1
|
Khosroshahi PA, Ghanbari M. MicroRNA dysregulation in glutamate and dopamine pathways of schizophrenia: From molecular pathways to diagnostic and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111081. [PMID: 39002925 DOI: 10.1016/j.pnpbp.2024.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia is a complex psychiatric disorder, and genetic and environmental factors have been implicated in its development. Dysregulated glutamatergic and dopaminergic transmission pathways are involved in schizophrenia development. Besides genetic mutations, epigenetic dysregulation has a considerable role in dysregulating molecular pathways involved in schizophrenia. MicroRNAs (miRNAs) are small, non-coding RNAs that target specific mRNAs and inhibit their translation into proteins. As epigenetic factors, miRNAs regulate many genes involved in glutamate and dopamine signaling pathways; thereby, their dysregulation can contribute to the development of schizophrenia. Secretion of specific miRNAs from damaged cells into body fluids can make them one of the ideal non-invasive biomarkers in the early diagnosis of schizophrenia. Also, understanding the molecular mechanisms of miRNAs in schizophrenia pathogenesis can pave the way for developing novel treatments for patients with schizophrenia. In this study, we reviewed the glutamatergic and dopaminergic pathophysiology and highlighted the role of miRNA dysregulation in schizophrenia development. Besides, we shed light on the significance of circulating miRNAs for schizophrenia diagnosis and the recent findings on the miRNA-based treatment for schizophrenia.
Collapse
Affiliation(s)
| | - Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
2
|
Tian J, Dong S, Nomura N, Siafis S, Lin X, Wu H, Qin M, Yanagimoto H, Schneider-Thoma J, Leucht S. Efficacy and tolerability of blonanserin in schizophrenia: A systematic review and meta-analysis of randomized controlled trials. Schizophr Res 2024; 274:360-373. [PMID: 39490217 DOI: 10.1016/j.schres.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Blonanserin is approved for treating schizophrenia in Japan, South Korea, India, and China. We aimed to synthesize the efficacy and tolerability of blonanserin compared to other antipsychotics. METHODS A systematic review and pairwise meta-analysis were conducted using the Cochrane Schizophrenia Group's study-based trial register until January 24, 2024. We included open and blinded randomized controlled trials (RCTs) involving schizophrenia patients, with studies lasting at least 3 weeks. Primary outcomes focused on overall schizophrenia symptoms using rating scales and relapse rates. Secondary outcomes included symptom subtypes, treatment response, dropout rates, quality of life, and side effects, analyzed using standardized mean difference (SMD), mean difference (MD), and risk ratio (RR) with 95 % confidence intervals (CIs). The review protocol was published in Open Science Framework (https://osf.io/e7jfa/). RESULTS Fourteen acute-phase studies with 2697 participants compared blonanserin to olanzapine, haloperidol, risperidone, paliperidone, aripiprazole, amisulpride, and placebo. Blonanserin showed greater efficacy than placebo (SMD = -0.47, 95 % CI: -0.66 to -0.27) and similar efficacy to other antipsychotics in reducing schizophrenia overall symptoms. No data on the number of participants who experienced relapse with blonanserin was available in the single maintenance-phase study. There were also no clear differences between antipsychotics in most secondary efficacy outcomes, but blonanserin produced less prolactin and weight increase but more akathisia and tremor than risperidone, and less prolactin increase, anticholinergic and extrapyramidal side-effects than haloperidol. CONCLUSION Our study suggests that differences in efficacy between blonanserin and other antipsychotics are small and that blonanserin has a different tolerability profile than haloperidol and risperidone.
Collapse
Affiliation(s)
- Jing Tian
- Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Shimeng Dong
- Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Nobuyuki Nomura
- Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Munich, Germany; Deutsches Zentrum für Psychische Gesundheit (DZPG), partner site München/Augsburg, Germany; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Spyridon Siafis
- Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Munich, Germany; Deutsches Zentrum für Psychische Gesundheit (DZPG), partner site München/Augsburg, Germany
| | - Xiao Lin
- Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Hui Wu
- Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Mengchang Qin
- Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Hiroko Yanagimoto
- Department of Neuropsychiatry, Kurume University School of Medicine, Fukuoka, Japan
| | - Johannes Schneider-Thoma
- Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Stefan Leucht
- Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Munich, Germany; Deutsches Zentrum für Psychische Gesundheit (DZPG), partner site München/Augsburg, Germany.
| |
Collapse
|
3
|
Howes OD, Dawkins E, Lobo MC, Kaar SJ, Beck K. New Drug Treatments for Schizophrenia: A Review of Approaches to Target Circuit Dysfunction. Biol Psychiatry 2024; 96:638-650. [PMID: 38815885 DOI: 10.1016/j.biopsych.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Schizophrenia is a leading cause of global disease burden. Current drug treatments are associated with significant side effects and have limited efficacy for many patients, highlighting the need to develop new approaches that target other aspects of the neurobiology of schizophrenia. Preclinical, in vivo imaging, postmortem, genetic, and pharmacological studies have highlighted the key role of cortical GABAergic (gamma-aminobutyric acidergic)-glutamatergic microcircuits and their projections to subcortical dopaminergic circuits in the pathoetiology of negative, cognitive, and psychotic symptoms. Antipsychotics primarily act downstream of the dopaminergic component of this circuit. However, multiple drugs are currently in development that could target other elements of this circuit to treat schizophrenia. These include drugs for GABAergic or glutamatergic targets, including glycine transporters, D-amino acid oxidase, sodium channels, or potassium channels. Other drugs in development are likely to primarily act on pathways that regulate the dopaminergic system, such as muscarinic or trace amine receptors or 5-HT2A receptors, while PDE10A inhibitors are being developed to modulate the downstream consequences of dopaminergic dysfunction. Our review considers where new drugs may act on this circuit and their latest clinical trial evidence in terms of indication, efficacy, and side effects. Limitations of the circuit model, including whether there are neurobiologically distinct subgroups of patients, and future directions are also considered. Several drugs based on the mechanisms reviewed have promising clinical data, with the muscarinic agonist KarXT most advanced. If these drugs are approved for clinical use, they have the potential to revolutionize understanding of the pathophysiology and treatment of schizophrenia.
Collapse
Affiliation(s)
- Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom.
| | - Eleanor Dawkins
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| | - Maria C Lobo
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| | - Stephen J Kaar
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Greater Manchester Mental Health National Health Service Foundation Trust, Manchester, United Kingdom
| | - Katherine Beck
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| |
Collapse
|
4
|
Coyle JT. Passing the torch: The ascendance of the glutamatergic synapse in the pathophysiology of schizophrenia. Biochem Pharmacol 2024; 228:116376. [PMID: 38906225 DOI: 10.1016/j.bcp.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
For nearly fifty years, the dopamine hypothesis has dominated our understanding of the pathophysiology of schizophrenia and provided the lone target for drug development. However, with the exception of clozapine, the dopamine D2 receptor antagonizing anti-psychotic drugs have little impact on the negative symptoms and cognitive deficits, aspects of the disorder that robustly predict outcome. Pathologic studies reveal cortical atrophy and wide-spread loss of glutamatergic synaptic spines, unexplained by dopaminergic malfunction. Recent genome-wide association studies indicate that at least thirty risk genes for schizophrenia encode proteins localized to the glutamatergic synapse and inhibit glutamate neurotransmission, especially at the NMDA receptor. To function, the NMDA receptor requires the binding of glycine (primarily in the cerebellum and brainstem) or D-serine (in forebrain) to the NR1 channel subunit of the NMDA receptor. Genetically silencing the gene (srr) encoding serine racemase, the biosynthetic enzyme for D-serine, results in forebrain NMDA receptor hypofunction. The srr-/- mice have 90 % loss of endogenous D-serine and approximately 70 % decrease in NMDA receptor function. Several animal models of schizophrenia are based on behavioral and pharmacologic strategies, which have negligible validity with regard to the fundamental etiology of schizophrenia. We summarize here the results of a mouse model, in which srr, one of the two dozen or more risk gene for schizophrenia that affect NMDA receptor function, has been inactivated. The srr-/- mice exhibit striking similarities to schizophrenia including cortical atrophy, loss of cortico-limbic glutamatergic synapses, increased sub-cortical dopamine release, EEG abnormalities, and cognitive impairments. The limited efficacy of drugs targeting the glutamatergic synapse on DSM-5 diagnosed criteria for schizophrenia used in clinical trials may reflect the fact that only 30 % of the patients have impaired glutamatergic neurotransmission, resulting from the genetic heterogeneity of the disorder.
Collapse
Affiliation(s)
- Joseph T Coyle
- Eben S Draper Professor of Psychiatry and Neuroscience Harvard Medical School (Emeritus), McLean Hospital, 115 Mill St, Belmont, MA 02478, United States.
| |
Collapse
|
5
|
Uliana DL, Lisboa JRF, Gomes FV, Grace AA. The excitatory-inhibitory balance as a target for the development of novel drugs to treat schizophrenia. Biochem Pharmacol 2024; 228:116298. [PMID: 38782077 PMCID: PMC11410545 DOI: 10.1016/j.bcp.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The intricate balance between excitation and inhibition (E/I) in the brain plays a crucial role in normative information processing. Dysfunctions in the E/I balance have been implicated in various psychiatric disorders, including schizophrenia (SCZ). In particular, abnormalities in GABAergic signaling, specifically in parvalbumin (PV)-containing interneurons, have been consistently observed in SCZ pathophysiology. PV interneuron function is vital for maintaining an ideal E/I balance, and alterations in PV interneuron-mediated inhibition contribute to circuit deficits observed in SCZ, including hippocampus hyperactivity and midbrain dopamine system overdrive. While current antipsychotic medications primarily target D2 dopamine receptors and are effective primarily in treating positive symptoms, novel therapeutic strategies aiming to restore the E/I balance could potentially mitigate not only positive symptoms but also negative symptoms and cognitive deficits. This could involve, for instance, increasing the inhibitory drive onto excitatory neurons or decreasing the putative enhanced pyramidal neuron activity due to functional loss of PV interneurons. Compounds targeting the glycine site at glutamate NMDA receptors and muscarinic acetylcholine receptors on PV interneurons that can increase PV interneuron drive, as well as drugs that increase the postsynaptic action of GABA, such as positive allosteric modulators of α5-GABA-A receptors, and decrease glutamatergic output, such as mGluR2/3 agonists, represent promising approaches. Preventive strategies aiming at E/I balance also represent a path to reduce the risk of transitioning to SCZ in high-risk individuals. Therefore, compounds with novel mechanisms targeting E/I balance provide optimism for more effective and tailored interventions in the management of SCZ.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joao Roberto F Lisboa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Sonego AB, Prado DS, Uliana DL, Cunha TM, Grace AA, Resstel LBM. Pioglitazone attenuates behavioral and electrophysiological dysfunctions induced by two-hit model of schizophrenia in adult rodent offspring. Eur Neuropsychopharmacol 2024; 89:28-40. [PMID: 39332147 DOI: 10.1016/j.euroneuro.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/29/2024]
Abstract
Maternal infection and stress exposure, especially during childhood and adolescence, have been implicated as risk factors for schizophrenia. Both insults induce an exacerbated inflammatory response, which could mediate disturbance of neurodevelopmental processes and, ultimately, malfunctioning of neural systems observed in this disorder. Thus, anti-inflammatory drugs, such as PPARγ agonists, may potentially be used to prevent the development of schizophrenia. Microglia culture was prepared from the offspring of saline or poly(I:C)-injected mice. The cells were pretreated with pioglitazone and then, stimulated by LPS. Proinflammatory mediators and phagocytic activity were measured. Also, pregnant rats were injected with saline or poly(I:C) on GD17. The offspring were subjected to footshock during adolescence and subsequently injected with pioglitazone or vehicle. At adulthood, behavior and dopaminergic activity were evaluated. Pioglitazone reduced proinflammatory mediators induced by poly(I:C) microglia stimulated by LPS without affecting their decreased phagocytic activity. The PPARγ agonist also prevented the emergence of social and cognitive impairments, as well as attenuated the increased number of spontaneously active dopamine neurons in the VTA, observed in both males and females from poly(I:C) and stress group. Therefore, pioglitazone could potentially prevent the emergence of the schizophrenia-like alterations induced by the two-hit model via reduction of microglial activation.
