42 and FDG hypometabolism typical of AD can be found in patients with decreased CSF Aβ42 levels alone. AmyR positivity, associated with higher Aβ40 levels, is accompanied by higher CSF p-tau and widespread FDG hypometabolism.
Collapse
Affiliation(s)
- Caterina Motta
- UOSD Centro Demenze, University of Rome "Tor Vergata", Rome, Italy.
| | | | | | - Martina Assogna
- UOSD Centro Demenze, University of Rome "Tor Vergata", Rome, Italy
- Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Istituto Neurologico Mediterraneo, Pozzilli, Italy
| | | | - Giacomo Koch
- Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
14
|
Fernandes M, Chiaravalloti A, Nuccetelli M, Placidi F, Izzi F, Camedda R, Bernardini S, Sancesario G, Schillaci O, Mercuri NB, Liguori C. Sleep Dysregulation Is Associated with 18F-FDG PET and Cerebrospinal Fluid Biomarkers in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:845-854. [PMID: 37662614 PMCID: PMC10473116 DOI: 10.3233/adr-220111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Background Sleep impairment has been commonly reported in Alzheimer's disease (AD) patients. The association between sleep dysregulation and AD biomarkers has been separately explored in mild cognitive impairment (MCI) and AD patients. Objective The present study investigated cerebrospinal-fluid (CSF) and 18F-fluoro-deoxy-glucose positron emission tomography (18F-FDG-PET) biomarkers in MCI and AD patients in order to explore their association with sleep parameters measured with polysomnography (PSG). Methods MCI and AD patients underwent PSG, 18F-FDG-PET, and CSF analysis for detecting and correlating these biomarkers with sleep architecture. Results Thirty-five patients were included in the study (9 MCI and 26 AD patients). 18F-FDG uptake in left Brodmann area 31 (owing to the posterior cingulate cortex) correlated negatively with REM sleep latency (p = 0.013) and positively with REM sleep (p = 0.033). 18F-FDG uptake in the hippocampus was negatively associated with sleep onset latency (p = 0.041). Higher CSF orexin levels were associated with higher sleep onset latency (p = 0.042), Non-REM stage 1 of sleep (p = 0.031), wake after sleep onset (p = 0.028), and lower sleep efficiency (p = 0.045). CSF levels of Aβ42 correlated negatively with the wake bouts index (p = 0.002). CSF total-tau and phosphorylated tau levels correlated positively with total sleep time (p = 0.045) and time in bed (p = 0.031), respectively. Conclusion Sleep impairment, namely sleep fragmentation, REM sleep dysregulation, and difficulty in initiating sleep correlates with AD biomarkers, suggesting an effect of sleep on the pathological processes in different AD stages. Targeting sleep for counteracting the AD pathological processes represents a timely need for clinicians and researchers.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Giuseppe Sancesario
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
15
|
Krason A, Vigliocco G, Mailend ML, Stoll H, Varley R, Buxbaum LJ. Benefit of visual speech information for word comprehension in post-stroke aphasia. Cortex 2023; 165:86-100. [PMID: 37271014 PMCID: PMC10850036 DOI: 10.1016/j.cortex.2023.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/13/2023] [Accepted: 04/22/2023] [Indexed: 06/06/2023]
Abstract
Aphasia is a language disorder that often involves speech comprehension impairments affecting communication. In face-to-face settings, speech is accompanied by mouth and facial movements, but little is known about the extent to which they benefit aphasic comprehension. This study investigated the benefit of visual information accompanying speech for word comprehension in people with aphasia (PWA) and the neuroanatomic substrates of any benefit. Thirty-six PWA and 13 neurotypical matched control participants performed a picture-word verification task in which they indicated whether a picture of an animate/inanimate object matched a subsequent word produced by an actress in a video. Stimuli were either audiovisual (with visible mouth and facial movements) or auditory-only (still picture of a silhouette) with audio being clear (unedited) or degraded (6-band noise-vocoding). We found that visual speech information was more beneficial for neurotypical participants than PWA, and more beneficial for both groups when speech was degraded. A multivariate lesion-symptom mapping analysis for the degraded speech condition showed that lesions to superior temporal gyrus, underlying insula, primary and secondary somatosensory cortices, and inferior frontal gyrus were associated with reduced benefit of audiovisual compared to auditory-only speech, suggesting that the integrity of these fronto-temporo-parietal regions may facilitate cross-modal mapping. These findings provide initial insights into our understanding of the impact of audiovisual information on comprehension in aphasia and the brain regions mediating any benefit.
Collapse
Affiliation(s)
- Anna Krason
- Experimental Psychology, University College London, UK; Moss Rehabilitation Research Institute, Elkins Park, PA, USA.
| | - Gabriella Vigliocco
- Experimental Psychology, University College London, UK; Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | - Marja-Liisa Mailend
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; Department of Special Education, University of Tartu, Tartu Linn, Estonia
| | - Harrison Stoll
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; Applied Cognitive and Brain Science, Drexel University, Philadelphia, PA, USA
| | | | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Lewis MW, Webb CA, Kuhn M, Akman E, Jobson SA, Rosso IM. Predicting Fear Extinction in Posttraumatic Stress Disorder. Brain Sci 2023; 13:1131. [PMID: 37626488 PMCID: PMC10452660 DOI: 10.3390/brainsci13081131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Fear extinction is the basis of exposure therapies for posttraumatic stress disorder (PTSD), but half of patients do not improve. Predicting fear extinction in individuals with PTSD may inform personalized exposure therapy development. The participants were 125 trauma-exposed adults (96 female) with a range of PTSD symptoms. Electromyography, electrocardiogram, and skin conductance were recorded at baseline, during dark-enhanced startle, and during fear conditioning and extinction. Using a cross-validated, hold-out sample prediction approach, three penalized regressions and conventional ordinary least squares were trained to predict fear-potentiated startle during extinction using 50 predictor variables (5 clinical, 24 self-reported, and 21 physiological). The predictors, selected by penalized regression algorithms, were included in multivariable regression analyses, while univariate regressions assessed individual predictors. All the penalized regressions outperformed OLS in prediction accuracy and generalizability, as indexed by the lower mean squared error in the training and holdout subsamples. During early extinction, the consistent predictors across all the modeling approaches included dark-enhanced startle, the depersonalization and derealization subscale of the dissociative experiences scale, and the PTSD hyperarousal symptom score. These findings offer novel insights into the modeling approaches and patient characteristics that may reliably predict fear extinction in PTSD. Penalized regression shows promise for identifying symptom-related variables to enhance the predictive modeling accuracy in clinical research.
Collapse
Affiliation(s)
- Michael W. Lewis
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Christian A. Webb
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Manuel Kuhn
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Eylül Akman
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA 02478, USA
| | - Sydney A. Jobson
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA 02478, USA
| | - Isabelle M. Rosso
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Legaz A, Prado P, Moguilner S, Báez S, Santamaría-García H, Birba A, Barttfeld P, García AM, Fittipaldi S, Ibañez A. Social and non-social working memory in neurodegeneration. Neurobiol Dis 2023; 183:106171. [PMID: 37257663 PMCID: PMC11177282 DOI: 10.1016/j.nbd.2023.106171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Although social functioning relies on working memory, whether a social-specific mechanism exists remains unclear. This undermines the characterization of neurodegenerative conditions with both working memory and social deficits. We assessed working memory domain-specificity across behavioral, electrophysiological, and neuroimaging dimensions in 245 participants. A novel working memory task involving social and non-social stimuli with three load levels was assessed across controls and different neurodegenerative conditions with recognized impairments in: working memory and social cognition (behavioral-variant frontotemporal dementia); general cognition (Alzheimer's disease); and unspecific patterns (Parkinson's disease). We also examined resting-state theta oscillations and functional connectivity correlates of working memory domain-specificity. Results in controls and all groups together evidenced increased working memory demands for social stimuli associated with frontocinguloparietal theta oscillations and salience network connectivity. Canonical frontal theta oscillations and executive-default mode network anticorrelation indexed non-social stimuli. Behavioral-variant frontotemporal dementia presented generalized working memory deficits related to posterior theta oscillations, with social stimuli linked to salience network connectivity. In Alzheimer's disease, generalized working memory impairments were related to temporoparietal theta oscillations, with non-social stimuli linked to the executive network. Parkinson's disease showed spared working memory performance and canonical brain correlates. Findings support a social-specific working memory and related disease-selective pathophysiological mechanisms.
Collapse
Affiliation(s)
- Agustina Legaz
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad Nacional de Córdoba, Facultad de Psicología, Córdoba, Argentina
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Sebastián Moguilner
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, United States; Trinity College Dublin (TCD), Dublin, Ireland
| | | | - Hernando Santamaría-García
- Pontificia Universidad Javeriana, Medical School, Physiology and Psychiatry Departments, Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; Facultad de Psicología, Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencia, Universidad de La Laguna, Tenerife, Spain
| | - Pablo Barttfeld
- Cognitive Science Group. Instituto de Investigaciones Psicológicas (IIPsi), CONICET UNC, Facultad de Psicología, Universidad Nacional de Córdoba, Boulevard de la Reforma esquina Enfermera Gordillo, CP 5000. Córdoba, Argentina
| | - Adolfo M García
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, United States; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile; Trinity College Dublin (TCD), Dublin, Ireland
| | - Sol Fittipaldi
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, United States; Trinity College Dublin (TCD), Dublin, Ireland.
| | - Agustín Ibañez
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, United States; Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
18
|
Dresang HC, Wong AL, Buxbaum LJ. Shared and distinct routes in speech and gesture imitation: Evidence from stroke. Cortex 2023; 162:81-95. [PMID: 37018891 PMCID: PMC10106441 DOI: 10.1016/j.cortex.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 01/09/2023] [Indexed: 03/08/2023]
Abstract
Dual-route models of high-level (praxis) actions distinguish between an "indirect" semantic route mediating meaningful gesture imitation, and a "direct" sensory-motor route mediates meaningless gesture imitation. Similarly, dual-route language models distinguish between an indirect route mediating production and repetition of words, and a direct route mediating non-word repetition. Although aphasia and limb apraxia frequently co-occur following left-hemisphere cerebrovascular accident (LCVA), it is unclear which aspects of these functional-neuroanatomic dual-route architectures are shared across praxis and language domains. This study focused on gesture imitation to test the hypothesis that semantic information (and portions of the indirect route) are shared across domains, whereas two distinct dorsal routes mediate sensory-motor mapping. Forty chronic LCVA and 17 neurotypical controls completed semantic memory and language tasks and imitated 3 types of gesture stimuli: (1) labeled/"named" meaningful, (2) unnamed meaningful, and (3) meaningless gestures. The comparison of accuracy between meaningless versus unnamed meaningful gestures examined the benefits of semantic information, while the comparison of unnamed meaningful versus named meaningful imitation examined additional benefits of linguistic cueing. Mixed-effects models examined group by task interaction effects on gesture ability. We found that for patients with LCVA, unnamed meaningful gestures were imitated more accurately than meaningless gestures, suggesting that semantic information was beneficial, but there was no benefit of labeling. Reduced benefit of semantic information on gesture accuracy was associated with lesions to inferior frontal and posterior temporal regions as well as semantic memory performance on a pictorial (non-gesture) task. In contrast, there was no relationship between meaningless gesture imitation and nonword repetition, indicating that measures of direct route performance are not associated across language and action. These results provide preliminary evidence that portions of the indirect semantic route are shared across the language and action domains, while two direct sensory-motor mapping routes mediate word repetition and gesture imitation.
