1
|
A Novel Estimation Method for the Counting of Dendritic Spines. J Neurosci Methods 2021; 368:109454. [PMID: 34952089 DOI: 10.1016/j.jneumeth.2021.109454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Since Cajal's visualisations of the synaptic spine, this feature of the neuron has been of interest to neuroscientists and has been investigated usually in reference to degeneration or proliferation of dendrites and their neurons. Synaptic spine measurement often forms a critical element of any study investigating neuronal morphology. However, the way researchers have counted spines hasn't changed for almost a century. Some of the currently used legacy methods fail to accommodate obscured pisnes or factor-in visibility differences between histological stains. NEW METHOD Here we investigate the neuronal dendrite and its synaptic spines, and reveal that using confocal or bright-field technologies may in fact obfuscate spine counts. A mathematical model is developed for the distribution of synaptic spines within the rat, that should, by nature of the formula and the impartiality of probability quotients, be applied to estimate the number of synaptic spines across any length of dendrite that has protrusions within any species. RESULTS Using this estimation method, we show that, depending on the method of image capture, there are in fact more spines present than typically counted on lengths of dendrite, something that may have biased morphological studies in the past. COMPARISON WITH EXISTING METHODS This new estimation method has been collapsed down into an easy-to-use free website. With input of only four fields, we provide the researcher with a more accurate estimation of the amount of spines on a length of dendrite. This was made possible by fluorescing a Golgi stain and comparing two-photon, bright-field and confocal images. CONCLUSIONS An easy web-based resource has been made available to use this new method for spine calculation. Using this method improves the validity of spine measurement and provides a means to review previously published work.
Collapse
|
2
|
Bernstein HG, Keilhoff G, Steiner J. The implications of hypothalamic abnormalities for schizophrenia. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:107-120. [PMID: 34266587 DOI: 10.1016/b978-0-12-819973-2.00008-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Until a few years ago, the hypothalamus was believed to play only a marginal role in schizophrenia pathophysiology. However, recent findings show that this rather small brain region involved in many pathways found disrupted-in schizophrenia. Gross anatomic abnormalities (volume changes of the third ventricle, the hypothalamus, and its individual nuclei) as well as alterations at the cellular level (circumscribed loss of neurons) can be observed. Further, increased or decreased expression of hypothalamic peptides such as oxytocin, vasopressin, several factors involved in the regulation of appetite and satiety, endogenous opiates, products of schizophrenia susceptibility genes as well as of enzymes involved in neurotransmitter and neuropeptide metabolism have been reported in schizophrenia and/or animal models of the disease. Remarkably, although profound disturbances of the hypothalamus-pituitary-adrenal axis, hypothalamus-pituitary-thyroid axis, and the hypothalamus-pituitary-gonadal axis are typical signs of schizophrenia, there is currently no evidence for alterations in the expression of hypothalamic-releasing and inhibiting factors that control these hormonal axes. Finally, the implications of hypothalamus for disease-related disturbances of the sleep-wakefulness cycle and neuroimmune dysfunctions in schizophrenia are outlined.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Magdeburg, Germany.
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
3
|
Tubbs JD, Ding J, Baum L, Sham PC. Systemic neuro-dysregulation in depression: Evidence from genome-wide association. Eur Neuropsychopharmacol 2020; 39:1-18. [PMID: 32896454 DOI: 10.1016/j.euroneuro.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
Depression is the world's leading cause of disability. Greater understanding of the neurobiological basis of depression is necessary for developing novel treatments with improved efficacy and acceptance. Recently, major advances have been made in the search for genetic variants associated with depression which may help to elucidate etiological mechanisms. The present review has two major objectives. First, we offer a brief review of two major biological systems with strong evidence for involvement in depression pathology: neurotransmitter systems and the stress response. Secondly, we provide a synthesis of the functions of the 269 genes implicated by the most recent genome-wide meta-analysis, supporting the importance of these systems in depression and providing insights into other possible mechanisms involving neurodevelopment, neurogenesis, and neurodegeneration. Our goal is to undertake a broad, preliminary stock-taking of the most recent hypothesis-free findings and examine the weight of the evidence supporting these existing theories and highlighting novel directions. This qualitative review and accompanying gene function table provides a valuable resource and guide for basic and translational researchers, with suggestions for future mechanistic research, leveraging genetics to prioritize studies on the neurobiological processes involved in depression etiology and treatment.