Collapse
Affiliation(s)
- Andreza B Sonego
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil; Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, 15260, Pittsburgh, PA, USA.
| | - Douglas S Prado
- Department of Immunology, University of Pittsburgh, The Assembly Building, 15213, Pittsburgh, PA, USA
| | - Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, 15260, Pittsburgh, PA, USA
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, 15260, Pittsburgh, PA, USA
| | - Leonardo B M Resstel
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Colodete DA, Grace AA, Guimarães FS, Gomes FV. Degradation of Perineuronal Nets in the Ventral Hippocampus of Adult Rats Recreates an Adolescent-Like Phenotype of Stress Susceptibility. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100338. [PMID: 39099729 PMCID: PMC11295568 DOI: 10.1016/j.bpsgos.2024.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 08/06/2024] Open
Abstract
Background Psychiatric disorders often emerge during late adolescence/early adulthood, a period with increased susceptibility to socioenvironmental factors that coincides with incomplete parvalbumin interneuron (PVI) development. Stress during this period causes functional loss of PVIs in the ventral hippocampus (vHip), which has been associated with dopamine system overdrive. This vulnerability persists until the appearance of perineuronal nets (PNNs) around PVIs. We assessed the long-lasting effects of adolescent or adult stress on behavior, ventral tegmental area dopamine neuron activity, and the number of PVIs and their associated PNNs in the vHip. Additionally, we tested whether PNN removal in the vHip of adult rats, proposed to reset PVIs to a juvenile-like state, would recreate an adolescent-like phenotype of stress susceptibility. Methods Male rats underwent a 10-day stress protocol during adolescence or adulthood. Three to 4 weeks poststress, we evaluated behaviors related to anxiety, sociability, and cognition, ventral tegmental area dopamine neuron activity, and the number of PV+ and PNN+ cells in the vHip. Furthermore, adult animals received intra-vHip infusion of ChABC (chondroitinase ABC) to degrade PNNs before undergoing stress. Results Unlike adult stress, adolescent stress induced anxiety responses, reduced sociability, cognitive deficits, ventral tegmental area dopamine system overdrive, and decreased PV+ and PNN+ cells in the vHip. However, intra-vHip ChABC infusion caused the adult stress to produce changes similar to the ones observed after adolescent stress. Conclusions Our findings underscore adolescence as a period of heightened vulnerability to the long-lasting impact of stress and highlight the protective role of PNNs against stress-induced damage in PVIs.
Collapse
Affiliation(s)
- Débora A.E. Colodete
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Francisco S. Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Felipe V. Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Dwyer GE, Johnsen E, Hugdahl K. NMDAR dysfunction and the regulation of dopaminergic transmission in schizophrenia. Schizophr Res 2024; 271:19-27. [PMID: 39002526 DOI: 10.1016/j.schres.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
A substantial body of evidence implicates dysfunction in N-methyl-d-aspartate receptors (NMDARs) in the pathophysiology of schizophrenia. This article illustrates how NMDAR dysfunction may give rise to many of the neurobiological phenomena frequently associated with schizophrenia with a particular focus on how NMDAR dysfunction affects the thalamic reticular nucleus (nRT) and pedunculopontine tegmental nucleus (PPTg). Furthermore, this article presents a model for schizophrenia illustrating how dysfunction in the nRT may interrupt prefrontal regulation of midbrain dopaminergic neurons, and how dysfunction in the PPTg may drive increased, irregular burst firing.
Collapse
Affiliation(s)
- Gerard Eric Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.
| | - Erik Johnsen
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
9
|
Lisboa JRF, Costa O, Pakes GH, Colodete DAE, Gomes FV. Perineuronal net density in schizophrenia: A systematic review of postmortem brain studies. Schizophr Res 2024; 271:100-109. [PMID: 39018984 DOI: 10.1016/j.schres.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/07/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND The onset of schizophrenia is concurrent with multiple key processes of brain development, such as the maturation of inhibitory networks. Some of these processes are proposed to depend on the development of perineuronal nets (PNNs), a specialized extracellular matrix structure that surrounds preferentially parvalbumin-containing GABAergic interneurons (PVIs). PNNs are fundamental to the postnatal experience-dependent maturation of inhibitory brain circuits. PNN abnormalities have been proposed as a core pathophysiological finding in SCZ, being linked to widespread consequences on circuit disruptions underlying SCZ symptoms. OBJECTIVE Here, we systematically evaluate PNN density in postmortem brain studies of subjects with SCZ. METHODS A systematic search in 3 online databases (PubMed, Embase, and Scopus) and qualitative review analysis of case-control studies reporting on PNN density in the postmortem brain of subjects with SCZ were performed. RESULTS Results consisted of 7 studies that were included in the final analysis. The specific brain regions investigated in the studies varied, with most attention given to the dorsolateral prefrontal cortex (DLPFC; 3 studies) and amygdala (2 studies). Findings were mostly positive for reduced PNN density in SCZ, with 6 of the 7 studies reporting significant reductions and one reporting a tendency towards reduced PNN density. Overall, tissue processing methodologies were heterogeneous. CONCLUSIONS Despite few studies, PNN density was consistently reduced in SCZ across different brain regions. These findings support evidence that implicates deficits in PNN density in the pathophysiology of SCZ. However, more studies, preferably using similar methodological approaches as well as replication of findings, are needed.
Collapse
Affiliation(s)
- João Roberto F Lisboa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Olga Costa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gustavo Henrique Pakes
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Debora Akemi E Colodete
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
10
|
Souza AJ, Freitas ÍS, Sharmin D, Cook JM, Guimarães FS, Gomes FV. An alpha 5-GABA A receptor positive allosteric modulator attenuates social and cognitive deficits without changing dopamine system hyperactivity in rats exposed to valproic acid in utero. Autism Res 2024; 17:1534-1544. [PMID: 39169698 PMCID: PMC11343091 DOI: 10.1002/aur.3178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/03/2024] [Indexed: 08/23/2024]
Abstract
Autism spectrum disorders (ASDs) are characterized by core behavioral symptoms in the domains of sociability, language/communication, and repetitive or stereotyped behaviors. Deficits in the prefrontal and hippocampal excitatory/inhibitory balance due to a functional loss of GABAergic interneurons are proposed to underlie these symptoms. Increasing the postsynaptic effects of GABA with compounds that selectively modulate GABAergic receptors could be a potential target for treating ASD symptoms. In addition, deficits in GABAergic interneurons have been linked to dopamine (DA) system dysregulation, and, despite conflicting evidence, abnormalities in the DA system activity may underly some ASD symptoms. Here, we investigated whether the positive allosteric modulator of α5-containing GABAA receptors (α5-GABAARs) SH-053-2'F-R-CH3 (10 mg/kg) attenuates behavioral abnormalities in rats exposed to valproic acid (VPA) in utero, an established risk factor for autism. We also evaluated if animals exposed to VPA in utero present changes in the ventral tegmental area (VTA) DA system activity using in vivo electrophysiology and if SH-053-2'F-R-CH3 could attenuate these changes. SH-053-2'F-R-CH3 was administered intraperitoneally 30 min before each behavioral test and electrophysiology. In utero VPA exposure caused male and female rats to present increased repetitive behavior (self-grooming) in early adolescence and deficits in social interaction in adulthood. Male, but not female VPA rats, also presented deficits in recognition memory as adults. SH-053-2'F-R-CH3 attenuated the impairments in sociability and cognitive function in male VPA-exposed rats without attenuating the decreased social interaction in females. Adult male and female VPA-exposed rats also showed an increased VTA DA neuron population activity, which was not changed by SH-053-2'F-R-CH3. Despite sex differences, our findings indicate that α5-GABAARs positive allosteric modulators may effectively attenuate some core ASD symptoms.
Collapse
Affiliation(s)
- Adriana Jesus Souza
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ícaro Silva Freitas
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - James M. Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Francisco S. Guimarães
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V. Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Jawad A, Mtairek MA, Awde MH, Kanso H, Kawssan A, Awada R, Khadra T, Moselmani M, Tarhini ZM, Al Bazzal A, Mohammed NA, Atef O, Hamdar H. Exploring the complex relationship between caffeine consumption and schizophrenia: A review of epidemiological and clinical studies. PROGRESS IN BRAIN RESEARCH 2024; 289:107-121. [PMID: 39168576 DOI: 10.1016/bs.pbr.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This review delves into the intricate interplay between caffeine consumption and schizophrenia, examining evidence from epidemiological and clinical studies. While epidemiological research offers conflicting findings regarding the association between coffee intake and schizophrenia risk, clinical studies reveal diverse impacts of caffeine on symptomatology and cognition in individuals with schizophrenia. Some epidemiological studies suggest a potential protective effect of coffee consumption against schizophrenia, whereas others fail to establish a significant correlation. Clinical investigations highlight the complexity of caffeine's influence, with varied effects on symptom severity and cognitive function observed among schizophrenia patients. Notably, caffeine may exacerbate positive symptoms while alleviating negative symptoms and cognitive deficits in this population. However, limitations such as small sample sizes and reliance on self-reported data hinder the generalizability of these findings. Furthermore, genetic factors, prenatal exposure, and substance abuse contribute to the complexity of the relationship between caffeine and schizophrenia. Studies indicate that individuals with a genetic predisposition to schizophrenia may be more vulnerable to the effects of caffeine, while prenatal exposure to caffeine may elevate the risk of schizophrenia in offspring. Additionally, substance abuse, including high caffeine and nicotine consumption, is prevalent among individuals with schizophrenia, exacerbating symptom severity. Future research directions include addressing methodological limitations, such as small sample sizes and reliance on self-reported data, and exploring the effects of caffeine on schizophrenia using larger, more diverse cohorts and controlled methodologies. A deeper understanding of caffeine's impact on schizophrenia is crucial for informing clinical practice and developing personalized interventions for patients. Ultimately, this review underscores the need for further investigation into the complex relationship between caffeine consumption and schizophrenia to improve patient outcomes and inform evidence-based interventions.
