1
|
Makowski C, Shafiei G, Martinho M, Hagler DJ, Pecheva D, Dale AM, Fennema-Notestine C, Bischoff-Grethe A, Wierenga CE. Multivariate patterns linking brain microstructure to temperament and behavior in adolescent eating disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.24.24317857. [PMID: 39649610 PMCID: PMC11623734 DOI: 10.1101/2024.11.24.24317857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Eating disorders (EDs) are multifaceted psychiatric disorders characterized by varying behaviors, traits, and cognitive profiles thought to drive symptom heterogeneity and severity. Non-invasive neuroimaging methods have been critical to elucidate the neurobiological circuitry involved in ED-related behaviors, but often focused on a limited set of regions of interest and/or symptoms. The current study harnesses multivariate methods to map microstructural and morphometric patterns across the entire brain to multiple domains of behavior and symptomatology in patients. Diffusion-weighted images, modeled with restriction spectrum imaging, were analyzed for 91 adolescent patients with an ED and 48 healthy controls. Partial least squares analysis was applied to map 38 behavioral measures (encompassing cognition, temperament, and ED symptoms) to restricted diffusion in white matter tracts and subcortical structures across 65 regions of interest. The first significant latent variable explained 46.9% of the covariance between microstructure and behavior. This latent variable retained a significant brain-behavior correlation in held-out data, where an 'undercontrolled' behavioral profile (e.g., higher emotional dysregulation, novelty seeking; lower effortful control and interoceptive awareness) was linked to increased restricted diffusion across white matter tracts, particularly those joining frontal, limbic, and thalamic regions. Individually-derived brain and behavior scores for this latent variable were higher in patients with binge-purge symptoms, compared to those with only restrictive eating symptoms. Findings demonstrate the value of applying multivariate modeling to the array of brain-behavior relationships inherent to the clinical presentation of EDs, and their relevance for providing a neurobiologically-informed model for future clinical subtyping and prediction efforts.
Collapse
Affiliation(s)
- Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Megan Martinho
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Diliana Pecheva
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Christine Fennema-Notestine
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | | | - Christina E Wierenga
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Zhao Q, Gao Z, Yu W, Xiao Y, Hu N, Wei X, Tao B, Zhu F, Li S, Lui S. Multivariate associations between neuroanatomy and cognition in unmedicated and medicated individuals with schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:62. [PMID: 39004627 PMCID: PMC11247086 DOI: 10.1038/s41537-024-00482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Previous studies that focused on univariate correlations between neuroanatomy and cognition in schizophrenia identified some inconsistent findings. Moreover, antipsychotic medication may impact the brain-behavior profiles in affected individuals. It remains unclear whether unmedicated and medicated individuals with schizophrenia would share common neuroanatomy-cognition associations. Therefore, we aimed to investigate multivariate neuroanatomy-cognition relationships in both groups. A sample of 59 drug-naïve individuals with first-episode schizophrenia (FES) and a sample of 115 antipsychotic-treated individuals with schizophrenia were finally included. Multivariate modeling was conducted in the two patient samples between multiple cognitive domains and neuroanatomic features, such as cortical thickness (CT), cortical surface area (CSA), and subcortical volume (SV). We observed distinct multivariate correlational patterns between the two samples of individuals with schizophrenia. In the FES sample, better performance in token motor, symbol coding, and verbal fluency tests was associated with greater thalamic volumes but lower CT in the prefrontal and anterior cingulate cortices. Two significant multivariate correlations were identified in antipsychotic-treated individuals: 1) worse verbal memory performance was related to smaller volumes for the most subcortical structures and smaller CSA mainly in the temporal regions and inferior parietal lobule; 2) a lower symbol coding test score was correlated with smaller CSA in the right parahippocampal gyrus but greater volume in the right caudate. These multivariate patterns were sample-specific and not confounded by imaging quality, illness duration, antipsychotic dose, or psychopathological symptoms. Our findings may help to understand the neurobiological basis of cognitive impairments and the development of cognition-targeted interventions.
Collapse
Affiliation(s)
- Qiannan Zhao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ziyang Gao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Wei Yu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Na Hu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xia Wei
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Bo Tao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Fei Zhu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Siyi Li
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
3
|
Larivière S, Park BY, Royer J, DeKraker J, Ngo A, Sahlas E, Chen J, Rodríguez-Cruces R, Weng Y, Frauscher B, Liu R, Wang Z, Shafiei G, Mišić B, Bernasconi A, Bernasconi N, Fox MD, Zhang Z, Bernhardt BC. Connectome reorganization associated with temporal lobe pathology and its surgical resection. Brain 2024; 147:2483-2495. [PMID: 38701342 PMCID: PMC11224603 DOI: 10.1093/brain/awae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and interindividual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.
