1
|
Colodete DA, Grace AA, Guimarães FS, Gomes FV. Degradation of Perineuronal Nets in the Ventral Hippocampus of Adult Rats Recreates an Adolescent-Like Phenotype of Stress Susceptibility. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100338. [PMID: 39099729 PMCID: PMC11295568 DOI: 10.1016/j.bpsgos.2024.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 08/06/2024] Open
Abstract
Background Psychiatric disorders often emerge during late adolescence/early adulthood, a period with increased susceptibility to socioenvironmental factors that coincides with incomplete parvalbumin interneuron (PVI) development. Stress during this period causes functional loss of PVIs in the ventral hippocampus (vHip), which has been associated with dopamine system overdrive. This vulnerability persists until the appearance of perineuronal nets (PNNs) around PVIs. We assessed the long-lasting effects of adolescent or adult stress on behavior, ventral tegmental area dopamine neuron activity, and the number of PVIs and their associated PNNs in the vHip. Additionally, we tested whether PNN removal in the vHip of adult rats, proposed to reset PVIs to a juvenile-like state, would recreate an adolescent-like phenotype of stress susceptibility. Methods Male rats underwent a 10-day stress protocol during adolescence or adulthood. Three to 4 weeks poststress, we evaluated behaviors related to anxiety, sociability, and cognition, ventral tegmental area dopamine neuron activity, and the number of PV+ and PNN+ cells in the vHip. Furthermore, adult animals received intra-vHip infusion of ChABC (chondroitinase ABC) to degrade PNNs before undergoing stress. Results Unlike adult stress, adolescent stress induced anxiety responses, reduced sociability, cognitive deficits, ventral tegmental area dopamine system overdrive, and decreased PV+ and PNN+ cells in the vHip. However, intra-vHip ChABC infusion caused the adult stress to produce changes similar to the ones observed after adolescent stress. Conclusions Our findings underscore adolescence as a period of heightened vulnerability to the long-lasting impact of stress and highlight the protective role of PNNs against stress-induced damage in PVIs.
Collapse
Affiliation(s)
- Débora A.E. Colodete
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Francisco S. Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Felipe V. Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Santos-Silva T, Colodete DAE, Lisboa JRF, Silva Freitas Í, Lopes CFB, Hadera V, Lima TSA, Souza AJ, Gomes FV. Perineuronal nets as regulators of parvalbumin interneuron function: Factors implicated in their formation and degradation. Basic Clin Pharmacol Toxicol 2024; 134:614-628. [PMID: 38426366 DOI: 10.1111/bcpt.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
The brain extracellular matrix (ECM) has garnered increasing attention as a fundamental component of brain function in a predominantly "neuron-centric" paradigm. Particularly, the perineuronal nets (PNNs), a specialized net-like structure formed by ECM aggregates, play significant roles in brain development and physiology. PNNs enwrap synaptic junctions in various brain regions, precisely balancing new synaptic formation and long-term stabilization, and are highly dynamic entities that change in response to environmental stimuli, especially during the neurodevelopmental period. They are found mainly surrounding parvalbumin (PV)-expressing GABAergic interneurons, being proposed to promote PV interneuron maturation and protect them against oxidative stress and neurotoxic agents. This structural and functional proximity underscores the crucial role of PNNs in modulating PV interneuron function, which is critical for the excitatory/inhibitory balance and, consequently, higher-level behaviours. This review delves into the molecular underpinnings governing PNNs formation and degradation, elucidating their functional interactions with PV interneurons. In the broader physiological context and brain-related disorders, we also explore their intricate relationship with other molecules, such as reactive oxygen species and metalloproteinases, as well as glial cells. Additionally, we discuss potential therapeutic strategies for modulating PNNs in brain disorders.
Collapse
Affiliation(s)
- Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Debora A E Colodete
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ícaro Silva Freitas
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Caio Fábio Baeta Lopes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Victor Hadera
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thaís Santos Almeida Lima
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Adriana Jesus Souza
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Costa TJ, Barros PR, Duarte DA, Silva-Neto JA, Hott SC, Santos-Silva T, Costa-Neto CM, Gomes FV, Akamine EH, McCarthy CG, Jimenez-Altayó F, Dantas AP, Tostes RC. Carotid dysfunction in senescent female mice is mediated by increased α 1A-adrenoceptor activity and COX-derived vasoconstrictor prostanoids. Am J Physiol Heart Circ Physiol 2023; 324:H417-H429. [PMID: 36705993 DOI: 10.1152/ajpheart.00495.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
α-Adrenergic receptors are crucial regulators of vascular hemodynamics and essential pharmacological targets for cardiovascular diseases. With aging, there is an increase in sympathetic activation, which could contribute to the progression of aging-associated cardiovascular dysfunction, including stroke. Nevertheless, there is little information directly associating adrenergic receptor dysfunction in the blood vessels of aged females. This study determined the role of a-adrenergic receptors in carotid dysfunction of senescent female mice (accelerated-senescence prone, SAMP8), compared with a nonsenescent (accelerated-senescence prone, SAMR1). Vasoconstriction to phenylephrine (Phe) was markedly increased in common carotid artery of SAMP8 [area under the curve (AUC), 527 ± 53] compared with SAMR1 (AUC, 334 ± 30, P = 0.006). There were no changes in vascular responses to the vasoconstrictor agent U46619 or the vasodilators acetylcholine (ACh) and sodium nitroprusside (NPS). Hyperactivity to Phe in female SAMP8 was reduced by cyclooxygenase-1 and cyclooxygenase-2 inhibition and associated with augmented ratio of TXA2/PGI2 release (SAMR1, 1.1 ± 0.1 vs. SAMP8, 2.1 ± 0.3, P = 0.007). However, no changes in cyclooxygenase expression were seen in SAMP8 carotids. Selective α1A-receptor antagonism markedly reduced maximal contraction, whereas α1D antagonism induced a minor shift in Phe contraction in SAMP8 carotids. Ligand binding analysis revealed a threefold increase of α-adrenergic receptor density in smooth muscle cells (VSMCs) of SAMP8 vs. SAMR1. Phe rapidly increased intracellular calcium (Cai2+) in VSMCs via the α1A-receptor, with a higher peak in VSMCs from SAMP8. In conclusion, senescence intensifies vasoconstriction mediated by α1A-adrenergic signaling in the carotid of female mice by mechanisms involving increased Cai2+ and release of cyclooxygenase-derived prostanoids.NEW & NOTEWORTHY The present study provides evidence that senescence induces hyperreactivity of α1-adrenoceptor-mediated contraction of the common carotid. Impairment of α1-adrenoceptor responses is linked to increased Ca2+ influx and release of COX-derived vasoconstrictor prostanoids, contributing to carotid dysfunction in the murine model of female senescence (SAMP8). Increased reactivity of the common carotid artery during senescence may lead to morphological and functional changes in arteries of the cerebral microcirculation and contribute to cognitive decline in females. Because the elderly population is growing, elucidating the mechanisms of aging- and sex-associated vascular dysfunction is critical to better direct pharmacological and lifestyle interventions to prevent cardiovascular risk in both sexes.
Collapse
Affiliation(s)
- Tiago J Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Cell Biology and Anatomy, Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, United States
| | - Paula R Barros
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Diego A Duarte
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Biochemistry and Immunology, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Júlio A Silva-Neto
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sara Cristina Hott
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thamyris Santos-Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eliana H Akamine
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Cameron G McCarthy
- Department of Cell Biology and Anatomy, Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, United States
| | - Francesc Jimenez-Altayó
- Department of Pharmacology, Therapeutic, and Toxicology, School of Medicine, Neuroscience Institute, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ana Paula Dantas
- Laboratory of Experimental Cardiology, Institut d'Investigacions Biomediques August Pi i Sunyer, Hospital Clinic Cardiovascular Institute, Barcelona, Spain
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
4
|
Zhu X, Grace AA. Sex- and exposure age-dependent effects of adolescent stress on ventral tegmental area dopamine system and its afferent regulators. Mol Psychiatry 2023; 28:611-624. [PMID: 36224257 PMCID: PMC9918682 DOI: 10.1038/s41380-022-01820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Adolescent stress is a risk factor for schizophrenia. Emerging evidence suggests that age-dependent sensitive windows for childhood trauma are associated more strongly with adult psychosis, but the neurobiological basis and potential sex differences are unknown.Using in vivo electrophysiology and immunohistology in rats, we systematically compared the effects of two age-defined adolescent stress paradigms, prepubertal (postnatal day [PD] 21-30; PreP-S) and postpubertal (PD41-50; PostP-S) foot-shock and restraint combined stress, on ventral tegmental area (VTA) dopaminergic activity, pyramidal neuron activity in the ventral hippocampus (vHipp) and the basolateral amygdala (BLA), corticoamygdalar functional inhibitory control, and vHipp and BLA parvalbumin interneuron (PVI) impairments. These endpoints were selected based on their well-documented roles in the pathophysiology of psychosis.Overall, we found distinct sex- and exposure age-dependent stress vulnerability. Specifically, while males were selectively vulnerable to PreP-S-induced adult VTA dopamine neuron and vHipp hyperactivities, females were selectively vulnerable to PostP-S. These male selective PreP-S effects were correlated with stress-induced aberrant persistent BLA hyperactivity, dysfunctional prefrontal inhibitory control of BLA neurons, and vHipp/BLA PVI impairments. In contrast, female PostP-S only produced vHipp PVI impairments in adults, with the BLA structure and functions largely unaffected.Our results indicated distinct adolescent-sensitive periods during which stress can sex-dependently confer maximal risks to corticolimbic systems to drive dopamine hyperactivity, which provide critical insights into the neurobiological basis for sex-biased stress-related psychopathologies emphasizing but not limited to schizophrenia. Furthermore, our work also provides a framework for future translational research on age-sensitive targeted interventions.
