1
|
Alkan E, Kumari V, Evans SL. Frontal brain volume correlates of impaired executive function in schizophrenia. J Psychiatr Res 2024; 178:397-404. [PMID: 39216276 DOI: 10.1016/j.jpsychires.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cognitive impairments affect functional capacity in individuals with schizophrenia (SZH), but their neural basis remains unclear. The Wisconsin Card Sorting Test (WCST), and the Stroop Task (SCWT), are paradigmatic tests which have been used extensively for examining executive function in SZH. However, few studies have explored how deficits on these tasks link to brain volume differences commonly seen in SZH. Here, for the first time, we tested associations between FreeSurfer-derived frontal brain volumes and performance on both WCST and SCWT, in a well-matched sample of 57 SZH and 32 control subjects. We also explored whether these associations were dissociable from links to symptom severity in SZH. Results revealed correlations between volumes and task performance which were unique to SZH. In SZH only, volumes of right middle frontal regions correlated with both WCST and Stroop performance: correlation coefficients were significantly different to those present in the control group, highlighting their specificity to the patient group. In the Stroop task, superior frontal regions also showed associations with Stroop interference scores which were unique to SZH. These findings provide important detail around how deficits on these two paradigmatic executive function tasks link to brain structural differences in SZH. Results align with converging evidence suggesting that neuropathology within right middle frontal regions (BA9 and BA46) might be of particular import in SZH. No volumetric associations with symptom severity were found, supporting the notion that the structural abnormalities underpinning cognitive deficits in SZH differ from those associated with symptomatology.
Collapse
Affiliation(s)
- Erkan Alkan
- Faculty of Health, Science, Social Care and Education, Kingston University, London, United Kingdom
| | - Veena Kumari
- Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University of London, London, United Kingdom
| | - Simon L Evans
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom.
| |
Collapse
|
2
|
Greenfield MS, Wang Y, Hamilton JP, Thunberg P, Msghina M. Emotional dysregulation and stimulant medication in adult ADHD. J Psychiatry Neurosci 2024; 49:E242-E251. [PMID: 39122408 PMCID: PMC11318975 DOI: 10.1503/jpn.240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Emotional dysregulation affects up to two-thirds of adult patients with attention-deficit/hyperactivity disorder (ADHD) and is increasingly seen as a core ADHD symptom that is clinically associated with greater functional impairment and psychiatric comorbidity. We sought to investigate emotional dysregulation in ADHD and explored its neural underpinnings. METHODS We studied emotion induction and regulation in a clinical cohort of adult patients with ADHD before and after a stimulant challenge. We compared patients with age- and gender-matched healthy controls using behavioural, structural, and functional measures. We hypothesized that patients would demonstrate aberrant emotion processing compared with healthy controls, and sought to find whether this could be normalized by stimulant medication. RESULTS Behaviourally, the ADHD group showed reduced emotion induction and regulation capacity. Brain imaging revealed abberant activation and deactivation patterns during emotion regulation, lower grey-matter volume in limbic and paralimbic areas, and greater grey-matter volume in visual and cerebellar areas, compared with healthy controls. The behavioural and functional deficits seen in emotion induction and regulation in the ADHD group were not normalized by stimulant medication. CONCLUSION Patients with ADHD may have impaired emotion induction and emotion regulation capacity, but these deficits are not reversed by stimulant medication. These results have important clinical implications when assessing which aspects of emotional dysregulation are relevant for patients and if and how traditional ADHD pharmacotherapy affects emotion induction and emotion regulation.
Collapse
Affiliation(s)
- Myrto Sklivanioti Greenfield
- From the Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden (Sklivanioti Greenfield, Msghina); the Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden (Wang); Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden (Wang); the Department of Biological and Medical Psychology, University of Bergen, Norway (Hamilton); the Department for Radiology and Medical Physics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Thunberg); the Center for Experimental and Biomedical Imaging in Örebro, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Thunberg); and the Department of Psychiatry, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Msghina)
| | - Yanlu Wang
- From the Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden (Sklivanioti Greenfield, Msghina); the Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden (Wang); Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden (Wang); the Department of Biological and Medical Psychology, University of Bergen, Norway (Hamilton); the Department for Radiology and Medical Physics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Thunberg); the Center for Experimental and Biomedical Imaging in Örebro, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Thunberg); and the Department of Psychiatry, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Msghina)
| | - J Paul Hamilton
- From the Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden (Sklivanioti Greenfield, Msghina); the Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden (Wang); Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden (Wang); the Department of Biological and Medical Psychology, University of Bergen, Norway (Hamilton); the Department for Radiology and Medical Physics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Thunberg); the Center for Experimental and Biomedical Imaging in Örebro, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Thunberg); and the Department of Psychiatry, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Msghina)