Collapse
Affiliation(s)
- Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Bo-yong Park
- Department of Data Science, Inha University, Incheon 22212, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 34126, Republic of Korea
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ella Sahlas
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Judy Chen
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ruoting Liu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Zhengge Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bratislav Mišić
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
4
|
Georgiadis F, Larivière S, Glahn D, Hong LE, Kochunov P, Mowry B, Loughland C, Pantelis C, Henskens FA, Green MJ, Cairns MJ, Michie PT, Rasser PE, Catts S, Tooney P, Scott RJ, Schall U, Carr V, Quidé Y, Krug A, Stein F, Nenadić I, Brosch K, Kircher T, Gur R, Gur R, Satterthwaite TD, Karuk A, Pomarol-Clotet E, Radua J, Fuentes-Claramonte P, Salvador R, Spalletta G, Voineskos A, Sim K, Crespo-Facorro B, Tordesillas Gutiérrez D, Ehrlich S, Crossley N, Grotegerd D, Repple J, Lencer R, Dannlowski U, Calhoun V, Rootes-Murdy K, Demro C, Ramsay IS, Sponheim SR, Schmidt A, Borgwardt S, Tomyshev A, Lebedeva I, Höschl C, Spaniel F, Preda A, Nguyen D, Uhlmann A, Stein DJ, Howells F, Temmingh HS, Diaz Zuluaga AM, López Jaramillo C, Iasevoli F, Ji E, Homan S, Omlor W, Homan P, Kaiser S, Seifritz E, Misic B, Valk SL, Thompson P, van Erp TGM, Turner JA, Bernhardt B, Kirschner M. Connectome architecture shapes large-scale cortical alterations in schizophrenia: a worldwide ENIGMA study. Mol Psychiatry 2024; 29:1869-1881. [PMID: 38336840 PMCID: PMC11371638 DOI: 10.1038/s41380-024-02442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Schizophrenia is a prototypical network disorder with widespread brain-morphological alterations, yet it remains unclear whether these distributed alterations robustly reflect the underlying network layout. We tested whether large-scale structural alterations in schizophrenia relate to normative structural and functional connectome architecture, and systematically evaluated robustness and generalizability of these network-level alterations. Leveraging anatomical MRI scans from 2439 adults with schizophrenia and 2867 healthy controls from 26 ENIGMA sites and normative data from the Human Connectome Project (n = 207), we evaluated structural alterations of schizophrenia against two network susceptibility models: (i) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; (ii) epicenter mapping, which identifies regions whose typical connectivity profile most closely resembles the disease-related morphological alterations. To assess generalizability and specificity, we contextualized the influence of site, disease stages, and individual clinical factors and compared network associations of schizophrenia with that found in affective disorders. Our findings show schizophrenia-related cortical thinning is spatially associated with functional and structural hubs, suggesting that highly interconnected regions are more vulnerable to morphological alterations. Predominantly temporo-paralimbic and frontal regions emerged as epicenters with connectivity profiles linked to schizophrenia's alteration patterns. Findings were robust across sites, disease stages, and related to individual symptoms. Moreover, transdiagnostic comparisons revealed overlapping epicenters in schizophrenia and bipolar, but not major depressive disorder, suggestive of a pathophysiological continuity within the schizophrenia-bipolar-spectrum. In sum, cortical alterations over the course of schizophrenia robustly follow brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters at both the level of the group and the individual. Subtle variations of epicenters across disease stages suggest interacting pathological processes, while associations with patient-specific symptoms support additional inter-individual variability of hub vulnerability and epicenters in schizophrenia. Our work outlines potential pathways to better understand macroscale structural alterations, and inter- individual variability in schizophrenia.
Collapse
Affiliation(s)
- Foivos Georgiadis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland.
| | - Sara Larivière
- McGill University, Montreal Neurological Institute, Montreal, QC, Canada
| | - David Glahn
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, US
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, US
| | - Bryan Mowry
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Carmel Loughland
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, USA
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton South, VIC, Australia
| | - Frans A Henskens
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Melissa J Green
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Sydney, Sydney, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Patricia T Michie
- School of Psychological Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - Paul E Rasser
- School of Medicine and Public Health, College of Health, Medicine, and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
| | - Stanley Catts
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Paul Tooney
- School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Rodney J Scott
- School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Ulrich Schall
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Vaughan Carr
- School of Clinical Medicine, Discipline of Psychiatry, UNSW Sydney, Sydney, NSW, Australia
| | - Yann Quidé
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Sydney, Sydney, NSW, Australia
| | - Axel Krug
- University Hospital Bonn, Department of Psychiatry and Psychotherapy, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Frederike Stein
- Department of Psychiatry, University of Marburg, Rudolf Bultmann Str. 8, 35039, Marburg, Germany
| | - Igor Nenadić
- Department. of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry, University of Marburg, Rudolf Bultmann Str. 8, 35039, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Rudolf Bultmann Str. 8, 35039, Marburg, Germany
| | - Raquel Gur
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ruben Gur
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Andriana Karuk
- FIDMAG Germanes Hospitalàries Research Foundation & CIBERSAM, ISCIII, Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation & CIBERSAM, ISCIII, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation & CIBERSAM, ISCIII, Barcelona, Spain
| | | | - Aristotle Voineskos
- School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore
| | | | - Diana Tordesillas Gutiérrez
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
| | - Stefan Ehrlich
- Division of Psychological & Social Medicine and Developmental Neurosciences, Technischen Universität Dresden, Faculty of Medicine, University Hospital C.G. Carus, Dresden, Germany
| | - Nicolas Crossley
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Vince Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Kelly Rootes-Murdy
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Caroline Demro
- University of Minnesota Department of Psychology, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Ian S Ramsay
- University of Minnesota Department of Psychiatry & Behavioral Sciences, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- University of Minnesota Department of Psychiatry & Behavioral Sciences, Minneapolis, MN, USA
| | - Andre Schmidt
- University of Basel, Department of Psychiatry, Basel, Switzerland
| | | | | | - Irina Lebedeva
- Mental Health Research Center, Moscow, Russian Federation
| | - Cyril Höschl
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Filip Spaniel
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Dana Nguyen
- Department of Pediatric Neurology, University of California Irvine, Irvine, CA, USA
| | - Anne Uhlmann
- Department of child and adolescent psychiatry, TU Dresden, Dresden, Germany
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Fleur Howells
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Henk S Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Ana M Diaz Zuluaga
- Research Group in Psychiatry, Department of Psychiatry, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Carlos López Jaramillo
- Research Group in Psychiatry, Department of Psychiatry, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Felice Iasevoli
- University of Naples, Department of Neuroscience, Naples, Italy
| | - Ellen Ji
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland
| | - Stephanie Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland
| | - Wolfgang Omlor
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland
| | - Philipp Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland
| | - Bratislav Misic
- McGill University, Montreal Neurological Institute, Montreal, QC, Canada
| | - Sofie L Valk
- Forschungszentrum Jülich, Jülich, Germany
- Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Paul Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theo G M van Erp
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, the Ohio State University, Columbus, OH, USA
| | - Boris Bernhardt
- McGill University, Montreal Neurological Institute, Montreal, QC, Canada
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland.