Collapse
Affiliation(s)
- Justin D Tubbs
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Jiahong Ding
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Larry Baum
- Department of Psychiatry, The University of Hong Kong, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Centre of PanorOmic Sciences, The University of Hong Kong, Hong Kong.
| |
Collapse
|
4
|
Smith KL, Todd SM, Boucher A, Bennett MR, Arnold JC. P2X 7 receptor knockout mice display less aggressive biting behaviour correlating with increased brain activation in the piriform cortex. Neurosci Lett 2020; 714:134575. [PMID: 31693933 DOI: 10.1016/j.neulet.2019.134575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/27/2022]
Abstract
P2X7 receptors are implicated in the pathophysiology of psychiatric conditions such as depression and bipolar disorder. P2X7 receptors regulate the release of pro-inflammatory cytokines from microglia, and gain-of-function P2X7 mutations may contribute to the neuroinflammation found in affective disorders. However, the role of this receptor in mediating other mental health conditions and aberrant behaviours requires further examination. The current study we investigated the effects of germline genetic deletion of P2xr7 on social and marble burying behaviours in mice throughout the critical adolescent developmental period. Marble burying behaviour is thought to provide a mouse model of obsessive-compulsive disorder (OCD). We also characterised the effects of P2rx7 deletion on aggressive attack behaviour in adult mice and subsequently quantifieded microglial cell densities and c-Fos expression, a marker of neuronal activation. P2rx7 knockout mice displayed reduced OCD-related marble burying behaviour which was most pronounced in late adolescence/early adulthood. P2rx7 knockout mice also exhibited reduced aggressive attack behaviours in adulthood in the resident-intruder test. Reduced aggression in P2xr7 knockout mice did not coincide with changes to microglial cell densities, however c-Fos expression was elevated in the piriform cortex of P2rx7 knockout mice compared to wildtype mice. This study suggests that the P2X7 receptor might serve as a novel target for serenic or anti-OCD therapeutics.
Collapse
Affiliation(s)
- Kristie Leigh Smith
- Brain and Mind Centre, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Discipline of Pharmacology, University of Sydney, Australia
| | - Stephanie M Todd
- Brain and Mind Centre, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Discipline of Pharmacology, University of Sydney, Australia
| | - Aurelie Boucher
- Brain and Mind Centre, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Discipline of Pharmacology, University of Sydney, Australia
| | - Maxwell R Bennett
- Brain and Mind Centre, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Discipline of Physiology, University of Sydney, Australia
| | - Jonathon C Arnold
- Brain and Mind Centre, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Discipline of Pharmacology, University of Sydney, Australia.
| |
Collapse
|
5
|
Smith KL, Kassem MS, Clarke DJ, Kuligowski MP, Bedoya-Pérez MA, Todd SM, Lagopoulos J, Bennett MR, Arnold JC. Microglial cell hyper-ramification and neuronal dendritic spine loss in the hippocampus and medial prefrontal cortex in a mouse model of PTSD. Brain Behav Immun 2019; 80:889-899. [PMID: 31158497 DOI: 10.1016/j.bbi.2019.05.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/30/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Few animal models exist that successfully reproduce several core associative and non-associative behaviours relevant to post-traumatic stress disorder (PTSD), such as long-lasting fear reactions, hyperarousal, and subtle attentional and cognitive dysfunction. As such, these models may lack the face validity required to adequately model pathophysiological features of PTSD such as CNS grey matter loss and neuroinflammation. Here we aimed to investigate in a mouse model of PTSD whether contextual fear conditioning associated with a relatively high intensity footshock exposure induces loss of neuronal dendritic spines in various corticolimbic brain regions, as their regression may help explain grey matter reductions in PTSD patients. Further, we aimed to observe whether these changes were accompanied by alterations in microglial cell number and morphology, and increased expression of complement factors implicated in the mediation of microglial cell-mediated engulfment of dendritic spines. Adult male C57Bl6J mice were exposed to a single electric footshock and subsequently underwent phenotyping of various PTSD-relevant behaviours in the short (day 2-4) and longer-term (day 29-31). 32 days post-exposure the brains of these animals were subjected to Golgi staining of dendritic spines, microglial cell Iba-1 immunohistochemistry and immunofluorescent staining of the complement factors C1q and C4. Shock exposure promoted a lasting contextual fear response, decreased locomotor activity, exaggerated acoustic startle responses indicative of hyperarousal, and a short-term facilitation of sensorimotor gating function. The shock triggered loss of dendritic spines on pyramidal neurons was accompanied by increased microglial cell number and complexity in the medial prefrontal cortex and dorsal hippocampus, but not in the amygdala. Shock also increased expression of C1q in the pyramidal layer of the CA1 region of the hippocampus but not in other brain regions. The present study further elaborates on the face and construct validity of a mouse model of PTSD and provides a good foundation to explore potential molecular interactions between microglia and dendritic spines.
Collapse
Affiliation(s)
- Kristie Leigh Smith
- Brain and Mind Centre, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia
| | | | - David J Clarke
- Brain and Mind Centre, University of Sydney, Australia; Discipline of Pharmacology, University of Sydney, Australia
| | - Michael P Kuligowski
- Brain and Mind Centre, University of Sydney, Australia; Australian Microscopy & Microanalysis Research Facility, University of Sydney, Australia
| | - Miguel A Bedoya-Pérez
- Brain and Mind Centre, University of Sydney, Australia; School of Life and Environmental Sciences, University of Sydney, Australia
| | - Stephanie M Todd
- Brain and Mind Centre, University of Sydney, Australia; Discipline of Pharmacology, University of Sydney, Australia
| | | | - Maxwell R Bennett
- Brain and Mind Centre, University of Sydney, Australia; Discipline of Physiology, University of Sydney, Australia
| | - Jonathon C Arnold
- Brain and Mind Centre, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Discipline of Pharmacology, University of Sydney, Australia.