Collapse
Affiliation(s)
- Ali Jawad
- Faculty of Medicine, Damascus University, Damascus, Syria; Medical Learning Skills Academy, Beirut, Lebanon
| | - Mohammad Ali Mtairek
- Faculty of Medicine, Damascus University, Damascus, Syria; Medical Learning Skills Academy, Beirut, Lebanon
| | - Mohammad Hadi Awde
- Faculty of Medicine, Damascus University, Damascus, Syria; Medical Learning Skills Academy, Beirut, Lebanon
| | - Haidar Kanso
- Faculty of Medicine, Damascus University, Damascus, Syria; Medical Learning Skills Academy, Beirut, Lebanon
| | - Aya Kawssan
- Medical Learning Skills Academy, Beirut, Lebanon; Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Rim Awada
- Medical Learning Skills Academy, Beirut, Lebanon; Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Tia Khadra
- Medical Learning Skills Academy, Beirut, Lebanon; Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Mariam Moselmani
- Medical Learning Skills Academy, Beirut, Lebanon; Neuroscience Research Center (NRC), Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Zahraa Mahdi Tarhini
- Medical Learning Skills Academy, Beirut, Lebanon; Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Abbas Al Bazzal
- Medical Learning Skills Academy, Beirut, Lebanon; Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | | | - Omnia Atef
- Faculty of Sciences, Cairo University, Cairo, Egypt
| | - Hiba Hamdar
- Medical Learning Skills Academy, Beirut, Lebanon.
| |
Collapse
|
12
|
Oliver D, Chesney E, Cullen AE, Davies C, Englund A, Gifford G, Kerins S, Lalousis PA, Logeswaran Y, Merritt K, Zahid U, Crossley NA, McCutcheon RA, McGuire P, Fusar-Poli P. Exploring causal mechanisms of psychosis risk. Neurosci Biobehav Rev 2024; 162:105699. [PMID: 38710421 PMCID: PMC11250118 DOI: 10.1016/j.neubiorev.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/17/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Robust epidemiological evidence of risk and protective factors for psychosis is essential to inform preventive interventions. Previous evidence syntheses have classified these risk and protective factors according to their strength of association with psychosis. In this critical review we appraise the distinct and overlapping mechanisms of 25 key environmental risk factors for psychosis, and link these to mechanistic pathways that may contribute to neurochemical alterations hypothesised to underlie psychotic symptoms. We then discuss the implications of our findings for future research, specifically considering interactions between factors, exploring universal and subgroup-specific factors, improving understanding of temporality and risk dynamics, standardising operationalisation and measurement of risk and protective factors, and developing preventive interventions targeting risk and protective factors.
Collapse
Affiliation(s)
- Dominic Oliver
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Edward Chesney
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - Alexis E Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Amir Englund
- Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - George Gifford
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sarah Kerins
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Yanakan Logeswaran
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Biostatistics & Health Informatics, King's College London, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Uzma Zahid
- Department of Psychology, King's College London, London, UK
| | - Nicolas A Crossley
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; OASIS Service, South London and Maudsley NHS Foundation Trust, London SE11 5DL, UK
| |
Collapse
|
13
|
Bojesen KB, Rostrup E, Sigvard AK, Mikkelsen M, Edden RAE, Ebdrup BH, Glenthøj B. The Trajectory of Prefrontal GABA Levels in Initially Antipsychotic-Naïve Patients With Psychosis During 2 Years of Treatment and Associations With Striatal Cerebral Blood Flow and Outcome. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:703-713. [PMID: 38145706 DOI: 10.1016/j.bpsc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND GABAergic (gamma-aminobutyric acidergic) function in the prefrontal cortex seems dysfunctional in patients with first-episode psychosis, but the impact of longer-term treatment and relationship to clinical outcomes and striatal activity are unknown. METHODS A longitudinal study of 39 antipsychotic-naïve and benzodiazepine-free patients with psychosis (22.4 ± 5.4 years, 64% women) and 54 matched healthy control participants (HCs) (22.2 ± 4.3 years, 61% women) who were followed up after 6 weeks (28 patients, 51 HCs), 6 months (17 patients, 47 HCs), and 2 years (21 patients, 43 HCs) was completed. GABA levels in the dorsal anterior cingulate cortex and striatal resting cerebral blood flow were assessed on a 3T magnetic resonance scanner at all visits. RESULTS GABA levels in the dorsal anterior cingulate cortex were significantly lower in patients at baseline and after 6 weeks but not after 6 months or 2 years. Analyses of groups separately revealed decreased GABA levels after 2 years in HCs but stable levels in patients. Treatment increased striatal resting cerebral blood flow after 6 weeks and 6 months but not after 2 years. GABA levels were negatively associated with striatal resting cerebral blood flow in both groups at all visits. Last, lower baseline GABA levels in patients were related to less functional improvement after 2 years. CONCLUSIONS The findings suggest a different trajectory of GABA levels and striatal perfusion in first-episode patients over 2 years of antipsychotic treatment compared with HCs and indicate a downregulatory role of prefrontal GABAergic function on the striatum. Moreover, abnormally low prefrontal GABA level at illness onset may be a marker for a more severe prognosis.
Collapse
Affiliation(s)
- Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark.
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Anne Korning Sigvard
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Mark Mikkelsen
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; F.M. Kirby Research Center for Functional Brain Imaging, Baltimore, Maryland
| | - Bjørn Hylsebeck Ebdrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birte Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Wang X, Li Z, Kuai S, Wang X, Chen J, Yang Y, Qin L. Correlation between desynchrony of hippocampal neural activity and hyperlocomotion in the model mice of schizophrenia and therapeutic effects of aripiprazole. CNS Neurosci Ther 2024; 30:e14739. [PMID: 38702935 PMCID: PMC11069053 DOI: 10.1111/cns.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
AIMS The hippocampus has been reported to be morphologically and neurochemically altered in schizophrenia (SZ). Hyperlocomotion is a characteristic SZ-associated behavioral phenotype, which is associated with dysregulated dopamine system function induced by hippocampal hyperactivity. However, the neural mechanism of hippocampus underlying hyperlocomotion remains largely unclear. METHODS Mouse pups were injected with N-methyl-D-aspartate receptor antagonist (MK-801) or vehicle twice daily on postnatal days (PND) 7-11. In the adulthood phase, one cohort of mice underwent electrode implantation in field CA1 of the hippocampus for the recording local field potentials and spike activity. A separate cohort of mice underwent surgery to allow for calcium imaging of the hippocampus while monitoring the locomotion. Lastly, the effects of atypical antipsychotic (aripiprazole, ARI) were evaluated on hippocampal neural activity. RESULTS We found that the hippocampal theta oscillations were enhanced in MK-801-treated mice, but the correlation coefficient between the hippocampal spiking activity and theta oscillation was reduced. Consistently, although the rate and amplitude of calcium transients of hippocampal neurons were increased, their synchrony and correlation to locomotion speed were disrupted. ARI ameliorated perturbations produced by the postnatal MK-801 treatment. CONCLUSIONS These results suggest that the disruption of neural coordination may underly the neuropathological mechanism for hyperlocomotion of SZ.
Collapse
Affiliation(s)
- Xueru Wang
- Department of PhysiologyChina Medical UniversityShenyangLiaoningChina
| | - Zijie Li
- Department of PhysiologyChina Medical UniversityShenyangLiaoningChina
| | - Shihui Kuai
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xuejiao Wang
- Department of PhysiologyChina Medical UniversityShenyangLiaoningChina
| | - Jingyu Chen
- Department of PhysiologyChina Medical UniversityShenyangLiaoningChina
| | - Yanping Yang
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ling Qin
- Department of PhysiologyChina Medical UniversityShenyangLiaoningChina
| |
Collapse
|
15
|
Davies C, Martins D, Dipasquale O, McCutcheon RA, De Micheli A, Ramella-Cravaro V, Provenzani U, Rutigliano G, Cappucciati M, Oliver D, Williams S, Zelaya F, Allen P, Murguia S, Taylor D, Shergill S, Morrison P, McGuire P, Paloyelis Y, Fusar-Poli P. Connectome dysfunction in patients at clinical high risk for psychosis and modulation by oxytocin. Mol Psychiatry 2024; 29:1241-1252. [PMID: 38243074 PMCID: PMC11189815 DOI: 10.1038/s41380-024-02406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Abnormalities in functional brain networks (functional connectome) are increasingly implicated in people at Clinical High Risk for Psychosis (CHR-P). Intranasal oxytocin, a potential novel treatment for the CHR-P state, modulates network topology in healthy individuals. However, its connectomic effects in people at CHR-P remain unknown. Forty-seven men (30 CHR-P and 17 healthy controls) received acute challenges of both intranasal oxytocin 40 IU and placebo in two parallel randomised, double-blind, placebo-controlled cross-over studies which had similar but not identical designs. Multi-echo resting-state fMRI data was acquired at approximately 1 h post-dosing. Using a graph theoretical approach, the effects of group (CHR-P vs healthy control), treatment (oxytocin vs placebo) and respective interactions were tested on graph metrics describing the topology of the functional connectome. Group effects were observed in 12 regions (all pFDR < 0.05) most localised to the frontoparietal network. Treatment effects were found in 7 regions (all pFDR < 0.05) predominantly within the ventral attention network. Our major finding was that many effects of oxytocin on network topology differ across CHR-P and healthy individuals, with significant interaction effects observed in numerous subcortical regions strongly implicated in psychosis onset, such as the thalamus, pallidum and nucleus accumbens, and cortical regions which localised primarily to the default mode network (12 regions, all pFDR < 0.05). Collectively, our findings provide new insights on aberrant functional brain network organisation associated with psychosis risk and demonstrate, for the first time, that oxytocin modulates network topology in brain regions implicated in the pathophysiology of psychosis in a clinical status (CHR-P vs healthy control) specific manner.
Collapse
Affiliation(s)
- Cathy Davies
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychiatry, University Hospitals of Genève, Geneva, Switzerland
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Andrea De Micheli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Outreach And Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Valentina Ramella-Cravaro
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Umberto Provenzani
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Grazia Rutigliano
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marco Cappucciati
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dominic Oliver
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Steve Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Allen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Silvia Murguia
- Tower Hamlets Early Detection Service, East London NHS Foundation Trust, London, UK
| | - David Taylor
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Kent and Medway Medical School, Canterbury, UK
| | - Paul Morrison
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
- Outreach And Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
16
|
Davies C, Bossong MG, Martins D, Wilson R, Appiah-Kusi E, Blest-Hopley G, Zelaya F, Allen P, Brammer M, Perez J, McGuire P, Bhattacharyya S. Increased hippocampal blood flow in people at clinical high risk for psychosis and effects of cannabidiol. Psychol Med 2024; 54:993-1003. [PMID: 37845827 DOI: 10.1017/s0033291723002775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
BACKGROUND Hippocampal hyperperfusion has been observed in people at Clinical High Risk for Psychosis (CHR), is associated with adverse longitudinal outcomes and represents a potential treatment target for novel pharmacotherapies. Whether cannabidiol (CBD) has ameliorative effects on hippocampal blood flow (rCBF) in CHR patients remains unknown. METHODS Using a double-blind, parallel-group design, 33 CHR patients were randomized to a single oral 600 mg dose of CBD or placebo; 19 healthy controls did not receive any drug. Hippocampal rCBF was measured using Arterial Spin Labeling. We examined differences relating to CHR status (controls v. placebo), effects of CBD in CHR (placebo v. CBD) and linear between-group relationships, such that placebo > CBD > controls or controls > CBD > placebo, using a combination of hypothesis-driven and exploratory wholebrain analyses. RESULTS Placebo-treated patients had significantly higher hippocampal rCBF bilaterally (all pFWE<0.01) compared to healthy controls. There were no suprathreshold effects in the CBD v. placebo contrast. However, we found a significant linear relationship in the right hippocampus (pFWE = 0.035) such that rCBF was highest in the placebo group, lowest in controls and intermediate in the CBD group. Exploratory wholebrain results replicated previous findings of hyperperfusion in the hippocampus, striatum and midbrain in CHR patients, and provided novel evidence of increased rCBF in inferior-temporal and lateral-occipital regions in patients under CBD compared to placebo. CONCLUSIONS These findings suggest that hippocampal blood flow is elevated in the CHR state and may be partially normalized by a single dose of CBD. CBD therefore merits further investigation as a potential novel treatment for this population.