Collapse
Affiliation(s)
- Xiyu Zhu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Schnider M, Jenni R, Ramain J, Camporesi S, Golay P, Alameda L, Conus P, Do KQ, Steullet P. Time of exposure to social defeat stress during childhood and adolescence and redox dysregulation on long-lasting behavioral changes, a translational study. Transl Psychiatry 2022; 12:413. [PMID: 36163247 PMCID: PMC9512907 DOI: 10.1038/s41398-022-02183-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Traumatic events during childhood/early adolescence can cause long-lasting physiological and behavioral changes with increasing risk for psychiatric conditions including psychosis. Genetic factors and trauma (and their type, degree of repetition, time of occurrence) are believed to influence how traumatic experiences affect an individual. Here, we compared long-lasting behavioral effects of repeated social defeat stress (SD) applied during either peripuberty or late adolescence in adult male WT and Gclm-KO mice, a model of redox dysregulation relevant to schizophrenia. As SD disrupts redox homeostasis and causes oxidative stress, we hypothesized that KO mice would be particularly vulnerable to such stress. We first found that peripubertal and late adolescent SD led to different behavioral outcomes. Peripubertal SD induced anxiety-like behavior in anxiogenic environments, potentiated startle reflex, and increased sensitivity to the NMDA-receptor antagonist, MK-801. In contrast, late adolescent SD led to increased exploration in novel environments. Second, the long-lasting impact of peripubertal but not late adolescent SD differed in KO and WT mice. Peripubertal SD increased anxiety-like behavior in anxiogenic environments and MK-801-sensitivity mostly in KO mice, while it increased startle reflex in WT mice. These suggest that a redox dysregulation during peripuberty interacts with SD to remodel the trajectory of brain maturation, but does not play a significant role during later SD. As peripubertal SD induced persisting anxiety- and fear-related behaviors in male mice, we then investigated anxiety in a cohort of 89 early psychosis male patients for whom we had information about past abuse and clinical assessment during the first year of psychosis. We found that a first exposure to physical/sexual abuse (analogous to SD) before age 12, but not after, was associated with higher anxiety at 6-12 months after psychosis onset. This supports that childhood/peripuberty is a vulnerable period during which physical/sexual abuse in males has wide and long-lasting consequences.
Collapse
Affiliation(s)
- Mirko Schnider
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Julie Ramain
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Sara Camporesi
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Philippe Golay
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Luis Alameda
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland.
| |
Collapse
|
6
|
Uliana DL, Zhu X, Gomes FV, Grace AA. Using animal models for the studies of schizophrenia and depression: The value of translational models for treatment and prevention. Front Behav Neurosci 2022; 16:935320. [PMID: 36090659 PMCID: PMC9449416 DOI: 10.3389/fnbeh.2022.935320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Animal models of psychiatric disorders have been highly effective in advancing the field, identifying circuits related to pathophysiology, and identifying novel therapeutic targets. In this review, we show how animal models, particularly those based on development, have provided essential information regarding circuits involved in disorders, disease progression, and novel targets for intervention and potentially prevention. Nonetheless, in recent years there has been a pushback, largely driven by the US National Institute of Mental Health (NIMH), to shift away from animal models and instead focus on circuits in normal subjects. This has been driven primarily from a lack of discovery of new effective therapeutic targets, and the failure of targets based on preclinical research to show efficacy. We discuss why animal models of complex disorders, when strongly cross-validated by clinical research, are essential to understand disease etiology as well as pathophysiology, and direct new drug discovery. Issues related to shortcomings in clinical trial design that confound translation from animal models as well as the failure to take patient pharmacological history into account are proposed to be a source of the failure of what are likely effective compounds from showing promise in clinical trials.
Collapse
Affiliation(s)
- Daniela L. Uliana
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiyu Zhu
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Felipe V. Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anthony A. Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Uliana DL, Gomes FV, Grace AA. Nucleus reuniens inactivation reverses stress-induced hypodopaminergic state and altered hippocampal-accumbens synaptic plasticity. Neuropsychopharmacology 2022; 47:1513-1522. [PMID: 35488085 PMCID: PMC9205859 DOI: 10.1038/s41386-022-01333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/11/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
The nucleus reuniens of the thalamus (RE) is a pivotal area responsible for the connectivity of the prefrontal-hippocampus pathway that regulates cognitive, executive, and fear learning processes. Recently, it was proposed that the RE participates in the pathophysiological states related to affective dysregulation. We investigated the role of RE in motivational behavioral and electrophysiological dysregulation induced by stress. Adult Sprague-Dawley rats were exposed to a combination of stressors (restraint stress+footshock) for 10 days and tested one to two weeks later in the forced swim test (FST), ventral tegmental area (VTA)dopamine (DA) neuron electrophysiological activity, and hippocampal-nucleus accumbens plasticity. The RE was inactivated by injecting TTX prior to the procedures. The stress exposure increased the immobility in the FST and decreased VTA DA neuron population activity. Whereas an early long-term potentiation (e-LTP) in the ventral hippocampus-nucleus accumbens pathway was found after fimbria high-frequency stimulation in naïve animals, stressed animals showed an early long-term depression (e-LTD). Inactivation of the RE reversed the stress-induced changes in the FST and restored dopaminergic activity. RE inactivation partially recovered the stress-induced abnormal hippocampal-accumbens plasticity observed in controls. Our findings support the role of the RE in regulating affective dysregulation and blunted VTA DA system function induced by stress. Also, it points to the hippocampal-accumbens pathway as a potential neural circuit through which RE could modulate activity. Therefore, RE may represent a key brain region involved in the neurobiology of amotivational states and may provide insights into circuit dysfunction and markers of the maladaptive stress response.
Collapse
Affiliation(s)
- Daniela L. Uliana
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| | - Felipe V. Gomes
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA ,grid.11899.380000 0004 1937 0722Present Address: Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Anthony A. Grace
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
8
|
Dai W, Huang S, Luo Y, Cheng X, Xia P, Yang M, Zhao P, Zhang Y, Lin WJ, Ye X. Sex-Specific Transcriptomic Signatures in Brain Regions Critical for Neuropathic Pain-Induced Depression. Front Mol Neurosci 2022; 15:886916. [PMID: 35663269 PMCID: PMC9159910 DOI: 10.3389/fnmol.2022.886916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is a chronic debilitating condition with a high comorbidity with depression. Clinical reports and animal studies have suggested that both the medial prefrontal cortex (mPFC) and the anterior cingulate cortex (ACC) are critically implicated in regulating the affective symptoms of neuropathic pain. Neuropathic pain induces differential long-term structural, functional, and biochemical changes in both regions, which are thought to be regulated by multiple waves of gene transcription. However, the differences in the transcriptomic profiles changed by neuropathic pain between these regions are largely unknown. Furthermore, women are more susceptible to pain and depression than men. The molecular mechanisms underlying this sexual dimorphism remain to be explored. Here, we performed RNA sequencing and analyzed the transcriptomic profiles of the mPFC and ACC of female and male mice at 2 weeks after spared nerve injury (SNI), an early time point when the mice began to show mild depressive symptoms. Our results showed that the SNI-induced transcriptomic changes in female and male mice were largely distinct. Interestingly, the female mice exhibited more robust transcriptomic changes in the ACC than male, whereas the opposite pattern occurred in the mPFC. Cell type enrichment analyses revealed that the differentially expressed genes involved genes enriched in neurons, various types of glia and endothelial cells. We further performed gene set enrichment analysis (GSEA), which revealed significant de-enrichment of myelin sheath development in both female and male mPFC after SNI. In the female ACC, gene sets for synaptic organization were enriched, and gene sets for extracellular matrix were de-enriched after SNI, while such signatures were absent in male ACC. Collectively, these findings revealed region-specific and sexual dimorphism at the transcriptional levels induced by neuropathic pain, and provided novel therapeutic targets for chronic pain and its associated affective disorders.