| |
Collapse
|
6
|
Ju J, Liu L, Zhang Y, Zhou Q. Effect of age onset on schizophrenia-like phenotypes and underlying mechanisms in model mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:465-474. [PMID: 30025793 DOI: 10.1016/j.pnpbp.2018.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 10/28/2022]
Abstract
In humans, schizophrenia with onset in adolescence or adult has distinct features. To understand whether schizophrenia with either adolescence- or adult-onset have distinct phenotypes and cellular mechanisms in schizophrenia model mice, we altered Nrg1 signaling during either adolescence or adult mice via injection of anti-Nrg1 antibodies. We found that in either early-onset schizophrenia (EOS)- or late-onset schizophrenia (LOS)-like mice, certain behavior phenotypes are shared including hyperlocomotion, impaired working memory and impaired fear conditioning. Anxiety appears to be largely unaffected. In vitro electrophysiology in brain slices showed altered excitation/inhibition balance in EOS-like mice towards enhanced synaptic excitation, but intrinsic excitability of the fast-spiking GABAergic neurons was elevated in the LOS-like mice. Thus, although schizophrenia-like main phenotypes appear to be preserved in both age onset model mice, there are distinct differences in cellular mechanisms between them. We suggest that these differences are important for more precise diagnosis and more effective treatment of schizophrenia.
Collapse
Affiliation(s)
- Jun Ju
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Luping Liu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yujie Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
7
|
Clarke DJ, Chohan TW, Kassem MS, Smith KL, Chesworth R, Karl T, Kuligowski MP, Fok SY, Bennett MR, Arnold JC. Neuregulin 1 Deficiency Modulates Adolescent Stress-Induced Dendritic Spine Loss in a Brain Region-Specific Manner and Increases Complement 4 Expression in the Hippocampus. Schizophr Bull 2019; 45:339-349. [PMID: 29566220 PMCID: PMC6403066 DOI: 10.1093/schbul/sby029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One neuropathological feature of schizophrenia is a diminished number of dendritic spines in the prefrontal cortex and hippocampus. The neuregulin 1 (Nrg1) system is involved in the plasticity of dendritic spines, and chronic stress decreases dendritic spine densities in the prefrontal cortex and hippocampus. Here, we aimed to assess whether Nrg1 deficiency confers vulnerability to the effects of adolescent stress on dendritic spine plasticity. We also assessed other schizophrenia-relevant neurobiological changes such as microglial cell activation, loss of parvalbumin (PV) interneurons, and induction of complement factor 4 (C4). Adolescent male wild-type (WT) and Nrg1 heterozygous mice were subjected to chronic restraint stress before their brains underwent Golgi impregnation or immunofluorescent staining of PV interneurons, microglial cells, and C4. Stress in WT mice promoted dendritic spine loss and microglial cell activation in the prefrontal cortex and the hippocampus. However, Nrg1 deficiency rendered mice resilient to stress-induced dendritic spine loss in the infralimbic cortex and the CA3 region of the hippocampus without affecting stress-induced microglial cell activation in these brain regions. Nrg1 deficiency and adolescent stress combined to trigger increased dendritic spine densities in the prelimbic cortex. In the hippocampal CA1 region, Nrg1 deficiency accentuated stress-induced dendritic spine loss. Nrg1 deficiency increased C4 protein and decreased C4 mRNA expression in the hippocampus, and the number of PV interneurons in the basolateral amygdala. This study demonstrates that Nrg1 modulates the impact of stress on the adolescent brain in a region-specific manner. It also provides first evidence of a link between Nrg1 and C4 systems in the hippocampus.
Collapse
Affiliation(s)
- David J Clarke
- Brain and Mind Centre, University of Sydney, Sydney, Australia,Department of Pharmacology, University of Sydney, Sydney, Australia
| | - Tariq W Chohan
- Brain and Mind Centre, University of Sydney, Sydney, Australia,Department of Pharmacology, University of Sydney, Sydney, Australia
| | | | - Kristie L Smith
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Sydney, Australia,Neuroscience Research Australia, Randwick, Australia,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Michael P Kuligowski
- Australian Microscopy & Microanalysis Research Facility, University of Sydney, Camperdown, Australia
| | - Sandra Y Fok
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | | | - Jonathon C Arnold
- Brain and Mind Centre, University of Sydney, Sydney, Australia,Department of Pharmacology, University of Sydney, Sydney, Australia,To whom correspondence should be addressed; Brain and Mind Centre, Level 6, Building F, 94 Mallett Street, Camperdown, NSW 2050, Australia; tel: +61-29351-0812, e-mail:
| |
Collapse
|
8
|
Nrg1 deficiency modulates the behavioural effects of prenatal stress in mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:86-95. [PMID: 29964074 DOI: 10.1016/j.pnpbp.2018.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 11/23/2022]
Abstract
Little is known about the exact genes that confer vulnerability or resilience to environmental stressors during early neurodevelopment. Partial genetic deletion of neuregulin 1 (Nrg1) moderates the neurobehavioural effects of stressors applied in adolescence and adulthood, however, no study has yet examined its impact on prenatal stress. Here we examined whether Nrg1 deficiency in mice modulated the impact of prenatal stress on various behaviours in adulthood. Male heterozygous Nrg1 mice were mated with wild-type female mice who then underwent daily restraint stress from days 13 to 19 of gestation. Surprisingly, prenatal stress had overall beneficial effects by facilitating sensorimotor gating, increasing sociability, decreasing depressive-like behaviour, and improving spatial memory in adulthood. Such benefits were not due to any increase in maternal care, as prenatal stress decreased nurturing of the offspring. Nrg1 deficiency negated the beneficial behavioural effects of prenatal stress on all measures except sociability. However, Nrg1 deficiency interacted with prenatal stress to trigger locomotor hyperactivity. Nrg1 deficiency, prenatal stress or their combination failed to alter acute stress-induced plasma corticosterone concentrations. Collectively these results demonstrate that Nrg1 deficiency moderates the effects of prenatal stress on adult behaviour, but it does so in a complex, domain-specific fashion.