Collapse
Affiliation(s)
- Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Matthijs G Bossong
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| | - Robin Wilson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Elizabeth Appiah-Kusi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Michael Brammer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jesus Perez
- CAMEO Early Intervention Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- Institute of Biomedical Research (IBSAL), Department of Medicine, Universidad de Salamanca, Salamanca, Spain
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
17
|
Santos-Silva T, Lopes CFB, Hazar Ülgen D, Guimarães DA, Guimarães FS, Alberici LC, Sandi C, Gomes FV. Adolescent Stress-Induced Ventral Hippocampus Redox Dysregulation Underlies Behavioral Deficits and Excitatory/Inhibitory Imbalance Related to Schizophrenia. Schizophr Bull 2024:sbae033. [PMID: 38525594 DOI: 10.1093/schbul/sbae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND HYPOTHESIS Redox dysregulation has been proposed as a convergent point of childhood trauma and the emergence of psychiatric disorders, such as schizophrenia (SCZ). A critical region particularly vulnerable to environmental insults during adolescence is the ventral hippocampus (vHip). However, the impact of severe stress on vHip redox states and their functional consequences, including behavioral and electrophysiological changes related to SCZ, are not entirely understood. STUDY DESIGN After exposing adolescent animals to physical stress (postnatal day, PND31-40), we explored social and cognitive behaviors (PND47-49), the basal activity of pyramidal glutamate neurons, the number of parvalbumin (PV) interneurons, and the transcriptomic signature of the vHip (PND51). We also evaluated the impact of stress on the redox system, including mitochondrial respiratory function, reactive oxygen species (ROS) production, and glutathione (GSH) levels in the vHip and serum. STUDY RESULTS Adolescent-stressed animals exhibited loss of sociability, cognitive impairment, and vHip excitatory/inhibitory (E/I) imbalance. Genome-wide transcriptional profiling unveiled the impact of stress on redox system- and synaptic-related genes. Stress impacted mitochondrial respiratory function and changes in ROS levels in the vHip. GSH and glutathione disulfide (GSSG) levels were elevated in the serum of stressed animals, while GSSG was also increased in the vHip and negatively correlated with sociability. Additionally, PV interneuron deficits in the vHip caused by adolescent stress were associated with oxidative stress. CONCLUSIONS Our results highlight the negative impact of adolescent stress on vHip redox regulation and mitochondrial function, which are partially associated with E/I imbalance and behavioral abnormalities related to SCZ.
Collapse
Affiliation(s)
- Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Caio Fábio Baeta Lopes
- Department of Biomolecular Sciences, Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Doğukan Hazar Ülgen
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Danielle A Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carmen Sandi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
18
|
Roeske MJ, McHugo M, Rogers B, Armstrong K, Avery S, Donahue M, Heckers S. Modulation of hippocampal activity in schizophrenia with levetiracetam: a randomized, double-blind, cross-over, placebo-controlled trial. Neuropsychopharmacology 2024; 49:681-689. [PMID: 37833590 PMCID: PMC10876634 DOI: 10.1038/s41386-023-01730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023]
Abstract
Hippocampal hyperactivity is a novel pharmacological target in the treatment of schizophrenia. We hypothesized that levetiracetam (LEV), a drug binding to the synaptic vesicle glycoprotein 2 A, normalizes hippocampal activity in persons with schizophrenia and can be measured using neuroimaging methods. Thirty healthy control participants and 30 patients with schizophrenia (28 treated with antipsychotic drugs), were randomly assigned to a double-blind, cross-over trial to receive a single administration of 500 mg oral LEV or placebo during two study visits. At each visit, we assessed hippocampal function using resting state fractional amplitude of low frequency fluctuations (fALFF), cerebral blood flow (CBF) with arterial spin labeling, and hippocampal blood-oxygen-level-dependent (BOLD) signal during a scene processing task. After placebo treatment, we found significant elevations in hippocampal fALFF in patients with schizophrenia, consistent with hippocampal hyperactivity. Additionally, hippocampal fALFF in patients with schizophrenia after LEV treatment did not significantly differ from healthy control participants receiving placebo, suggesting that LEV may normalize hippocampal hyperactivity. In contrast to our fALFF findings, we did not detect significant group differences or an effect of LEV treatment on hippocampal CBF. In the context of no significant group difference in BOLD signal, we found that hippocampal recruitment during scene processing is enhanced by LEV more significantly in schizophrenia. We conclude that pharmacological modulation of hippocampal hyperactivity in schizophrenia can be studied with some neuroimaging methods, but not others. Additional studies in different cohorts, employing alternate neuroimaging methods and study designs, are needed to establish levetiracetam as a treatment for schizophrenia.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter Rogers
- Vanderbilt University Institute of Imaging Sciences, Nashville, TN, USA
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
19
|
Chen PY, Chiu CC, Chang CK, Lu ML, Huang CY, Chen CH, Huang MC. Higher orexin-A levels are associated with treatment response to clozapine in patients with schizophrenia: A cross-sectional study. J Psychopharmacol 2024; 38:258-267. [PMID: 38279671 DOI: 10.1177/02698811231225610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND Clozapine is the primary antipsychotic (APD) for treatment-resistant schizophrenia (TRS). However, only 40% of patients with TRS respond to clozapine, constituting a subgroup of clozapine-resistant patients. Recently, the neuropeptide orexin-A was shown to be involved in the pathophysiology of schizophrenia. This study evaluated the association of orexin-A levels with the clozapine response in patients with TRS. METHODS We recruited 199 patients with schizophrenia, including 37 APD-free and 162 clozapine-treated patients. Clozapine-treated patients were divided into clozapine-responsive (n = 100) and clozapine-resistant (n = 62) groups based on whether they had achieved psychotic remission defined by the 18-item Brief Psychiatric Rating Scale (BPRS-18). We compared blood orexin-A levels among the three groups and performed regression analysis to determine the association of orexin-A level with treatment response in clozapine-treated patients. We also explored the correlation between orexin-A levels and cognitive function, assessed using the CogState Schizophrenia Battery. RESULTS Clozapine-responsive patients had higher orexin-A levels than clozapine-resistant and APD-free patients. Orexin-A level was the only factor significantly associated with treatment response after adjustment. Orexin-A levels were negatively correlated with BPRS-18 full scale and positive, negative, and general symptoms subscale scores. We also observed a positive correlation between orexin-A levels and verbal memory, visual learning and memory, and working memory function. CONCLUSIONS This cross-sectional study showed that higher levels of orexin-A are associated with treatment response to clozapine in patients with TRS. Future prospective studies examining changes in orexin-A level following clozapine treatment and the potential benefit of augmenting orexin-A signaling are warranted.
Collapse
Affiliation(s)
- Po-Yu Chen
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Kuo Chang
- Global Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mong-Liang Lu
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Wang-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cho-Yin Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Wang-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Wang-Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
20
|
Davidson M, Carpenter WT. Targeted Treatment of Schizophrenia Symptoms as They Manifest, or Continuous Treatment to Reduce the Risk of Psychosis Recurrence. Schizophr Bull 2024; 50:14-21. [PMID: 37929893 PMCID: PMC10754173 DOI: 10.1093/schbul/sbad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Current pharmacological treatment of schizophrenia employs drugs that interfere with dopamine neurotransmission, aiming to suppress acute exacerbation of psychosis and maintenance treatment to reduce the risk of psychosis recurrence. According to this treatment scheme, available psychotropic drugs intended to treat negative symptoms, cognitive impairment, or anxiety are administered as add-ons to treatment with antipsychotics. However, an alternative treatment scheme proposes a targeted or intermittent treatment approach, by which antipsychotic drugs are administered upon psychosis exacerbation and discontinued upon remission or stabilization, while negative symptoms, cognitive impairment, or anxiety are treated with specific psychotropics as monotherapy. Along these lines, antipsychotics are renewed only in the event of recurrence of psychotic symptoms. This 50-year-old debate between targeted and continuous treatment schemes arises from disagreements about interpreting scientific evidence and discordant views regarding benefit/risk assessment. Among the debate's questions are: (1) what is the percentage of individuals who can maintain stability without antipsychotic maintenance treatment, and what is the percentage of those who exacerbate despite antipsychotic treatment? (2) how to interpret results of placebo-controlled 9- to 18-month-long maintenance trials in a life-long chronic disorder, and how to interpret results of the targeted trials, some of which are open label or not randomized; (3) how to weigh the decreased risk for psychotic recurrence vs the almost certainty of adverse effects on patient's quality of life. Patients' profiles, preferences, and circumstances of the care provision should be considered as the targeted vs continuous treatment options are considered.
Collapse
Affiliation(s)
- Michael Davidson
- Department of Basic and Clinical Sciences, Psychiatry, University of Nicosia Medical School, 2414, Nicosia, Cyprus and Minerva Neurosciences, 1500 District Avenue, Burlington, MA 01803, USA
| | - William T Carpenter
- University of Maryland School of Medicine, Department of Psychiatry, Maryland Psychiatric Research Center, Baltimore, MD, USA
| |
Collapse
|
21
|
Gomez Ramos B, Ohnmacht J, de Lange N, Valceschini E, Ginolhac A, Catillon M, Ferrante D, Rakovic A, Halder R, Massart F, Arena G, Antony P, Bolognin S, Klein C, Krause R, Schulz MH, Sauter T, Krüger R, Sinkkonen L. Multiomics analysis identifies novel facilitators of human dopaminergic neuron differentiation. EMBO Rep 2024; 25:254-285. [PMID: 38177910 PMCID: PMC10897179 DOI: 10.1038/s44319-023-00024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Midbrain dopaminergic neurons (mDANs) control voluntary movement, cognition, and reward behavior under physiological conditions and are implicated in human diseases such as Parkinson's disease (PD). Many transcription factors (TFs) controlling human mDAN differentiation during development have been described, but much of the regulatory landscape remains undefined. Using a tyrosine hydroxylase (TH) human iPSC reporter line, we here generate time series transcriptomic and epigenomic profiles of purified mDANs during differentiation. Integrative analysis predicts novel regulators of mDAN differentiation and super-enhancers are used to identify key TFs. We find LBX1, NHLH1 and NR2F1/2 to promote mDAN differentiation and show that overexpression of either LBX1 or NHLH1 can also improve mDAN specification. A more detailed investigation of TF targets reveals that NHLH1 promotes the induction of neuronal miR-124, LBX1 regulates cholesterol biosynthesis, and NR2F1/2 controls neuronal activity.
Collapse
Affiliation(s)
- Borja Gomez Ramos
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Jochen Ohnmacht
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Nikola de Lange
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Elena Valceschini
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Aurélien Ginolhac
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Marie Catillon
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Daniele Ferrante
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Aleksandar Rakovic
- Institute of Neurogenetics, University of Lübeck, 23538, Lübeck, Germany
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - François Massart
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, 23538, Lübeck, Germany
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Marcel H Schulz
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt, Germany
- German Centre for Cardiovascular Research, Partner site Rhein-Main, 60590, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University, Frankfurt am Main, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), L-1210, Luxembourg, Luxembourg
- Luxembourg Institute of Health (LIH), L-1445, Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg.
| |
Collapse
|
22
|
Howes OD, Bukala BR, Beck K. Schizophrenia: from neurochemistry to circuits, symptoms and treatments. Nat Rev Neurol 2024; 20:22-35. [PMID: 38110704 DOI: 10.1038/s41582-023-00904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 12/20/2023]
Abstract
Schizophrenia is a leading cause of global disability. Current pharmacotherapy for the disease predominantly uses one mechanism - dopamine D2 receptor blockade - but often shows limited efficacy and poor tolerability. These limitations highlight the need to better understand the aetiology of the disease to aid the development of alternative therapeutic approaches. Here, we review the latest meta-analyses and other findings on the neurobiology of prodromal, first-episode and chronic schizophrenia, and the link to psychotic symptoms, focusing on imaging evidence from people with the disorder. This evidence demonstrates regionally specific neurotransmitter alterations, including higher glutamate and dopamine measures in the basal ganglia, and lower glutamate, dopamine and γ-aminobutyric acid (GABA) levels in cortical regions, particularly the frontal cortex, relative to healthy individuals. We consider how dysfunction in cortico-thalamo-striatal-midbrain circuits might alter brain information processing to underlie psychotic symptoms. Finally, we discuss the implications of these findings for developing new, mechanistically based treatments and precision medicine for psychotic symptoms, as well as negative and cognitive symptoms.