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
5
|
Vieira S, Bolton TAW, Schöttner M, Baecker L, Marquand A, Mechelli A, Hagmann P. Multivariate brain-behaviour associations in psychiatric disorders. Transl Psychiatry 2024; 14:231. [PMID: 38824172 PMCID: PMC11144193 DOI: 10.1038/s41398-024-02954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Mapping brain-behaviour associations is paramount to understand and treat psychiatric disorders. Standard approaches involve investigating the association between one brain and one behavioural variable (univariate) or multiple variables against one brain/behaviour feature ('single' multivariate). Recently, large multimodal datasets have propelled a new wave of studies that leverage on 'doubly' multivariate approaches capable of parsing the multifaceted nature of both brain and behaviour simultaneously. Within this movement, canonical correlation analysis (CCA) and partial least squares (PLS) emerge as the most popular techniques. Both seek to capture shared information between brain and behaviour in the form of latent variables. We provide an overview of these methods, review the literature in psychiatric disorders, and discuss the main challenges from a predictive modelling perspective. We identified 39 studies across four diagnostic groups: attention deficit and hyperactive disorder (ADHD, k = 4, N = 569), autism spectrum disorders (ASD, k = 6, N = 1731), major depressive disorder (MDD, k = 5, N = 938), psychosis spectrum disorders (PSD, k = 13, N = 1150) and one transdiagnostic group (TD, k = 11, N = 5731). Most studies (67%) used CCA and focused on the association between either brain morphology, resting-state functional connectivity or fractional anisotropy against symptoms and/or cognition. There were three main findings. First, most diagnoses shared a link between clinical/cognitive symptoms and two brain measures, namely frontal morphology/brain activity and white matter association fibres (tracts between cortical areas in the same hemisphere). Second, typically less investigated behavioural variables in multivariate models such as physical health (e.g., BMI, drug use) and clinical history (e.g., childhood trauma) were identified as important features. Finally, most studies were at risk of bias due to low sample size/feature ratio and/or in-sample testing only. We highlight the importance of carefully mitigating these sources of bias with an exemplar application of CCA.
Collapse
Affiliation(s)
- S Vieira
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal.
| | - T A W Bolton
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital, Lausanne, Switzerland
| | - M Schöttner
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - L Baecker
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - A Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
- Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | - A Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - P Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Almodóvar-Payá C, Guardiola-Ripoll M, Giralt-López M, Oscoz-Irurozqui M, Canales-Rodríguez EJ, Madre M, Soler-Vidal J, Ramiro N, Callado LF, Arias B, Gallego C, Pomarol-Clotet E, Fatjó-Vilas M. NRN1 epistasis with BDNF and CACNA1C: mediation effects on symptom severity through neuroanatomical changes in schizophrenia. Brain Struct Funct 2024; 229:1299-1315. [PMID: 38720004 PMCID: PMC11147852 DOI: 10.1007/s00429-024-02793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/19/2024] [Indexed: 06/05/2024]
Abstract
The expression of Neuritin-1 (NRN1), a neurotrophic factor crucial for neurodevelopment and synaptic plasticity, is enhanced by the Brain Derived Neurotrophic Factor (BDNF). Although the receptor of NRN1 remains unclear, it is suggested that NRN1's activation of the insulin receptor (IR) pathway promotes the transcription of the calcium voltage-gated channel subunit alpha1 C (CACNA1C). These three genes have been independently associated with schizophrenia (SZ) risk, symptomatology, and brain differences. However, research on how they synergistically modulate these phenotypes is scarce. We aimed to study whether the genetic epistasis between these genes affects the risk and clinical presentation of the disorder via its effect on brain structure. First, we tested the epistatic effect of NRN1 and BDNF or CACNA1C on (i) the risk for SZ, (ii) clinical symptoms severity and functionality (onset, PANSS, CGI and GAF), and (iii) brain cortical structure (thickness, surface area and volume measures estimated using FreeSurfer) in a sample of 86 SZ patients and 89 healthy subjects. Second, we explored whether those brain clusters influenced by epistatic effects mediate the clinical profiles. Although we did not find a direct epistatic impact on the risk, our data unveiled significant effects on the disorder's clinical presentation. Specifically, the NRN1-rs10484320 x BDNF-rs6265 interplay influenced PANSS general psychopathology, and the NRN1-rs4960155 x CACNA1C-rs1006737 interaction affected GAF scores. Moreover, several interactions between NRN1 SNPs and BDNF-rs6265 significantly influenced the surface area and cortical volume of the frontal, parietal, and temporal brain regions within patients. The NRN1-rs10484320 x BDNF-rs6265 epistasis in the left lateral orbitofrontal cortex fully mediated the effect on PANSS general psychopathology. Our study not only adds clinical significance to the well-described molecular relationship between NRN1 and BDNF but also underscores the utility of deconstructing SZ into biologically validated brain-imaging markers to explore their mediation role in the path from genetics to complex clinical manifestation.