| | - Per Thunberg
- From the Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden (Sklivanioti Greenfield, Msghina); the Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden (Wang); Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden (Wang); the Department of Biological and Medical Psychology, University of Bergen, Norway (Hamilton); the Department for Radiology and Medical Physics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Thunberg); the Center for Experimental and Biomedical Imaging in Örebro, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Thunberg); and the Department of Psychiatry, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Msghina)
| | - Mussie Msghina
- From the Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden (Sklivanioti Greenfield, Msghina); the Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden (Wang); Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden (Wang); the Department of Biological and Medical Psychology, University of Bergen, Norway (Hamilton); the Department for Radiology and Medical Physics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Thunberg); the Center for Experimental and Biomedical Imaging in Örebro, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Thunberg); and the Department of Psychiatry, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Msghina)
| |
Collapse
|
3
|
Aminoff SR, Onyeka IN, Ødegaard M, Simonsen C, Lagerberg TV, Andreassen OA, Romm KL, Melle I. Lifetime and point prevalence of psychotic symptoms in adults with bipolar disorders: a systematic review and meta-analysis. Psychol Med 2022; 52:2413-2425. [PMID: 36016504 PMCID: PMC9647517 DOI: 10.1017/s003329172200201x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/14/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022]
Abstract
Psychotic symptoms, that we defined as delusions or hallucinations, are common in bipolar disorders (BD). This systematic review and meta-analysis aims to synthesise the literature on both lifetime and point prevalence rates of psychotic symptoms across different BD subtypes, including both BD type I (BDI) and BD type II (BDII). We performed a systematic search of Medline, PsycINFO, Embase and Cochrane Library until 5 August 2021. Fifty-four studies (N = 23 461) of adults with BD met the predefined inclusion criteria for evaluating lifetime prevalence, and 24 studies (N = 6480) for evaluating point prevalence. Quality assessment and assessment of publication bias were performed. Prevalence rates were calculated using random effects meta-analysis, here expressed as percentages with a 95% confidence interval (CI). In studies of at least moderate quality, the pooled lifetime prevalence of psychotic symptoms in BDI was 63% (95% CI 57.5-68) and 22% (95% CI 14-33) in BDII. For BDI inpatients, the pooled lifetime prevalence was 71% (95% CI 61-79). There were no studies of community samples or inpatient BDII. The pooled point prevalence of psychotic symptoms in BDI was 54% (95 CI 41-67). The point prevalence was 57% (95% CI 47-66) in manic episodes and 13% (95% CI 7-23.5) in depressive episodes. There were not enough studies in BDII, BDI depression, mixed episodes and outpatient BDI. The pooled prevalence of psychotic symptoms in BDI may be higher than previously reported. More studies are needed for depressive and mixed episodes and community samples.Prospero registration number: CRD 42017052706.
Collapse
Affiliation(s)
- S. R. Aminoff
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Early Intervention in Psychosis Advisory Unit for South East Norway, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - I. N. Onyeka
- Department of Psychology, Sociology & Politics, Sheffield Hallam University, Sheffield, UK
| | - M. Ødegaard
- University of Oslo Library, University of Oslo, Oslo, Norway
| | - C. Simonsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Early Intervention in Psychosis Advisory Unit for South East Norway, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - T. V. Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - O. A. Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - K. L. Romm
- Early Intervention in Psychosis Advisory Unit for South East Norway, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - I. Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Lee DK, Lee H, Ryu V, Kim SW, Ryu S. Different patterns of white matter microstructural alterations between psychotic and non-psychotic bipolar disorder. PLoS One 2022; 17:e0265671. [PMID: 35303011 PMCID: PMC8933039 DOI: 10.1371/journal.pone.0265671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/06/2022] [Indexed: 11/29/2022] Open
Abstract
This study aimed to investigate alterations in white matter (WM) microstructure in patients with psychotic and non-psychotic bipolar disorder (PBD and NPBD, respectively). We used 3T-magnetic resonance imaging to examine 29 PBD, 23 NPBD, and 65 healthy control (HC) subjects. Using tract-based spatial statistics for diffusion tensor imaging data, we compared fractional anisotropy (FA) and mean diffusion (MD) pairwise among the PBD, NPBD, and HC groups. We found several WM areas of decreased FA or increased MD in the PBD and NPBD groups compared to HC. PBD showed widespread FA decreases in the corpus callosum as well as the bilateral internal capsule and fornix. However, NPBD showed local FA decreases in a part of the corpus callosum body as well as in limited regions within the left cerebral hemisphere, including the anterior and posterior corona radiata and the cingulum. In addition, both PBD and NPBD shared widespread MD increases across the posterior corona radiata, cingulum, and sagittal stratum. These findings suggest that widespread WM microstructural alterations might be a common neuroanatomical characteristic of bipolar disorder, regardless of being psychotic or non-psychotic. Particularly, PBD might involve extensive inter-and intra-hemispheric WM connectivity disruptions.