Collapse
Affiliation(s)
- Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, UK.
| | - Bernard R Bukala
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
23
|
Santos-Silva T, dos Santos Fabris D, de Oliveira CL, Guimarães FS, Gomes FV. Prefrontal and Hippocampal Parvalbumin Interneurons in Animal Models for Schizophrenia: A Systematic Review and Meta-analysis. Schizophr Bull 2024; 50:210-223. [PMID: 37584417 PMCID: PMC10754178 DOI: 10.1093/schbul/sbad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
BACKGROUND Consistent with postmortem findings in patients, most animal models for schizophrenia (SCZ) present abnormal levels of parvalbumin (PV), a marker of fast-spiking GABAergic interneurons, in the prefrontal cortex (PFC) and hippocampus (HIP). However, there are discrepancies in the literature. PV reductions lead to a functional loss of PV interneurons, which is proposed to underly SCZ symptoms. Given its complex etiology, different categories of animal models have been developed to study SCZ, which may distinctly impact PV levels in rodent brain areas. STUDY DESIGN We performed a quantitative meta-analysis on PV-positive cell number/density and expression levels in the PFC and HIP of animal models for SCZ based on pharmacological, neurodevelopmental, and genetic manipulations. RESULTS Our results confirmed that PV levels are significantly reduced in the PFC and HIP regardless of the animal model. By categorizing into subgroups, we found that all pharmacological models based on NMDA receptor antagonism decreased PV-positive cell number/density or PV expression levels in both brain areas examined. In neurodevelopmental models, abnormal PV levels were confirmed in both brain areas in maternal immune activation models and HIP of the methylazoxymethanol acetate model. In genetic models, negative effects were found in neuregulin 1 and ERBB4 mutant mice in both brain regions and the PFC of dysbindin mutant mice. Regarding sex differences, male rodents exhibited PV reductions in both brain regions only in pharmacological models, while few studies have been conducted in females. CONCLUSION Overall, our findings support deficits in prefrontal and hippocampal PV interneurons in animal models for SCZ.
Collapse
Affiliation(s)
- Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Débora dos Santos Fabris
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cilene Lino de Oliveira
- Department of Physiological Sciences, Center of Biological Sciences, University of Santa Catarina, Florianópolis,Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
24
|
Petty A, Garcia-Hidalgo A, Halff EF, Natesan S, Withers DJ, Irvine EE, Kokkinou M, Wells LA, Bonsall DR, Tang SP, Veronese M, Howes OD. Sub-Chronic Ketamine Administration Increases Dopamine Synthesis Capacity in the Mouse Midbrain: a Preclinical In Vivo PET Study. Mol Imaging Biol 2023; 25:1054-1062. [PMID: 37872462 PMCID: PMC10728236 DOI: 10.1007/s11307-023-01865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE There is robust evidence that people with schizophrenia show elevated dopamine (DA) synthesis capacity in the striatum. This finding comes from positron emission tomography (PET) studies using radiolabelled l-3,4-dihydroxyphenylalanine (18F-DOPA). DA synthesis capacity also appears to be elevated in the midbrain of people with schizophrenia compared to healthy controls. We therefore aimed to optimise a method to quantify 18F-DOPA uptake in the midbrain of mice, and to utilise this method to quantify DA synthesis capacity in the midbrain of the sub-chronic ketamine model of schizophrenia-relevant hyperdopaminergia. PROCEDURES Adult male C57Bl6 mice were treated daily with either ketamine (30 mg/kg, i.p.) or vehicle (saline) for 5 days. On day 7, animals were administered 18F-DOPA (i.p.) and scanned in an Inveon PET/CT scanner. Data from the saline-treated group were used to optimise an atlas-based template to position the midbrain region of interest and to determine the analysis parameters which resulted in the greatest intra-group consistency. These parameters were then used to compare midbrain DA synthesis capacity (KiMod) between ketamine- and saline-treated animals. RESULTS Using an atlas-based template to position the 3.7 mm3 midbrain ROI with a T*-Tend window of 15-140 min to estimate KiMod resulted in the lowest intra-group variability and moderate test-retest agreement. Using these parameters, we found that KiMod was elevated in the midbrain of ketamine-treated animals in comparison to saline-treated animals (t(22) = 2.19, p = 0.048). A positive correlation between DA synthesis capacity in the striatum and the midbrain was also evident in the saline-treated animals (r2 = 0.59, p = 0.005) but was absent in ketamine-treated animals (r2 = 0.004, p = 0.83). CONCLUSIONS Using this optimised method for quantifying 18F-DOPA uptake in the midbrain, we found that elevated striatal DA synthesis capacity in the sub-chronic ketamine model extends to the midbrain. Interestingly, the dysconnectivity between the midbrain and striatum seen in this model is also evident in the clinical population. This model may therefore be ideal for assessing novel compounds which are designed to modulate pre-synaptic DA synthesis capacity.
Collapse
Affiliation(s)
- Alice Petty
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK.
| | - Anna Garcia-Hidalgo
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
| | - Els F Halff
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Sridhar Natesan
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Dominic J Withers
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, London, UK
| | - Elaine E Irvine
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, London, UK
| | - Michelle Kokkinou
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
| | - Lisa A Wells
- Invicro, Burlington Danes, Hammersmith Hospital, London, UK
| | | | - Sac-Pham Tang
- Invicro, Burlington Danes, Hammersmith Hospital, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Oliver D Howes
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, UK
- H. Lundbeck A/S, St Albans, AL1 2PS, UK
| |
Collapse
|
25
|
Abbasi S, Wolff A, Çatal Y, Northoff G. Increased noise relates to abnormal excitation-inhibition balance in schizophrenia: a combined empirical and computational study. Cereb Cortex 2023; 33:10477-10491. [PMID: 37562844 PMCID: PMC10560578 DOI: 10.1093/cercor/bhad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Electroencephalography studies link sensory processing issues in schizophrenia to increased noise level-noise here is background spontaneous activity-as measured by the signal-to-noise ratio. The mechanism, however, of such increased noise is unknown. We investigate if this relates to changes in cortical excitation-inhibition balance, which has been observed to be atypical in schizophrenia, by combining electroencephalography and computational modeling. Our electroencephalography task results, for which the local field potentials can be used as a proxy, show lower signal-to-noise ratio due to higher noise in schizophrenia. Both electroencephalography rest and task states exhibit higher levels of excitation in the functional excitation-inhibition (as a proxy of excitation-inhibition balance). This suggests a relationship between increased noise and atypical excitation in schizophrenia, which was addressed by using computational modeling. A Leaky Integrate-and-Fire model was used to simulate the effects of varying degrees of noise on excitation-inhibition balance, local field potential, NMDA current, and . Results show a noise-related increase in the local field potential, excitation in excitation-inhibition balance, pyramidal NMDA current, and spike rate. Mutual information and mediation analysis were used to explore a cross-level relationship, showing that the cortical local field potential plays a key role in transferring the effect of noise to the cellular population level of NMDA.
Collapse
Affiliation(s)
- Samira Abbasi
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
- Department of Biomedical Engineering, Hamedan University of Technology, Hamedan 65169-13733, Iran
| | - Annemarie Wolff
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
| | - Yasir Çatal
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
| | - Georg Northoff
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
| |
Collapse
|
26
|
Srivastav S, Cui X, Varela RB, Kesby JP, Eyles D. Increasing dopamine synthesis in nigrostriatal circuits increases phasic dopamine release and alters dorsal striatal connectivity: implications for schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:69. [PMID: 37798312 PMCID: PMC10556015 DOI: 10.1038/s41537-023-00397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
One of the most robust neurochemical abnormalities reported in patients with schizophrenia is an increase in dopamine (DA) synthesis and release, restricted to the dorsal striatum (DS). This hyper functionality is strongly associated with psychotic symptoms and progresses in those who later transition to schizophrenia. To understand the implications of this progressive neurobiology on brain function, we have developed a model in rats which we refer to as EDiPs (Enhanced Dopamine in Prodromal schizophrenia). The EDiPs model features a virally mediated increase in dorsal striatal (DS) DA synthesis capacity across puberty and into adulthood. This protocol leads to progressive changes in behaviour and neurochemistry. Our aim in this study was to explore if increased DA synthesis capacity alters the physiology of DA release and DS connectivity. Using fast scan cyclic voltammetry to assess DA release we show that evoked/phasic DA release is increased in the DS of EDiPs rats, whereas tonic/background levels of DA remain unaffected. Using quantitative immunohistochemistry methods to quantify DS synaptic architecture we show a presynaptic marker for DA release sites (Bassoon) was elevated within TH axons specifically within the DS, consistent with the increased phasic DA release in this region. Alongside changes in DA systems, we also show increased density of vesicular glutamate transporter 1 (VGluT1) synapses in the EDiPs DS suggesting changes in cortical connectivity. Our data may prove relevant in understanding the long-term implications for DS function in response to the robust and prolonged increases in DA synthesis uptake and release reported in schizophrenia.
Collapse
Affiliation(s)
- Sunil Srivastav
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia
| | | | - James P Kesby
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia
| | - Darryl Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| |
Collapse
|
27
|
Casserly L, Garton DR, Montaño-Rodriguez A, Andressoo JO. Analysis of Acute and Chronic Methamphetamine Treatment in Mice on Gdnf System Expression Reveals a Potential Mechanism of Schizophrenia Susceptibility. Biomolecules 2023; 13:1428. [PMID: 37759827 PMCID: PMC10526418 DOI: 10.3390/biom13091428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The increase in presynaptic striatal dopamine is the main dopaminergic abnormality in schizophrenia (SCZ). SCZ is primarily treated by modulating the activity of monoamine systems, with a focus on dopamine and serotonin receptors. Glial cell line-derived neurotrophic factor (GDNF) is a strong dopaminergic factor, that recently was shown to correlate with SCZ in human CSF and in striatal tissue. A 2-3-fold increase in GDNF in the brain was sufficient to induce SCZ-like dopaminergic and behavioural changes in mice. Here, we analysed the effect of acute, chronic, and embryonic methamphetamine, a drug known to enhance the risk of psychosis, on Gdnf and its receptors, Gfra1 and Ret, as well as on monoamine metabolism-related gene expression in the mouse brain. We found that acute methamphetamine application increases Gdnf expression in the striatum and chronic methamphetamine decreases the striatal expression of GDNF receptors Gfra1 and Ret. Both chronic and acute methamphetamine treatment upregulated the expression of genes related to dopamine and serotonin metabolism in the striatum, prefrontal cortex, and substantia nigra. Our results suggest a potential mechanism as to how methamphetamine elicits individual psychosis risk in young adults-variation in initial striatal GDNF induction and subsequent GFRα1 and RET downregulation may determine individual susceptibility to psychosis. Our results may guide future experiments and precision medicine development for methamphetamine-induced psychosis using GDNF/GFRa1/RET antagonists.