Collapse
Affiliation(s)
- Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERER (Biomedical Research Network in Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Giralt-López
- Department of Child and Adolescent Psychiatry, Germans Trias i Pujol University Hospital (HUGTP), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Faculty of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Maitane Oscoz-Irurozqui
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Red de Salud Mental de Gipuzkoa, Osakidetza-Basque Health Service, Gipuzkoa, Spain
| | - Erick Jorge Canales-Rodríguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mercè Madre
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Mental Health, IR SANT PAU, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma Barcelona, Barcelona, Spain
| | - Joan Soler-Vidal
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Benito Menni, Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain
| | - Núria Ramiro
- Hospital San Rafael, Germanes Hospitalàries, Barcelona, Spain
| | - Luis F Callado
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Bizkaia, Spain
- BioBizkaia Health Research Institute, Bizkaia, Spain
| | - Bárbara Arias
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Carme Gallego
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Wang Y, Genon S, Dong D, Zhou F, Li C, Yu D, Yuan K, He Q, Qiu J, Feng T, Chen H, Lei X. Covariance patterns between sleep health domains and distributed intrinsic functional connectivity. Nat Commun 2023; 14:7133. [PMID: 37932259 PMCID: PMC10628193 DOI: 10.1038/s41467-023-42945-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Sleep health is both conceptually and operationally a composite concept containing multiple domains of sleep. In line with this, high dependence and interaction across different domains of sleep health encourage a transition in sleep health research from categorical to dimensional approaches that integrate neuroscience and sleep health. Here, we seek to identify the covariance patterns between multiple sleep health domains and distributed intrinsic functional connectivity by applying a multivariate approach (partial least squares). This multivariate analysis reveals a composite sleep health dimension co-varying with connectivity patterns involving the attentional and thalamic networks and which appear relevant at the neuromolecular level. These findings are further replicated and generalized to several unseen independent datasets. Critically, the identified sleep-health related connectome shows diagnostic potential for insomnia disorder. These results together delineate a potential brain connectome biomarker for sleep health with high potential for clinical translation.
Collapse
Affiliation(s)
- Yulin Wang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Sarah Genon
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Feng Zhou
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chenyu Li
- Sleep Center, Department of Brain Disease, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Dahua Yu
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shanxi, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China.
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
8
|
Kirschner M, Paquola C, Khundrakpam BS, Vainik U, Bhutani N, Hodzic-Santor B, Georgiadis F, Al-Sharif NB, Misic B, Bernhardt BC, Evans AC, Dagher A. Schizophrenia Polygenic Risk During Typical Development Reflects Multiscale Cortical Organization. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1083-1093. [PMID: 37881579 PMCID: PMC10593879 DOI: 10.1016/j.bpsgos.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022] Open
Abstract
Background Schizophrenia is widely recognized as a neurodevelopmental disorder. Abnormal cortical development in otherwise typically developing children and adolescents may be revealed using polygenic risk scores for schizophrenia (PRS-SCZ). Methods We assessed PRS-SCZ and cortical morphometry in typically developing children and adolescents (3-21 years, 46.8% female) using whole-genome genotyping and T1-weighted magnetic resonance imaging (n = 390) from the PING (Pediatric Imaging, Neurocognition, and Genetics) cohort. We contextualized the findings using 1) age-matched transcriptomics, 2) histologically defined cytoarchitectural types and functionally defined networks, and 3) case-control differences of schizophrenia and other major psychiatric disorders derived from meta-analytic data of 6 ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) working groups, including a total of 12,876 patients and 15,670 control participants. Results Higher PRS-SCZ was associated with greater cortical thickness, which was most prominent in areas with heightened gene expression of dendrites and synapses. PRS-SCZ-related increases in vertexwise cortical thickness were mainly distributed in association cortical areas, particularly the ventral attention network, while relatively sparing koniocortical type cortex (i.e., primary sensory areas). The large-scale pattern of cortical thickness increases related to PRS-SCZ mirrored the pattern of cortical thinning in schizophrenia and mood-related psychiatric disorders derived from the ENIGMA consortium. Age group models illustrate a possible trajectory from PRS-SCZ-associated cortical thickness increases in early childhood toward thinning in late adolescence, with the latter resembling the adult brain phenotype of schizophrenia. Conclusions Collectively, combining imaging genetics with multiscale mapping, our work provides novel insight into how genetic risk for schizophrenia affects the cortex early in life.
Collapse
Affiliation(s)
- Matthias Kirschner
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Casey Paquola
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany
| | | | - Uku Vainik
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
- Institute of Psychology, Faculty of Social Sciences, Tartu, Estonia
| | - Neha Bhutani
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | | | - Foivos Georgiadis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Noor B. Al-Sharif
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Boris C. Bernhardt
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Alan C. Evans
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| |
Collapse
|
9
|
Chen J, Patil KR, Yeo BTT, Eickhoff SB. Leveraging Machine Learning for Gaining Neurobiological and Nosological Insights in Psychiatric Research. Biol Psychiatry 2023; 93:18-28. [PMID: 36307328 DOI: 10.1016/j.biopsych.2022.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
Much attention is currently devoted to developing diagnostic classifiers for mental disorders. Complementing these efforts, we highlight the potential of machine learning to gain biological insights into the psychopathology and nosology of mental disorders. Studies to this end have mainly used brain imaging data, which can be obtained noninvasively from large cohorts and have repeatedly been argued to reveal potentially intermediate phenotypes. This may become particularly relevant in light of recent efforts to identify magnetic resonance imaging-derived biomarkers that yield insight into pathophysiological processes as well as to refine the taxonomy of mental illness. In particular, the accuracy of machine learning models may be used as dependent variables to identify features relevant to pathophysiology. Moreover, such approaches may help disentangle the dimensional (within diagnosis) and often overlapping (across diagnoses) symptomatology of psychiatric illness. We also point out a multiview perspective that combines data from different sources, bridging molecular and system-level information. Finally, we summarize recent efforts toward a data-driven definition of subtypes or disease entities through unsupervised and semisupervised approaches. The latter, blending unsupervised and supervised concepts, may represent a particularly promising avenue toward dissecting heterogeneous categories. Finally, we raise several technical and conceptual aspects related to the reviewed approaches. In particular, we discuss common pitfalls pertaining to flawed input data or analytic procedures that would likely lead to unreliable outputs.