Collapse
Affiliation(s)
- Dong-Kyun Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Hyeongrae Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Vin Ryu
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seunghyong Ryu
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
5
|
Hwang M, Roh YS, Talero J, Cohen BM, Baker JT, Brady RO, Öngür D, Shinn AK. Auditory hallucinations across the psychosis spectrum: Evidence of dysconnectivity involving cerebellar and temporal lobe regions. Neuroimage Clin 2021; 32:102893. [PMID: 34911197 PMCID: PMC8636859 DOI: 10.1016/j.nicl.2021.102893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Auditory hallucinations (AH) are typically associated with schizophrenia (SZ), but they are also prevalent in bipolar disorder (BD). Despite the large body of research on the neural correlates of AH in SZ, the pathophysiology underlying AH remains unclear. Few studies have examined the neural substrates associated with propensity for AH in BD. Investigating AH across the psychosis spectrum has the potential to inform about the neural signature associated with the trait of AH, irrespective of psychiatric diagnosis. METHODS We compared resting state functional magnetic resonance imaging data in psychosis patients with (n = 90 AH; 68 SZ, 22 BD) and without (n = 55 NAH; 16 SZ, 39 BD) lifetime AH. We performed region of interest (ROI)-to-ROI functional connectivity (FC) analysis using 91 cortical, 15 subcortical, and 26 cerebellar atlas-defined regions. The primary aim was to identify FC differences between patients with and without lifetime AH. We secondarily examined differences between AH and NAH within each diagnosis. RESULTS Compared to the NAH group, patients with AH showed higher FC between cerebellum and frontal (left precentral gyrus), temporal [right middle temporal gyrus (MTG), left inferior temporal gyrus (ITG), left temporal fusiform gyrus)], parietal (bilateral superior parietal lobules), and subcortical (left accumbens, left palldium) brain areas. AH also showed lower FC between temporal lobe regions (between right ITG and right MTG and bilateral superior temporal gyri) relative to NAH. CONCLUSIONS Our findings suggest that dysconnectivity involving the cerebellum and temporal lobe regions may be common neurofunctional elements associated with AH propensity across the psychosis spectrum. We also found dysconnectivity patterns that were unique to lifetime AH within SZ or bipolar psychosis, suggesting both common and distinct mechanisms underlying AH pathophysiology in these disorders.
Collapse
Affiliation(s)
- Melissa Hwang
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Youkyung S Roh
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Jessica Talero
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Bruce M Cohen
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Program for Neuropsychiatric Research, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Justin T Baker
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Roscoe O Brady
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Dost Öngür
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Ann K Shinn
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Gao W, Cui D, Jiao Q, Su L, Lu G, Yang R. Altered spatiotemporal consistency in pediatric bipolar disorder patients with and without psychotic symptoms. BMC Psychiatry 2021; 21:506. [PMID: 34654382 PMCID: PMC8518299 DOI: 10.1186/s12888-021-03524-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Psychotic symptoms are quite common in patients with pediatric bipolar disorder (PBD) and may affect the symptom severity and prognosis of PBD. However, the potential mechanisms are less well elucidated until now. Thus, the purpose of this study was to investigate the brain functional differences between PBD patients with and without psychotic symptoms. METHOD A total of 71 individuals including: 27 psychotic PBD (P-PBD), 25 nonpsychotic PBD (NP-PBD), and 19 healthy controls were recruited in the present study. Each subject underwent 3.0 Tesla functional magnetic resonance imaging scan. Four-dimensional (spatiotemporal) Consistency of local neural Activities (FOCA) was employed to detect the local brain activity changes. Analyses of variance (ANOVA) were used to reveal brain regions with significant differences among three groups groups of individuals, and inter-group comparisons were assessed using post hoc tests. RESULTS The ANOVA obtained significant among-group FOCA differences in the left triangular inferior frontal gyrus, left supplementary motor area, left precentral gyrus, right postcentral gyrus, right superior occipital gyrus, and right superior frontal gyrus. Compared with the control group, the P-PBD group showed decreased FOCA in the left supplementary motor area and bilateral superior frontal gyrus and showed increased FOCA in the left triangular inferior frontal gyrus. In contrast, the NP-PBD group exhibited decreased FOCA in the right superior occipital gyrus and right postcentral gyrus and showed increased FOCA in the left orbital inferior frontal gyrus. Compared to the NP-PBD group, the P-PBD group showed decreased FOCA in the right superior frontal gyrus. CONCLUSION The present findings demonstrated that the two groups of PBD patients exhibited segregated brain functional patterns, providing empirical evidence for the biological basis of different clinical outcomes between PBD patients with and without psychotic symptoms.
Collapse
Affiliation(s)
- Weijia Gao
- grid.13402.340000 0004 1759 700XDepartment of Child Psychology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, No. 3333 Binsheng Road, Zhejiang, Hangzhou China
| | - Dong Cui
- grid.506261.60000 0001 0706 7839Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Qing Jiao
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong China
| | - Linyan Su
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Key Laboratory of Psychiatry and Mental Health of Hunan Province, National Technology Institute of Psychiatry, Changsha, Hunan China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, China.
| | - Rongwang Yang
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, No. 3333 Binsheng Road, Zhejiang, Hangzhou, China.