Collapse
Affiliation(s)
- Weiping Dai
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuying Huang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan Luo
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pei Xia
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengqian Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Panwu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingying Zhang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei-Jye Lin
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaojing Ye,
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Wei-Jye Lin,
| |
Collapse
|
9
|
Sicher AR, Duerr A, Starnes WD, Crowley NA. Adolescent Alcohol and Stress Exposure Rewires Key Cortical Neurocircuitry. Front Neurosci 2022; 16:896880. [PMID: 35655755 PMCID: PMC9152326 DOI: 10.3389/fnins.2022.896880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Human adolescence is a period of development characterized by wide ranging emotions and behavioral risk taking, including binge drinking (Konrad et al., 2013). These behavioral manifestations of adolescence are complemented by growth in the neuroarchitecture of the brain, including synaptic pruning (Spear, 2013) and increases in overall white matter volume (Perrin et al., 2008). During this period of profound physiological maturation, the adolescent brain has a unique vulnerability to negative perturbations. Alcohol consumption and stress exposure, both of which are heightened during adolescence, can individually and synergistically alter these neurodevelopmental trajectories in positive and negative ways (conferring both resiliency and susceptibility) and influence already changing neurotransmitter systems and circuits. Importantly, the literature is rapidly changing and evolving in our understanding of basal sex differences in the brain, as well as the interaction between biological sex and life experiences. The animal literature provides the distinctive opportunity to explore sex-specific stress- and alcohol- induced changes in neurocircuits on a relatively rapid time scale. In addition, animal models allow for the investigation of individual neurons and signaling molecules otherwise inaccessible in the human brain. Here, we review the human and rodent literature with a focus on cortical development, neurotransmitters, peptides, and steroids, to characterize the field's current understanding of the interaction between adolescence, biological sex, and exposure to stress and alcohol.
Collapse
Affiliation(s)
- Avery R. Sicher
- The Pennsylvania State University, University Park, PA, United States
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Arielle Duerr
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - William D. Starnes
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Nicole A. Crowley
- The Pennsylvania State University, University Park, PA, United States
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
10
|
Davies C, Appiah-Kusi E, Wilson R, Blest-Hopley G, Bossong MG, Valmaggia L, Brammer M, Perez J, Allen P, Murray RM, McGuire P, Bhattacharyya S. Altered relationship between cortisol response to social stress and mediotemporal function during fear processing in people at clinical high risk for psychosis: a preliminary report. Eur Arch Psychiatry Clin Neurosci 2022; 272:461-475. [PMID: 34480630 PMCID: PMC8938358 DOI: 10.1007/s00406-021-01318-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 08/11/2021] [Indexed: 12/11/2022]
Abstract
Evidence suggests that people at Clinical High Risk for Psychosis (CHR) have a blunted cortisol response to stress and altered mediotemporal activation during fear processing, which may be neuroendocrine-neuronal signatures of maladaptive threat responses. However, whether these facets are associated with each other and how this relationship is affected by cannabidiol treatment is unknown. We examined the relationship between cortisol response to social stress and mediotemporal function during fear processing in healthy people and in CHR patients. In exploratory analyses, we investigated whether treatment with cannabidiol in CHR individuals could normalise any putative alterations in cortisol-mediotemporal coupling. 33 CHR patients were randomised to 600 mg cannabidiol or placebo treatment. Healthy controls (n = 19) did not receive any drug. Mediotemporal function was assessed using a fearful face-processing functional magnetic resonance imaging paradigm. Serum cortisol and anxiety were measured immediately following the Trier Social Stress Test. The relationship between cortisol and mediotemporal blood-oxygen-level-dependent haemodynamic response was investigated using linear regression. In healthy controls, there was a significant negative relationship between cortisol and parahippocampal activation (p = 0.023), such that the higher the cortisol levels induced by social stress, the lower the parahippocampal activation (greater deactivation) during fear processing. This relationship differed significantly between the control and placebo groups (p = 0.033), but not between the placebo and cannabidiol groups (p = 0.67). Our preliminary findings suggest that the parahippocampal response to fear processing may be associated with the neuroendocrine (cortisol) response to experimentally induced social stress, and that this relationship may be altered in patients at clinical high risk for psychosis.
Collapse
Affiliation(s)
- Cathy Davies
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Elizabeth Appiah-Kusi
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Robin Wilson
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Grace Blest-Hopley
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Matthijs G. Bossong
- grid.5477.10000000120346234Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Lucia Valmaggia
- grid.13097.3c0000 0001 2322 6764Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.37640.360000 0000 9439 0839National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - Michael Brammer
- grid.13097.3c0000 0001 2322 6764Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Jesus Perez
- grid.450563.10000 0004 0412 9303CAMEO Early Intervention Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Paul Allen
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK ,grid.35349.380000 0001 0468 7274Department of Psychology, University of Roehampton, London, UK ,grid.416167.30000 0004 0442 1996Icahn School of Medicine, Mount Sinai Hospital, New York, USA
| | - Robin M. Murray
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Philip McGuire
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK ,grid.37640.360000 0000 9439 0839National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK ,grid.37640.360000 0000 9439 0839Outreach and Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
11
|
Mooney-Leber SM, Caruso MJ, Gould TJ, Cavigelli SA, Kamens HM. The impact of adolescent stress on nicotine use and affective disorders in rodent models. Eur J Neurosci 2021; 55:2196-2215. [PMID: 34402112 PMCID: PMC9730548 DOI: 10.1111/ejn.15421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
Recent findings indicate that stress exposure during adolescence contributes to the development of both nicotine use and affective disorders, suggesting a potential shared biological pathway. One key system that may mediate the association between adolescent stress and nicotine or affective outcomes is the hypothalamic-pituitary-adrenal (HPA) axis. Here we reviewed evidence regarding the effects of adolescent stress on nicotine responses and affective phenotypes and the role of the HPA-axis in these relationships. Literature indicates that stress, possibly via HPA-axis dysfunction, is a risk factor for both nicotine use and affective disorders. In rodent models, adolescent stress modulates behavioural responses to nicotine and increases the likelihood of affective disorders. The exact role that the HPA-axis plays in altering nicotine sensitivity and affective disorder development after adolescent stress remains unclear. However, it appears likely that adolescent stress-induced nicotine use and affective disorders are precipitated by repetitive activation of a hyperactive HPA-axis. Together, these preclinical studies indicate that adolescent stress is a risk factor for nicotine use and anxiety/depression phenotypes. The findings summarized here suggest that the HPA-axis mediates this relationship. Future studies that pharmacologically manipulate the HPA-axis during and after adolescent stress are critical to elucidate the exact role that the HPA-axis plays in the development of nicotine use and affective disorders following adolescent stress.
Collapse
Affiliation(s)
- Sean M Mooney-Leber
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA.,Department of Psychology, University of Wisconsin - Stevens Point, Stevens Point, WI, USA
| | - Michael J Caruso
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Sonia A Cavigelli
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA.,Center for Brain, Behavior, and Cognition, The Pennsylvania State University, University Park, PA, USA
| | - Helen M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA.,Center for Brain, Behavior, and Cognition, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
12
|
Gomes FV, Grace AA. Beyond Dopamine Receptor Antagonism: New Targets for Schizophrenia Treatment and Prevention. Int J Mol Sci 2021; 22:4467. [PMID: 33922888 PMCID: PMC8123139 DOI: 10.3390/ijms22094467] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Treatment of schizophrenia (SCZ) historically relies on the use of antipsychotic drugs to treat psychosis, with all of the currently available antipsychotics acting through the antagonism of dopamine D2 receptors. Although antipsychotics reduce psychotic symptoms in many patients, they induce numerous undesirable effects and are not effective against negative and cognitive symptoms. These highlight the need to develop new drugs to treat SCZ. An advanced understanding of the circuitry of SCZ has pointed to pathological origins in the excitation/inhibition balance in regions such as the hippocampus, and restoring function in this region, particularly as a means to compensate for parvalbumin (PV) interneuron loss and resultant hippocampal hyperactivity, may be a more efficacious approach to relieve a broad range of SCZ symptoms. Other targets, such as cholinergic receptors and the trace amine-associated receptor 1 (TAAR1), have also shown some promise for the treatment of SCZ. Importantly, assessing efficacy of novel compounds must take into consideration treatment history of the patient, as preclinical studies suggest prior antipsychotic treatment may interfere with the efficacy of these novel agents. However, while novel therapeutic targets may be more effective in treating SCZ, a more effective approach would be to prevent the transition to SCZ in susceptible individuals. A focus on stress, which has been shown to be a predisposing factor in risk for SCZ, is a possible avenue that has shown promise in preclinical studies. Therefore, therapeutic approaches based on our current understanding of the circuitry of SCZ and its etiology are likely to enable development of more effective therapeutic interventions for this complex disorder.