Collapse
Affiliation(s)
- Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China; Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-universität Düsseldorf, Düsseldorf, Germany
| | - B T Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Integrative Sciences & Engineering Programme, National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Shi W, Fan L, Wang H, Liu B, Li W, Li J, Cheng L, Chu C, Song M, Sui J, Luo N, Cui Y, Dong Z, Lu Y, Ma Y, Ma L, Li K, Chen J, Chen Y, Guo H, Li P, Lu L, Lv L, Wan P, Wang H, Wang H, Yan H, Yan J, Yang Y, Zhang H, Zhang D, Jiang T. Two subtypes of schizophrenia identified by an individual-level atypical pattern of tensor-based morphometric measurement. Cereb Cortex 2022; 33:3683-3700. [PMID: 36005854 DOI: 10.1093/cercor/bhac301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/12/2022] Open
Abstract
Difficulties in parsing the multiaspect heterogeneity of schizophrenia (SCZ) based on current nosology highlight the need to subtype SCZ using objective biomarkers. Here, utilizing a large-scale multisite SCZ dataset, we identified and validated 2 neuroanatomical subtypes with individual-level abnormal patterns of the tensor-based morphometric measurement. Remarkably, compared with subtype 1, which showed moderate deficits of some subcortical nuclei and an enlarged striatum and cerebellum, subtype 2, which showed cerebellar atrophy and more severe subcortical nuclei atrophy, had a higher subscale score of negative symptoms, which is considered to be a core aspect of SCZ and is associated with functional outcome. Moreover, with the neuroimaging-clinic association analysis, we explored the detailed relationship between the heterogeneity of clinical symptoms and the heterogeneous abnormal neuroanatomical patterns with respect to the 2 subtypes. And the neuroimaging-transcription association analysis highlighted several potential heterogeneous biological factors that may underlie the subtypes. Our work provided an effective framework for investigating the heterogeneity of SCZ from multilevel aspects and may provide new insights for precision psychiatry.
Collapse
Affiliation(s)
- Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Chinese Institute for Brain Research, Beijing 102206, China
| | - Wen Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Luqi Cheng
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Na Luo
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenwei Dong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Hua Guo
- Zhumadian Psychiatric Hospital, Zhumadian 463000, China
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China.,Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing 100191, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China.,Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing 100191, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Ping Wan
- Zhumadian Psychiatric Hospital, Zhumadian 463000, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Huiling Wang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China.,Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing 100191, China
| | - Jun Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China.,Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing 100191, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China.,Department of Psychology, Xinxiang Medical University, Xinxiang 453002, China
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China.,Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing 100191, China.,Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100191, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China.,Innovation Academy for Artificial Intelligence, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Xie K, Jin Z, Jin DG, Zhang J, Li L. Shared and distinct structure-function substrates of heterogenous distractor suppression ability between high and low working memory capacity individuals. Neuroimage 2022; 260:119483. [PMID: 35842098 DOI: 10.1016/j.neuroimage.2022.119483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022] Open
Abstract
Salient stimuli can capture attention in a bottom-up manner; however, this attentional capture can be suppressed in a top-down manner. It has been shown that individuals with high working memory capacity (WMC) can suppress salient‑but-irrelevant distractors better than those with low WMC; however, neural substrates underlying this difference remain unclear. To examine this, participants with high or low WMC (high-/low-WMC, n = 44/44) performed a visual search task wherein a color singleton item served as a salient distractor, and underwent structural and resting-state functional magnetic resonance imaging scans. Behaviorally, the color singleton distractor generally reduced the reaction time (RT). This RT benefit (ΔRT) was higher in the high-WMC group relative to the low-WMC group, indicating the superior distractor suppression ability of the high-WMC group. Moreover, leveraging voxel-based morphometry analysis, gray matter morphology (volume and deformation) in the ventral attention network (VAN) was found to show the same, positive associations with ΔRT in both WMC groups. However, correlations of the opposite sign were found between ΔRT and gray matter morphology in the frontoparietal (FPN)/default mode network (DMN) in the two WMC groups. Furthermore, resting-state functional connectivity analysis centering on regions with a structural-behavioral relationship found that connections between the left orbital and right superior frontal gyrus (hubs of DMN and VAN, respectively) was correlated with ΔRT in the high-WMC group (but not in the low-WMC group). Collectively, our work present shared and distinct neuroanatomical substrates of distractor suppression in high- and low-WMC individuals. Furthermore, intrinsic connectivity of the brain network hubs in high-WMC individuals may account for their superior ability in suppressing salient distractors.