Collapse
Affiliation(s)
- Laoise Casserly
- Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| | - Daniel R. Garton
- Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| | - Ana Montaño-Rodriguez
- Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society (NVS), Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
28
|
Souza AJ, Sharmin D, Cook JM, Guimarães FS, Gomes FV. An alpha 5-GABAa receptor positive allosteric modulator attenuates social and cognitive deficits without changing dopamine system hyperactivity in an animal model for autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554679. [PMID: 37662217 PMCID: PMC10473734 DOI: 10.1101/2023.08.24.554679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Autism Spectrum Disorders (ASD) are characterized by core behavioral symptoms in the domains of sociability, language/communication, and repetitive or stereotyped behaviors. Deficits in the prefrontal and hippocampal excitatory/inhibitory balance due to a functional loss of GABAergic interneurons are proposed to underlie these symptoms. Increasing the postsynaptic effects of GABA with compounds that selectively modulate GABAergic receptors could be a potential target for treating ASD symptoms. In addition, deficits in GABAergic interneurons have been linked to dopamine (DA) system dysregulation, and, despite conflicting evidence, abnormalities in the DA system activity may underly some ASD symptoms. Here, we investigated whether the positive allosteric modulator of α5-containing GABA A receptors (α5-GABA A Rs) SH-053-2'F-R-CH3 (10 mg/kg) attenuates behavioral abnormalities in a rat model for autism based on in utero VPA exposure. We also evaluated if animals exposed to VPA in utero present changes in the ventral tegmental area (VTA) DA system activity using in vivo electrophysiology and if SH-053-2'F-R-CH3 could attenuate these changes. In utero VPA exposure caused male and female rats to present increased repetitive behavior (self-grooming) in early adolescence and deficits in social interaction in adulthood. Male, but not female VPA rats, also presented deficits in recognition memory as adults. SH-053-2'F-R-CH3 attenuated the impairments in sociability and cognitive function in male VPA-exposed rats without attenuating the decreased social interaction in females. Male and female adult VPA-exposed rats also showed an increased VTA DA neuron population activity, which was not changed by SH-053-2'F-R-CH3. Despite sex differences, our findings indicate α5-GABA A Rs positive allosteric modulators may effectively attenuate some core ASD symptoms.
Collapse
|
29
|
McCoy AM, Prevot TD, Sharmin D, Cook JM, Sibille EL, Lodge DJ. GL-II-73, a Positive Allosteric Modulator of α5GABA A Receptors, Reverses Dopamine System Dysfunction Associated with Pilocarpine-Induced Temporal Lobe Epilepsy. Int J Mol Sci 2023; 24:11588. [PMID: 37511346 PMCID: PMC10380722 DOI: 10.3390/ijms241411588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Although seizures are a hallmark feature of temporal lobe epilepsy (TLE), psychiatric comorbidities, including psychosis, are frequently associated with TLE and contribute to decreased quality of life. Currently, there are no defined therapeutic protocols to manage psychosis in TLE patients, as antipsychotic agents may induce epileptic seizures and are associated with severe side effects and pharmacokinetic and pharmacodynamic interactions with antiepileptic drugs. Thus, novel treatment strategies are necessary. Several lines of evidence suggest that hippocampal hyperactivity is central to the pathology of both TLE and psychosis; therefore, restoring hippocampal activity back to normal levels may be a novel therapeutic approach for treating psychosis in TLE. In rodent models, increased activity in the ventral hippocampus (vHipp) results in aberrant dopamine system function, which is thought to underlie symptoms of psychosis. Indeed, we have previously demonstrated that targeting α5-containing γ-aminobutyric acid receptors (α5GABAARs), an inhibitory receptor abundant in the hippocampus, with positive allosteric modulators (PAMs), can restore dopamine system function in rodent models displaying hippocampal hyperactivity. Thus, we posited that α5-PAMs may be beneficial in a model used to study TLE. Here, we demonstrate that pilocarpine-induced TLE is associated with increased VTA dopamine neuron activity, an effect that was completely reversed by intra-vHipp administration of GL-II-73, a selective α5-PAM. Further, pilocarpine did not alter the hippocampal α5GABAAR expression or synaptic localization that may affect the efficacy of α5-PAMs. Taken together, these results suggest augmenting α5GABAAR function as a novel therapeutic modality for the treatment of psychosis in TLE.
Collapse
Affiliation(s)
- Alexandra M. McCoy
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA;
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| | - Thomas D. Prevot
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON M5S 2S1, Canada; (T.D.P.); (E.L.S.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (D.S.); (J.M.C.)
| | - James M. Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (D.S.); (J.M.C.)
| | - Etienne L. Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON M5S 2S1, Canada; (T.D.P.); (E.L.S.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Daniel J. Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA;
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| |
Collapse
|
30
|
Aibar-Durán JÁ, Corripio Collado I, Roldán Bejarano A, Sánchez Nevado R, Aracil Bolanos I, García-Cornet J, Alonso-Solís A, Grasa Bello EM, de Quintana Schmidt C, Muñoz Hernández F, Molet Teixidó J, Rodríguez RR. Long-term outcomes of deep brain stimulation for treatment-resistant schizophrenia: Exploring potential targets. J Psychiatr Res 2023; 163:296-304. [PMID: 37245316 DOI: 10.1016/j.jpsychires.2023.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Schizophrenia is a complex and disabling disorder. Around 30% of patients have treatment-resistant schizophrenia (TRS). OBJECTIVE This study summarizes the outcomes after three years follow-up of the first series of patients with TRS treated with deep brain stimulation (DBS) and discuss surgical, clinical and imaging analysis. METHODS Eight patients with TRS treated with DBS in the nucleus accumbens (NAcc) or the subgenual cingulate gyrus (SCG) were included. Symptoms were rated with the PANSS scale and normalized using the illness density index (IDI). A reduction in IDI-PANSS of ≥25% compared to baseline was the criterion of good response. The volume of activated tissue was calculated to perform a connectomic analysis for each patient. An estimation of the tracts and cortical areas modulated was generated. RESULTS Five women and three men were analyzed. After 3 years' follow-up, positive symptoms improved in 50% of the SCG group and 75% of the NAcc group (p = 0.06), and general symptoms improved in 25% and 50% respectively (p = 0.06). The SCG group showed activation of the cingulate bundle and modulation of orbitofrontal and frontomesial regions; in contrast, the NAcc group showed activation of the ventral tegmental area projections pathway and modulation of regions associated with the "default mode network" (precuneus) and Brodmann areas 19 and 20. CONCLUSIONS These results showed a trend toward improvement for positive and general symptoms in patients with TRS treated with DBS. The connectomic analysis will help us understand the interaction of this treatment with the disease to pursue future trial designs.
Collapse
Affiliation(s)
- Juan Ángel Aibar-Durán
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Iluminada Corripio Collado
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Alexandra Roldán Bejarano
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| | - Raquel Sánchez Nevado
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ignacio Aracil Bolanos
- Deparment of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Julia García-Cornet
- Ingeniering imaging and Signaling, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Anna Alonso-Solís
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Eva Ma Grasa Bello
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Cristian de Quintana Schmidt
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Fernando Muñoz Hernández
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Joan Molet Teixidó
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Rodrigo Rodríguez Rodríguez
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
31
|
Deriha K, Hashimoto E, Ukai W, Marchisella F, Nishimura E, Hashiguchi H, Tayama M, Ishii T, Riva MA, Kawanishi C. Reduced sociability in a prenatal immune activation model: Modulation by a chronic blonanserin treatment through the amygdala-hippocampal axis. J Psychiatr Res 2023; 164:209-220. [PMID: 37379611 DOI: 10.1016/j.jpsychires.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
The environmental disturbances in a critical neurodevelopmental period exert organizational effects on brain intrinsic plasticity including excitatory and inhibitory (E/I) neurotransmission those can cause the onset of psychiatric illness. We previously reported that treatment of neural precursor cells with N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 induced reduction of GABAergic interneuron differentiation, and these changes recovered by atypical antipsychotic blonanserin treatment in vitro. However, it remains unclear how this treatment affects neural circuit changes in hippocampus and amygdala, which might contribute to the prevention of onset process of schizophrenia. To elucidate the pathogenic/preventive mechanisms underlying prenatal environmental adversity-induced schizophrenia in more detail, we administered poly (I:C) followed by antipsychotics and examined alterations in social/cognitive behaviors, GABA/glutamate-related gene expressions with cell density and E/I ratio, and brain-derived neurotrophic factor (Bdnf) transcript levels, particularly in limbic areas. Treatment with antipsychotic blonanserin ameliorated impaired social/cognitive behaviors and increased parvalbumin (PV)-positive (+) cell density and its mRNA levels as well as Bdnf with long 3'UTR mRNA levels, particularly in the dorsal hippocampus, in rats exposed to maternal immune activation (MIA). Low dose of blonanserin and haloperidol altered GABA and glutamate-related mRNA levels, the E/I ratio, and Bdnf long 3'UTR mRNA levels in the ventral hippocampus and amygdala, but did not attenuate behavioral impairments. These results strongly implicate changes in PV expression, PV(+) GABAergic interneuron density, and Bdnf long 3'UTR expression levels, particularly in the dorsal hippocampus, in the pathophysiology and treatment responses of MIA-induced schizophrenia and highlight the therapeutic potential of blonanserin for developmental stress-related schizophrenia.
Collapse
Affiliation(s)
- Kenta Deriha
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Eri Hashimoto
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Wataru Ukai
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan; Department of Institutional Research, Center for Medical Education, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Francesca Marchisella
- Department of Pharmacological and Biomolecular Sciences University of Milan Via Balzaretti 9, 20133, Milan, Italy.
| | - Emi Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Hanako Hashiguchi
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Masaya Tayama
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Takao Ishii
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan; Department of Occupational Therapy, Graduate School of Health Sciences, Sapporo Medical University, S-1, W-17, Chuo-ku, Sapporo, 0608556, Japan
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences University of Milan Via Balzaretti 9, 20133, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Chiaki Kawanishi
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| |
Collapse
|
32
|
Kiemes A, Serrano Navacerrada ME, Kim E, Randall K, Simmons C, Rojo Gonzalez L, Petrinovic MM, Lythgoe DJ, Rotaru D, Di Censo D, Hirschler L, Barbier EL, Vernon AC, Stone JM, Davies C, Cash D, Modinos G. Erbb4 Deletion From Inhibitory Interneurons Causes Psychosis-Relevant Neuroimaging Phenotypes. Schizophr Bull 2023; 49:569-580. [PMID: 36573631 PMCID: PMC10154722 DOI: 10.1093/schbul/sbac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND HYPOTHESIS Converging lines of evidence suggest that dysfunction of cortical GABAergic inhibitory interneurons is a core feature of psychosis. This dysfunction is thought to underlie neuroimaging abnormalities commonly found in patients with psychosis, particularly in the hippocampus. These include increases in resting cerebral blood flow (CBF) and glutamatergic metabolite levels, and decreases in ligand binding to GABAA α5 receptors and to the synaptic density marker synaptic vesicle glycoprotein 2A (SV2A). However, direct links between inhibitory interneuron dysfunction and these neuroimaging readouts are yet to be established. Conditional deletion of a schizophrenia susceptibility gene, the tyrosine kinase receptor Erbb4, from cortical and hippocampal inhibitory interneurons leads to synaptic defects, and behavioral and cognitive phenotypes relevant to psychosis in mice. STUDY DESIGN Here, we investigated how this inhibitory interneuron disruption affects hippocampal in vivo neuroimaging readouts. Adult Erbb4 conditional mutant mice (Lhx6-Cre;Erbb4F/F, n = 12) and their wild-type littermates (Erbb4F/F, n = 12) were scanned in a 9.4T magnetic resonance scanner to quantify CBF and glutamatergic metabolite levels (glutamine, glutamate, GABA). Subsequently, we assessed GABAA receptors and SV2A density using quantitative autoradiography. RESULTS Erbb4 mutant mice showed significantly elevated ventral hippccampus CBF and glutamine levels, and decreased SV2A density across hippocampus sub-regions compared to wild-type littermates. No significant GABAA receptor density differences were identified. CONCLUSIONS These findings demonstrate that specific disruption of cortical inhibitory interneurons in mice recapitulate some of the key neuroimaging findings in patients with psychosis, and link inhibitory interneuron deficits to non-invasive measures of brain function and neurochemistry that can be used across species.