Collapse
Affiliation(s)
- Felipe V. Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 01000-000, Brazil;
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
13
|
Uliana DL, Gomes FV, Grace AA. Stress impacts corticoamygdalar connectivity in an age-dependent manner. Neuropsychopharmacology 2021; 46:731-740. [PMID: 33096542 PMCID: PMC8027626 DOI: 10.1038/s41386-020-00886-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/13/2023]
Abstract
Stress is a socio-environmental risk factor for the development of psychiatric disorders, with the age of exposure potentially determining the outcome. Several brain regions mediate stress responsivity, with a prominent role of the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) and their reciprocal inhibitory connectivity. Here we investigated the impact of stress exposure during adolescence and adulthood on the activity of putative pyramidal neurons in the BLA and corticoamygdalar plasticity using in vivo electrophysiology. 155 male Sprague-Dawley rats were subjected to a combination of footshock/restraint stress in either adolescence (postnatal day 31-40) or adulthood (postnatal day 65-74). Both adolescent and adult stress increased the number of spontaneously active putative BLA pyramidal neurons 1-2 weeks, but not 5-6 weeks post stress. High-frequency stimulation (HFS) of BLA and mPFC depressed evoked spike probability in the mPFC and BLA, respectively, in adult but not adolescent rats. In contrast, an adult-like BLA HFS-induced decrease in spike probability of mPFC neurons was found 1-2 weeks post-adolescent stress. Changes in mPFC and BLA neuron discharge were found 1-2 weeks post-adult stress after BLA and mPFC HFS, respectively. All these changes were transient since they were not found 5-6 weeks post adolescent or adult stress. Our findings indicate that stress during adolescence may accelerate the development of BLA-PFC plasticity, probably due to BLA hyperactivity, which can also disrupt the reciprocal communication of BLA-mPFC after adult stress. Therefore, precocious BLA-mPFC connectivity alterations may represent an early adaptive stress response that ultimately may contribute to vulnerability to adult psychiatric disorders.
Collapse
Affiliation(s)
- Daniela L. Uliana
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| | - Felipe V. Gomes
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA ,grid.11899.380000 0004 1937 0722Present Address: Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Anthony A. Grace
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
14
|
Drzewiecki CM, Willing J, Cortes LR, Juraska JM. Adolescent stress during, but not after, pubertal onset impairs indices of prepulse inhibition in adult rats. Dev Psychobiol 2021; 63:837-850. [PMID: 33629385 DOI: 10.1002/dev.22111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/01/2023]
Abstract
Exposure to stress during adolescence is a risk factor for developing several psychiatric disorders, many of which involve prefrontal cortex (PFC) dysfunction. The human PFC and analogous rodent medial prefrontal cortex (mPFC) continue to mature functionally and anatomically during adolescence, and some of these maturational events coincide with pubertal onset. As developing brain regions are more susceptible to the negative effects of stress, this may make puberty especially vulnerable. To test this, we exposed male and female rats to isolation and restraint stress during the onset of puberty or during the post-pubertal period of adolescence. In young adulthood, both stressed groups and an unstressed control group underwent testing on a battery of tasks to assess emotional and cognitive behaviors, and the volume of the mPFC was quantified postmortem. Factor analysis revealed only subjects stressed peri-pubertally showed a long-term deficiency compared to controls in prepulse inhibition. Additionally, both sexes showed volumetric mPFC decreases following adolescent stress, and these losses were most pronounced in females. Our findings suggest that pubertal onset may be a vulnerable window wherein adolescents are most susceptible to the negative consequences of stress exposure. Furthermore, it highlights the importance of accounting for pubertal status when studying adolescents.
Collapse
Affiliation(s)
- Carly M Drzewiecki
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jari Willing
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.,Department of Psychology, Bowling Green State University, 822 E Merry Ave, Bowling Green, OH, 43403, USA
| | - Laura R Cortes
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.,Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Janice M Juraska
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL, USA.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
15
|
Zhu X, Grace AA. Prepubertal Environmental Enrichment Prevents Dopamine Dysregulation and Hippocampal Hyperactivity in MAM Schizophrenia Model Rats. Biol Psychiatry 2021; 89:298-307. [PMID: 33357630 PMCID: PMC7927755 DOI: 10.1016/j.biopsych.2020.09.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Schizophrenia (SCZ) is a neurodevelopmental disorder with a progressive, prolonged course. Early prevention for SCZ is promising but overall lacks support from preclinical evidence. Previous studies have tested environmental enrichment (EE) in certain models of SCZ and discovered a broadly beneficial effect in preventing behavioral abnormalities relevant, yet not specific, to the disorder. Nonetheless, whether EE can prevent dopamine (DA) dysregulation, a hallmark of psychosis and SCZ, had not been tested. METHODS Using the MAM (methylazoxymethanol acetate) rat model of schizophrenia and saline-treated control animals, we investigated the long-term electrophysiological effects of prepubertal (postnatal day 21-40) EE on DA neurons, pyramidal neurons in the ventral hippocampus, and projection neurons in the basolateral amygdala. Anxiety-related behaviors in the elevated plus maze and locomotor responses to amphetamine were also analyzed. RESULTS Prepubertal EE prevented the increased population activity of DA neurons and the associated increase in locomotor response to amphetamine. Prepubertal EE also prevented hyperactivity in the ventral hippocampus but did not prevent hyperactivity in the basolateral amygdala. Anxiety-like behaviors in MAM rats were not ameliorated by prepubertal exposure to EE. CONCLUSIONS Twenty-day prepubertal EE is sufficient to prevent DA hyperresponsivity in the MAM model, measured by electrophysiological recordings and locomotor response to amphetamine. This effect is potentially mediated by normalizing excessive firing in the ventral hippocampus without affecting anxiety-like behaviors and basolateral amygdala firing. This study identified EE as a useful preventative approach that may protect against the pathophysiological development of SCZ.
Collapse
Affiliation(s)
- Xiyu Zhu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Sonnenschein SF, Grace AA. Emerging therapeutic targets for schizophrenia: a framework for novel treatment strategies for psychosis. Expert Opin Ther Targets 2021; 25:15-26. [PMID: 33170748 PMCID: PMC7855878 DOI: 10.1080/14728222.2021.1849144] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023]
Abstract
Introduction: Antipsychotic drugs are central to the treatment of schizophrenia, but their limitations necessitate improved treatment strategies. Multiple lines of research have implicated glutamatergic dysfunction in the hippocampus as an early source of pathophysiology in schizophrenia. Novel compounds have been designed to treat glutamatergic dysfunction, but they have produced inconsistent results in clinical trials. Areas covered: This review discusses how the hippocampus is thought to drive psychotic symptoms through its influence on the dopamine system. It offers the reader an evaluation of proposed treatment strategies including direct modulation of GABA or glutamate neurotransmission or reducing the deleterious impact of stress on circuit development. Finally, we offer a perspective on aspects of future research that will advance our knowledge and may create new therapeutic opportunities. PubMed was searched for relevant literature between 2010 and 2020 and related studies. Expert opinion: Targeting aberrant excitatory-inhibitory neurotransmission in the hippocampus and its related circuits has the potential to alleviate symptoms and reduce the risk of transition to psychosis if implemented as an early intervention. Longitudinal multimodal brain imaging combined with mechanistic theories generated from animal models can be used to better understand the progression of hippocampal-dopamine circuit dysfunction and heterogeneity in treatment response.
Collapse
Affiliation(s)
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Sanson A, Riva MA. Anti-Stress Properties of Atypical Antipsychotics. Pharmaceuticals (Basel) 2020; 13:E322. [PMID: 33092112 PMCID: PMC7589119 DOI: 10.3390/ph13100322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Stress exposure represents a major environmental risk factor for schizophrenia and other psychiatric disorders, as it plays a pivotal role in the etiology as well as in the manifestation of disease symptomatology. It may be inferred that pharmacological treatments must be able to modulate the behavioral, functional, and molecular alterations produced by stress exposure to achieve significant clinical outcomes. This review aims at examining existing clinical and preclinical evidence that supports the ability of atypical antipsychotic drugs (AAPDs) to modulate stress-related alterations. Indeed, while the pharmacodynamic differences between AAPDs have been extensively characterized, less is known on their ability to regulate downstream mechanisms that are critical for functional recovery and patient stabilization. We will discuss stress-related mechanisms, spanning from neuroendocrine function to inflammation and neuronal plasticity, which are relevant for the manifestation of schizophrenic symptomatology, and we will discuss if and how AAPDs may interfere with such mechanisms. Considering the impact of stress in everyday life, we believe that a better understanding of the potential effects of AAPDs on stress-related mechanisms may provide novel and important insights for improving therapeutic strategies aimed at promoting coping mechanisms and enhancing the quality of life of patients affected by psychiatric disorders.
Collapse
Affiliation(s)
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Giuseppe Balzaretti 9, 20133 Milan, Italy;
| |
Collapse
|
18
|
Sonnenschein SF, Gomes FV, Grace AA. Dysregulation of Midbrain Dopamine System and the Pathophysiology of Schizophrenia. Front Psychiatry 2020; 11:613. [PMID: 32719622 PMCID: PMC7350524 DOI: 10.3389/fpsyt.2020.00613] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022] Open
Abstract
Dysregulation of the dopamine system is central to many models of the pathophysiology of psychosis in schizophrenia. However, emerging evidence suggests that this dysregulation is driven by the disruption of upstream circuits that provide afferent control of midbrain dopamine neurons. Furthermore, stress can profoundly disrupt this regulatory circuit, particularly when it is presented at critical vulnerable prepubertal time points. This review will discuss the dopamine system and the circuits that regulate it, focusing on the hippocampus, medial prefrontal cortex, thalamic nuclei, and medial septum, and the impact of stress. A greater understanding of the regulation of the dopamine system and its disruption in schizophrenia may provide a more complete neurobiological framework to interpret clinical findings and develop novel treatments.