Collapse
Affiliation(s)
- Ke Xie
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhenlan Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Dong-Gang Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
12
|
Syeda WT, Wannan CMJ, Merritt AH, Raghava JM, Jayaram M, Velakoulis D, Kristensen TD, Soldatos RF, Tonissen S, Thomas N, Ambrosen KS, Sørensen ME, Fagerlund B, Rostrup E, Glenthøj BY, Skafidas E, Bousman CA, Johnston LA, Everall I, Ebdrup BH, Pantelis C. Cortico-cognition coupling in treatment resistant schizophrenia. Neuroimage Clin 2022; 35:103064. [PMID: 35689976 PMCID: PMC9190061 DOI: 10.1016/j.nicl.2022.103064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Brain structural alterations and cognitive dysfunction are independent predictors for poor clinical outcome in schizophrenia, and the associations between these domains remains unclear. We employed a novel, multiblock partial least squares correlation (MB-PLS-C) technique and investigated multivariate cortico-cognitive patterns in patients with treatment-resistant schizophrenia (TRS) and matched healthy controls (HC). METHOD Forty-one TRS patients (age 38.5 ± 9.1, 30 males (M)), and 45 HC (age 40.2 ± 10.6, 29 M) underwent 3T structural MRI. Volumes of 68 brain regions and seven variables from CANTAB covering memory and executive domains were included. Univariate group differences were assessed, followed by the MB-PLS-C analyses to identify group-specific multivariate patterns of cortico-cognitive coupling. Supplementary three-group analyses, which included 23 non-affected first-degree relatives (NAR), were also conducted. RESULTS Univariate tests demonstrated that TRS patients showed impairments in all seven cognitive tasks and volume reductions in 12 cortical regions following Bonferroni correction. The MB-PLS-C analyses revealed two significant latent variables (LVs) explaining > 90% of the sum-of-squares variance. LV1 explained 78.86% of the sum-of-squares variance, describing a shared, widespread structure-cognitive pattern relevant to both TRS patients and HCs. In contrast, LV2 (13.47% of sum-of-squares variance explained) appeared specific to TRS and comprised a differential cortico-cognitive pattern including frontal and temporal lobes as well as paired associates learning (PAL) and intra-extra dimensional set shifting (IED). Three-group analyses also identified two significant LVs, with NARs more closely resembling healthy controls than TRS patients. CONCLUSIONS MB-PLS-C analyses identified multivariate brain structural-cognitive patterns in the latent space that may provide a TRS signature.
Collapse
Affiliation(s)
- Warda T Syeda
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia.
| | - Cassandra M J Wannan
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia
| | - Antonia H Merritt
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia
| | - Jayachandra M Raghava
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Mahesh Jayaram
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia; MidWest Area Mental Health Service, Sunshine Hospital, St. Albans, Victoria, Australia
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia
| | - Tina D Kristensen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Rigas Filippos Soldatos
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia; First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Shane Tonissen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia
| | - Naveen Thomas
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia; MidWest Area Mental Health Service, Sunshine Hospital, St. Albans, Victoria, Australia
| | - Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Mikkel E Sørensen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Efstratios Skafidas
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia
| | - Chad A Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia; Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, Canada
| | - Leigh A Johnston
- Department of Biomedical Engineering and Melbourne Brain Centre Imaging Unit, University of Melbourne, Victoria, Australia
| | - Ian Everall
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Bjørn H Ebdrup
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; MidWest Area Mental Health Service, Sunshine Hospital, St. Albans, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| |
Collapse
|
13
|
Large-scale structural network change correlates with clinical response to rTMS in depression. Neuropsychopharmacology 2022; 47:1096-1105. [PMID: 35110687 PMCID: PMC8938539 DOI: 10.1038/s41386-021-01256-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/06/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Response to repetitive transcranial magnetic stimulation (rTMS) among individuals with major depressive disorder (MDD) varies widely. The neural mechanisms underlying rTMS are thought to involve changes in large-scale networks. Whether structural network integrity and plasticity are associated with response to rTMS therapy is unclear. Structural MRIs were acquired from a series of 70 adult healthy controls and 268 persons with MDD who participated in two arms of a large randomized, non-inferiority trial, THREE-D, comparing intermittent theta-burst stimulation to high-frequency rTMS of the left dorsolateral prefrontal cortex (DLPFC). Patients were grouped according to percentage improvement on the 17-item Hamilton Depression Rating Score at treatment completion. For the entire sample and then for each treatment arm, multivariate analyses were used to characterize structural covariance networks (SCN) from cortical gray matter thickness, volume, and surface area maps from T1-weighted MRI. The association between SCNs and clinical improvement was assessed. For both study arms, cortical thickness and volume SCNs distinguished healthy controls from MDD (p = 0.005); however, post-hoc analyses did not reveal a significant association between pre-treatment SCN expression and clinical improvement. We also isolated an anticorrelated SCN between the left DLPFC rTMS target site and the subgenual anterior cingulate cortex across cortical measures (p = 0.0004). Post-treatment change in cortical thickness SCN architecture was associated with clinical improvement in treatment responders (p = 0.001), but not in non-responders. Structural network changes may underpin clinical response to rTMS, and SCNs are useful for understanding the pathophysiology of depression and neural mechanisms of plasticity and response to circuit-based treatments.
Collapse
|
14
|
Khalil M, Hollander P, Raucher-Chéné D, Lepage M, Lavigne KM. Structural brain correlates of cognitive function in schizophrenia: A meta-analysis. Neurosci Biobehav Rev 2021; 132:37-49. [PMID: 34822878 DOI: 10.1016/j.neubiorev.2021.11.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/20/2022]
Abstract
Schizophrenia is characterized by cognitive impairments and widespread structural brain abnormalities. Brain structure-cognition associations have been extensively studied in schizophrenia, typically involving individual cognitive domains or brain regions of interest. Findings in overlapping and diffuse brain regions may point to structural alterations in large-scale brain networks. We performed a systematic review and meta-analysis examining whether brain structure-cognition associations can be explained in terms of biologically meaningful brain networks. Of 7,261 screened articles, 88 were included in a series of meta-analyses assessing publication bias, heterogeneity, and study quality. Significant associations were found between overall brain structure and eight MATRICS-inspired cognitive domains. Brain structure mapped onto the seven Yeo functionally defined networks and extraneous structures (amygdala, hippocampus, and cerebellum) typically showed associations with conceptually related cognitive domains, with higher-level domains (e.g., executive function, social cognition) associated with more networks. These findings synthesize the extensive literature on brain structure and cognition in schizophrenia from a contemporary network neuroscience perspective and suggest that brain structure-cognition associations in schizophrenia may follow functional network architecture.