Collapse
|
9
|
Brzozowska NI, Smith KL, Zhou C, Waters PM, Cavalcante LM, Abelev SV, Kuligowski M, Clarke DJ, Todd SM, Arnold JC. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice. Brain Behav Immun 2017; 65:251-261. [PMID: 28502879 DOI: 10.1016/j.bbi.2017.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022] Open
Abstract
P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors.
Collapse
Affiliation(s)
- Natalia I Brzozowska
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Kristie L Smith
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Cilla Zhou
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Peter M Waters
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia
| | - Ligia Menezes Cavalcante
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Sarah V Abelev
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Michael Kuligowski
- The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia; Australian Microscopy & Microanalysis Research Facility, University of Sydney, Camperdown, NSW, Australia
| | - David J Clarke
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Stephanie M Todd
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Jonathon C Arnold
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
10
|
O’Tuathaigh CMP, Mathur N, O’Callaghan MJ, MacIntyre L, Harvey R, Lai D, Waddington JL, Pickard BS, Watson DG, Moran PM. Specialized Information Processing Deficits and Distinct Metabolomic Profiles Following TM-Domain Disruption of Nrg1. Schizophr Bull 2017; 43:1100-1113. [PMID: 28338897 PMCID: PMC5581893 DOI: 10.1093/schbul/sbw189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although there is considerable genetic and pathologic evidence for an association between neuregulin 1 (NRG1) dysregulation and schizophrenia, the underlying molecular and cellular mechanisms remain unclear. Mutant mice containing disruption of the transmembrane (TM) domain of the NRG1 gene constitute a heuristic model for dysregulation of NRG1-ErbB4 signaling in schizophrenia. The present study focused on hitherto uncharacterized information processing phenotypes in this mutant line. Using a mass spectrometry-based metabolomics approach, we also quantified levels of unique metabolites in brain. Across 2 different sites and protocols, Nrg1 mutants demonstrated deficits in prepulse inhibition, a measure of sensorimotor gating, that is, disrupted in schizophrenia; these deficits were partially reversed by acute treatment with second, but not first-, generation antipsychotic drugs. However, Nrg1 mutants did not show a specific deficit in latent inhibition, a measure of selective attention that is also disrupted in schizophrenia. In contrast, in a "what-where-when" object recognition memory task, Nrg1 mutants displayed sex-specific (males only) disruption of "what-when" performance, indicative of impaired temporal aspects of episodic memory. Differential metabolomic profiling revealed that these behavioral phenotypes were accompanied, most prominently, by alterations in lipid metabolism pathways. This study is the first to associate these novel physiological mechanisms, previously independently identified as being abnormal in schizophrenia, with disruption of NRG1 function. These data suggest novel mechanisms by which compromised neuregulin function from birth might lead to schizophrenia-relevant behavioral changes in adulthood.
Collapse
Affiliation(s)
| | - Naina Mathur
- School of Psychology, University of Nottingham, Nottingham, UK
| | | | - Lynsey MacIntyre
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Richard Harvey
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Donna Lai
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Benjamin S Pickard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Paula M Moran
- School of Psychology, University of Nottingham, Nottingham, UK
| |
Collapse
|
11
|
Disrupted hippocampal neuregulin-1/ErbB3 signaling and dentate gyrus granule cell alterations in suicide. Transl Psychiatry 2017; 7:e1161. [PMID: 28675388 PMCID: PMC5538115 DOI: 10.1038/tp.2017.132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
Neuregulin-1 (NRG1) and ErbB receptors have been associated with psychopathology, and NRG1-ErbB3 signaling has been shown to increase hippocampal neurogenesis and induce antidepressant-like effects. In this study, we aimed to determine whether deficits in NRG1 or ErbBs might be present in the hippocampus of suicide completers. In well-characterized postmortem hippocampal samples from suicides and matched sudden-death controls, we assessed gene expression and methylation using qRT-PCR and EpiTYPER, respectively. Moreover, in hippocampal tissues stained with cresyl violet, stereology was used to quantify numbers of granule cells and of glia. Granule cell body size was examined with a nucleator probe, and granule cell layer volume with a Cavalieri probe. Unmedicated suicides showed sharply decreased hippocampal ErbB3 expression and decreased numbers of ErbB3-expressing granule cell neurons in the anterior dentate gyrus; a phenomenon seemingly reversed by antidepressant treatment. Furthermore, we found ErbB3 expression to be significantly decreased in the dentate gyrus of adult mice exposed to chronic social defeat stress. Taken together, these results reveal novel suicidal endophenotypes in the hippocampus, as well as a putative etiological mechanism underlying suicidality, and suggest that antidepressant or NRG1 treatment may reverse a potential deficit in anterior dentate gyrus granule cell neurons in individuals at risk of dying by suicide.