Collapse
Affiliation(s)
- Susan F. Sonnenschein
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Felipe V. Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Uliana DL, Gomes FV, Grace AA. Prelimbic medial prefrontal cortex disruption during adolescence increases susceptibility to helpless behavior in adult rats. Eur Neuropsychopharmacol 2020; 35:111-125. [PMID: 32402649 PMCID: PMC7269819 DOI: 10.1016/j.euroneuro.2020.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/24/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
Major depressive disorder (MDD) is a disabling mental disorder worldwide. Several animal models have been used to study the neurobiology of this disorder, including the learned helplessness (LH) paradigm, in which susceptible animals show helpless behavior indicated by fails to escape a controllable footshock. This behavior has been associated with a downregulation of ventral tegmental area (VTA) dopamine (DA) system activity. The prelimbic portion of the prefrontal cortex (plPFC) plays an important role in the modulation of helpless behavior, but so far there is no evidence indicating that its developmental disruption alters susceptibility to helpless behavior. We investigated the impact of plPFC lesion performed at adolescence (postnatal day 31-33) or adulthood (postnatal day 70-72) on anxiety responses (elevated plus-maze), susceptibility to helpless behavior, and the VTA DA system activity in adult Sprague-Dawley rats. Whereas adult plPFC lesions induced neither anxiety responses nor increased susceptibility to helpless behavior (plPFC lesion: 33.3% of helplessness; controls: 30.8% of helplessness rats), adolescent plPFC lesions induced anxiety responses and increased the proportion of rats showing helpless at adulthood (plPFC lesion: 92.3% helplessness; controls: 42.1% helplessness rats). Moreover, only helpless rats in the groups showed a decreased VTA DA system population activity that was confined to the medial portion of the VTA. These findings suggest that the impairment of plPFC activity during adolescence occurs during a critical window for the development of helpless behavior in adult rats, indicating that predisposition or early life adverse events that impair plPFC activity may enhance susceptibility to depression in adulthood.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA.
| | - Felipe V Gomes
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| |
Collapse
|
20
|
Chase HW, Grace AA, Fox PT, Phillips ML, Eickhoff SB. Functional differentiation in the human ventromedial frontal lobe: A data-driven parcellation. Hum Brain Mapp 2020; 41:3266-3283. [PMID: 32314470 PMCID: PMC7375078 DOI: 10.1002/hbm.25014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/06/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Ventromedial regions of the frontal lobe (vmFL) are thought to play a key role in decision-making and emotional regulation. However, aspects of this area's functional organization, including the presence of a multiple subregions, their functional and anatomical connectivity, and the cross-species homologies of these subregions with those of other species, remain poorly understood. To address this uncertainty, we employed a two-stage parcellation of the region to identify six distinct structures within the region on the basis of data-driven classification of functional connectivity patterns obtained using the meta-analytic connectivity modeling (MACM) approach. From anterior to posterior, the derived subregions included two lateralized posterior regions, an intermediate posterior region, a dorsal and ventral central region, and a single anterior region. The regions were characterized further by functional connectivity derived using resting-state fMRI and functional decoding using the Brain Map database. In general, the regions could be differentiated on the basis of different patterns of functional connectivity with canonical "default mode network" regions and/or subcortical regions such as the striatum. Together, the findings suggest the presence of functionally distinct neural structures within vmFL, consistent with data from experimental animals as well prior demonstrations of anatomical differences within the region. Detailed correspondence with the anterior cingulate, medial orbitofrontal cortex, and rostroventral prefrontal cortex, as well as specific animal homologs are discussed. The findings may suggest future directions for resolving potential functional and structural correspondence of subregions within the frontal lobe across behavioral contexts, and across mammalian species.
Collapse
Affiliation(s)
- Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony A Grace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Neuroscience and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Radiology, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Psychiatry, University of Texas Health Science Center, San Antonio, Texas, USA.,Research and Development Service, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
21
|
Perez SM, Lodge DJ. Adolescent stress contributes to aberrant dopamine signaling in a heritable rodent model of susceptibility. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109701. [PMID: 31299274 PMCID: PMC6708463 DOI: 10.1016/j.pnpbp.2019.109701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 11/17/2022]
Abstract
Evidence suggests that both genetic and environmental factors contribute to the development of schizophrenia. Rodent models of the disorder have been developed that model either genetic or environment factors to recapitulate various aspects of the disease; however, the examination of gene by environment interactions requires a model of susceptibility. We have previously demonstrated that a proportion of the F2 generation of MAM-treated rats display a schizophrenia-like phenotype, defined as an increase in ventral tegmental area (VTA) dopamine neuron population activity. Here we use this model to examine the consequence of adolescent stress (AS), a known risk factor for psychiatric disease, on dopamine neuron activity in the VTA. Specifically, F2 MAM rats were exposed to predator odor, a stressor of high ethological relevance, intermittently over 10 days throughout the adolescent period and VTA dopamine neuron activity was evaluated in adulthood. Both saline and MAM F2 rats exposed to AS displayed significant increases in population activity; however, the proportion of F2 MAM rats exhibiting this increase was significantly greater (approximately 70%) compared to their respective controls. Given that we have previously demonstrated that the augmented dopamine neuron activity in rodent models of psychosis is directly attributable to aberrant activity in the ventral hippocampus (vHipp), we examined whether AS altered activity within the vHipp. Indeed, there was a positive correlation between dopamine neuron activity and hippocampal firing rates, such that those rats that displayed increases in population activity also had increases in the firing rates of vHipp putative pyramidal neurons. Taken together, these data further demonstrate a role for AS as a risk factor for psychosis, particularly in those with a heritable predisposition.
Collapse
Affiliation(s)
- Stephanie M Perez
- UT Health San Antonio, Department of Pharmacology, Center for Biomedical Neuroscience, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA.
| | - Daniel J Lodge
- UT Health San Antonio, Department of Pharmacology, Center for Biomedical Neuroscience, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA
| |
Collapse
|
22
|
Gomes FV, Zhu X, Grace AA. Stress during critical periods of development and risk for schizophrenia. Schizophr Res 2019; 213:107-113. [PMID: 30711313 PMCID: PMC6667322 DOI: 10.1016/j.schres.2019.01.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder with genetic predisposition, and stress has long been linked to its etiology. While stress affects all stages of the illness, increasing evidence suggests that stress during critical periods of development may be particularly detrimental, increasing individual's vulnerability to psychosis. To thoroughly understand the potential causative role of stress, our group has been focusing on the prenatal methylazoxymethanol acetate (MAM) rodent model, and discovered that MAM offspring display abnormal stress reactivity and heightened anxiety prepubertally, prior to the manifestation of a hyperdopaminergic state. Furthermore, pharmacologically treating anxiety during prepuberty prevented the emergence of the dopamine dysfunction in adulthood. Interestingly, sufficiently strong stressors applied to normal rats selectively during early development can recapitulate multiple schizophrenia-related phenotypes of MAM rats, whereas the same stress paradigm during adulthood only produced short-term depression-related deficits. Altogether, the evidence is thus converging: developmental disruption (genetic or environmental) might render animals more susceptible to the deleterious effects of stress during critical time windows, during which unregulated stress can lead to the emergence of psychosis later in life. As an important region regulating the midbrain dopamine system, the ventral hippocampus is particularly vulnerable to stress, and the distinct maturational profile of its fast-spiking parvalbumin interneurons may largely underlie such vulnerability. In this review, by discussing emerging evidence spanning clinical and basic science studies, we propose developmental stress vulnerability as a novel link between early predispositions and environmental triggering events in the pathophysiology of schizophrenia. This promising line of research can potentially provide not only insights into the etiology, but also a "roadmap" for disease prevention.
Collapse
Affiliation(s)
| | | | - Anthony A. Grace
- Corresponding author: Dr. Anthony A. Grace - Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA, 15260, USA. Phone: +1 412 624 4609.
| |
Collapse
|
23
|
Schifani C, Hafizi S, Tseng HH, Gerritsen C, Kenk M, Wilson AA, Houle S, Rusjan PM, Mizrahi R. Preliminary data indicating a connection between stress-induced prefrontal dopamine release and hippocampal TSPO expression in the psychosis spectrum. Schizophr Res 2019; 213:80-86. [PMID: 30409695 PMCID: PMC6500775 DOI: 10.1016/j.schres.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
Prolonged stress can cause neuronal loss in the hippocampus resulting in disinhibition of glutamatergic neurons proposed to enhance dopaminergic firing in subcortical regions including striatal areas. Supporting this, imaging studies show increased striatal dopamine release in response to psychosocial stress in healthy individuals with low childhood maternal care, individuals at clinical high risk for psychosis (CHR) and patients with schizophrenia. The prefrontal cortex (PFC) is connected to the hippocampus and a key region to control neurochemical responses to stressful stimuli. We recently reported a disrupted PFC dopamine-stress regulation in schizophrenia, which was intact in CHR. Given the available evidence on the link between psychosocial stress, PFC dopamine release and hippocampal immune activation in psychosis, we explored, for the first time in vivo, whether stress-induced PFC dopamine release is associated with hippocampal TSPO expression (a neuroimmune marker) in the psychosis spectrum. We used an overlapping sample of antipsychotic-naïve subjects with CHR (n = 6) and antipsychotic-free schizophrenia patients (n = 9) from our previously published studies, measuring PFC dopamine release induced by a psychosocial stress task with [11C]FLB457 positron emission tomography (PET) and TSPO expression with [18F]FEPPA PET. We observed that participants on the psychosis spectrum with lower stress-induced dopamine release in PFC had significantly higher TSPO expression in hippocampus (β = -2.39, SE = 0.96, F(1,11) = 6.17, p = 0.030). Additionally, we report a positive association between stress-induced PFC dopamine release, controlled for hippocampal TSPO expression, and Global Assessment of Functioning. This is the first exploration of the relationship between PFC dopamine release and hippocampal TSPO expression in vivo in humans.