| |
Collapse
|
7
|
Takamiya A, Dols A, Emsell L, Abbott C, Yrondi A, Soriano Mas C, Jorgensen MB, Nordanskog P, Rhebergen D, van Exel E, Oudega ML, Bouckaert F, Vandenbulcke M, Sienaert P, Péran P, Cano M, Cardoner N, Jorgensen A, Paulson OB, Hamilton P, Kampe R, Bruin W, Bartsch H, Ousdal OT, Kessler U, van Wingen G, Oltedal L, Kishimoto T. Neural Substrates of Psychotic Depression: Findings From the Global ECT-MRI Research Collaboration. Schizophr Bull 2021; 48:514-523. [PMID: 34624103 PMCID: PMC8886602 DOI: 10.1093/schbul/sbab122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Psychotic major depression (PMD) is hypothesized to be a distinct clinical entity from nonpsychotic major depression (NPMD). However, neurobiological evidence supporting this notion is scarce. The aim of this study is to identify gray matter volume (GMV) differences between PMD and NPMD and their longitudinal change following electroconvulsive therapy (ECT). Structural magnetic resonance imaging (MRI) data from 8 independent sites in the Global ECT-MRI Research Collaboration (GEMRIC) database (n = 108; 56 PMD and 52 NPMD; mean age 71.7 in PMD and 70.2 in NPMD) were analyzed. All participants underwent MRI before and after ECT. First, cross-sectional whole-brain voxel-wise GMV comparisons between PMD and NPMD were conducted at both time points. Second, in a flexible factorial model, a main effect of time and a group-by-time interaction were examined to identify longitudinal effects of ECT on GMV and longitudinal differential effects of ECT between PMD and NPMD, respectively. Compared with NPMD, PMD showed lower GMV in the prefrontal, temporal and parietal cortex before ECT; PMD showed lower GMV in the medial prefrontal cortex (MPFC) after ECT. Although there was a significant main effect of time on GMV in several brain regions in both PMD and NPMD, there was no significant group-by-time interaction. Lower GMV in the MPFC was consistently identified in PMD, suggesting this may be a trait-like neural substrate of PMD. Longitudinal effect of ECT on GMV may not explain superior ECT response in PMD, and further investigation is needed.
Collapse
Affiliation(s)
- Akihiro Takamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan,Department of Neurosciences and Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Annemiek Dols
- GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands,Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Louise Emsell
- Department of Neurosciences and Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Antoine Yrondi
- Service de Psychiatrie et de Psychologie Médicale, Centre Expert Dépression Résistante FondaMental, CHU Toulouse, Hospital Purpan, ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Carles Soriano Mas
- Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain,CIBERSAM, Carlos III Health Institute, Madrid, Spain,Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Martin Balslev Jorgensen
- Psychiatric Centre Copenhagen, Copenhagen, Denmark,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Pia Nordanskog
- Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Didi Rhebergen
- Mental Health Care Institute, GGZ Centraal, Amersfoort, the Netherlands
| | - Eric van Exel
- GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands,Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mardien L Oudega
- GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands,Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Filip Bouckaert
- Department of Neurosciences and Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Department of Neurosciences and Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Pascal Sienaert
- Academic Center for ECT and Neurostimulation (AcCENT), University Psychiatric Center (UPC)—KU Leuven, Kortenberg, Belgium
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Marta Cano
- CIBERSAM, Carlos III Health Institute, Madrid, Spain,Mental Health Department, Unitat de Neurociència Traslacional, Parc Tauli University Hospital, Institut d’Investigació i Innovació Sanitària Parc Taulí (I3PT), Barcelona, Spain,Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Narcis Cardoner
- Mental Health Department, Unitat de Neurociència Traslacional, Parc Tauli University Hospital, Institut d’Investigació i Innovació Sanitària Parc Taulí (I3PT), Barcelona, Spain
| | - Anders Jorgensen
- Psychiatric Centre Copenhagen, Copenhagen, Denmark,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Olaf B Paulson
- Neurobiological Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - Paul Hamilton
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Robin Kampe
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Willem Bruin
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Hauke Bartsch
- Department of Radiology, Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway,Department of Research and Innovation, Haukeland University Hospital, Bergen, Norway,Department of Informatics, University of Bergen, Bergen, Norway
| | - Olga Therese Ousdal
- Department of Radiology, Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway,Faculty of Psychology, Centre for Crisis Psychology, University of Bergen, Bergen, Norway
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway,Division of Psychiatry, NORMENT, Haukeland University Hospital, Bergen, Norway
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Leif Oltedal
- Department of Radiology, Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Taishiro Kishimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan,To whom correspondence should be addressed; Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; tel: +81-3-5363-3829; fax: +81-3-5379-0187; e-mail:
| |
Collapse
|
8
|
Longitudinal grey matter changes following first episode mania in bipolar I disorder: A systematic review. J Affect Disord 2021; 291:198-208. [PMID: 34049189 DOI: 10.1016/j.jad.2021.04.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/12/2021] [Accepted: 04/25/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND While widespread grey matter (GM) changes are seen in bipolar I disorder (BD-I), it is unclear how early in the illness such changes emerge. To date there has been little synthesis of findings regarding longitudinal grey matter changes early in the course of BD-I. We conducted a systematic review to examine the evolution of GM changes in BD-I patients following the first episode of mania (FEM). METHODS Following PRISMA guidelines, we conducted a systematic review of studies examining longitudinal changes in GM volume (GMV), cortical thickness and/or surface area in BD-I patients following FEM. We qualitatively synthesized results regarding longitudinal GM changes in BD-I patients. RESULTS Fifteen studies met inclusion criteria, all examining GMV changes. Longitudinal ACC volume decrease following FEM was the most replicated finding, but was only reported in 4 out of 7 studies that examined this region as part of a whole brain/region of interest analysis, with 2 of these positive studies using an overlapping patient sample. The impact of episode recurrence, medications, and other clinical factors was inconsistently examined. LIMITATIONS The literature regarding GM changes early in BD-I is highly inconsistent, likely due to heterogeneity in participant characteristics, imaging methodology/analysis and duration of follow up. CONCLUSIONS Though there was some suggestion that structural ACC changes may represent a marker for neuroprogression following FEM, results were too inconsistent to draw any conclusions. Larger longitudinal studies examining cortical thickness/surface area, and the influence of relevant clinical factors, are needed to better understand neuroprogression in early BD-I.