Collapse
|
12
|
Silveira MM, Arnold JC, Laviolette SR, Hillard CJ, Celorrio M, Aymerich MS, Adams WK. Seeing through the smoke: Human and animal studies of cannabis use and endocannabinoid signalling in corticolimbic networks. Neurosci Biobehav Rev 2017; 76:380-395. [PMID: 27639448 PMCID: PMC5350061 DOI: 10.1016/j.neubiorev.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/02/2016] [Accepted: 09/13/2016] [Indexed: 02/07/2023]
Abstract
Public opinion surrounding the recreational use and therapeutic potential of cannabis is shifting. This review describes new work examining the behavioural and neural effects of cannabis and the endocannabinoid system, highlighting key regions within corticolimbic brain circuits. First, we consider the role of human genetic factors and cannabis strain chemotypic differences in contributing to interindividual variation in the response to cannabinoids, such as THC, and review studies demonstrating that THC-induced impairments in decision-making processes are mediated by actions at prefrontal CB1 receptors. We further describe evidence that signalling through prefrontal or ventral hippocampal CB1 receptors modulates mesolimbic dopamine activity, aberrations of which may contribute to emotional processing deficits in schizophrenia. Lastly, we review studies suggesting that endocannabinoid tone in the amygdala is a critical regulator of anxiety, and report new data showing that FAAH activity is integral to this response. Together, these findings underscore the importance of cannabinoid signalling in the regulation of cognitive and affective behaviours, and encourage further research given their social, political, and therapeutic implications.
Collapse
Affiliation(s)
- Mason M Silveira
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Jonathon C Arnold
- The Brain and Mind Centre and Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Steven R Laviolette
- Addiction Research Group and Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marta Celorrio
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain
| | - María S Aymerich
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
| | - Wendy K Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Prajapati SK, Garabadu D, Krishnamurthy S. Coenzyme Q10 Prevents Mitochondrial Dysfunction and Facilitates Pharmacological Activity of Atorvastatin in 6-OHDA Induced Dopaminergic Toxicity in Rats. Neurotox Res 2017; 31:478-492. [DOI: 10.1007/s12640-016-9693-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 01/09/2023]
|
14
|
Clarke DJ, Stuart J, McGregor IS, Arnold JC. Endocannabinoid dysregulation in cognitive and stress-related brain regions in the Nrg1 mouse model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:9-15. [PMID: 27521758 DOI: 10.1016/j.pnpbp.2016.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system is dysregulated in schizophrenia. Mice with heterozygous deletion of neuregulin 1 (Nrg1 HET mice) provide a well-characterised animal model of schizophrenia, and display enhanced sensitivity to stress and cannabinoids during adolescence. However, no study has yet determined whether these mice have altered brain endocannabinoid concentrations. Nrg1 application to hippocampal slices decreased 2-arachidonoylglycerol (2-AG) signalling and disrupted long-term depression, a form of synaptic plasticity critical to spatial learning. Therefore we specifically aimed to examine whether Nrg1 HET mice exhibit increased 2-AG concentrations and disruption of spatial learning. As chronic stress influences brain endocannabinoids, we also sought to examine whether Nrg1 deficiency moderates adolescent stress-induced alterations in brain endocannabinoids. Adolescent Nrg1 HET and wild-type (WT) mice were submitted to chronic restraint stress and brain endocannabinoid concentrations were analysed. A separate cohort of WT and Nrg1 HET mice was also assessed for spatial learning performance in the Morris Water Maze. Partial genetic deletion of Nrg1 increased anandamide concentrations in the amygdala and decreased 2-AG concentrations in the hypothalamus. Further, Nrg1 HET mice exhibited increased 2-AG concentrations in the hippocampus and impaired spatial learning performance. Chronic adolescent stress increased anandamide concentrations in the amygdala, however, Nrg1 disruption did not influence this stress-induced change. These results demonstrate for the first time in vivo interplay between Nrg1 and endocannabinoids in the brain. Our results demonstrate that aberrant Nrg1 and endocannabinoid signalling may cooperate in the hippocampus to impair cognition, and that Nrg1 deficiency alters endocannabinoid signalling in brain stress circuitry.