Collapse
Affiliation(s)
- Haley C Dresang
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Aaron L Wong
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
19
|
Caminiti SP, Pilotto A, Premi E, Galli A, Ferrari E, Gipponi S, Cottini E, Paghera B, Perani D, Padovani A. Dopaminergic connectivity reconfiguration in the dementia with Lewy bodies continuum. Parkinsonism Relat Disord 2023; 108:105288. [PMID: 36724569 DOI: 10.1016/j.parkreldis.2023.105288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The impairment of nigrostriatal dopaminergic network is a core feature of dementia with Lewy bodies (DLB). The involvement and reconfiguration of extranigrostriatal dopaminergic circuitries in the DLB continuum is still theme of debate. We aim to investigate in vivo the dynamic changes of local and long-distance dopaminergic networks across DLB continuum. METHODS Forty-nine patients (including 29 with dementia and 20 prodromal cases) and fifty-two controls entered the study. Each subject underwent a standardized clinical and neurological examination and performed Brain SPECT to measuring brain dopamine transporter (DAT) density. Spatially normalized images underwent the occipital-adjusted specific binding to obtain parametric data. The ANCOVA was applied to assess 123I-FP-CIT differences between pDLB, overt-DLB and CG, considering age, gender, and motor impairment as variables of no interest. Between-nodes correlation analysis measured molecular connectivity within the ventral and dorsal dopaminergic networks. RESULTS Prodromal DLB and DLB patients showed comparable nigrostriatal deficits in basal ganglia regions compared with CG. Molecular connectivity analyses revealed extensive connectivity losses, more in ventral than in dorsal dopaminergic network in DLB dementia. Conversely, the prodromal group showed increased connectivity compared to CG, mostly putamen-thalamus-cortical and striatal-cortical connectivity. CONCLUSIONS This study indicates a comparable basal ganglia deficit in nigrostriatal projections in DLB continuum and supports a different reorganization of extra-striatal dopaminergic connectivity in the prodromal phases of DLB. The shift from an increased to a decreased bilateral putamen-thalamus-cortex connectivity might be a hallmark of transition from prodromal to dementia DLB stages.
Collapse
Affiliation(s)
- Silvia Paola Caminiti
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - Enrico Premi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Spedali Civili Hospital, Brescia, Italy
| | - Alice Galli
- Vita-Salute San Raffaele University, Milan, Italy; Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Elisabetta Ferrari
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Gipponi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Elisabetta Cottini
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Paghera
- Nuclear Medicine Unit, University of Brescia, Brescia, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Spedali Civili Hospital, Brescia, Italy
| |
Collapse
|
20
|
Caminiti SP, Boccalini C, Nicastro N, Garibotto V, Perani D. Sex differences in brain metabolic connectivity architecture in probable dementia with Lewy bodies. Neurobiol Aging 2023; 126:14-24. [PMID: 36905876 DOI: 10.1016/j.neurobiolaging.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023]
Abstract
We investigated how sex modulates metabolic connectivity alterations in probable dementia with Lewy bodies (pDLB). We included 131 pDLB patients (males/females: 58/73) and similarly aged healthy controls (HC) (male/female: 59/75) with available (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) scans. We assessed (1) sex differences in the whole-brain connectivity, identifying pathological hubs, (2) connectivity alterations in functional pathways of the neurotransmitter systems, (3) Resting State Networks (RSNs) integrity. Both pDLBM (males) and pDLBF (females) shared dysfunctional hubs in the insula, Rolandic operculum, and inferior parietal lobule, but the pDLBM group showed more severe and diffuse whole-brain connectivity alterations. Neurotransmitters connectivity analysis revealed common alterations in dopaminergic and noradrenergic pathways. Sex differences emerged particularly in the Ch4-perisylvian division, with pDLBM showing more severe alterations than pDLBF. The RSNs analysis showed no sex differences, with decreased connectivity strength in the primary visual, posterior default mode, and attention networks in both groups. Extensive connectivity changes characterize both males and females in the dementia stage, with a major vulnerability of cholinergic neurotransmitter systems in males, possibly contributing to the observed different clinical phenotypes.
Collapse
Affiliation(s)
- Silvia Paola Caminiti
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cecilia Boccalini
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Nicastro
- Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland; Center for Biomedical Imaging (CIBM), Geneva, Switzerland
| | - Daniela Perani
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | | |
Collapse
|
21
|
Morse SJ. Neurolaw: Challenges and limits. HANDBOOK OF CLINICAL NEUROLOGY 2023; 197:235-250. [PMID: 37633713 DOI: 10.1016/b978-0-12-821375-9.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
This chapter canvasses the current relevance of behavioral neuroscience to the law, especially to issues of criminal responsibility and competence. It begins with an explanation of the legal doctrines at stake. I then explore the source of the often-inflated claims for the legal relevance of neuroscience. The next section discusses the scientific status of behavioral neuroscience. Then, it addresses two radical challenges to current conceptions of criminal responsibility that neuroscience allegedly poses: determinism and the death of agency. The question of the specific relevance of neuroscience to criminal law doctrine, practice, and institutions is considered next. This is followed by a discussion of how neuroscience evidence is being used in criminal cases in five different countries, including the United States. The penultimate section points to some areas warranting modest optimism. A brief conclusion suggests that neuroscience is at present of limited legal relevance, and advances in the science might alter that judgment.
Collapse
Affiliation(s)
- Stephen J Morse
- Law School and Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
22
|
Functional Correlates of Striatal Dopamine Transporter Cerebrospinal Fluid Levels in Alzheimer's Disease: A Preliminary 18F-FDG PET/CT Study. Int J Mol Sci 2023; 24:ijms24010751. [PMID: 36614193 PMCID: PMC9820963 DOI: 10.3390/ijms24010751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
The aim of our study was to investigate regional glucose metabolism with 18F-FDG positron emission tomography/computed tomography in a population of patients with Alzheimer's disease (AD) in relation to cerebrospinal (CSF) levels of striatal dopamine transporter (DAT). All patients underwent lumbar puncture and received a biomarker-based diagnosis of AD. Differences in regional brain glucose metabolism were assessed by Statistical Parametric Mapping version 12 with the use of age, gender, and MMSE as covariates in the analysis. A positive correlation between CSF DAT levels and glucose metabolism at the level of two brain areas involved in the pathophysiological process of Alzheimer's disease, the substantia nigra and the posterior cingulate gyrus, has been highlighted. Results indicate that patients with higher CSF DAT levels have a better metabolic pattern in two key zones, suggesting less advanced disease status in patients with more conserved dopaminergic systems.
Collapse
|
23
|
Altered reward processing underpins emotional apathy in dementia. COGNITIVE, AFFECTIVE, & BEHAVIORAL NEUROSCIENCE 2022; 23:354-370. [PMID: 36417157 PMCID: PMC10049956 DOI: 10.3758/s13415-022-01048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 11/24/2022]
Abstract
Abstract
Introduction
While apathy is broadly defined as a loss of motivation, it is increasingly recognised as a multidimensional syndrome spanning executive, emotional, and initiation domains. Emotional apathy is purportedly driven by deficits in using socioemotional rewards to guide behaviour, yet the link between these symptoms and reward processing, and their common neural correlates, has not been directly examined.
Methods
Sixty-four patients (33 behavioural-variant frontotemporal dementia, 14 Alzheimer’s disease, 8 semantic dementia, 6 progressive nonfluent aphasia, 3 logopenic progressive aphasia) were classified into high (HEA; n = 36) and low (LEA; n = 28) emotional apathy groups based on emotional apathy subscale scores on the Dimensional Apathy Scale. Patients and age-matched healthy controls (n = 27) performed an instrumental reward learning task where they learned to associate cues with either social or monetary outcomes.
Results
HEA patients showed impaired learning on both the social and monetary reward conditions, relative to LEA patients (p = 0.016) and controls (p = 0.005). Conversely, the LEA group did not differ from controls (p = 0.925). Importantly, multiple regression analyses indicated that social reward learning significantly predicted emotional apathy. Voxel-based morphometry analyses revealed that emotional apathy and social reward learning were both associated with orbitofrontal cortex, ventral striatum, and insula atrophy.
Discussion
Our results demonstrate a unique link between impaired social reward learning and emotional apathy in dementia and reveal a shared neurobiological basis. Greater understanding of these neurocognitive mechanisms of reward processing will help improve the identification of emotional apathy in dementia and inform the development of novel interventions to address these symptoms.