Collapse
|
9
|
Li H, Cui L, Cao L, Zhang Y, Liu Y, Deng W, Zhou W. Identification of bipolar disorder using a combination of multimodality magnetic resonance imaging and machine learning techniques. BMC Psychiatry 2020; 20:488. [PMID: 33023515 PMCID: PMC7542439 DOI: 10.1186/s12888-020-02886-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bipolar disorder (BPD) is a common mood disorder that is often goes misdiagnosed or undiagnosed. Recently, machine learning techniques have been combined with neuroimaging methods to aid in the diagnosis of BPD. However, most studies have focused on the construction of classifiers based on single-modality MRI. Hence, in this study, we aimed to construct a support vector machine (SVM) model using a combination of structural and functional MRI, which could be used to accurately identify patients with BPD. METHODS In total, 44 patients with BPD and 36 healthy controls were enrolled in the study. Clinical evaluation and MRI scans were performed for each subject. Next, image pre-processing, VBM and ReHo analyses were performed. The ReHo values of each subject in the clusters showing significant differences were extracted. Further, LASSO approach was recruited to screen features. Based on selected features, the SVM model was established, and discriminant analysis was performed. RESULTS After using the two-sample t-test with multiple comparisons, a total of 8 clusters were extracted from the data (VBM = 6; ReHo = 2). Next, we used both VBM and ReHo data to construct the new SVM classifier, which could effectively identify patients with BPD at an accuracy of 87.5% (95%CI: 72.5-95.3%), sensitivity of 86.4% (95%CI: 64.0-96.4%), and specificity of 88.9% (95%CI: 63.9-98.0%) in the test data (p = 0.0022). CONCLUSIONS A combination of structural and functional MRI can be of added value in the construction of SVM classifiers to aid in the accurate identification of BPD in the clinic.
Collapse
Affiliation(s)
- Hao Li
- grid.412615.5Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China ,grid.484195.5Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080 China
| | - Liqian Cui
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Liping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong, China.
| | - Yizhi Zhang
- grid.452505.30000 0004 1757 6882Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong China
| | - Yueheng Liu
- grid.216417.70000 0001 0379 7164Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan China ,Chinese National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan China
| | - Wenhao Deng
- grid.452505.30000 0004 1757 6882Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong China
| | - Wenjin Zhou
- grid.452505.30000 0004 1757 6882Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong China
| |
Collapse
|
10
|
Abstract
AbstractTrust is a major determinant of acceptance of an autonomous vehicle (AV), and a lack of appropriate trust could prevent drivers and society in general from taking advantage of such technology. This paper makes a new attempt to explore the effects of personalised AVs as a novel approach to the cognitive underpinnings of drivers’ trust in AVs. The personalised AV system is able to identify the driving behaviours of users and thus adapt the driving style of the AV accordingly. A prototype of a personalised AV was designed and evaluated in a lab-based experimental study of 36 human drivers, which investigated the impact of the personalised AV on user trust when compared with manual human driving and non-personalised AVs. The findings show that a personalised AV appears to be significantly more reliable through accepting and understanding each driver’s behaviour, which could thereby increase a user’s willingness to trust the system. Furthermore, a personalised AV brings a sense of familiarity by making the system more recognisable and easier for users to estimate the quality of the automated system. Personalisation parameters were also explored and discussed to support the design of AV systems to be more socially acceptable and trustworthy.
Collapse
|
11
|
Assmann A, Richter A, Schütze H, Soch J, Barman A, Behnisch G, Knopf L, Raschick M, Schult A, Wüstenberg T, Behr J, Düzel E, Seidenbecher CI, Schott BH. Neurocan genome-wide psychiatric risk variant affects explicit memory performance and hippocampal function in healthy humans. Eur J Neurosci 2020; 53:3942-3959. [PMID: 32583466 DOI: 10.1111/ejn.14872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
Alterations of the brain extracellular matrix (ECM) can perturb the structure and function of brain networks like the hippocampus, a key region in human memory that is commonly affected in psychiatric disorders. Here, we investigated the potential effects of a genome-wide psychiatric risk variant in the NCAN gene encoding the ECM proteoglycan neurocan (rs1064395) on memory performance, hippocampal function and cortical morphology in young, healthy volunteers. We assessed verbal memory performance in two cohorts (N = 572, 302) and found reduced recall performance in risk allele (A) carriers across both cohorts. In 117 participants, we performed functional magnetic resonance imaging using a novelty-encoding task with visual scenes. Risk allele carriers showed higher false alarm rates during recognition, accompanied by inefficiently increased left hippocampal activation. To assess effects of rs1064395 on brain morphology, we performed voxel-based morphometry in 420 participants from four independent cohorts and found lower grey matter density in the ventrolateral and rostral prefrontal cortex of risk allele carriers. In silico eQTL analysis revealed that rs1064395 SNP is linked not only to increased prefrontal expression of the NCAN gene itself, but also of the neighbouring HAPLN4 gene, suggesting a more complex effect of the SNP on ECM composition. Our results suggest that the NCAN rs1064395 A allele is associated with lower hippocampus-dependent memory function, variation of prefrontal cortex structure and ECM composition. Considering the well-documented hippocampal and prefrontal dysfunction in bipolar disorder and schizophrenia, our results may reflect an intermediate phenotype by which NCAN rs1064395 contributes to disease risk.