Collapse
Affiliation(s)
- Amanda Kiemes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Maria Elisa Serrano Navacerrada
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Eugene Kim
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Karen Randall
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Camilla Simmons
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Loreto Rojo Gonzalez
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Marija-Magdalena Petrinovic
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Diana Rotaru
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Davide Di Censo
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Lydiane Hirschler
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - James M Stone
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Diana Cash
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Schizophrenia is a psychiatric disorder that has a significant socioeconomic impact worldwide. Antipsychotic drugs targeting dopamine transmission alleviate psychotic symptoms but with limited efficacy and tolerability. Animal models have long proven useful for drug discovery. The continued need for new treatment highlights the importance of animal models to study schizophrenia. The lack of new therapeutic compounds combined with the shortcomings of clinical design studies potentially decreased the enthusiasm for animal model use. RECENT FINDINGS In the current review, we discuss the central role of animal models for schizophrenia in providing new insights into neurobiological features and therapeutic development. The US National Institute of Mental Health released the Research Domain Criteria to guide preclinical model studies. Here, we point out the advances of this approach and debate its potential limitations when using animal models to study schizophrenia from the drug discovery perspective. SUMMARY Cross-validated animal models for schizophrenia are crucial to comprehend the cause, pathophysiology, and behavioral and biological features of the disease, to advance prevention and treatment, and the need to carefully evaluate and select appropriate paradigms when investigating novel therapeutic targets.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
34
|
Powell SK, O'Shea C, Townsley K, Prytkova I, Dobrindt K, Elahi R, Iskhakova M, Lambert T, Valada A, Liao W, Ho SM, Slesinger PA, Huckins LM, Akbarian S, Brennand KJ. Induction of dopaminergic neurons for neuronal subtype-specific modeling of psychiatric disease risk. Mol Psychiatry 2023; 28:1970-1982. [PMID: 34493831 PMCID: PMC8898985 DOI: 10.1038/s41380-021-01273-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022]
Abstract
Dopaminergic neurons are critical to movement, mood, addiction, and stress. Current techniques for generating dopaminergic neurons from human induced pluripotent stem cells (hiPSCs) yield heterogenous cell populations with variable purity and inconsistent reproducibility between donors, hiPSC clones, and experiments. Here, we report the rapid (5 weeks) and efficient (~90%) induction of induced dopaminergic neurons (iDANs) through transient overexpression of lineage-promoting transcription factors combined with stringent selection across five donors. We observe maturation-dependent increase in dopamine synthesis and electrophysiological properties consistent with midbrain dopaminergic neuron identity, such as slow-rising after- hyperpolarization potentials, an action potential duration of ~3 ms, tonic sub-threshold oscillatory activity, and spontaneous burst firing at a frequency of ~1.0-1.75 Hz. Transcriptome analysis reveals robust expression of genes involved in fetal midbrain dopaminergic neuron identity. Specifically expressed genes in iDANs, as well as those from isogenic induced GABAergic and glutamatergic neurons, were enriched in loci conferring heritability for cannabis use disorder, schizophrenia, and bipolar disorder; however, each neuronal subtype demonstrated subtype-specific heritability enrichments in biologically relevant pathways, and iDANs alone were uniquely enriched in autism spectrum disorder risk loci. Therefore, iDANs provide a critical tool for modeling midbrain dopaminergic neuron development and dysfunction in psychiatric disease.
Collapse
Affiliation(s)
- Samuel K Powell
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Callan O'Shea
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Kayla Townsley
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iya Prytkova
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristina Dobrindt
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Rahat Elahi
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marina Iskhakova
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tova Lambert
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aditi Valada
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Will Liao
- New York Genome Center, New York, NY, USA
| | - Seok-Man Ho
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
35
|
Brown NK, Roche JK, Farmer CB, Roberts RC. Evidence for upregulation of excitatory synaptic transmission in the substantia nigra in Schizophrenia: a postmortem ultrastructural study. J Neural Transm (Vienna) 2023; 130:561-573. [PMID: 36735096 DOI: 10.1007/s00702-023-02593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/14/2023] [Indexed: 02/04/2023]
Abstract
The dopamine hypothesis of schizophrenia suggests that psychotic symptoms originate from dysregulation of dopaminergic activity, which may be controlled by upstream innervation. We hypothesized that we would find anatomical evidence for the hyperexcitability seen in the SN. We examined and quantified synaptic morphology, which correlates with function, in the postmortem substantia nigra (SN) from 15 schizophrenia and 12 normal subjects. Synapses were counted using stereological techniques and classified based on the morphology of the post-synaptic density (PSD) and the presence or absence of a presynaptic density. The density and proportion of excitatory synapses was higher in the schizophrenia group than in controls, while the proportion (but not density) of inhibitory synapses was lower. We also detected in the schizophrenia group an increase in density of synapses with a PSD of intermediate thickness, which may represent excitatory synapses. The density of synapses with presynaptic densities was similar in both groups. The density of synapses with mixed morphologies was higher in the schizophrenia group than in controls. The human SN contains atypical synaptic morphology. We found an excess amount and proportion of excitatory synapses in the SN in schizophrenia that could result in hyperactivity and drive the psychotic symptoms of schizophrenia. The sources of afferent excitatory inputs to the SN arise from the subthalamic nucleus, the pedunculopontine nucleus, and the ventral tegmental area (VTA), areas that could be the source of excess excitation. Synapses with mixed morphologies may represent inputs from the VTA, which release multiple transmitters.
Collapse
Affiliation(s)
- Nicole K Brown
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Joy K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Charlene B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
36
|
Ogyu K, Matsushita K, Honda S, Wada M, Tamura S, Takenouchi K, Tobari Y, Kusudo K, Kato H, Koizumi T, Arai N, Koreki A, Matsui M, Uchida H, Fujii S, Onaya M, Hirano Y, Mimura M, Nakajima S, Noda Y. Decrease in gamma-band auditory steady-state response in patients with treatment-resistant schizophrenia. Schizophr Res 2023; 252:129-137. [PMID: 36641960 DOI: 10.1016/j.schres.2023.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/26/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Thirty percent of patients with schizophrenia do not respond to non-clozapine antipsychotics and are termed treatment-resistant schizophrenia (TRS). The 40-Hz auditory steady-state response (ASSR) is a well-known to be reduced in patients with schizophrenia compared to healthy controls (HCs), suggesting impaired gamma oscillation in schizophrenia. Given no ASSR study on TRS, we aimed to examine the neurophysiological basis of TRS employing 40-Hz ASSR paradigm. METHOD We compared ASSR measures among HCs, patients with non-TRS, and patients with TRS. TRS criteria were defined by a score of 4 or higher on two items of the Positive and Negative Syndrome Scale (PANSS) positive symptoms despite standard antipsychotic treatment. Participants were examined for ASSR with 40-Hz click-train stimulus, and then time-frequency analysis was performed to calculate evoked power and phase-locking factor (PLF) of 40-Hz ASSR. RESULTS A total of 79 participants were included: 27 patients with TRS (PANSS = 92.6 ± 15.8); 27 patients with non-TRS (PANSS = 63.3 ± 14.7); and 25 HCs. Evoked power in 40-Hz ASSR was lower in the TRS group than in the HC group (F2,79 = 8.37, p = 0.015; TRS vs. HCs: p = 0.012, d = 1.1) while no differences in PLF were found between the groups. CONCLUSION These results suggest that glutamatergic and GABAergic neurophysiological dysfunctions are involved in the pathophysiology of TRS. Our findings warrant more comprehensive and longitudinal studies for deep phenotyping of TRS.
Collapse
Affiliation(s)
- Kamiyu Ogyu
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Karin Matsushita
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shunsuke Tamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazumasa Takenouchi
- Department of Clinical Laboratory Medicine, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Yui Tobari
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan; Faculty of Environment and Information Studies, Keio University, Kanagawa, Kanagawa 252-0882, Japan
| | - Keisuke Kusudo
- Department of Psychiatry, National Hospital Organization Chiba Medical Center, Chiba 260-8606, Japan
| | - Hideo Kato
- Department of Epileptology, National Center of Neurology and Psychiatry Hospital, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Teruki Koizumi
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Naohiro Arai
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akihiro Koreki
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Mie Matsui
- Department of Clinical Cognitive Neuroscience, Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 920-1164, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinya Fujii
- Faculty of Environment and Information Studies, Keio University, Kanagawa, Kanagawa 252-0882, Japan
| | - Mitsumoto Onaya
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan; Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada.
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
37
|
Cavichioli AM, Santos-Silva T, Grace AA, Guimarães FS, Gomes FV. Levetiracetam Attenuates Adolescent Stress-induced Behavioral and Electrophysiological Changes Associated With Schizophrenia in Adult Rats. Schizophr Bull 2023; 49:68-77. [PMID: 35988039 PMCID: PMC9810001 DOI: 10.1093/schbul/sbac106] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND HYPOTHESIS Stress during adolescence is a major risk factor for schizophrenia. We have found previously in rats that adolescent stress caused, in adulthood, behavioral changes and enhanced ventral tegmental area (VTA) dopamine system activity, which were associated with dysregulation of the excitatory-inhibitory (E/I) balance in the ventral hippocampus (vHip). Levetiracetam, an anticonvulsant drug, regulates the release of neurotransmitters, including glutamate, via SV2A inhibition. It also modulates parvalbumin interneuron activity via Kv3.1 channels. Therefore, levetiracetam could ameliorate deficits in the E/I balance. We tested whether levetiracetam attenuate the adolescent stress-induced behavioral changes, vHip hyperactivity, and enhanced VTA dopamine system activity in adult rats. STUDY DESIGN Male Sprague-Dawley rats were subjected to a combination of daily footshock (postnatal day [PD] 31-40), and three 1 h-restraint stress sessions (at PD31, 32, and 40). In adulthood (PD62), animals were tested for anxiety responses (elevated plus-maze and light-dark box), social interaction, and cognitive function (novel object recognition test). The activity of vHip pyramidal neurons and VTA dopamine neurons was also recorded. STUDY RESULTS Adolescent stress produced anxiety-like responses and impaired sociability and cognitive function. Levetiracetam (10 mg/kg) reversed these changes. Levetiracetam also reversed the increased VTA dopamine neuron population activity and the enhanced firing rate of vHip pyramidal neurons induced by adolescent stress. CONCLUSIONS These findings suggest that levetiracetam attenuates the adverse outcomes associated with schizophrenia caused by stress during adolescence.
Collapse
Affiliation(s)
- Andreza M Cavichioli
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
38
|
Davies C, Bossong MG, Martins D, Wilson R, Appiah-Kusi E, Blest-Hopley G, Allen P, Zelaya F, Lythgoe DJ, Brammer M, Perez J, McGuire P, Bhattacharyya S. Hippocampal Glutamate, Resting Perfusion and the Effects of Cannabidiol in Psychosis Risk. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgad022. [PMID: 39145348 PMCID: PMC11207663 DOI: 10.1093/schizbullopen/sgad022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background Preclinical and human data suggest that psychosis onset involves hippocampal glutamatergic dysfunction, driving hyperactivity and hyperperfusion in a hippocampal-midbrain-striatal circuit. Whether glutamatergic dysfunction is related to cerebral perfusion in patients at clinical high risk (CHR) for psychosis, and whether cannabidiol (CBD) has ameliorative effects on glutamate or its relationship with perfusion remains unknown. Methods Using a double-blind, parallel-group design, 33 CHR patients were randomized to a single 600 mg dose of CBD or placebo; 19 healthy controls did not receive any drug. Proton magnetic resonance spectroscopy was used to measure glutamate concentrations in left hippocampus. We examined differences relating to CHR status (controls vs placebo), effects of CBD (placebo vs CBD), and linear between-group effects, such that placebo>CBD>controls or controls>CBD>placebo. We also examined group × glutamate × cerebral perfusion (measured using Arterial Spin Labeling) interactions. Results Compared to controls, CHR-placebo patients had significantly lower hippocampal glutamate (P =.015) and a significant linear relationship was observed across groups, such that glutamate was highest in controls, lowest in CHR-placebo, and intermediate in CHR-CBD (P =.031). Moreover, there was a significant interaction between group (controls vs CHR-placebo), hippocampal glutamate, and perfusion in the putamen and insula (P FWE =.012), with a strong positive correlation in CHR-placebo vs a negative correlation in controls. Conclusions Our findings suggest that hippocampal glutamate is lower in CHR patients and may be partially normalized by a single dose of CBD. Furthermore, we provide the first in vivo evidence of an abnormal relationship between hippocampal glutamate and perfusion in the striatum and insula in CHR.