Collapse
|
24
|
Kobeleva X, Varoquaux G, Dagher A, Adhikari M, Grefkes C, Gilson M. Advancing brain network models to reconcile functional neuroimaging and clinical research. Neuroimage Clin 2022; 36:103262. [PMID: 36451365 PMCID: PMC9723311 DOI: 10.1016/j.nicl.2022.103262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
Functional magnetic resonance imaging (fMRI) captures information on brain function beyond the anatomical alterations that are traditionally visually examined by neuroradiologists. However, the fMRI signals are complex in addition to being noisy, so fMRI still faces limitations for clinical applications. Here we review methods that have been proposed as potential solutions so far, namely statistical, biophysical and decoding models, with their strengths and weaknesses. We especially evaluate the ability of these models to directly predict clinical variables from their parameters (predictability) and to extract clinically relevant information regarding biological mechanisms and relevant features for classification and prediction (interpretability). We then provide guidelines for useful applications and pitfalls of such fMRI-based models in a clinical research context, looking beyond the current state of the art. In particular, we argue that the clinical relevance of fMRI calls for a new generation of models for fMRI data, which combine the strengths of both biophysical and decoding models. This leads to reliable and biologically meaningful model parameters, which thus fulfills the need for simultaneous interpretability and predictability. In our view, this synergy is fundamental for the discovery of new pharmacological and interventional targets, as well as the use of models as biomarkers in neurology and psychiatry.
Collapse
Affiliation(s)
- Xenia Kobeleva
- Department of Neurology, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE) Bonn, Bonn, Germany
| | | | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Mohit Adhikari
- Bio-imaging Lab, University of Antwerp, Antwerp, Belgium
| | - Christian Grefkes
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany; Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany
| | - Matthieu Gilson
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany; Center for Brain and Cognition, Department of Information and Telecommunication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.
| |
Collapse
|
25
|
Fernandes M, Manfredi N, Aluisantonio L, Franchini F, Chiaravalloti A, Izzi F, Di Santo S, Schillaci O, Mercuri NB, Placidi F, Liguori C. Cognitive functioning, cerebrospinal fluid Alzheimer's disease biomarkers and cerebral glucose metabolism in late-onset epilepsy of unknown aetiology: A prospective study. Eur J Neurosci 2022; 56:5384-5396. [PMID: 35678770 DOI: 10.1111/ejn.15734] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022]
Abstract
Epilepsy is increasing, being more common in older adults, with more than 20% of late-onset cases with unknown aetiology (LOEU). Although epilepsy was associated with cognitive impairment, few studies evaluated the trajectories of cognitive decline in patients with LOEU. The present study aimed at assessing biomarkers of Alzheimer's disease (AD) in patients with LOEU and evaluating their cognitive performance for 12 months. For this study, 55 patients diagnosed with LOEU and 21 controls were included. Participants underwent cognitive evaluation and cerebrospinal fluid (CSF) biomarker analysis (ß-amyloid42 , tau proteins) before starting anti-seizure medication and then repeated the cognitive evaluation at the 12-month follow-up. A subgroup of LOEU patients and controls also performed 18 F-fluoro-2-deoxy-D-glucose positron emission tomography (18 F-FDG PET) before starting anti-seizure medication. At baseline, LOEU patients showed lower Mini-Mental State Examination (MMSE) score, worse cognitive performance in several domains, lower β-amyloid42 and higher tau proteins CSF levels than controls. Significantly reduced glucose consumption was observed in the right posterior cingulate cortex and left praecuneus areas in LOEU patients than controls, and this finding correlated with memory impairment. In the longitudinal analysis, a significant decrease in MMSE and an increase in verbal fluency scores were found in LOEU patients. These findings evidence that LOEU patients have a significant cognitive impairment, and alteration of cerebral glucose consumption and CSF AD biomarkers than controls. Moreover, they showed a progressive global cognitive decline at follow-up, although verbal fluency was preserved. Further studies are needed to better understand the pathophysiological aspects of LOEU and its association with AD.
Collapse
Affiliation(s)
- Mariana Fernandes
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Natalia Manfredi
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Lavinia Aluisantonio
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Francesca Izzi
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Nicola Biagio Mercuri
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Fabio Placidi
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
26
|
Kowalczyk OS, Mehta MA, O’Daly OG, Criaud M. Task-Based Functional Connectivity in Attention-Deficit/Hyperactivity Disorder: A Systematic Review. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:350-367. [PMID: 36324660 PMCID: PMC9616264 DOI: 10.1016/j.bpsgos.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022] Open
Abstract
Altered neurocognitive functioning is a key feature of attention-deficit/hyperactivity disorder (ADHD), and increasing numbers of studies assess task-based functional connectivity in the disorder. We systematically reviewed and critically appraised functional magnetic resonance imaging (fMRI) task-based functional connectivity studies in ADHD. A systematic search conducted up to September 2020 found 34 studies, including 51 comparisons. Comparisons were divided into investigations of ADHD neuropathology (37 comparing ADHD and typical development, 2 comparing individuals with ADHD and their nonsymptomatic siblings, 2 comparing remitted and persistent ADHD, and 1 exploring ADHD symptom severity) and the effects of interventions (8 investigations of stimulant effects and 1 study of fMRI neurofeedback). Large heterogeneity in study methodologies prevented a meta-analysis; thus, the data were summarized as a narrative synthesis. Across cognitive domains, functional connectivity in the cingulo-opercular, sensorimotor, visual, subcortical, and executive control networks in ADHD consistently differed from neurotypical populations. Furthermore, literature comparing individuals with ADHD and their nonsymptomatic siblings as well as adults with ADHD and their remitted peers showed ADHD-related abnormalities in similar sensorimotor and subcortical (primarily striatal) networks. Interventions modulated those dysfunctional networks, with the most consistent action on functional connections with the striatum, anterior cingulate cortex, occipital regions, and midline default mode network structures. Although methodological issues limited many of the reviewed studies, the use of task-based functional connectivity approaches has the potential to broaden the understanding of the neural underpinnings of ADHD and the mechanisms of action of ADHD treatments.
Collapse
Affiliation(s)
- Olivia S. Kowalczyk
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Mitul A. Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Owen G. O’Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Marion Criaud
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
27
|
Gerlach AR, Karim HT, Peciña M, Ajilore O, Taylor WD, Butters MA, Andreescu C. MRI predictors of pharmacotherapy response in major depressive disorder. Neuroimage Clin 2022; 36:103157. [PMID: 36027717 PMCID: PMC9420953 DOI: 10.1016/j.nicl.2022.103157] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 02/08/2023]
Abstract
Major depressive disorder is among the most prevalent psychiatric disorders, exacting a substantial personal, social, and economic toll. Antidepressant treatment typically involves an individualized trial and error approach with an inconsistent success rate. Despite a pressing need, no reliable biomarkers for predicting treatment outcome have yet been discovered. Brain MRI measures hold promise in this regard, though clinical translation remains elusive. In this review, we summarize structural MRI and functional MRI (fMRI) measures that have been investigated as predictors of treatment outcome. We broadly divide these into five categories including three structural measures: volumetric, white matter burden, and white matter integrity; and two functional measures: resting state fMRI and task fMRI. Currently, larger hippocampal volume is the most widely replicated predictor of successful treatment. Lower white matter hyperintensity burden has shown robustness in late life depression. However, both have modest discriminative power. Higher fractional anisotropy of the cingulum bundle and frontal white matter, amygdala hypoactivation and anterior cingulate cortex hyperactivation in response to negative emotional stimuli, and hyperconnectivity within the default mode network (DMN) and between the DMN and executive control network also show promise as predictors of successful treatment. Such network-focused measures may ultimately provide a higher-dimensional measure of treatment response with closer ties to the underlying neurobiology.
Collapse
Affiliation(s)
- Andrew R Gerlach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marta Peciña
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL, USA
| | - Warren D Taylor
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carmen Andreescu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Niso G, Krol LR, Combrisson E, Dubarry AS, Elliott MA, François C, Héjja-Brichard Y, Herbst SK, Jerbi K, Kovic V, Lehongre K, Luck SJ, Mercier M, Mosher JC, Pavlov YG, Puce A, Schettino A, Schön D, Sinnott-Armstrong W, Somon B, Šoškić A, Styles SJ, Tibon R, Vilas MG, van Vliet M, Chaumon M. Good scientific practice in EEG and MEG research: Progress and perspectives. Neuroimage 2022; 257:119056. [PMID: 35283287 PMCID: PMC11236277 DOI: 10.1016/j.neuroimage.2022.119056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022] Open
Abstract
Good scientific practice (GSP) refers to both explicit and implicit rules, recommendations, and guidelines that help scientists to produce work that is of the highest quality at any given time, and to efficiently share that work with the community for further scrutiny or utilization. For experimental research using magneto- and electroencephalography (MEEG), GSP includes specific standards and guidelines for technical competence, which are periodically updated and adapted to new findings. However, GSP also needs to be regularly revisited in a broader light. At the LiveMEEG 2020 conference, a reflection on GSP was fostered that included explicitly documented guidelines and technical advances, but also emphasized intangible GSP: a general awareness of personal, organizational, and societal realities and how they can influence MEEG research. This article provides an extensive report on most of the LiveMEEG contributions and new literature, with the additional aim to synthesize ongoing cultural changes in GSP. It first covers GSP with respect to cognitive biases and logical fallacies, pre-registration as a tool to avoid those and other early pitfalls, and a number of resources to enable collaborative and reproducible research as a general approach to minimize misconceptions. Second, it covers GSP with respect to data acquisition, analysis, reporting, and sharing, including new tools and frameworks to support collaborative work. Finally, GSP is considered in light of ethical implications of MEEG research and the resulting responsibility that scientists have to engage with societal challenges. Considering among other things the benefits of peer review and open access at all stages, the need to coordinate larger international projects, the complexity of MEEG subject matter, and today's prioritization of fairness, privacy, and the environment, we find that current GSP tends to favor collective and cooperative work, for both scientific and for societal reasons.