Collapse
Affiliation(s)
- Anne Assmann
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, Germany
| | - Joram Soch
- German Center for Neurodegenerative Diseases, Göttingen, Germany.,Bernstein Center for Computational Neuroscience, Humboldt University, Berlin, Germany
| | | | | | - Lea Knopf
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Matthias Raschick
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Annika Schult
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany.,Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Heidelberg, Heidelberg, Germany
| | - Joachim Behr
- Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Medical School Brandenburg, Neuruppin, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Germany
| |
Collapse
|
12
|
Delvecchio G, Maggioni E, Squarcina L, Arighi A, Galimberti D, Scarpini E, Bellani M, Brambilla P. A Critical Review on Structural Neuroimaging Studies in BD: a Transdiagnostic Perspective from Psychosis to Fronto-Temporal Dementia. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00204-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Basal ganglia volumetric changes in psychotic spectrum disorders. J Affect Disord 2019; 255:150-157. [PMID: 31153051 DOI: 10.1016/j.jad.2019.05.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/30/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Basal ganglia are particularly important for understanding the pathobiology of psychosis given their key roles in dopaminergic neurotransmission which are associated with psychotic symptoms and one of the target sites of antipsychotic drugs. Psychotic symptoms are prevalent in both schizophrenia (SZ) and bipolar disorder (BD). Although the components of basal ganglia are implicated in psychosis, comparative structural changes of components of the basal ganglia between SZ and BD are less clear after disentanglement of clinical effects of antipsychotic dose, duration and severity of illness. METHODS In this study, we examined the morphology of the basal ganglia in 326 subjects comprising of 45 patients of BD type I with psychotic symptoms, 97 first-episode SZ (FE-SZ) patients, 86 non-first-episode chronic SZ (NFE-SZ) patients, in comparison with 98 healthy controls (HC). RESULTS Results showed increased volumes in subregions of caudate, putamen, and pallidum in chronic SZ patients compared with HC after controlling for age, gender, and total intracranial volume. No change was found between FE-SZ patients, psychotic BD patients, and HC. Furthermore, hierarchical regressions showed that the dosage of antipsychotics had a significant contribution to basal ganglia volumetric enlargement in NFE-SZ after controlling for the effects of age, gender, total intracranial volume, age at illness onset, as well as illness duration and severity. LIMITATIONS Lack of information about the cumulative history of exposure to medication for all the three groups of patients is a major limitation in our study. CONCLUSIONS There are distinct basal ganglia structural changes in SZ and psychotic BD. Basal ganglia are enlarged in chronic SZ but not in FE-SZ and BD and this enlargement is significantly associated with antipsychotic dosage over and beyond the effects of illness duration and severity.
Collapse
|
14
|
Cotrena C, Branco LD. Influence of clinical features on cognition in bipolar disorder: Comment on the meta-analysis published by Bora (2018). J Affect Disord 2019; 254:115-116. [PMID: 29628396 DOI: 10.1016/j.jad.2018.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Charles Cotrena
- Department of Psychology, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681, Building 11, 9th floor, Rm 932, Porto Alegre, RS 90619-900, Brazil
| | - Laura Damiani Branco
- Department of Psychology, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681, Building 11, 9th floor, Rm 932, Porto Alegre, RS 90619-900, Brazil.
| |
Collapse
|
15
|
Improved gray matter surface based spatial statistics in neuroimaging studies. Magn Reson Imaging 2019; 61:285-295. [PMID: 31128227 DOI: 10.1016/j.mri.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 11/23/2022]
Abstract
Neuroimaging often involves acquiring high-resolution anatomical images along with other low-resolution image modalities, like diffusion and functional magnetic resonance imaging. Performing gray matter statistics with low-resolution image modalities is a challenge due to registration artifacts and partial volume effects. Gray matter surface based spatial statistics (GS-BSS) has been shown to provide higher sensitivity using gray matter surfaces compared to that of skeletonization approach of gray matter based spatial statistics which is adapted from tract based spatial statistics in diffusion studies. In this study, we improve upon GS-BSS incorporating neurite orientation dispersion and density imaging (NODDI) based search (denoted N-GSBSS) by 1) enhancing metrics mapping from native space, 2) incorporating maximum orientation dispersion index (ODI) search along surface normal, and 3) proposing applicability to other modalities, such as functional MRI (fMRI). We evaluated the performance of N-GSBSS against three baseline pipelines: volume-based registration, FreeSurfer's surface registration and ciftify pipeline for fMRI and simulation studies. First, qualitative mean ODI results are shown for N-GSBSS with and without NODDI based search in comparison with ciftify pipeline. Second, we conducted one-sample t-tests on working memory activations in fMRI to show that the proposed method can aid in the analysis of low resolution fMRI data. Finally we performed a sensitivity test in a simulation study by varying percentage change of intensity values within a region of interest in gray matter probability maps. N-GSBSS showed higher sensitivity in the simulation test compared to the other methods capturing difference between the groups starting at 10% change in the intensity values. The computational time of N-GSBSS is 68 times faster than that of traditional surface-based or 86 times faster than that of ciftify pipeline analysis.