Collapse
Affiliation(s)
- Marianne Khalil
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Philippine Hollander
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Delphine Raucher-Chéné
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, University Hospital of Reims, EPSM Marne, Reims, France; Cognition, Health, and Society Laboratory (EA 6291), University of Reims, Champagne-Ardenne, Reims, France
| | - Martin Lepage
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Katie M Lavigne
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Guma E, Bordignon PDC, Devenyi GA, Gallino D, Anastassiadis C, Cvetkovska V, Barry AD, Snook E, Germann J, Greenwood CMT, Misic B, Bagot RC, Chakravarty MM. Early or Late Gestational Exposure to Maternal Immune Activation Alters Neurodevelopmental Trajectories in Mice: An Integrated Neuroimaging, Behavioral, and Transcriptional Study. Biol Psychiatry 2021; 90:328-341. [PMID: 34053674 DOI: 10.1016/j.biopsych.2021.03.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to maternal immune activation (MIA) in utero is a risk factor for neurodevelopmental disorders later in life. The impact of the gestational timing of MIA exposure on downstream development remains unclear. METHODS We characterized neurodevelopmental trajectories of mice exposed to the viral mimetic poly I:C (polyinosinic:polycytidylic acid) either on gestational day 9 (early) or on day 17 (late) using longitudinal structural magnetic resonance imaging from weaning to adulthood. Using multivariate methods, we related neuroimaging and behavioral variables for the time of greatest alteration (adolescence/early adulthood) and identified regions for further investigation using RNA sequencing. RESULTS Early MIA exposure was associated with accelerated brain volume increases in adolescence/early adulthood that normalized in later adulthood in the striatum, hippocampus, and cingulate cortex. Similarly, alterations in anxiety-like, stereotypic, and sensorimotor gating behaviors observed in adolescence normalized in adulthood. MIA exposure in late gestation had less impact on anatomical and behavioral profiles. Multivariate maps associated anxiety-like, social, and sensorimotor gating deficits with volume of the dorsal and ventral hippocampus and anterior cingulate cortex, among others. The most transcriptional changes were observed in the dorsal hippocampus, with genes enriched for fibroblast growth factor regulation, autistic behaviors, inflammatory pathways, and microRNA regulation. CONCLUSIONS Leveraging an integrated hypothesis- and data-driven approach linking brain-behavior alterations to the transcriptome, we found that MIA timing differentially affects offspring development. Exposure in late gestation leads to subthreshold deficits, whereas exposure in early gestation perturbs brain development mechanisms implicated in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elisa Guma
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Pedro do Couto Bordignon
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Daniel Gallino
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Chloe Anastassiadis
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Institute of Medical Science & Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | | | - Amadou D Barry
- Departments of Human Genetics and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Emily Snook
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jurgen Germann
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; University Health Network, Toronto, Ontario, Canada
| | - Celia M T Greenwood
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Departments of Human Genetics and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Hansen JY, Markello RD, Vogel JW, Seidlitz J, Bzdok D, Misic B. Mapping gene transcription and neurocognition across human neocortex. Nat Hum Behav 2021; 5:1240-1250. [PMID: 33767429 DOI: 10.1038/s41562-021-01082-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
Regulation of gene expression drives protein interactions that govern synaptic wiring and neuronal activity. The resulting coordinated activity among neuronal populations supports complex psychological processes, yet how gene expression shapes cognition and emotion remains unknown. Here, we directly bridge the microscale and macroscale by mapping gene expression patterns to functional activation patterns across the cortical sheet. Applying unsupervised learning to the Allen Human Brain Atlas and Neurosynth databases, we identify a ventromedial-dorsolateral gradient of gene assemblies that separate affective and perceptual domains. This topographic molecular-psychological signature reflects the hierarchical organization of the neocortex, including systematic variations in cell type, myeloarchitecture, laminar differentiation and intrinsic network affiliation. In addition, this molecular-psychological signature strengthens over neurodevelopment and can be replicated in two independent repositories. Collectively, our results reveal spatially covarying transcriptomic and cognitive architectures, highlighting the influence that molecular mechanisms exert on psychological processes.
Collapse
Affiliation(s)
- Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Ross D Markello
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Jacob W Vogel
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakob Seidlitz
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.,Biological and Biomedical Engineering, McGill University, Montréal, Québec, Canada.,Mila, Quebec Artificial Intelligence Institute, Montréal, Québec, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
17
|
Markello RD, Shafiei G, Tremblay C, Postuma RB, Dagher A, Misic B. Multimodal phenotypic axes of Parkinson's disease. NPJ PARKINSONS DISEASE 2021; 7:6. [PMID: 33402689 PMCID: PMC7785730 DOI: 10.1038/s41531-020-00144-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
Individuals with Parkinson’s disease present with a complex clinical phenotype, encompassing sleep, motor, cognitive, and affective disturbances. However, characterizations of PD are typically made for the “average” patient, ignoring patient heterogeneity and obscuring important individual differences. Modern large-scale data sharing efforts provide a unique opportunity to precisely investigate individual patient characteristics, but there exists no analytic framework for comprehensively integrating data modalities. Here we apply an unsupervised learning method—similarity network fusion—to objectively integrate MRI morphometry, dopamine active transporter binding, protein assays, and clinical measurements from n = 186 individuals with de novo Parkinson’s disease from the Parkinson’s Progression Markers Initiative. We show that multimodal fusion captures inter-dependencies among data modalities that would otherwise be overlooked by field standard techniques like data concatenation. We then examine how patient subgroups derived from the fused data map onto clinical phenotypes, and how neuroimaging data is critical to this delineation. Finally, we identify a compact set of phenotypic axes that span the patient population, demonstrating that this continuous, low-dimensional projection of individual patients presents a more parsimonious representation of heterogeneity in the sample compared to discrete biotypes. Altogether, these findings showcase the potential of similarity network fusion for combining multimodal data in heterogeneous patient populations.