Collapse
Affiliation(s)
- Christin Schifani
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada
| | - Sina Hafizi
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada
| | - Huai-Hsuan Tseng
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada
| | - Cory Gerritsen
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada
| | - Miran Kenk
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada
| | - Alan A. Wilson
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada
| | - Pablo M. Rusjan
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada,institute of Medical Science, University of Toronto,
Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Klinger K, Gomes FV, Rincón-Cortés M, Grace AA. Female rats are resistant to the long-lasting neurobehavioral changes induced by adolescent stress exposure. Eur Neuropsychopharmacol 2019; 29:1127-1137. [PMID: 31371105 PMCID: PMC6773464 DOI: 10.1016/j.euroneuro.2019.07.134] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023]
Abstract
Stress during adolescence is a risk factor for neuropsychiatric diseases, including schizophrenia. We recently observed that peripubertal male rats exposed to a combination of daily footshock plus restraint stress exhibited schizophrenia-like changes. However, numerous studies have shown sex differences in neuropsychiatric diseases as well as on the impact of coping with stress. Thus, we decided to evaluate, in adolescent female rats, the impact of different stressors (restraint stress [RS], footshock [FS], or the combination of FS and RS [FS+RS]) on social interaction (3-chamber social approach test/SAT), anxiety responses (elevated plus-maze/EPM), cognitive function (novel object recognition test/NOR), and dopamine (DA) system responsivity by evaluating locomotor response to amphetamine and in vivo extracellular single unit recordings of DA neurons in the ventral tegmental area (VTA) in adulthood. The impact of FS+RS during early adulthood was also investigated. Adolescent stress had no impact on social behavior, anxiety, cognition and locomotor response to amphetamine. In addition, adolescent stress did not induce long-lasting changes in VTA DA system activity. However, a decrease in the firing rate of VTA DA neurons was found 1-2 weeks post-adolescent stress. Similar to adolescent stress, adult stress did not induce long-lasting behavioral deficits and changes in VTA DA system activity, but FS+RS decreased VTA DA neuron population activity 1-2 weeks post-adult stress. Our results are consistent with previous studies showing that female rodents appear to be more resilient to developmental stress-induced persistent changes than males and may contribute to the delayed onset and lesser severity of schizophrenia in females.
Collapse
Affiliation(s)
- Katharina Klinger
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA; Institute of Genetic and Molecular Neurobiology, Otto-von-Guericke University, University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Felipe V Gomes
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, 3900 Bandeirantes Ave, Ribeirao Preto, SP, 14049-900, Brazil
| | - Millie Rincón-Cortés
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA.
| |
Collapse
|
25
|
Pérez MÁ, Morales C, Santander O, García F, Gómez I, Peñaloza-Sancho V, Fuentealba P, Dagnino-Subiabre A, Moya PR, Fuenzalida M. Ketamine-Treatment During Late Adolescence Impairs Inhibitory Synaptic Transmission in the Prefrontal Cortex and Working Memory in Adult Rats. Front Cell Neurosci 2019; 13:372. [PMID: 31481877 PMCID: PMC6710447 DOI: 10.3389/fncel.2019.00372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) is associated with changes in the structure and function of several brain areas. Several findings suggest that these impairments are related to a dysfunction in γ-aminobutyric acid (GABA) neurotransmission in brain areas such as the medial prefrontal cortex (mPFC), the hippocampus (HPC) and the primary auditory cortex (A1); however, it is still unclear how the GABAergic system is disrupted in these brain areas. Here, we examined the effect of ketamine (Ket) administration during late adolescence in rats on inhibition in the mPFC-, ventral HPC (vHPC), and A1. We observe that Ket treatment reduced the expression of the calcium-binding protein parvalbumin (PV) and the GABA-producing enzyme glutamic acid decarboxylase 67 (GAD67) as well as decreased inhibitory synaptic efficacy in the mPFC. In addition, Ket-treated rats performed worse in executive tasks that depend on the integrity and proper functioning of the mPFC. Conversely, we do not find such changes in vHPC or A1. Together, our results provide strong experimental support for the hypothesis that during adolescence, the function of the mPFC is more susceptible than that of HPC or A1 to NMDAR hypofunction, showing apparent structure specificity. Thus, the impairment of inhibitory circuitry in mPFC could be a convergent primary site of SZ-like behavior during the adulthood.
Collapse
Affiliation(s)
- Miguel Ángel Pérez
- Laboratorio de Plasticidad Neuronal, Universidad de Valparaíso, Valparaíso, Chile.,Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile.,Escuela de Ciencias de la Salud, Carrera de Kinesiología, Universidad Viña del Mar, Viña del Mar, Chile
| | - Camila Morales
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Odra Santander
- Laboratorio de Plasticidad Neuronal, Universidad de Valparaíso, Valparaíso, Chile.,Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencias, Universidad de Valparaíso, Chile
| | - Francisca García
- Laboratorio de Plasticidad Neuronal, Universidad de Valparaíso, Valparaíso, Chile.,Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencias, Universidad de Valparaíso, Chile
| | - Isabel Gómez
- Laboratorio de Neurogenética, Universidad de Valparaíso, Valparaíso, Chile
| | - Valentín Peñaloza-Sancho
- Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile.,Laboratorio de Neurobiología del Estrés, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Fuentealba
- Laboratory of Neural Circuits, Centro de Neurociencia Universidad Católica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexies Dagnino-Subiabre
- Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile.,Laboratorio de Neurobiología del Estrés, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo R Moya
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Laboratorio de Neurogenética, Universidad de Valparaíso, Valparaíso, Chile
| | - Marco Fuenzalida
- Laboratorio de Plasticidad Neuronal, Universidad de Valparaíso, Valparaíso, Chile.,Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
26
|
Gomes FV, Grace AA. Cortical dopamine dysregulation in schizophrenia and its link to stress. Brain 2019; 141:1897-1899. [PMID: 30053178 DOI: 10.1093/brain/awy156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Felipe V Gomes
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, PA, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, PA, USA
| |
Collapse
|
27
|
Insights on current and novel antipsychotic mechanisms from the MAM model of schizophrenia. Neuropharmacology 2019; 163:107632. [PMID: 31077730 DOI: 10.1016/j.neuropharm.2019.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/25/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Current antipsychotic drugs (APDs) act on D2 receptors, and preclinical studies demonstrate that repeated D2 antagonist administration downregulates spontaneously active DA neurons by producing overexcitation-induced inactivation of firing (depolarization block). Animal models of schizophrenia based on the gestational MAM administration produces offspring with adult phenotypes consistent with schizophrenia, including ventral hippocampal hyperactivity and a DA neuron overactivity. The MAM model reveals that APDs act differently in a hyperdopamineregic system compared to a normal one, including rapid onset of depolarization block in response to acute D2 antagonist administration and downregulation of DA neuron population activity following acute and repeated D2 partial agonist administration, none of which are observed in normal rats. Novel target compounds have been developed based on the theory that glutamatergic dysfunction is central to schizophrenia pathology. Despite showing promise in preclinical research, none of the novel drugs succeeded in clinical trials. However, preclinical research is generally performed in normal, drug-naïve rats, whereas models with disease-relevant pathology and prior APD exposure may improve the predictive validity of preclinical research. Indeed, in MAM rats, chronic D2 antagonist treatment leads to persistent DA supersensitivity that interferes with the response to drugs that target upstream pathology. Moreover, MAM rats revealed that the peri-pubertal period is a stress-sensitive window that can be targeted to prevent the development of MAM pathology in adulthood. Neurodevelopmental models, such as the MAM model, can thus be used to test potential pharmacotherapies that may be able to treat schizophrenia in early stages of the disease. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
|
28
|
Grace AA, Gomes FV. The Circuitry of Dopamine System Regulation and its Disruption in Schizophrenia: Insights Into Treatment and Prevention. Schizophr Bull 2019; 45:148-157. [PMID: 29385549 PMCID: PMC6293217 DOI: 10.1093/schbul/sbx199] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite evidence for a role of the dopamine system in the pathophysiology of schizophrenia, there has not been substantial evidence that this disorder originates from a pathological change within the dopamine system itself. Current data from human imaging studies and preclinical investigations instead point to a disruption in afferent regulation of the dopamine system, with a focus on the hippocampus. We found that the hippocampus in the methylazoxymethanol acetate (MAM) rodent developmental disruption model of schizophrenia is hyperactive and dysrhythmic, possibly due to loss of parvalbumin interneurons, leading to a hyperresponsive dopamine system. Whereas current therapeutic approaches target dopamine receptor blockade, treatment at the site of pathology may be a more effective therapeutic avenue. This model also provided insights into potential means for prevention of schizophrenia. Specifically, given that stress is a risk factor in schizophrenia, and that stress can damage hippocampal parvalbumin interneurons, we tested whether alleviating stress early in life can effectively circumvent transition to schizophrenia-like states. Administering diazepam prepubertally at an antianxiety dose in MAM rats was effective at preventing the emergence of the hyperdopaminergic state in the adult. Moreover, multiple stressors applied to normal rats at the same time point resulted in pathology similar to the MAM rat. These data suggest that a genetic predisposition leading to stress hyper-responsivity, or exposure to substantial stressors, could be a primary factor leading to the emergence of schizophrenia later in life, and furthermore treating stress at a critical period may be effective in circumventing this transition.