Collapse
Affiliation(s)
- David J Clarke
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Jordyn Stuart
- Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia
| | - Iain S McGregor
- Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia
| | - Jonathon C Arnold
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; Brain and Mind Centre, University of Sydney, Sydney, Australia; Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia.
| |
Collapse
|
15
|
Vaht M, Laas K, Kiive E, Parik J, Veidebaum T, Harro J. A functional neuregulin-1 gene variant and stressful life events: Effect on drug use in a longitudinal population-representative cohort study. J Psychopharmacol 2017; 31:54-61. [PMID: 27353026 DOI: 10.1177/0269881116655979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The neuregulin 1 gene is a susceptibility gene for substance dependence. A functional polymorphism (SNP8NRG243177/rs6994992; C/T) in the promoter region of the brain-specific type IV neuregulin-1 gene ( NRG1) has been associated with psychiatric disorders (e.g. schizophrenia and bipolar disorder) that often present higher odds of smoking, alcohol and illicit drug use. This study assessed the association of the NRG1 genotype with drug use and possible interaction with stressful life events (SLEs). METHODS The database of the Estonian Children Personality Behaviour and Health Study (beginning in 1998) was used. Cohorts of children initially 9 years old ( n=583; followed up at 15 and 18 years) and 15 years old ( n=593; followed up at 18 and 25 years) provided self-reports on alcohol, tobacco and illicit substance use and SLEs. Psychiatric assessment based on DSM-IV was carried out on the older birth cohort at age 25 to assess the lifetime presence of substance use disorders. NRG1 rs6994992 was genotyped in all participants by TaqMan® Pre-Designed SNP Genotyping Assay on the Applied Biosystems ViiA™ 7 Real-Time PCR System. The minor (T) allele frequency was 0.37. RESULTS NRG1 rs6994992 C/C homozygotes, especially those who had experienced more SLEs, were more likely to develop alcohol use disorders by young adulthood, were generally more active consumers of tobacco products, and had more likely used illicit drugs. In T allele carriers, SLEs had a negligible effect on substance use. CONCLUSIONS In humans, NRG1 genotype is associated with substance use, and this relationship is moderated by adverse life events, with a gain-of-function allele being protective.
Collapse
Affiliation(s)
- Mariliis Vaht
- 1 Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Tartu, Estonia
| | - Kariina Laas
- 1 Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Tartu, Estonia
| | - Evelyn Kiive
- 2 Division of Special Education, Department of Education, University of Tartu, Tartu, Estonia
| | - Jüri Parik
- 3 Department of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Toomas Veidebaum
- 4 National Institute for Health Development, Estonian Centre of Behavioural and Health Sciences, Tallinn, Estonia
| | - Jaanus Harro
- 1 Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
16
|
Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models. Neural Plast 2016; 2016:2173748. [PMID: 27725886 PMCID: PMC5048038 DOI: 10.1155/2016/2173748] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/20/2016] [Accepted: 08/21/2016] [Indexed: 02/06/2023] Open
Abstract
The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.
Collapse
|
17
|
Nespoli E, Rizzo F, Boeckers TM, Hengerer B, Ludolph AG. Addressing the Complexity of Tourette's Syndrome through the Use of Animal Models. Front Neurosci 2016; 10:133. [PMID: 27092043 PMCID: PMC4824761 DOI: 10.3389/fnins.2016.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/16/2016] [Indexed: 01/06/2023] Open
Abstract
Tourette's syndrome (TS) is a neurodevelopmental disorder characterized by fluctuating motor and vocal tics, usually preceded by sensory premonitions, called premonitory urges. Besides tics, the vast majority—up to 90%—of TS patients suffer from psychiatric comorbidities, mainly attention deficit/hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). The etiology of TS remains elusive. Genetics is believed to play an important role, but it is clear that other factors contribute to TS, possibly altering brain functioning and architecture during a sensitive phase of neural development. Clinical brain imaging and genetic studies have contributed to elucidate TS pathophysiology and disease mechanisms; however, TS disease etiology still is poorly understood. Findings from genetic studies led to the development of genetic animal models, but they poorly reflect the pathophysiology of TS. Addressing the role of neurotransmission, brain regions, and brain circuits in TS disease pathomechanisms is another focus area for preclinical TS model development. We are now in an interesting moment in time when numerous innovative animal models are continuously brought to the attention of the public. Due to the diverse and largely unknown etiology of TS, there is no single preclinical model featuring all different aspects of TS symptomatology. TS has been dissected into its key symptomst hat have been investigated separately, in line with the Research Domain Criteria concept. The different rationales used to develop the respective animal models are critically reviewed, to discuss the potential of the contribution of animal models to elucidate TS disease mechanisms.