Collapse
Affiliation(s)
- Guiomar Niso
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Universidad Politecnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Laurens R Krol
- Neuroadaptive Human-Computer Interaction, Brandenburg University of Technology Cottbus-Senftenberg, Germany
| | - Etienne Combrisson
- Aix-Marseille University, Institut de Neurosciences de la Timone, France
| | | | | | | | - Yseult Héjja-Brichard
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, EPHE, IRD, Université Montpellier, Montpellier, France
| | - Sophie K Herbst
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, NeuroSpin center, Université Paris-Saclay, Gif/Yvette, France
| | - Karim Jerbi
- Cognitive and Computational Neuroscience Laboratory, Department of Psychology, University of Montreal, Montreal, QC, Canada; Mila - Quebec Artificial Intelligence Institute, Canada
| | - Vanja Kovic
- Faculty of Philosophy, Laboratory for neurocognition and applied cognition, University of Belgrade, Serbia
| | - Katia Lehongre
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm U 1127, CNRS UMR 7225, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Centre MEG-EEG, Centre de NeuroImagerie Recherche (CENIR), Paris, France
| | - Steven J Luck
- Center for Mind & Brain, University of California, Davis, CA, USA
| | - Manuel Mercier
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France
| | - John C Mosher
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuri G Pavlov
- University of Tuebingen, Germany; Ural Federal University, Yekaterinburg, Russia
| | - Aina Puce
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Antonio Schettino
- Erasmus University Rotterdam, Rotterdam, the Netherland; Institute for Globally Distributed Open Research and Education (IGDORE), Sweden
| | - Daniele Schön
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France
| | | | | | - Anđela Šoškić
- Faculty of Philosophy, Laboratory for neurocognition and applied cognition, University of Belgrade, Serbia; Teacher Education Faculty, University of Belgrade, Serbia
| | - Suzy J Styles
- Psychology, Nanyang Technological University, Singapore; Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Roni Tibon
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK; School of Psychology, University of Nottingham, Nottingham, UK
| | - Martina G Vilas
- Ernst Strüngmann Institute for Neuroscience, Frankfurt am Main, Germany
| | | | - Maximilien Chaumon
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm U 1127, CNRS UMR 7225, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Centre MEG-EEG, Centre de NeuroImagerie Recherche (CENIR), Paris, France..
| |
Collapse
|
29
|
van Vliet EA, Immonen R, Prager O, Friedman A, Bankstahl JP, Wright DK, O'Brien TJ, Potschka H, Gröhn O, Harris NG. A companion to the preclinical common data elements and case report forms for in vivo rodent neuroimaging: A report of the TASK3-WG3 Neuroimaging Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35962745 DOI: 10.1002/epi4.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. In this article, we discuss CDEs for neuroimaging data that are collected in rodent models of epilepsy, with a focus on adult rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the methodologies for several imaging modalities and the parameters that can be collected.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Riikka Immonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- The Royal Melbourne Hospital, The University of Melbourne, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Olli Gröhn
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Neil G Harris
- Department of Neurosurgery UCLA, UCLA Brain Injury Research Center, Los Angeles, California, USA
- Intellectual and Developmental Disabilities Research Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
30
|
Fernandes M, Mari L, Chiaravalloti A, Paoli B, Nuccetelli M, Izzi F, Giambrone MP, Camedda R, Bernardini S, Schillaci O, Mercuri NB, Placidi F, Liguori C. 18F-FDG PET, cognitive functioning, and CSF biomarkers in patients with obstructive sleep apnoea before and after continuous positive airway pressure treatment. J Neurol 2022; 269:5356-5367. [PMID: 35608659 PMCID: PMC9468130 DOI: 10.1007/s00415-022-11182-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
Abstract
Introduction Dysregulation of cerebral glucose consumption, alterations in cerebrospinal fluid (CSF) biomarkers, and cognitive impairment have been reported in patients with obstructive sleep apnoea (OSA). On these bases, OSA has been considered a risk factor for Alzheimer’s disease (AD). This study aimed to measure cognitive performance, CSF biomarkers, and cerebral glucose consumption in OSA patients and to evaluate the effects of continuous positive airway pressure (CPAP) treatment on these biomarkers over a 12-month period. Methods Thirty-four OSA patients and 34 controls underwent 18F-fluoro-2-deoxy-d-glucose positron emission tomography (18F-FDG PET), cognitive evaluation, and CSF analysis. A subgroup of 12 OSA patients treated with beneficial CPAP and performing the 12-month follow-up was included in the longitudinal analysis, and cognitive evaluation and 18F-FDG PET were repeated. Results Significantly reduced glucose consumption was observed in the bilateral praecuneus, posterior cingulate cortex, and frontal areas in OSA patients than controls. At baseline, OSA patients also showed lower β-amyloid42 and higher phosphorylated-tau CSF levels than controls. Increased total tau and phosphorylated tau levels correlated with a reduction in brain glucose consumption in a cluster of different brain areas. In the longitudinal analysis, OSA patients showed an improvement in cognition and a global increase in cerebral 18F-FDG uptake. Conclusions Cognitive impairment, reduced cerebral glucose consumption, and alterations in CSF biomarkers were observed in OSA patients, which may reinforce the hypothesis of AD neurodegenerative processes triggered by OSA. Notably, cognition and brain glucose consumption improved after beneficial CPAP treatment. Further studies are needed to evaluate the long-term effects of CPAP treatment on these AD biomarkers.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome "Tor Vergata", Rome, Italy
| | - Luisa Mari
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Barbara Paoli
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome "Tor Vergata", Rome, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Izzi
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | | | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy.,IRCSS Santa Lucia Foundation, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome "Tor Vergata", Rome, Italy.,Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome "Tor Vergata", Rome, Italy. .,Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
31
|
Fernandes M, Chiaravalloti A, Manfredi N, Placidi F, Nuccetelli M, Izzi F, Camedda R, Bernardini S, Schillaci O, Mercuri NB, Liguori C. Nocturnal Hypoxia and Sleep Fragmentation May Drive Neurodegenerative Processes: The Compared Effects of Obstructive Sleep Apnea Syndrome and Periodic Limb Movement Disorder on Alzheimer’s Disease Biomarkers. J Alzheimers Dis 2022; 88:127-139. [DOI: 10.3233/jad-215734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background: Sleep disorders may cause dysregulation of cerebral glucose metabolism and synaptic functions, as well as alterations in cerebrospinal fluid (CSF) biomarker levels. Objective: This study aimed at measuring sleep, CSF Alzheimer’s disease (AD) biomarkers, and cerebral glucose consumption in patients with obstructive sleep apnea syndrome (OSAS) and patients with periodic limb movement disorder (PLMD), compared to controls. Methods: OSAS and PLMD patients underwent 18F-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET), polysomnographic monitoring, and lumbar puncture to quantify CSF levels of amyloid-β42 (Aβ42), total tau, and phosphorylated tau. All patients were compared to controls, who were not affected by sleep or neurodegenerative disorders. Results: Twenty OSAS patients, 12 PLMD patients, and 15 controls were included. Sleep quality and sleep structure were altered in both OSAS and PLMD patients when compared to controls. OSAS and PLMD patients showed lower CSF Aβ42 levels than controls. OSAS patients showed a significant increase in glucose uptake in a wide cluster of temporal-frontal areas and cerebellum, as well as a reduced glucose consumption in temporal-parietal regions compared to controls. PLMD patients showed increased brain glucose consumption in the left parahippocampal gyrus and left caudate than controls. Conclusion: Sleep dysregulation and nocturnal hypoxia present in OSAS patients, more than sleep fragmentation in PLMD patients, were associated with the alteration in CSF and 18F-FDG PET AD biomarkers, namely reduction of CSF Aβ42 levels and cerebral glucose metabolism dysregulation mainly in temporal areas, thus highlighting the possible role of sleep disorders in driving neurodegenerative processes typical of AD pathology.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Natalia Manfredi
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
- Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesca Izzi
- Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
- IRCSS Santa Lucia Foundation, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
- Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
32
|
Sum KK, Tint MT, Aguilera R, Dickens BSL, Choo S, Ang LT, Phua D, Law EC, Ng S, Tan KML, Benmarhnia T, Karnani N, Eriksson JG, Chong YS, Yap F, Tan KH, Lee YS, Chan SY, Chong MFF, Huang J. The socioeconomic landscape of the exposome during pregnancy. ENVIRONMENT INTERNATIONAL 2022; 163:107205. [PMID: 35349911 DOI: 10.1016/j.envint.2022.107205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND While socioeconomic position (SEP) is consistently related to pregnancy and birth outcome disparities, relevant biological mechanisms are manifold, thus necessitating more comprehensive characterization of SEP-exposome associations during pregnancy. OBJECTIVES We implemented an exposomic approach to systematically characterize the socioeconomic landscape of prenatal exposures in a setting where social segregation was less distinct in a hypotheses-generating manner. METHODS We described the correlation structure of 134 prenatal exogenous and endogenous sources (e.g., micronutrients, hormones, immunomodulatory metabolites, environmental pollutants) collected in a diverse, population-representative, urban, high-income longitudinal mother-offspring cohort (N = 1341; 2009-2011). We examined the associations between maternal, paternal, household, and areal level SEP indicators and 134 exposures using multiple regressions adjusted for precision variables, as well as potential effect measure modification by ethnicity and nativity. Finally, we generated summary SEP indices using Multiple Correspondence Analysis to further explore possible curved relationships. RESULTS Individual and household SEP were associated with anthropometric/adiposity measures, folate, omega-3 fatty acids, insulin-like growth factor-II, fasting glucose, and neopterin, an inflammatory marker. We observed paternal education was more strongly and consistently related to maternal exposures than maternal education. This was most apparent amongst couples discordant on education. Analyses revealed additional non-linear associations between areal composite SEP and particulate matter. Environmental contaminants (e.g., per- and polyfluoroalkyl substances) and micronutrients (e.g., folate and copper) showed opposing associations by ethnicity and nativity, respectively. DISCUSSION SEP-exposome relationships are complex, non-linear, and context specific. Our findings reinforce the potential role of paternal contributions and context-specific modifiers of associations, such as between ethnicity and maternal diet-related exposures. Despite weak presumed areal clustering of individual exposures in our context, our approach reinforces subtle non-linearities in areal-level exposures.