Collapse
Affiliation(s)
- Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA,To whom correspondence should be addressed; Departments of Neuroscience, Psychiatry and Psychology, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, US; tel: 412-624-4609, fax: 412-624-9198, e-mail:
| | - Felipe V Gomes
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
29
|
Modinos G, Şimşek F, Azis M, Bossong M, Bonoldi I, Samson C, Quinn B, Perez J, Broome MR, Zelaya F, Lythgoe DJ, Howes OD, Stone JM, Grace AA, Allen P, McGuire P. Prefrontal GABA levels, hippocampal resting perfusion and the risk of psychosis. Neuropsychopharmacology 2018; 43:2652-2659. [PMID: 29440719 PMCID: PMC5955214 DOI: 10.1038/s41386-017-0004-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 01/02/2023]
Abstract
Preclinical models propose that the onset of psychosis is associated with hippocampal hyperactivity, thought to be driven by cortical GABAergic interneuron dysfunction and disinhibition of pyramidal neurons. Recent neuroimaging studies suggest that resting hippocampal perfusion is increased in subjects at ultra-high risk (UHR) for psychosis, but how this may be related to GABA concentrations is unknown. The present study used a multimodal neuroimaging approach to address this issue in UHR subjects. Proton magnetic resonance spectroscopy and pulsed-continuous arterial spin labeling imaging were acquired to investigate the relationship between medial prefrontal (MPFC) GABA+ levels (including some contribution from macromolecules) and hippocampal regional cerebral blood flow (rCBF) in 36 individuals at UHR of psychosis, based on preclinical evidence that MPFC dysfunction is involved in hippocampal hyperactivity. The subjects were then clinically monitored for 2 years: during this period, 7 developed a psychotic disorder and 29 did not. At baseline, MPFC GABA+ levels were positively correlated with rCBF in the left hippocampus (region of interest analysis, p = 0.044 family-wise error corrected, FWE). This correlation in the left hippocampus was significantly different in UHR subjects who went on to develop psychosis relative to those who did not (p = 0.022 FWE), suggesting the absence of a correlation in the latter subgroup. These findings provide the first human evidence that MPFC GABA+ concentrations are related to resting hippocampal perfusion in the UHR state, and offer some support for a link between GABA levels and hippocampal function in the development of psychosis.
Collapse
Affiliation(s)
- Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK. .,Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Fatma Şimşek
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Matilda Azis
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Matthijs Bossong
- 0000000090126352grid.7692.aDepartment of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ilaria Bonoldi
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Carly Samson
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Beverly Quinn
- 0000 0004 0412 9303grid.450563.1CAMEO Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Jesus Perez
- 0000 0004 0412 9303grid.450563.1CAMEO Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK ,0000000121885934grid.5335.0Department of Psychiatry, University of Cambridge, Cambridge, UK ,0000 0001 2180 1817grid.11762.33Department of Neuroscience, Instituto de Investigacion Biomedica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Matthew R Broome
- 0000 0004 1936 8948grid.4991.5Department of Psychiatry, University of Oxford, Oxford, UK ,0000 0004 0573 576Xgrid.451190.8Oxford Health NHS Foundation Trust, Oxford, UK
| | - Fernando Zelaya
- 0000 0001 2322 6764grid.13097.3cDepartment of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - David J Lythgoe
- 0000 0001 2322 6764grid.13097.3cDepartment of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Oliver D Howes
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - James M Stone
- 0000 0001 2322 6764grid.13097.3cDepartment of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Anthony A Grace
- 0000 0004 1936 9000grid.21925.3dDepartment of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| | - Paul Allen
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK ,0000 0001 0468 7274grid.35349.38Department of Psychology, University of Roehampton, Roehampton, UK
| | - Philip McGuire
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| |
Collapse
|
30
|
Uliana DL, Resstel LBM, Grace AA. Fear extinction disruption in a developmental rodent model of schizophrenia correlates with an impairment in basolateral amygdala-medial prefrontal cortex plasticity. Neuropsychopharmacology 2018; 43:2459-2467. [PMID: 29973655 PMCID: PMC6180011 DOI: 10.1038/s41386-018-0128-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/01/2018] [Accepted: 06/17/2018] [Indexed: 01/21/2023]
Abstract
Schizophrenia patients typically exhibit prominent negative symptoms associated with deficits in extinction recall and decreased ventromedial prefrontal cortex activity (vmPFC, analogous to medial PFC infralimbic segment in rodents). mPFC activity modulates the activity of basolateral amygdala (BLA) and this connectivity is related to extinction. mPFC and BLA activity has been shown to be altered in the methylazoxymethanol acetate (MAM) developmental disruption model of schizophrenia. However, it is unknown if there are alterations in extinction processes in this model. Therefore, we investigated extinction and the role of mPFC-BLA balance in MAM rats. Male offspring of pregnant rats treated with Saline or MAM (20 mg/kg; i.p.) on gestational day 17 were used in fear conditioning (contextual/tone) and electrophysiological experiments (mPFC-BLA plasticity). No difference was observed in conditioning, extinction, and test sessions in contextual fear conditioning. However, MAM-treated rats demonstrated impairment in extinction learning and recall in tone fear conditioning. Furthermore, high frequency stimulation (HFS) of the BLA decreased spike probability in the mPFC of saline-treated rats but not in MAM rats. NMDA antagonist microinjected into the BLA disrupted extinction learning and recall in control rats, resulting in a similar deficit as that observed in MAM-treated rats. These data demonstrate extinction impairment in the MAM model that is analogous to that observed in schizophrenia patients, that was probably due to disruption in the regulation of mPFC activity by glutamatergic neurotransmission in the BLA.
Collapse
Affiliation(s)
- Daniela L Uliana
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto/SP, 14049-900, Brazil.
| | - Leonardo B M Resstel
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto/SP, 14049-900, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA, 15260, USA
| |
Collapse
|
31
|
Larsen B, Luna B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev 2018; 94:179-195. [PMID: 30201220 PMCID: PMC6526538 DOI: 10.1016/j.neubiorev.2018.09.005] [Citation(s) in RCA: 352] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023]
Abstract
The transition from adolescence to adulthood is characterized by improvements in higher-order cognitive abilities and corresponding refinements of the structure and function of the brain regions that support them. Whereas the neurobiological mechanisms that govern early development of sensory systems are well-understood, the mechanisms that drive developmental plasticity of association cortices, such as prefrontal cortex (PFC), during adolescence remain to be explained. In this review, we synthesize neurodevelopmental findings at the cellular, circuit, and systems levels in PFC and evaluate them through the lens of established critical period (CP) mechanisms that guide early sensory development. We find remarkable correspondence between these neurodevelopmental processes and the mechanisms driving CP plasticity, supporting the hypothesis that adolescent development is driven by CP mechanisms that guide the rapid development of neurobiology and cognitive ability during adolescence and their subsequent stability in adulthood. Critically, understanding adolescence as a CP not only provides a mechanism for normative adolescent development, it provides a framework for understanding the role of experience and neurobiology in the emergence of psychopathology that occurs during this developmental period.
Collapse
Affiliation(s)
- Bart Larsen
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States.
| | - Beatriz Luna
- Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| |
Collapse
|
32
|
Allen P, Azis M, Modinos G, Bossong MG, Bonoldi I, Samson C, Quinn B, Kempton MJ, Howes OD, Stone JM, Calem M, Perez J, Bhattacharayya S, Broome MR, Grace AA, Zelaya F, McGuire P. Increased Resting Hippocampal and Basal Ganglia Perfusion in People at Ultra High Risk for Psychosis: Replication in a Second Cohort. Schizophr Bull 2018; 44:1323-1331. [PMID: 29294102 PMCID: PMC6192497 DOI: 10.1093/schbul/sbx169] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We recently reported that resting hippocampal, basal ganglia and midbrain perfusion is elevated in people at ultra high risk (UHR) for psychosis. The present study sought to replicate our previous finding in an independent UHR cohort, and examined the relationship between resting perfusion in these regions, psychosis and depression symptoms, and traumatic experiences in childhood. Pseudo-Continuous Arterial Spin Labelling (p-CASL) imaging was used to measure resting cerebral blood flow (rCBF) in 77 UHR for psychosis individuals and 25 healthy volunteers in a case-control design. UHR participants were recruited from clinical early detection services at 3 sites in the South of England. Symptoms levels were assessed using the Comprehensive Assessment of At Risk Mental States (CAARMS), the Hamilton Depression Scale (HAM-D), and childhood trauma was assessed retrospectively using the Childhood Trauma Questionnaire (CTQ). Right hippocampal and basal ganglia rCBF were significantly increased in UHR subjects compared to controls, partially replicating our previous finding in an independent cohort. In UHR participants, positive symptoms were positively correlated with rCBF in the right pallidum. CTQ scores were positively correlated with rCBF values in the bilateral hippocampus and negatively associated with rCBF in the left prefrontal cortex. Elevated resting hippocampal and basal ganglia activity appears to be a consistent finding in individuals at high risk for psychosis, consistent with data from preclinical models of the disorder. The association with childhood trauma suggests that its influence on the risk of psychosis may be mediated through an effect on hippocampal function.