Collapse
Affiliation(s)
- Ester Nespoli
- Competence in Neuro Spine Department, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der Riss, Germany; Department of Child and Adolescence Psychiatry/Psychotherapy, University of UlmUlm, Germany
| | - Francesca Rizzo
- Department of Child and Adolescence Psychiatry/Psychotherapy, University of UlmUlm, Germany; Institute of Anatomy and Cell Biology, University of UlmUlm, Germany
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, University of Ulm Ulm, Germany
| | - Bastian Hengerer
- Competence in Neuro Spine Department, Boehringer Ingelheim Pharma GmbH & Co. KG Biberach an der Riss, Germany
| | - Andrea G Ludolph
- Department of Child and Adolescence Psychiatry/Psychotherapy, University of Ulm Ulm, Germany
| |
Collapse
|
18
|
Brzózka MM, Unterbarnscheidt T, Schwab MH, Rossner MJ. OSO paradigm--A rapid behavioral screening method for acute psychosocial stress reactivity in mice. Neuroscience 2015; 314:1-11. [PMID: 26628400 DOI: 10.1016/j.neuroscience.2015.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/27/2022]
Abstract
Chronic psychosocial stress is an important environmental risk factor for the development of psychiatric diseases. However, studying the impact of chronic psychosocial stress in mice is time consuming and thus not optimally suited to 'screen' increasing numbers of genetically manipulated mouse models for psychiatric endophenotypes. Moreover, many studies focus on restraint stress, a strong physical stressor with limited relevance for psychiatric disorders. Here, we describe a simple and a rapid method based on the resident-intruder paradigm to examine acute effects of mild psychosocial stress in mice. The OSO paradigm (open field--social defeat--open field) compares behavioral consequences on locomotor activity, anxiety and curiosity before and after exposure to acute social defeat stress. We first evaluated OSO in male C57Bl/6 wildtype mice where a single episode of social defeat reduced locomotor activity, increased anxiety and diminished exploratory behavior. Subsequently, we applied the OSO paradigm to mouse models of two schizophrenia (SZ) risk genes. Transgenic mice with neuronal overexpression of Neuregulin-1 (Nrg1) type III showed increased risk-taking behavior after acute stress exposure suggesting that NRG1 dysfunction is associated with altered affective behavior. In contrast, Tcf4 transgenic mice displayed a normal stress response which is in line with the postulated predominant contribution of TCF4 to cognitive deficits of SZ. In conclusion, the OSO paradigm allows for rapid screening of selected psychosocial stress-induced behavioral endophenotypes in mouse models of psychiatric diseases.
Collapse
Affiliation(s)
- M M Brzózka
- Department of Psychiatry, Ludwig-Maximilian-University, Nussbaumstrasse 7, 80336 Munich, Germany.
| | - T Unterbarnscheidt
- Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - M H Schwab
- Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - M J Rossner
- Department of Psychiatry, Ludwig-Maximilian-University, Nussbaumstrasse 7, 80336 Munich, Germany; Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany.
| |
Collapse
|
19
|
Dang R, Cai H, Zhang L, Liang D, Lv C, Guo Y, Yang R, Zhu Y, Jiang P. Dysregulation of Neuregulin-1/ErbB signaling in the prefrontal cortex and hippocampus of rats exposed to chronic unpredictable mild stress. Physiol Behav 2015; 154:145-50. [PMID: 26626816 DOI: 10.1016/j.physbeh.2015.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/24/2022]
Abstract
Exposure to chronic stress increases the likelihood of developing depression, but the underlying mechanisms remain equivocal. While recent evidence has indicated that Neuregulin-1 (NRG1) and its ErbB receptors play an essential role in neural development and function, and NRG1 has emerged as a novel modulator involved in the response of brain to stress, there is limited evidence concerning the effects of chronic stress exposure on NRG1/ErbB signaling. To fill this critical gap, we examined the protein expression of NRG1 and ErbB receptors in the brain of rats following chronic unpredictable mild stress (CUMS) exposure. After 6weeks of CUMS procedures, the rats were induced to a depression-like state. The stressed rats displayed elevated expression of NRG1 and phosphorylated ErbB4 (pErbB4) in the prefrontal cortex, whereas ErbB2 and pErbB2 were inhibited. In the hippocampus, CUMS also attenuated activation of the both ErbB receptors and suppressed the downstream Akt and ERK phosphorylation. Meanwhile, administration of sertraline enhanced NRG1/ErbB signaling and partly normalized the stress-induced behavioral changes and the disturbances of NRG1/ErbB system in CUMS rats. Combined, our data firstly showed the aberrant changes of NRG1/ErbB system in the brain of the animal model of depression, providing new evidence for the involvement of NRG1/ErbB pathway in the development and treatment of depression.
Collapse
Affiliation(s)
- Ruili Dang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China; Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Hualin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Ling Zhang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Donglou Liang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Chuanfeng Lv
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| | - Ranyao Yang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Yungui Zhu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| |
Collapse
|
20
|
Closing the translational gap between mutant mouse models and the clinical reality of psychotic illness. Neurosci Biobehav Rev 2015; 58:19-35. [DOI: 10.1016/j.neubiorev.2015.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/03/2023]
|
21
|
Ayhan Y, McFarland R, Pletnikov MV. Animal models of gene-environment interaction in schizophrenia: A dimensional perspective. Prog Neurobiol 2015; 136:1-27. [PMID: 26510407 DOI: 10.1016/j.pneurobio.2015.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/07/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Schizophrenia has long been considered as a disorder with multifactorial origins. Recent discoveries have advanced our understanding of the genetic architecture of the disease. However, even with the increase of identified risk variants, heritability estimates suggest an important contribution of non-genetic factors. Various environmental risk factors have been proposed to play a role in the etiopathogenesis of schizophrenia. These include season of birth, maternal infections, obstetric complications, adverse events at early childhood, and drug abuse. Despite the progress in identification of genetic and environmental risk factors, we still have a limited understanding of the mechanisms whereby gene-environment interactions (G × E) operate in schizophrenia and psychoses at large. In this review we provide a critical analysis of current animal models of G × E relevant to psychotic disorders and propose that dimensional perspective will advance our understanding of the complex mechanisms of these disorders.