Collapse
Affiliation(s)
- Ka Kei Sum
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore.
| | - Mya Thway Tint
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Rosana Aguilera
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Borame Sue Lee Dickens
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Sue Choo
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Li Ting Ang
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Desiree Phua
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Evelyn C Law
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Sharon Ng
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Karen Mei-Ling Tan
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA; Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Neerja Karnani
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Johan G Eriksson
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore; Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Yap-Seng Chong
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Fabian Yap
- Duke-NUS Medical School, Singapore, Singapore; Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kok Hian Tan
- Duke-NUS Medical School, Singapore, Singapore; Department of Maternal-Fetal Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yung Seng Lee
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Mary F F Chong
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jonathan Huang
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore, Singapore; Centre for Quantitative Medicine (CQM), Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
33
|
Vissia EM, Lawrence AJ, Chalavi S, Giesen ME, Draijer N, Nijenhuis ERS, Aleman A, Veltman DJ, Reinders AATS. Dissociative identity state-dependent working memory in dissociative identity disorder: a controlled functional magnetic resonance imaging study. BJPsych Open 2022; 8:e82. [PMID: 35403592 PMCID: PMC9059616 DOI: 10.1192/bjo.2022.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Memory function is at the core of the psychopathology of dissociative identity disorder (DID), but little is known about its psychobiological correlates. AIMS This study aims to investigate whether memory function in DID differs between dissociative identity states. METHOD Behavioural data and neural activation patterns were assessed in 92 sessions during an n-back working memory task. Participants were people with genuine diagnosed DID (n = 14), DID-simulating controls (n = 16) and a paired control group (post-traumatic stress disorder (n = 16), healthy controls (n = 16)). Both DID groups participated as authentic or simulated neutral and trauma-related identity states. Reaction times and errors of omission were analysed with repeated measures ANOVA. Working memory neural activation (main working memory and linear load) was investigated for effects of identity state, participant group and their interaction. RESULTS Identity state-dependent behavioural performance and neural activation was found. DID simulators made fewer errors of omission than those with genuine DID. Regarding the prefrontal parietal network, main working memory in the left frontal pole and ventrolateral prefrontal cortex (Brodmann area 44) was activated in all three simulated neutral states, and in trauma-related identity states of DID simulators, but not those with genuine DID or post-traumatic stress disorder; for linear load, trauma-related identity states of those with genuine DID did not engage the parietal regions. CONCLUSIONS Behavioural performance and neural activation patterns related to working memory in DID are dependent on the dissociative identities involved. The narrowed consciousness of trauma-related identity states, with a proneness to re-experiencing traumatising events, may relate to poorer working memory functioning.
Collapse
Affiliation(s)
- Eline M Vissia
- Cognitive Neuroscience Centre, University Medical Centre Groningen, University of Groningen, The Netherlands; and Centre for Psychotrauma, Heelzorg, The Netherlands
| | - Andrew J Lawrence
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Sima Chalavi
- Cognitive Neuroscience Centre, University Medical Centre Groningen, University of Groningen, The Netherlands; and Research Centre for Movement Control and Neuroplasticity, Department of Movement Sciences, Katholieke Universiteit Leuven, Belgium
| | - Mechteld E Giesen
- Cognitive Neuroscience Centre, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Nel Draijer
- Department of Psychiatry, VU University Medical Center, Amsterdam University Medical Center, The Netherlands
| | | | - André Aleman
- Cognitive Neuroscience Centre, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam University Medical Center, The Netherlands
| | - Antje A T S Reinders
- Cognitive Neuroscience Centre, University Medical Centre Groningen, University of Groningen, The Netherlands; and Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
34
|
Easy to interpret coordinate based meta-analysis of neuroimaging studies: Analysis of brain coordinates (ABC). J Neurosci Methods 2022; 372:109556. [PMID: 35271873 DOI: 10.1016/j.jneumeth.2022.109556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Functional MRI and voxel-based morphometry are important in neuroscience. They are technically challenging with no globally optimal analysis method, and the multiple approaches have been shown to produce different results. It is useful to be able to meta-analyse results from such studies that tested a similar hypothesis potentially using different analysis methods. The aim is to identify replicable results and infer hypothesis specific effects. Coordinate based meta-analysis (CBMA) offers this, but the multiple algorithms can produce different results, making interpretation conditional on the algorithm. NEW METHOD Here a new model based CBMA algorithm, Analysis of Brain Coordinates (ABC), is presented. ABC aims to be simple to understand by avoiding empirical elements where possible and by using a simple to interpret statistical threshold, which relates to the primary aim of detecting replicable effects. RESULTS ABC is compared to both the most used and the most recently developed CBMA algorithms, by reproducing a published meta-analysis of localised grey matter changes in schizophrenia. There are some differences in results and the type of data that can be analysed, which are related to the algorithm specifics. COMPARISON TO OTHER METHODS Compared to other algorithms ABC eliminates empirical elements where possible and uses a simple to interpret statistical threshold. CONCLUSIONS There may be no optimal way to meta-analyse neuroimaging studies using CBMA. However, by eliminating some empirical elements and relating the statistical threshold directly to the aim of finding replicable effects, ABC makes the impact of the algorithm on any conclusion easier to understand.
Collapse
|
35
|
Guxens M, Lubczynska MJ, Perez-Crespo L, Muetzel RL, El Marroun H, Basagana X, Hoek G, Tiemeier H. Associations of Air Pollution on the Brain in Children: A Brain Imaging Study. Res Rep Health Eff Inst 2022; 2022:1-61. [PMID: 36106707 PMCID: PMC9476146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction Epidemiological studies are highlighting the negative effects of the exposure to air pollution on children's neurodevelopment. However, most studies assessed children's neurodevelopment using neuropsychological tests or questionnaires. Using magnetic resonance imaging (MRI) to precisely measure global and region-specific brain development would provide details of brain morphology and connectivity. This would help us understand the observed cognitive and behavioral changes related to air pollution exposure. Moreover, most studies assessed only a few air pollutants. This project investigates whether air pollution exposure to many pollutants during pregnancy and childhood is associated with the morphology and connectivity of the brain in school-age children and pre-adolescents. Methods We used data from the Generation R Study, a population-based birth cohort set up in Rotterdam, the Netherlands in 2002-2006 (n = 9,610). We used land-use regression (LUR) models to estimate the levels of 14 air pollutants at participant's homes during pregnancy and childhood: nitrogen oxides (NOx), nitrogen dioxide (NO2), particulate matter with aerodynamic diameter ≤10 μm (PM10) or ≤2.5 μm (PM2.5), PM between 10 μm and 2.5 μm (PMCOARSE), absorbance of the PM2.5 fraction - a measure of soot (PM2.5absorbance), the composition of PM2.5 such as polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), copper (Cu), iron (Fe), silicon (Si), zinc (Zn), and the oxidative potential of PM2.5 evaluated using two acellular methods: dithiothreitol (OPDTT) and electron spin resonance (OPESR). We performed MRI measurements of structural morphology (i.e., brain volumes, cortical thickness, and cortical surface area) using T1-weighted images in 6- to 10-year-old school-age children and 9- to 12-year-old pre-adolescents, structural connectivity (i.e., white matter microstructure) using diffusion tensor imaging (DTI) in pre-adolescents, and functional connectivity (i.e., connectivity score between brain areas) using resting-state functional MRI (rs-fMRI) in pre-adolescents. We assessed cognitive function using the Developmental Neuropsychological Assessment test (NEPSY-II) in school-age children. For each outcome, we ran regression analysis adjusted for several socioeconomic and lifestyle characteristics. We performed single-pollutant analyses followed by multipollutant analyses using the deletion/substitution/addition (DSA) approach. Results The project has air pollution and brain MRI data for 783 school-age children and 3,857 pre-adolescents. First, exposure to air pollution during pregnancy or childhood was not associated with global brain volumes (e.g., total brain, cortical gray matter, and cortical white matter) in school-age children or pre-adolescents. However, higher pregnancy or childhood exposure to several air pollutants was associated with a smaller corpus callosum and hippocampus, and a larger amygdala, nucleus accumbens, and cerebellum in pre-adolescents, but not in school-age children. Second, higher exposure to several air pollutants during pregnancy was associated with a thinner cortex in various regions of the brain in both school-age children and pre-adolescents. Higher exposure to air pollution during childhood was also associated with a thinner cortex in a single region in pre-adolescents. A thinner cortex in two regions mediated the association between higher exposure to air pollution during pregnancy and an impaired inhibitory control in school-age children. Third, higher exposure to air pollution during childhood was associated with smaller cortical surface areas in various regions of the brain except in a region where we observed a larger cortical surface area in pre-adolescents. In relation to brain structural connectivity, higher exposure to air pollution during pregnancy and childhood was associated with an alteration in white matter microstructure in pre-adolescents. In relation to brain functional connectivity, a higher exposure to air pollution, mainly during pregnancy and early childhood, was associated with a higher brain functional connectivity among several brain regions in pre-adolescents. Overall, we identified several air pollutants associated with brain structural morphology, structural connectivity, and functional connectivity, such as NOx, NO2, PM of various size fractions (i.e., PM10, PMCOARSE, and PM2.5), PM2.5absorbance, PAHs, OC, three elemental components of PM2.5 (i.e., Cu, Si, Zn), and the oxidative potential of PM2.5. Conclusions The results of this project suggest that exposure to air pollution during pregnancy and childhood play an adverse role in brain development. We observed this relationship even at levels of exposure that were below the European Union legislations. We acknowledge that identifying the independent effects of specific pollutants was particularly challenging. Most of our conclusions generally refer to traffic-related air pollutants. However, we did identify pollutants specifically originating from brake linings, tire wear, and tailpipe emissions from diesel combustion. The current direction toward innovative solutions for cleaner energy vehicles is a step in the right direction. However, our findings indicate that these measures might not be completely adequate to mitigate health problems attributable to traffic-related air pollution, as we also observed associations with markers of brake linings and tire wear.