Collapse
|
16
|
Marotta G, Delvecchio G, Pigoni A, Mandolini G, Ciappolino V, Oldani L, Madonna D, Grottaroli M, Altamura AC, Brambilla P. The metabolic basis of psychosis in bipolar disorder: A positron emission tomography study. Bipolar Disord 2019; 21:151-158. [PMID: 30506616 DOI: 10.1111/bdi.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Psychotic symptoms are a common feature in bipolar disorder (BD), especially during manic phases, and are associated with a more severe course of illness. However, not all bipolar subjects experience psychosis during the course of their illness, and this difference often guides assessment and pharmacological treatment. The aim of the present study is to elucidate, for the first time, the FDG uptake dysfunctions associated with psychosis in BD patients with and without a history of past psychotic symptoms, through a positron emission tomography (PET) approach. METHODS Fifty BD patients with lifetime psychotic symptoms, 40 BD patients without lifetime psychotic symptoms and 27 healthy controls (HC) were recruited and underwent an 18F-FDG-PET session. RESULTS Compared to HC, BD subjects shared common FDG uptake deficits in several brain areas, including insula, inferior temporal gyrus and middle occipital gyrus. Moreover, we found that BD patients with a history of past psychotic symptoms had a unique FDG uptake alteration in the right fusiform gyrus compared to both BD patients without lifetime psychotic symptoms and HC (all P < 0.01, cFWE corrected). CONCLUSIONS Overall, our results suggest that FDG uptake alterations in brain regions involved in emotion regulation are a key feature of BD, regardless the presence of past psychosis. Finally, we demonstrated that the FDG uptake reduction in fusiform gyrus is associated with the presence of past psychotic symptoms in BD, ultimately leading towards the idea that the fusiform gyrus might be considered a putative biomarker of psychosis.
Collapse
Affiliation(s)
- Giorgio Marotta
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Scientific Institute, IRCCS E. Medea, Pordenone, Italy
| | - Alessandro Pigoni
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianmario Mandolini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucio Oldani
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Domenico Madonna
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marika Grottaroli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alfredo Carlo Altamura
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Psychiatry and Behavioural Sciences, UT Houston Medical School, Houston, TX, USA
| |
Collapse
|
17
|
Wang X, Tian F, Wang S, Cheng B, Qiu L, He M, Wang H, Duan M, Dai J, Jia Z. Gray matter bases of psychotic features in adult bipolar disorder: A systematic review and voxel-based meta-analysis of neuroimaging studies. Hum Brain Mapp 2018; 39:4707-4723. [PMID: 30096212 DOI: 10.1002/hbm.24316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 02/05/2023] Open
Abstract
Psychotic bipolar disorder (P-BD) is a specific subset that presents greater risk of relapse and worse outcomes than nonpsychotic bipolar disorder (NP-BD). To explore the neuroanatomical bases of psychotic dimension in bipolar disorder (BD), a systematic review was carried out based on the gray matter volume (GMV) among P-BD and NP-BD patients and healthy controls (HC). Further, we conducted a meta-analysis of GMV differences between P-BD patients and HC using a whole-brain imaging approach. Our review revealed that P-BD patients exhibited smaller GMVs mainly in the prefronto-temporal and cingulate cortices, the precentral gyrus, and insula relative to HC both qualitatively and quantitatively. Qualitatively the comparison between P-BD and NP-BD patients suggested inconsistent GMV alterations mainly involving the prefrontal cortex, while NP-BD patients showed GMV deficits in local regions compared with HC. The higher proportions of female patients and patients taking psychotropic medication in P-BD and P-BD type I were associated with smaller GMV in the right precentral gyrus, and the right insula, respectively. In conclusions, psychosis in BD might be associated with specific cortical GMV deficits. Gender and psychotropic medication might have effects on the regional GMVs in P-BD patients. It is necessary to distinguish psychotic dimension in neuroimaging studies of BD.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Fangfang Tian
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Song Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Lihua Qiu
- Department of Radiology, The Second People's Hospital of Yibin, Yibin, China
| | - Manxi He
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Hongming Wang
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Mingjun Duan
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Jing Dai
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Altamura AC, Maggioni E, Dhanoa T, Ciappolino V, Paoli RA, Cremaschi L, Prunas C, Orsenigo G, Caletti E, Cinnante CM, Triulzi FM, Dell'Osso B, Yatham L, Brambilla P. The impact of psychosis on brain anatomy in bipolar disorder: A structural MRI study. J Affect Disord 2018; 233:100-109. [PMID: 29223329 DOI: 10.1016/j.jad.2017.11.