Collapse
Affiliation(s)
- Yavuz Ayhan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Hacettepe University Faculty of Medicine, Department of Psychiatry, Turkey
| | - Ross McFarland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA.
| |
Collapse
|
22
|
Keshavan MS, Mehta UM, Padmanabhan JL, Shah JL. Dysplasticity, metaplasticity, and schizophrenia: Implications for risk, illness, and novel interventions. Dev Psychopathol 2015; 27:615-35. [PMID: 25997775 PMCID: PMC6283269 DOI: 10.1017/s095457941500019x] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this paper, we review the history of the concept of neuroplasticity as it relates to the understanding of neuropsychiatric disorders, using schizophrenia as a case in point. We briefly review the myriad meanings of the term neuroplasticity, and its neuroscientific basis. We then review the evidence for aberrant neuroplasticity and metaplasticity associated with schizophrenia as well as the risk for developing this illness, and discuss the implications of such understanding for prevention and therapeutic interventions. We argue that the failure and/or altered timing of plasticity of critical brain circuits might underlie cognitive and deficit symptoms, and may also lead to aberrant plastic reorganization in other circuits, leading to affective dysregulation and eventually psychosis. This "dysplastic" model of schizophrenia can suggest testable etiology and treatment-relevant questions for the future.
Collapse
Affiliation(s)
- Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jaya L. Padmanabhan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Jai L. Shah
- Douglas Hospital Research Center and Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Karl T, Arnold JC. Schizophrenia: a consequence of gene-environment interactions? Front Behav Neurosci 2014; 8:435. [PMID: 25566003 PMCID: PMC4274985 DOI: 10.3389/fnbeh.2014.00435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 12/01/2022] Open
Affiliation(s)
- Tim Karl
- Neuroscience Research Australia (NeuRA) Randwick, NSW, Australia ; Schizophrenia Research Institute Darlinghurst, NSW, Australia ; School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Jonathon C Arnold
- Department of Pharmacology, Bosch Institute, University of Sydney Sydney, NSW, Australia ; Brain and Mind Research Institute Camperdown, NSW, Australia
| |
Collapse
|
24
|
Chohan TW, Nguyen A, Todd SM, Bennett MR, Callaghan P, Arnold JC. Partial genetic deletion of neuregulin 1 and adolescent stress interact to alter NMDA receptor binding in the medial prefrontal cortex. Front Behav Neurosci 2014; 8:298. [PMID: 25324742 PMCID: PMC4179617 DOI: 10.3389/fnbeh.2014.00298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/13/2014] [Indexed: 02/02/2023] Open
Abstract
Schizophrenia is thought to arise due to a complex interaction between genetic and environmental factors during early neurodevelopment. We have recently shown that partial genetic deletion of the schizophrenia susceptibility gene neuregulin 1 (Nrg1) and adolescent stress interact to disturb sensorimotor gating, neuroendocrine activity and dendritic morphology in mice. Both stress and Nrg1 may have converging effects upon N-methyl-D-aspartate receptors (NMDARs) which are implicated in the pathogenesis of schizophrenia, sensorimotor gating and dendritic spine plasticity. Using an identical repeated restraint stress paradigm to our previous study, here we determined NMDAR binding across various brain regions in adolescent Nrg1 heterozygous (HET) and wild-type (WT) mice using [3H] MK-801 autoradiography. Repeated restraint stress increased NMDAR binding in the ventral part of the lateral septum (LSV) and the dentate gyrus (DG) of the hippocampus irrespective of genotype. Partial genetic deletion of Nrg1 interacted with adolescent stress to promote an altered pattern of NMDAR binding in the infralimbic (IL) subregion of the medial prefrontal cortex. In the IL, whilst stress tended to increase NMDAR binding in WT mice, it decreased binding in Nrg1 HET mice. However, in the DG, stress selectively increased the expression of NMDAR binding in Nrg1 HET mice but not WT mice. These results demonstrate a Nrg1-stress interaction during adolescence on NMDAR binding in the medial prefrontal cortex.
Collapse
Affiliation(s)
- Tariq W Chohan
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; Discipline of Pharmacology, School of Medical Science, University of Sydney Sydney, NSW, Australia
| | - An Nguyen
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation Sydney, NSW, Australia
| | - Stephanie M Todd
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; Discipline of Pharmacology, School of Medical Science, University of Sydney Sydney, NSW, Australia
| | - Maxwell R Bennett
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia
| | - Paul Callaghan
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation Sydney, NSW, Australia
| | - Jonathon C Arnold
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; Discipline of Pharmacology, School of Medical Science, University of Sydney Sydney, NSW, Australia
| |
Collapse
|