Collapse
Affiliation(s)
- Monica Guxens
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Malgorzata J Lubczynska
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Laura Perez-Crespo
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Xavier Basagana
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
36
|
Wang X, Liu H, Kota S, Das Y, Liu Y, Zhang R, Chalak L. EEG phase-amplitude coupling to stratify encephalopathy severity in the developing brain. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 214:106593. [PMID: 34959157 DOI: 10.1016/j.cmpb.2021.106593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/19/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Neonatal hypoxic ischemic encephalopathy (HIE) is difficult to classify within the narrow therapeutic window of hypothermia. Neurophysiological biomarkers are needed for timely differentiation of encephalopathy severity within the short therapeutic window for initiation of hypothermia therapy. METHODS A novel analysis of mean Phase Amplitude Coupling index, PACm, of amplitudes high frequencies (12-30 Hz) coupled with phases of low (1,2 Hz) frequencies was calculated from the 6 h EEG recorded during the first day of life. PACm values were compared to identify differences between mild versus higher-grade HIE, respectively, for each of the EEG electrodes. A receiver operating characteristic curve was generated to examine the performance of PACm. RESULTS 38 newborns with different HIE grades were enrolled in the first 6 h of life. Threshold PACm 0.001 at Fz, O1, O2, P3, and P4 had AUC >0.9 to differentiate HIE severity and predict the persistence of moderate to severe encephalopathy that requires treatment with hypothermia. CONCLUSION PAC is a promising biomarker to identify mild from higher severity of HIE after birth.
Collapse
Affiliation(s)
- Xinlong Wang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Srinivas Kota
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yudhajit Das
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Yulun Liu
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rong Zhang
- Departments of Internal Medicine and Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lina Chalak
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
37
|
Dobos D, Szabó E, Baksa D, Gecse K, Kocsel N, Pap D, Zsombók T, Kozák LR, Kökönyei G, Juhász G. Regular Practice of Autogenic Training Reduces Migraine Frequency and Is Associated With Brain Activity Changes in Response to Fearful Visual Stimuli. Front Behav Neurosci 2022; 15:780081. [PMID: 35126068 PMCID: PMC8814632 DOI: 10.3389/fnbeh.2021.780081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
Several factors can contribute to the development and chronification of migraines, including stress, which is undoubtedly a major trigger. Beyond pharmacotherapy, other treatment methods also exist, including behavioral techniques aiming at reducing patients’ stress response. However, the exact brain mechanisms underlying the efficacy of such methods are poorly understood. Our pilot study examined whether the regular practice of autogenic training (AT) induces functional brain changes and if so, how it could be associated with the improvement of migraine parameters. By exploring neural changes through which AT exerts its effect, we can get closer to the pathomechanism of migraine. In particular, we investigated the effect of a headache-specific AT on brain activation using an implicit face emotion processing functional MRI (fMRI) task in female subjects with and without episodic migraine. Our focus was on migraine- and psychological stress-related brain regions. After a 16-week training course, migraineurs showed decreased activation in the migraine-associated dorsal pons to fearful compared with neutral visual stimuli. We also detected decreasing differences in supplementary motor area (SMA) activation to fearful stimuli, and in posterior insula activation to happy stimuli between healthy subjects and migraineurs. Furthermore, migraineurs reported significantly less migraine attacks. These brain activation changes suggest that AT may influence the activity of brain regions responsible for emotion perception, emotional and motor response integration, as well as cognitive control, while also being able to diminish the activation of regions that have an active role in migraine attacks. Improvements induced by the training and the underlying neurophysiological mechanisms are additional arguments in favor of evidence-based personalized behavioral therapies.
Collapse
Affiliation(s)
- Dóra Dobos
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Edina Szabó
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Center for Pain and the Brain (PAIN Research Group), Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Baksa
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Kinga Gecse
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Natália Kocsel
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Pap
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Terézia Zsombók
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Lajos R. Kozák
- Magnetic Resonance Research Center, Semmelweis University, Budapest, Hungary
| | - Gyöngyi Kökönyei
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Juhász
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- *Correspondence: Gabriella Juhász,
| |
Collapse
|
38
|
Ailion AS, You X, Mbwana JS, Fanto EJ, Krishnamurthy M, Vaidya CJ, Sepeta LN, Gaillard WD, Berl MM. Functional Connectivity as a Potential Mechanism for Language Plasticity. Neurology 2022; 98:e249-e259. [PMID: 34795045 PMCID: PMC8792810 DOI: 10.1212/wnl.0000000000013071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/02/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Task fMRI is a clinical tool for language lateralization, but has limitations, and cannot provide information about network-level plasticity. Additional methods are needed to improve the precision of presurgical language mapping. We investigate language resting-state functional connectivity (RS fMRI; FC) in typically developing children (TD) and children with epilepsy. Our objectives were to (1) understand how FC components differ between TD children and those with epilepsy; (2) elucidate how the location of disease (frontal/temporal epilepsy foci) affects FC; and (3) investigate the relationship between age and FC. METHODS Our sample included 55 TD children (mean age 12 years, range 7-18) and 31 patients with focal epilepsy (mean age 13 years, range 7-18). All participants underwent RS fMRI. Using a bilateral canonical language map as target, vertex-wise intrahemispheric FC map and interhemispheric FC map for each participant were computed and thresholded at top 10% to compute an FC laterality index (FCLI; [(L - R)/(L + R)]) of the frontal and temporal regions for both integration (intrahemispheric FC; FCLIi) and segregation (interhemispheric FC; FCLIs) maps. RESULTS We found FC differences in the developing language network based on disease, seizure foci location, and age. Frontal and temporal FCLIi was different between groups (t[84] = 2.82, p < 0.01; t[84] = 4.68, p < 0.01, respectively). Frontal epilepsy foci had the largest differences from TD (Cohen d frontal FCLIi = 0.84, FCLIs = 0.51; temporal FCLIi = 1.29). Development and disease have opposing influences on the laterality of FC based on groups. In the frontal foci group, FCLIi decreased with age (r = -0.42), whereas in the temporal foci group, FCLIi increased with age (r = 0.40). Within the epilepsy group, increases in right frontal integration FCLI relates to increased right frontal task activation in our mostly left language dominant group (r = 0.52, p < 0.01). Language network connectivity is associated with higher verbal intelligence in children with epilepsy (r = 0.45, p < 0.05). DISCUSSION These findings lend preliminary evidence that FC reflects network plasticity in the form of adaptation and compensation, or the ability to recruit support and reallocate resources within and outside of the traditional network to compensate for disease. FC expands on task-based fMRI and provides complementary and potentially useful information about the language network that is not captured using task-based fMRI alone.
Collapse
Affiliation(s)
- Alyssa S Ailion
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC.
| | - Xiaozhen You
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| | - Juma S Mbwana
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| | - Eleanor J Fanto
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| | - Manu Krishnamurthy
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| | - Chandan J Vaidya
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| | - Leigh N Sepeta
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| | - William D Gaillard
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| | - Madison M Berl
- From the Departments of Psychiatry and Neurology (A.S.A.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Neurology (X.Y., J.S.M., E.J.F., M.K., W.D.G.) and Neuropsychology (L.N.S., M.M.B.), Children's National Hospital; and Department of Psychology (C.J.V.), Georgetown University, Washington, DC
| |
Collapse
|
39
|
Bach P, Reinhard I, Koopmann A, Bumb JM, Sommer WH, Vollstädt‐Klein S, Kiefer F. Test-retest reliability of neural alcohol cue-reactivity: Is there light at the end of the magnetic resonance imaging tube? Addict Biol 2022; 27:e13069. [PMID: 34132011 DOI: 10.1111/adb.13069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/25/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
Over the last decades, the assessment of alcohol cue-reactivity gained popularity in addiction research, and efforts were undertaken to establish neural biomarkers. This attempt however depends on the reliability of cue-induced brain activation. Thus, we assessed test-retest reliability of alcohol cue-reactivity and its implications for imaging studies in addiction. We investigated test-retest reliability of alcohol cue-induced brain activation in 144 alcohol-dependent patients over 2 weeks. We computed established reliability estimates, such as intraclass correlation (ICC), Dice and Jaccard coefficients, for the three contrast conditions of interest: 'alcohol', 'neutral' and the 'alcohol versus neutral' difference contrast. We also investigated how test-retest reliability of the different contrasts affected the capacity to establishing associations with clinical data and determining effect size estimates. Whereas brain activation, indexed by the constituting contrast conditions 'alcohol' and 'neutral' separately, displayed overall moderate (ICC > 0.4) to good (ICC > 0.75) test-retest reliability in areas of the mesocorticolimbic system, the difference contrast 'alcohol versus neutral' showed poor overall reliability (ICC < 0.40), which was related to the intercorrelation between the constituting conditions. Data simulations and analyses of craving data confirmed that the low reliability of the difference contrast substantially limited the capacity to establish associations with clinical data and precisely estimate effect sizes. Future research on alcohol cue-reactivity should be cautioned by the low reliability of the common 'alcohol versus neutral' difference contrast. We propose that this limitation can be overcome by using the constituent task conditions as an individual difference measure, when intending to longitudinally monitor brain responses.
Collapse
Affiliation(s)
- Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Medical Faculty Mannheim, Heidelberg University Mannheim Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS) University of Heidelberg Heidelberg Germany
| | - Iris Reinhard
- Department of Biostatistics, Central Institute of Mental Health Medical Faculty Mannheim, Heidelberg University Mannheim Germany
| | - Anne Koopmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Medical Faculty Mannheim, Heidelberg University Mannheim Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS) University of Heidelberg Heidelberg Germany
| | - Jan M. Bumb
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Medical Faculty Mannheim, Heidelberg University Mannheim Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS) University of Heidelberg Heidelberg Germany
| | - Wolfgang H. Sommer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Medical Faculty Mannheim, Heidelberg University Mannheim Germany
- Institute of Psychopharmacology, Central Institute of Mental Health Medical Faculty Mannheim, Heidelberg University Mannheim Germany
| | - Sabine Vollstädt‐Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Medical Faculty Mannheim, Heidelberg University Mannheim Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Medical Faculty Mannheim, Heidelberg University Mannheim Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS) University of Heidelberg Heidelberg Germany
| |
Collapse
|
40
|
Gerhardt S, Karl D, Mann K, Kiefer F, Vollstädt-Klein S. Association Between Functional and Structural Brain Connectivity of the Default Mode Network in Non-treatment Seeking Individuals With Alcohol Use Disorder. Alcohol Alcohol 2021; 57:540-551. [PMID: 34929740 DOI: 10.1093/alcalc/agab079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022] Open
Abstract
AIMS Alcohol use disorder (AUD) is associated with alterations within the default mode network (DMN) at rest. Also, impaired white matter structures have been observed in individuals with AUD. This study developed a workflow for examining the relation between functional and structural connectivity, exemplary for nodes of the DMN within a sample of non-treatment seeking individuals with AUD. Furthermore, AUD severity was correlated with both measures independently. METHODS The functional magnetic resonance imaging (fMRI) protocol included anatomical, resting state and diffusion weighted imaging measurements. Independent component analyses and deterministic fiber tracking as well as correlation analyses, including the severity of AUD, were performed. N = 18 out of 23 adult study participants took part in the fMRI examination, and N = 15 were included in the final analyses. RESULTS Established resting-state networks were reliably identified in our sample. Structural connections were found between several nodes of the DMN, whereas only fibers between the medial prefrontal cortex and the posterior cingulate cortex were reliably detected in all individuals. A negative correlation was observed between brain activation during rest and AUD severity in left parietal and temporal regions and the putamen. A more severe AUD predicted impairments in white matter integrity of the cingulum. CONCLUSION In AUD, information obtained from a combination of resting-state, diffusion weighted data and clinical information has great potential to provide a more profound understanding of the disorder since alterations may already become apparent at earlier stages of the disorder, e.g. in non-treatment seeking individuals. SUMMARY Alcohol use disorder leads to alterations in the default mode network of the resting brain that is associated with the severity of the disorder. Following our workflow, white matter impairments can be observed between some of the nodes of the default mode network using diffusion tensor imaging. Both, resting-state functional and structural connectivity relate to the severity of alcohol use disorder.