Collapse
Affiliation(s)
- Paul Allen
- Department of Psychology, University of Roehampton, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- To whom correspondence should be addressed; Department of Psychology, University of Roehampton, Whitelands College, Hollybourne Ave, London SW15 4JD, UK; tel: 0044 (0)2083925147; e-mail:
| | - Matilda Azis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Matthijs G Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Carly Samson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Beverly Quinn
- CAMEO Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - James M Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Maria Calem
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Jesus Perez
- CAMEO Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | | | - Matthew R Broome
- Department of Psychiatry, University of Oxford, Oxford, UK
- Faculty of Philosophy, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| |
Collapse
|
33
|
Schifani C, Tseng HH, Kenk M, Tagore A, Kiang M, Wilson AA, Houle S, Rusjan PM, Mizrahi R. Cortical stress regulation is disrupted in schizophrenia but not in clinical high risk for psychosis. Brain 2018; 141:2213-2224. [PMID: 29860329 PMCID: PMC6022671 DOI: 10.1093/brain/awy133] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022] Open
Abstract
While alterations in striatal dopamine in psychosis and stress have been well studied, the role of dopamine in prefrontal cortex is poorly understood. To date, no study has investigated the prefrontocortical dopamine response to stress in the psychosis spectrum, even though the dorsolateral and medial prefrontal cortices are key regions in cognitive and emotional regulation, respectively. The present study uses the high-affinity dopamine D2/3 receptor radiotracer 11C-FLB457 and PET together with a validated psychosocial stress challenge to investigate the dorsolateral and medial prefrontocortical dopamine response to stress in schizophrenia and clinical high risk for psychosis. Forty participants completed two 11C-FLB457 PET scans (14 antipsychotic-free schizophrenia, 14 clinical high risk for psychosis and 12 matched healthy volunteers), one while performing a Sensory Motor Control Task (control) and another while performing the Montreal Imaging Stress Task (stress). Binding potential (BPND) was estimated using Simplified Reference Tissue Model with cerebellar cortex as reference region. Dopamine release was defined as per cent change in BPND between control and stress scans (ΔBPND) using a novel correction for injected mass. Salivary cortisol response (ΔAUCI) was assessed throughout the tasks and its relationship with dopamine release examined. 11C-FLB457 binding at control conditions was significantly different between groups in medial [F(2,37) = 7.98, P = 0.0013] and dorsolateral [F(2,37) = 6.97, P = 0.0027] prefrontal cortex with schizophrenia patients having lower BPND than participants at clinical high risk for psychosis and healthy volunteers, but there was no difference in ΔBPND among groups [dorsolateral prefrontal cortex: F(2,37) = 1.07, P = 0.35; medial prefrontal cortex: F(2,37) = 0.54, P = 0.59]. We report a positive relationship between ΔAUCI and 11C-FLB457 ΔBPND in dorsolateral and medial prefrontal cortex in healthy volunteers (r = 0.72, P = 0.026; r = 0.76, P = 0.014, respectively) and in participants at clinical high risk for psychosis (r = 0.76, P = 0.0075; r = 0.72, P = 0.018, respectively), which was absent in schizophrenia (r = 0.46, P = 1.00; r = 0.19, P = 1.00, respectively). Furthermore, exploratory associations between ΔBPND or ΔAUCI and stress or anxiety measures observed in clinical high risk for psychosis were absent in schizophrenia. These findings provide first direct evidence of a disrupted prefrontocortical dopamine-stress regulation in schizophrenia.
Collapse
Affiliation(s)
- Christin Schifani
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Huai-Hsuan Tseng
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Miran Kenk
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Abanti Tagore
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Michael Kiang
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Alan A Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo M Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Wolthusen RPF, Coombs G, Boeke EA, Ehrlich S, DeCross SN, Nasr S, Holt DJ. Correlation Between Levels of Delusional Beliefs and Perfusion of the Hippocampus and an Associated Network in a Non-Help-Seeking Population. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018. [PMID: 29529413 DOI: 10.1016/j.bpsc.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Delusions are a defining and common symptom of psychotic disorders. Recent evidence suggests that subclinical and clinical delusions may represent distinct stages on a phenomenological and biological continuum. However, few studies have tested whether subclinical psychotic experiences are associated with neural changes that are similar to those observed in clinical psychosis. For example, it is unclear if overactivity of the hippocampus, a replicated finding of neuroimaging studies of schizophrenia, is also present in individuals with subclinical psychotic symptoms. METHODS To investigate this question, structural and pulsed arterial spin labeling scans were collected in 77 adult participants with no psychiatric history. An anatomical region of interest approach was used to extract resting perfusion of the hippocampus, and 15 other regions, from each individual. A self-report measure of delusional ideation was collected on the day of scanning. RESULTS The level of delusional thinking (number of beliefs [r = .27, p = .02]), as well as the associated level of distress (r = .29, p = .02), was significantly correlated with hippocampal perfusion (averaged over right and left hemispheres). The correlations remained significant after controlling for age, hippocampal volume, symptoms of depression and anxiety, and image signal-to-noise ratio, and they were confirmed in a voxelwise regression analysis. The same association was observed in the thalamus and parahippocampal, lateral temporal, and cingulate cortices. CONCLUSIONS Similar to patients with schizophrenia, non-help-seeking individuals show elevated perfusion of a network of limbic regions in association with delusional beliefs.
Collapse
Affiliation(s)
- Rick P F Wolthusen
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts; Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine Carl Gustav Carus of the Technische Universität Dresden, Dresden, Germany
| | - Garth Coombs
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychology, Harvard University, Cambridge, Massachusetts
| | - Emily A Boeke
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychology, New York University, New York, New York
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine Carl Gustav Carus of the Technische Universität Dresden, Dresden, Germany
| | - Stephanie N DeCross
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Shahin Nasr
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts.
| |
Collapse
|
35
|
Murray RM, Bhavsar V, Tripoli G, Howes O. 30 Years on: How the Neurodevelopmental Hypothesis of Schizophrenia Morphed Into the Developmental Risk Factor Model of Psychosis. Schizophr Bull 2017; 43:1190-1196. [PMID: 28981842 PMCID: PMC5737804 DOI: 10.1093/schbul/sbx121] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
At its re-birth 30 years ago, the neurodevelopment hypothesis of schizophrenia focussed on aberrant genes and early neural hazards, but then it grew to include ideas concerning aberrant synaptic pruning in adolescence. The hypothesis had its own stormy development and it endured some difficult teenage years when a resurgence of interest in neurodegeneration threatened its survival. In early adult life, it over-reached itself with some reductionists claiming that schizophrenia was simply a neurodevelopmental disease. However, by age 30, the hypothesis has matured sufficiently to incorporated childhood and adult adversity, urban living and migration, as well as heavy cannabis use, as important risk factors. Thus, it morphed into the developmental risk factor model of psychosis and integrated new evidence concerning dysregulated striatal dopamine as the final step on the pathway linking risk factors to psychotic symptoms.
Collapse
Affiliation(s)
- Robin M Murray
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK,National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King’s College, London, UK,To whom correspondence should be addressed;
| | - Vishal Bhavsar
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - Giada Tripoli
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK,Psychiatric Imaging Group, Clinical Science Centre, Imperial College, London, UK
| |
Collapse
|
36
|
Gomes FV, Grace AA. Adolescent Stress as a Driving Factor for Schizophrenia Development-A Basic Science Perspective. Schizophr Bull 2017; 43:486-489. [PMID: 28419390 PMCID: PMC5464111 DOI: 10.1093/schbul/sbx033] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schizophrenia has been associated with heightened stress responsivity in adolescence that precedes onset of psychosis. We now report that multiple stressors during adolescence in normal rats leads to deficits in adults analogous to that seen in schizophrenia patients. Moreover, impairment of stress control by lesion of the prelimbic prefontal cortex in adolescence caused previously subthreshold levels of stress to induce these deficit states when tested as adults. Thus, predisposition to stress hyper-responsivity, or exposure to substantial stressors, during adolescence can trigger a cascade of events that result in a schizophrenia-like profile in adults. This data can provide crucial information with respect to identifying markers for schizophrenia vulnerability early in life and, by mitigating the impact of stressors, prevent the transition to psychosis.
Collapse
Affiliation(s)
- Felipe V. Gomes
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|