Collapse
Affiliation(s)
- Ross D Markello
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada.
| | - Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Christina Tremblay
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Ronald B Postuma
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
18
|
Rahayel S, Postuma RB, Montplaisir J, Mišić B, Tremblay C, Vo A, Lewis S, Matar E, Ehgoetz Martens K, Blanc F, Yao C, Carrier J, Monchi O, Gaubert M, Dagher A, Gagnon JF. A Prodromal Brain-Clinical Pattern of Cognition in Synucleinopathies. Ann Neurol 2020; 89:341-357. [PMID: 33217037 DOI: 10.1002/ana.25962] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Isolated (or idiopathic) rapid eye movement sleep behavior disorder (iRBD) is associated with dementia with Lewy bodies (DLB) and Parkinson's disease (PD). Biomarkers are lacking to predict conversion to a dementia or a motor-first phenotype. Here, we aimed at identifying a brain-clinical signature that predicts dementia in iRBD. METHODS A brain-clinical signature was identified in 48 patients with polysomnography-confirmed iRBD using partial least squares between brain deformation and 27 clinical variables. The resulting variable was applied to 78 patients with iRBD followed longitudinally to predict conversion to a synucleinopathy, specifically DLB. The deformation scores from patients with iRBD were compared with 207 patients with PD, DLB, or prodromal DLB to assess if scores were higher in DLB compared to PD. RESULTS One latent variable explained 31% of the brain-clinical covariance in iRBD, combining cortical and subcortical deformation and subarachnoid/ventricular expansion to cognitive and motor variables. The deformation score of this signature predicted conversion to a synucleinopathy in iRBD (p = 0.036, odds ratio [OR] = 2.249; 95% confidence interval [CI] = 1.053-4.803), specifically to DLB (OR = 4.754; 95% CI = 1.283-17.618, p = 0.020) and not PD (p = 0.286). Patients with iRBD who developed dementia had scores similar to clinical and prodromal patients with DLB but higher scores compared with patients with PD. The deformation score also predicted cognitive performance over 1, 2, and 4 years in patients with PD. INTERPRETATION We identified a brain-clinical signature that predicts conversion in iRBD to more severe/dementing forms of synucleinopathy. This pattern may serve as a new biomarker to optimize patient care, target risk reduction strategies, and administer neuroprotective trials. ANN NEUROL 2021;89:341-357.
Collapse
Affiliation(s)
- Shady Rahayel
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal - Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - Ronald B Postuma
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal - Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Neurology, Montreal General Hospital, Montreal, QC, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal - Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychiatry, Université de Montréal, Montreal, QC, Canada
| | - Bratislav Mišić
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Christina Tremblay
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Andrew Vo
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Simon Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Elie Matar
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Kaylena Ehgoetz Martens
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.,Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Frédéric Blanc
- ICube Laboratory and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, Université de Strasbourg, Strasbourg, France.,Geriatrics Department, University Hospital of Strasbourg, CM2R (Memory Resource and Research Centre), Day Hospital, Strasbourg, France
| | - Chun Yao
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal - Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montreal, QC, Canada.,Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, QC, Canada
| | - Oury Monchi
- Departments of Clinical Neurosciences, Radiology, and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Radiology, Radio-Oncology, and Nuclear Medicine, Université de Montréal, Montreal, QC, Canada
| | - Malo Gaubert
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal - Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - Alain Dagher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Jean-François Gagnon
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montreal, QC, Canada.,Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
| |
Collapse
|
19
|
Apathy is not associated with reduced ventral striatal volume in patients with schizophrenia. Schizophr Res 2020; 223:279-288. [PMID: 32928618 DOI: 10.1016/j.schres.2020.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/04/2020] [Accepted: 08/24/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND A growing body of neuroimaging research has revealed a relationship between blunted activation of the ventral striatum (VS) and apathy in schizophrenia. In contrast, the association between reduced striatal volume and apathy is less well established, while the relationship between VS function and structure in patients with schizophrenia remains an open question. Here, we aimed to replicate previous structural findings in a larger independent sample and to investigate the relationship between VS hypoactivation and VS volume. METHODS We included brain structural magnetic resonance imaging (MRI) data from 60 patients with schizophrenia (SZ) that had shown an association of VS hypoactivation with apathy during reward anticipation and 58 healthy controls (HC). To improve replicability, we applied analytical methods employed in two previously published studies: Voxel-based morphometry and the Multiple Automatically Generated Templates (MAGeT) algorithm. VS and dorsal striatum (DS) volume were correlated with apathy correcting for age, gender and total brain volume. Additionally, left VS activity was correlated with left VS volume. RESULTS We failed to replicate the association between apathy and reduced VS volume and did not find a correlation with DS volume. Functional and structural left VS measures exhibited a trend-level correlation (rs = 0.248, p = 0.067, r2 = 0.06). CONCLUSIONS Our present data suggests that functional and structural striatal neuroimaging correlates of apathy can occur independently. Replication of previous findings may have been limited by other factors (medication, illness duration, age) potentially related to striatal volume changes in SZ. Finally, associations between reward-related VS function and structure should be further explored.
Collapse
|