Collapse
Affiliation(s)
- Sarah Gerhardt
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Quadrat J 5, 68159 Mannheim, Germany
| | - Damian Karl
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Quadrat J 5, 68159 Mannheim, Germany
| | - Karl Mann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Quadrat J 5, 68159 Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Quadrat J 5, 68159 Mannheim, Germany.,Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.,Feuerlein Center on Translational Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Quadrat J 5, 68159 Mannheim, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Quadrat J 5, 68159 Mannheim, Germany.,Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
41
|
Large, open datasets for human connectomics research: Considerations for reproducible and responsible data use. Neuroimage 2021; 244:118579. [PMID: 34536537 DOI: 10.1016/j.neuroimage.2021.118579] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Large, open datasets have emerged as important resources in the field of human connectomics. In this review, the evolution of data sharing involving magnetic resonance imaging is described. A summary of the challenges and progress in conducting reproducible data analyses is provided, including description of recent progress made in the development of community guidelines and recommendations, software and data management tools, and initiatives to enhance training and education. Finally, this review concludes with a discussion of ethical conduct relevant to analyses of large, open datasets and a researcher's responsibility to prevent further stigmatization of historically marginalized racial and ethnic groups. Moving forward, future work should include an enhanced emphasis on the social determinants of health, which may further contextualize findings among diverse population-based samples. Leveraging the progress to date and guided by interdisciplinary collaborations, the future of connectomics promises to be an impressive era of innovative research, yielding a more inclusive understanding of brain structure and function.
Collapse
|
42
|
Cognitive and Neural Mechanisms of Social Communication Dysfunction in Primary Progressive Aphasia. Brain Sci 2021; 11:brainsci11121600. [PMID: 34942902 PMCID: PMC8699060 DOI: 10.3390/brainsci11121600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Mounting evidence suggests that, in parallel with well-defined changes in language, primary progressive aphasia (PPA) syndromes display co-occurring social cognitive impairments. Here, we explored multidimensional profiles of carer-rated social communication using the La Trobe Communication Questionnaire (LCQ) in 11 semantic dementia (SD), 12 logopenic progressive aphasia (LPA) and 9 progressive non-fluent aphasia (PNFA) cases and contrasted their performance with 19 Alzheimer’s disease (AD) cases, 26 behavioural variant frontotemporal dementia (bvFTD) cases and 31 healthy older controls. Relative to the controls, the majority of patient groups displayed significant overall social communication difficulties, with common and unique profiles of impairment evident on the LCQ subscales. Correlation analyses revealed a differential impact of social communication disturbances on functional outcomes in patient and carer well-being, most pronounced for SD and bvFTD. Finally, voxel-based morphometry analyses based on a structural brain MRI pointed to the degradation of a distributed brain network in mediating social communication dysfunction in dementia. Our findings suggest that social communication difficulties are an important feature of PPA, with significant implications for patient function and carer well-being. The origins of these changes are likely to be multifactorial, reflecting the breakdown of fronto-thalamic brain circuits specialised in the integration of complex information.
Collapse
|
43
|
The role of negative emotions in sex differences in pain sensitivity. Neuroimage 2021; 245:118685. [PMID: 34740794 DOI: 10.1016/j.neuroimage.2021.118685] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023] Open
Abstract
Pain perception varies widely among individuals due to the varying degrees of biological, psychological, and social factors. Notably, sex differences in pain sensitivity have been consistently observed in various experimental and clinical investigations. However, the neuropsychological mechanism underlying sex differences in pain sensitivity remains unclear. To address this issue, we quantified pain sensitivity (i.e., pain threshold and tolerance) using the cold pressure test and negative emotions (i.e., pain-related fear, pain-related anxiety, trait anxiety, and depression) using well-established questionnaires and collected magnetic resonance imaging (MRI) data (i.e., high-resolution T1 structural images and resting-state functional images) from 450 healthy subjects. We observed that, as compared to males, females exhibited lower pain threshold and tolerance. Notably, sex differences in pain sensitivity were mediated by pain-related fear and anxiety. Specifically, pain-related fear and anxiety were the complementary mediators of the relationship between sex and pain threshold, and they were the indirect-only mediators of the relationship between sex and pain tolerance. Besides, structural MRI data revealed that the amygdala subnuclei (i.e., the lateral and basal nuclei in the left hemisphere) volumes were the complementary mediators of the relationship between sex and pain-related fear, which further influenced pain sensitivity. Altogether, our results provided a comprehensive picture of how negative emotions (especially pain-related negative emotions) and related brain structures (especially the amygdala) contribute to sex differences in pain sensitivity. These results deepen our understanding of the neuropsychological underpinnings of sex differences in pain sensitivity, which is important to tailor a personalized method for treating pain according to sex and the level of pain-related negative emotions for patients with painful conditions.
Collapse
|
44
|
Belyaeva I, Bhinge S, Long Q, Adali T. Taking the 4D Nature of fMRI Data Into Account Promises Significant Gains in Data Completion. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:145334-145362. [PMID: 34824964 PMCID: PMC8612463 DOI: 10.1109/access.2021.3121417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is a powerful, noninvasive tool that has significantly contributed to the understanding of the human brain. FMRI data provide a sequence of whole-brain volumes over time and hence are inherently four dimensional (4D). Missing data in fMRI experiments arise from image acquisition limits, susceptibility and motion artifacts or during confounding noise removal. Hence, significant brain regions may be excluded from the data, which can seriously undermine the quality of subsequent analyses due to the significant number of missing voxels. We take advantage of the four dimensional (4D) nature of fMRI data through a tensor representation and introduce an effective algorithm to estimate missing samples in fMRI data. The proposed Riemannian nonlinear spectral conjugate gradient (RSCG) optimization method uses tensor train (TT) decomposition, which enables compact representations and provides efficient linear algebra operations. Exploiting the Riemannian structure boosts algorithm performance significantly, as evidenced by the comparison of RSCG-TT with state-of-the-art stochastic gradient methods, which are developed in the Euclidean space. We thus provide an effective method for estimating missing brain voxels and, more importantly, clearly show that taking the full 4D structure of fMRI data into account provides important gains when compared with three-dimensional (3D) and the most commonly used two-dimensional (2D) representations of fMRI data.
Collapse
Affiliation(s)
- Irina Belyaeva
- Department of CSEE, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Suchita Bhinge
- Department of CSEE, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Qunfang Long
- Department of CSEE, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Tülay Adali
- Department of CSEE, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
45
|
Anhedonia in Semantic Dementia-Exploring Right Hemispheric Contributions to the Loss of Pleasure. Brain Sci 2021; 11:brainsci11080998. [PMID: 34439617 PMCID: PMC8392684 DOI: 10.3390/brainsci11080998] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Semantic dementia (SD) is a younger-onset neurodegenerative disease characterised by progressive deterioration of the semantic knowledge base in the context of predominantly left-lateralised anterior temporal lobe (ATL) atrophy. Mounting evidence indicates the emergence of florid socioemotional changes in SD as atrophy encroaches into right temporal regions. How lateralisation of temporal lobe pathology impacts the hedonic experience in SD remains largely unknown yet has important implications for understanding socioemotional and functional impairments in this syndrome. Here, we explored how lateralisation of temporal lobe atrophy impacts anhedonia severity on the Snaith–Hamilton Pleasure Scale in 28 SD patients presenting with variable right- (SD-R) and left-predominant (SD-L) profiles of temporal lobe atrophy compared to that of 30 participants with Alzheimer’s disease and 30 healthy older Control participants. Relative to Controls, SD-R but not SD-L or Alzheimer’s patients showed clinically significant anhedonia, representing a clear departure from premorbid levels. Overall, anhedonia was more strongly associated with functional impairment on the Frontotemporal Dementia Functional Rating Scale and motivational changes on the Cambridge Behavioural Inventory in SD than in Alzheimer’s disease patients. Voxel-based morphometry analyses revealed that anhedonia severity correlated with reduced grey matter intensity in a restricted set of regions centred on right orbitofrontal and temporopolar cortices, bilateral posterior temporal cortices, as well as the anterior cingulate gyrus and parahippocampal gyrus, bilaterally. Finally, regression and mediation analysis indicated a unique role for right temporal lobe structures in modulating anhedonia in SD. Our findings suggest that degeneration of predominantly right-hemisphere structures deleteriously impacts the capacity to experience pleasure in SD. These findings offer important insights into hemispheric lateralisation of motivational disturbances in dementia and suggest that anhedonia may emerge at different timescales in the SD disease trajectory depending on the integrity of the right hemisphere.