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/24/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a major psychiatric illness characterized by heterogeneous symptoms including psychotic features. Up until now, neuroimaging studies investigating cerebral morphology in patients with BD have underestimated the potential impact of psychosis on brain anatomy in BD patients. In this regard, psychotic and non-psychotic BD may represent biologically different subtypes of the disorder, being possibly associated with specific cerebral features. METHODS In the present study, magnetic resonance imaging (MRI) at 3T was used to identify the neuroanatomical correlates of psychosis in an International sample of BD patients. A large sample of structural MRI data from healthy subjects (HC) and BD patients was collected across two research centers. Voxel based morphometry was used to compare gray matter (GM) volume among psychotic and non-psychotic BD patients and HC. RESULTS We found specific structural alterations in the two patient groups, more extended in the psychotic sample. Psychotic patients showed GM volume deficits in left frontal cortex compared to HC, and in right temporo-parietal cortex compared to both HC and non-psychotic patients (p < 0.001, > 100 voxels). Psychotic patients also exhibited enhanced age-related GM volume deficits in a set of subcortical and cortical regions. LIMITATIONS The integration of multiple datasets may have affected the results. CONCLUSIONS Overall, our results confirm the importance of classifying BD based on psychosis. The knowledge of the neuronal bases of psychotic symptomatology in BD can provide a more comprehensive picture of the determinants of BD, in the light of the continuum characteristic of major psychoses.
Collapse
Affiliation(s)
- A Carlo Altamura
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Eleonora Maggioni
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Taj Dhanoa
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Riccardo A Paoli
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Laura Cremaschi
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Cecilia Prunas
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giulia Orsenigo
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Elisabetta Caletti
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Claudia M Cinnante
- Department of Neuroradiology, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Fabio M Triulzi
- Department of Neuroradiology, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Bernardo Dell'Osso
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford University, CA, USA
| | - Lakshmi Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
19
|
Tu PC, Li CT, Lin WC, Chen MH, Su TP, Bai YM. Structural and functional correlates of serum soluble IL-6 receptor level in patients with bipolar disorder. J Affect Disord 2017; 219:172-177. [PMID: 28558364 DOI: 10.1016/j.jad.2017.04.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Inflammation is reported to play a crucial role in the pathogenesis of bipolar disorder (BD). Higher serum levels of soluble interleukin-6 receptor (sIL-6R), which forms a ligand-receptor complex with the potent proinflammatory cytokine IL-6, have been consistently observed in patients with BD. However, the effect of sIL-6R on neural structure and function remains unclear. This study investigated the association between serum sIL-6R levels and the structural and functional connectivity (FC) of the brain in patients with BD. METHODS Seventy-four stable patients with BD-I or BD-II were enrolled from the outpatient clinic. Structural and resting functional MRI and clinical evaluations were performed in all participants, and serum sIL-6R levels were measured. We used an automated surface-based method (FreeSurfer) to measure cortical thickness and a seed-based FC analysis to derive the FC map of the medial prefrontal cortex (mPFC), a key region implicated in the fronto-limbic disconnection hypothesis of BD. Brain-wise regression analyses of cortical thickness and FC mapping on IL-6 levels were performed using a general linear model. RESULTS Higher sIL-6R levels were associated with a thinner cortex in the right middle temporal gyrus. Furthermore, higher sIL-6R levels were associated with increased FC between the mPFC and amygdala, pallidum, putamen, and insula and decreased FC between the mPFC and subgenual anterior cingulate cortex and frontal pole. CONCLUSION The results evidence that higher serum inflammatory marker levels are associated with a severer deficit in structural and connectivity abnormalities implicated in BD.
Collapse
Affiliation(s)
- Pei-Chi Tu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan; Institute of Philosophy of Mind and Cognition, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
20
|
Abstract
Although bipolar disorder (BD) is traditionally conceptualised as one diagnostic entity, the heterogeneity of pathophysiological manifestations in BD suggests the need to classify the subtypes of the illness based on neural markers. Specifically, the presence of psychotic symptoms seems to be relevant for the clinical outcome and may have specific neuroanatomical bases. The main objective of the present review was to assess whether the distinction between psychotic BD (PBD) and non-psychotic BD (NPBD) can improve the identification of the neurobiological markers of this complex illness. To this end, we summarised the findings from the magnetic resonance imaging studies that explored the cerebral correlates of psychosis in BD in terms of grey matter volume (GMV). Overall, the results suggest the presence of peculiar GMV differences between PBD and NPBD. Specifically, psychosis in BD seems to be associated with cortical GMV deficits compared with both healthy controls and NPBD, mainly in the frontal region. Conversely, NPBD patients showed GMV deficits in selective regions of the basal ganglia when compared with the other groups. Taken together, this evidence confirms the importance to classify BD based on the psychotic dimension, which may have a specific neurobiological architecture that partially overlaps across multiple psychotic disorders.
Collapse
|