Collapse
|
46
|
Ge Y, Hare S, Chen G, Waltz JA, Kochunov P, Elliot Hong L, Chen S. Bayes estimate of primary threshold in clusterwise functional magnetic resonance imaging inferences. Stat Med 2021; 40:5673-5689. [PMID: 34309050 DOI: 10.1002/sim.9147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/08/2022]
Abstract
Clusterwise statistical inference is the most widely used technique for functional magnetic resonance imaging (fMRI) data analyses. Clusterwise statistical inference consists of two steps: (i) primary thresholding that excludes less significant voxels by a prespecified cut-off (eg, p < . 001 ); and (ii) clusterwise thresholding that controls the familywise error rate caused by clusters consisting of false positive suprathreshold voxels. The selection of the primary threshold is critical because it determines both statistical power and false discovery rate (FDR). However, in most existing statistical packages, the primary threshold is selected based on prior knowledge (eg, p < . 001 ) without taking into account the information in the data. In this article, we propose a data-driven approach to algorithmically select the optimal primary threshold based on an empirical Bayes framework. We evaluate the proposed model using extensive simulation studies and real fMRI data. In the simulation, we show that our method can effectively increase statistical power by 20% to over 100% while effectively controlling the FDR. We then investigate the brain response to the dose-effect of chlorpromazine in patients with schizophrenia by analyzing fMRI scans and generate consistent results.
Collapse
Affiliation(s)
- Yunjiang Ge
- Department of Mathematics, University of Maryland-College Park, College Park, Maryland, USA
| | - Stephanie Hare
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institute of Health, Bethesda, Maryland, USA
| | - James A Waltz
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA.,Division of Biostatistics and Bioinformatics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Fetit R, Hillary RF, Price DJ, Lawrie SM. The neuropathology of autism: A systematic review of post-mortem studies of autism and related disorders. Neurosci Biobehav Rev 2021; 129:35-62. [PMID: 34273379 DOI: 10.1016/j.neubiorev.2021.07.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023]
Abstract
Post-mortem studies allow for the direct investigation of brain tissue in those with autism and related disorders. Several review articles have focused on aspects of post-mortem abnormalities but none has brought together the entire post-mortem literature. Here, we systematically review the evidence from post-mortem studies of autism, and of related disorders that present with autistic features. The literature consists of a small body of studies with small sample sizes, but several remarkably consistent findings are evident. Cortical layering is largely undisturbed, but there are consistent reductions in minicolumn numbers and aberrant myelination. Transcriptomics repeatedly implicate abberant synaptic, metabolic, proliferation, apoptosis and immune pathways. Sufficient replicated evidence is available to implicate non-coding RNA, aberrant epigenetic profiles, GABAergic, glutamatergic and glial dysfunction in autism pathogenesis. Overall, the cerebellum and frontal cortex are most consistently implicated, sometimes revealing distinct region-specific alterations. The literature on related disorders such as Rett syndrome, Fragile X and copy number variations (CNVs) predisposing to autism is particularly small and inconclusive. Larger studies, matched for gender, developmental stage, co-morbidities and drug treatment are required.
Collapse
Affiliation(s)
- Rana Fetit
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David J Price
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK; Patrick Wild Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK
| |
Collapse
|
48
|
Fish S, Christidi F, Karavasilis E, Velonakis G, Kelekis N, Klein C, Stefanis NC, Smyrnis N. Interaction of schizophrenia and chronic cannabis use on reward anticipation sensitivity. NPJ SCHIZOPHRENIA 2021; 7:33. [PMID: 34135344 PMCID: PMC8209034 DOI: 10.1038/s41537-021-00163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/28/2021] [Indexed: 11/09/2022]
Abstract
Chronic cannabis use and schizophrenia are both thought to affect reward processing. While behavioural and neural effects on reward processing have been investigated in both conditions, their interaction has not been studied, although chronic cannabis use is common among these patients. In the present study eighty-nine participants divided into four groups (control chronic cannabis users and non-users; schizophrenia patient cannabis users and non-users) performed a two-choice decision task, preceded by monetary cues (high/low reward/punishment or neutral), while being scanned using functional magnetic resonance imaging. Reward and punishment anticipation resulted in activation of regions of interest including the thalamus, striatum, amygdala and insula. Chronic cannabis use and schizophrenia had opposing effects on reward anticipation sensitivity. More specifically control users and patient non-users showed faster behavioural responses and increased activity in anterior/posterior insula for high magnitude cues compared to control non-users and patient users. The same interaction pattern was observed in the activation of the right thalamus for reward versus punishment cues. This study provided evidence for interaction of chronic cannabis use and schizophrenia on reward processing and highlights the need for future research addressing the significance of this interaction for the pathophysiology of these conditions and its clinical consequences.
Collapse
Affiliation(s)
- Simon Fish
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece.,1st Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Athens, Greece
| | - Foteini Christidi
- Department of Medical Physics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Efstratios Karavasilis
- 2nd Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece
| | - Georgios Velonakis
- 2nd Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece
| | - Nikolaos Kelekis
- 2nd Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece
| | - Christoph Klein
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece.,Department of Child and Adolescent Psychiatry, Medical Faculty, University of Freiburg, Freiburg, Germany.,Department of Child and Adolescent Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Nicholas C Stefanis
- 1st Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Athens, Greece
| | - Nikolaos Smyrnis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece. .,2nd Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece.
| |
Collapse
|
49
|
Doll A, Wegrzyn M, Benzait A, Mertens M, Woermann FG, Labudda K, Bien CG, Kissler J. Whole-brain functional correlates of memory formation in mesial temporal lobe epilepsy. NEUROIMAGE-CLINICAL 2021; 31:102723. [PMID: 34147817 PMCID: PMC8220377 DOI: 10.1016/j.nicl.2021.102723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
Large study of encoding and subsequent memory for words, faces, and scenes. Less ipsilateral mesial temporal activity in mesial temporal lobe epilepsy (mTLE). Extra-mTL activity in mTLE only partly relevant for memory formation. Across materials contralateral mTL decisive to maintain intact memory in mTLE. Left frontal activation correlates with better verbal memory only in left mTLE.
The mesial temporal lobe is a key region for episodic memory. Accordingly, memory impairment is frequent in patients with mesial temporal lobe epilepsy. However, the functional relevance of potentially epilepsy-induced reorganisation for memory formation is still not entirely clear. Therefore, we investigated whole-brain functional correlates of verbal and non-verbal memory encoding and subsequent memory formation in 56 (25 right sided) mesial temporal lobe epilepsy patients and 21 controls. We applied an fMRI task of learning scenes, faces, and words followed by an out-of-scanner recognition test. During encoding of faces and scenes left and right mesial temporal lobe epilepsy patients had consistently reduced activation in the epileptogenic mesial temporal lobe compared with controls. Activation increases in patients were apparent in extra-temporal regions, partly associated with subsequent memory formation (left frontal regions and basal ganglia), and patients had less deactivation in regions often linked to the default mode and auditory networks. The more specific subsequent memory contrast indicated only marginal group differences. Correlating patients’ encoding activation with memory performance both within the paradigm and with independent clinical measures demonstrated predominantly increased contralateral mesio-temporal activation supporting intact memory performance. In left temporal lobe epilepsy patients, left frontal activation was also correlated with better verbal memory performance. Taken together, our findings hint towards minor extra-temporal plasticity in mesial temporal lobe epilepsy patients, which is in line with pre-surgical impairment and post-surgical memory decline in many patients. Further, data underscore the importance of particularly the contralateral mesial temporal lobe itself, to maintain intact memory performance.
Collapse
Affiliation(s)
- Anna Doll
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Maraweg 21, Bielefeld 33617, Germany; Bielefeld University, Department of Psychology, Universitätsstraße 25, Bielefeld 33615, Germany.
| | - Martin Wegrzyn
- Bielefeld University, Department of Psychology, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Anissa Benzait
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Maraweg 21, Bielefeld 33617, Germany; Bielefeld University, Department of Psychology, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Markus Mertens
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Maraweg 21, Bielefeld 33617, Germany
| | - Friedrich G Woermann
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Maraweg 21, Bielefeld 33617, Germany
| | - Kirsten Labudda
- Bielefeld University, Department of Psychology, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Christian G Bien
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Maraweg 21, Bielefeld 33617, Germany
| | - Johanna Kissler
- Bielefeld University, Department of Psychology, Universitätsstraße 25, Bielefeld 33615, Germany; Center for Cognitive Interaction Technology (CITEC), University of Bielefeld, Inspiration 1, Bielefeld 33619, Germany
| |
Collapse
|
50
|
Mariani Wigley ILC, Mascheroni E, Peruzzo D, Giorda R, Bonichini S, Montirosso R. Neuroimaging and DNA Methylation: An Innovative Approach to Study the Effects of Early Life Stress on Developmental Plasticity. Front Psychol 2021; 12:672786. [PMID: 34079501 PMCID: PMC8165202 DOI: 10.3389/fpsyg.2021.672786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022] Open
Abstract
DNA methylation plays a key role in neural cell fate and provides a molecular link between early life stress and later-life behavioral phenotypes. Here, studies that combine neuroimaging methods and DNA methylation analysis in pediatric population with a history of adverse experiences were systematically reviewed focusing on: targeted genes and neural correlates; statistical models used to examine the link between DNA methylation and neuroimaging data also considering early life stress and behavioral outcomes. We identified 8 studies that report associations between DNA methylation and brain structure/functions in infants, school age children and adolescents faced with early life stress condition (e.g., preterm birth, childhood maltreatment, low socioeconomic status, and less-than optimal caregiving). Results showed that several genes were investigated (e.g., OXTR, SLC6A4, FKBP5, and BDNF) and different neuroimaging techniques were performed (MRI and f-NIRS). Statistical model used ranged from correlational to more complex moderated mediation models. Most of the studies (n = 5) considered DNA methylation and neural correlates as mediators in the relationship between early life stress and behavioral phenotypes. Understanding what role DNA methylation and neural correlates play in interaction with early life stress and behavioral outcomes is crucial to promote theory-driven studies as the future direction of this research fields.
Collapse
Affiliation(s)
| | - Eleonora Mascheroni
- 0-3 Center for the At-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Sabrina Bonichini
- Department of Developmental and Social Psychology, University of Padua, Padua, Italy
| | - Rosario Montirosso
- 0-3 Center for the At-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| |
Collapse
|