Collapse
Affiliation(s)
- Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Matthijs G Bossong
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - Robin Wilson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Elizabeth Appiah-Kusi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Michael Brammer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Jesus Perez
- CAMEO Early Intervention Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- Institute of Biomedical Research (IBSAL), Department of Medicine, Universidad de Salamanca, Salamanca, Spain
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
39
|
Tran The J, Magistretti PJ, Ansermet F. The critical periods of cerebral plasticity: A key aspect in a dialog between psychoanalysis and neuroscience centered on the psychopathology of schizophrenia. Front Mol Neurosci 2022; 15:1057539. [PMID: 36590919 PMCID: PMC9795046 DOI: 10.3389/fnmol.2022.1057539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Through research into the molecular and cellular mechanisms that occur during critical periods, recent experimental neurobiological data have brought to light the importance of early childhood. These have demonstrated that childhood and early environmental stimuli play a part not only in our subjective construction, but also in brain development; thus, confirming Freud's intuition regarding the central role of childhood and early experiences of the environment in our psychological development and our subjective outcomes. "Critical periods" of cerebral development represent temporal windows that mark favorable, but also circumscribed, moments in developmental cerebral plasticity. They also vary between different cortical areas. There are, therefore, strictly defined temporal periods for learning language, music, etc., after which this learning becomes more difficult, or even impossible, to acquire. Now, research into these critical periods can be seen as having a significant part to play in the interdisciplinary dialog between psychoanalysis and neurosciences with regard to the role of early experiences in the etiology of some psychopathological conditions. Research into the cellular and molecular mechanisms controlling the onset and end of these critical periods, notably controlled by the maturation of parvalbumin-expressing basket cells, have brought to light the presence of anomalies in the maturation of these neurons in patients with schizophrenia. Starting from these findings we propose revisiting the psychoanalytic theories on the etiology of psychosis from an interdisciplinary perspective. Our study works from the observation, common to both psychoanalysis and neurosciences, that experience leaves a trace; be it a "psychic" or a "synaptic" trace. Thus, we develop a hypothesis for an "absence of trace" in psychosis; reexamining psychosis through the prism of the biological theory of critical periods in plasticity.
Collapse
Affiliation(s)
- Jessica Tran The
- INSERM U1077 Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France,Ecole Pratique des Hautes Etudes, Université Paris Sciences et Lettres, Paris, France,UFR de Psychologie, Université de Caen Normandie, Caen, France,Centre Hospitalier Universitaire de Caen, Caen, France,Cyceron, Caen, France,Agalma Foundation Geneva, Chemin des Mines, Switzerland,*Correspondence: Jessica Tran The,
| | - Pierre J. Magistretti
- Agalma Foundation Geneva, Chemin des Mines, Switzerland,Brain Mind Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland,Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Francois Ansermet
- Agalma Foundation Geneva, Chemin des Mines, Switzerland,Département de Psychiatrie, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| |
Collapse
|
40
|
New Atypical Antipsychotics in the Treatment of Schizophrenia and Depression. Int J Mol Sci 2022; 23:ijms231810624. [PMID: 36142523 PMCID: PMC9500595 DOI: 10.3390/ijms231810624] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
Schizophrenia and depression are heterogeneous disorders. The complex pathomechanism of the diseases imply that medication responses vary across patients. Many psychotropic drugs are available but achieving optimal therapeutic effect can be challenging. The evidence correlates well with clinical observations, suggesting that new atypical antipsychotic drugs are effective against negative and cognitive symptoms of schizophrenia, as well as against affective symptoms observed in depression. The purpose of this review presents the background and evidence for the use of the new second/third-generation antipsychotics (aripiprazole, cariprazine, lurasidone, asenapine, brexpiprazole, lumateperone, pimavanserin) in treatment of schizophrenia and depression. We have first provided a brief overview of the major neurobiological underpinnings of schizophrenia and depression. We then shortly discuss efficacy, safety and limitations of ongoing pharmacotherapy used in depression and schizophrenia. Mainly, we have focused this review on the therapeutic potential of new atypical antipsychotic drugs—currently existing—to be effective in psychotic, as well as in affective disorders.
Collapse
|
41
|
Beck K, Arumuham A, Brugger S, McCutcheon RA, Veronese M, Santangelo B, McGinnity CJ, Dunn J, Kaar S, Singh N, Pillinger T, Borgan F, Sementa T, Neji R, Jauhar S, Aigbirhio F, Boros I, Turkheimer F, Hammers A, Lythgoe D, Stone J, Howes OD. The association between N-methyl-d-aspartate receptor availability and glutamate levels: A multi-modal PET-MR brain imaging study in first-episode psychosis and healthy controls. J Psychopharmacol 2022; 36:1051-1060. [PMID: 36120998 DOI: 10.1177/02698811221099643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Evidence from post-mortem studies and in vivo imaging studies suggests there may be reduced N-methyl-d-aspartate receptor (NMDAR) levels in the hippocampus in patients with schizophrenia. Other studies have reported increased glutamate in striatum in schizophrenia patients. It has been hypothesised that NMDAR hypofunction leads to the disinhibition of glutamatergic signalling; however, this has not been tested in vivo. METHODS In this study, we investigated the relationship between hippocampal NMDAR and striatal glutamate using simultaneous positron emission tomography-magnetic resonance (PET-MR) imaging. We recruited 40 volunteers to this cross-sectional study; 21 patients with schizophrenia, all in their first episode of illness, and 19 healthy controls. We measured hippocampal NMDAR availability using the PET ligand [18F]GE179. This was indexed relative to whole brain as the distribution volume ratio (DVR). Striatal glutamatergic indices (glutamate and Glx) were acquired simultaneously, using combined PET-MR proton magnetic resonance spectroscopy (1H-MRS). RESULTS A total of 33 individuals (15 healthy controls, 18 patients) were included in the analyses (mean (SD) age of controls, 27.31 (4.68) years; mean (SD) age of patients, 24.75 (4.33), 27 male and 6 female). We found an inverse relationship between hippocampal DVR and striatal glutamate levels in people with first-episode psychosis (rho = -0.74, p < 0.001) but not in healthy controls (rho = -0.22, p = 0.44). CONCLUSION This study show that lower relative NMDAR availability in the hippocampus may drive increased striatal glutamate levels in patients with schizophrenia. Further work is required to determine whether these findings may yield new targets for drug development in schizophrenia.
Collapse
Affiliation(s)
- Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Stefan Brugger
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mattia Veronese
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Barbara Santangelo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Colm J McGinnity
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Joel Dunn
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Stephen Kaar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Nisha Singh
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Teresa Sementa
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Radhouene Neji
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Franklin Aigbirhio
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Istvan Boros
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - David Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James Stone
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
- Department of Psychiatry, Eastbourne District General Hospital, Sussex Partnership NHS Foundation Trust, Eastbourne, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
42
|
Knight S, McCutcheon R, Dwir D, Grace AA, O'Daly O, McGuire P, Modinos G. Hippocampal circuit dysfunction in psychosis. Transl Psychiatry 2022; 12:344. [PMID: 36008395 PMCID: PMC9411597 DOI: 10.1038/s41398-022-02115-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Collapse
Affiliation(s)
- Samuel Knight
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
43
|
Uliana DL, Zhu X, Gomes FV, Grace AA. Using animal models for the studies of schizophrenia and depression: The value of translational models for treatment and prevention. Front Behav Neurosci 2022; 16:935320. [PMID: 36090659 PMCID: PMC9449416 DOI: 10.3389/fnbeh.2022.935320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Animal models of psychiatric disorders have been highly effective in advancing the field, identifying circuits related to pathophysiology, and identifying novel therapeutic targets. In this review, we show how animal models, particularly those based on development, have provided essential information regarding circuits involved in disorders, disease progression, and novel targets for intervention and potentially prevention. Nonetheless, in recent years there has been a pushback, largely driven by the US National Institute of Mental Health (NIMH), to shift away from animal models and instead focus on circuits in normal subjects. This has been driven primarily from a lack of discovery of new effective therapeutic targets, and the failure of targets based on preclinical research to show efficacy. We discuss why animal models of complex disorders, when strongly cross-validated by clinical research, are essential to understand disease etiology as well as pathophysiology, and direct new drug discovery. Issues related to shortcomings in clinical trial design that confound translation from animal models as well as the failure to take patient pharmacological history into account are proposed to be a source of the failure of what are likely effective compounds from showing promise in clinical trials.
Collapse
Affiliation(s)
- Daniela L. Uliana
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiyu Zhu
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Felipe V. Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anthony A. Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
44
|
McCoy AM, Prevot TD, Mian MY, Cook JM, Frazer A, Sibille EL, Carreno FR, Lodge DJ. Positive Allosteric Modulation of α5-GABAA Receptors Reverses Stress-Induced Alterations in Dopamine System Function and Prepulse Inhibition of Startle. Int J Neuropsychopharmacol 2022; 25:688-698. [PMID: 35732272 PMCID: PMC9380714 DOI: 10.1093/ijnp/pyac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Up to 64% of patients diagnosed with posttraumatic stress disorder (PTSD) experience psychosis, likely attributable to aberrant dopamine neuron activity. We have previously demonstrated that positive allosteric modulators of α5-GABAARs can selectively decrease hippocampal activity and reverse psychosis-like physiological and behavioral alterations in a rodent model used to study schizophrenia; however, whether this approach translates to a PTSD model remains to be elucidated. METHODS We utilized a 2-day inescapable foot shock (IS) procedure to induce stress-related pathophysiology in male Sprague-Dawley rats. We evaluated the effects of intra-ventral hippocampus (vHipp) administration GL-II-73, an α5-GABAAR, or viral overexpression of the α5 subunit, using in vivo electrophysiology and behavioral measures in control and IS-treated rats. RESULTS IS significantly increased ventral tegmental area dopamine neuron population activity, or the number of dopamine neurons firing spontaneously (n = 6; P = .016), consistent with observation in multiple rodent models used to study psychosis. IS also induced deficits in sensorimotor gating, as measured by reduced prepulse inhibition of startle (n = 12; P = .039). Interestingly, intra-vHipp administration of GL-II-73 completely reversed IS-induced increases in dopamine neuron population activity (n = 6; P = .024) and deficits in prepulse inhibition (n = 8; P = .025), whereas viral overexpression of the α5 subunit in the vHipp was not effective. CONCLUSIONS Our results demonstrate that pharmacological intervention augmenting α5-GABAAR function, but not α5 overexpression in itself, can reverse stress-induced deficits related to PTSD in a rodent model, providing a potential site of therapeutic intervention to treat comorbid psychosis in PTSD.
Collapse
Affiliation(s)
- Alexandra M McCoy
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| | - Thomas D Prevot
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Md Yenus Mian
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Alan Frazer
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| | - Etienne L Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Flavia R Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| |
Collapse
|
45
|
Lopes-Rocha A, Bezerra TO, Zanotto R, Lages Nascimento I, Rodrigues A, Salum C. The Antioxidant N-Acetyl-L-Cysteine Restores the Behavioral Deficits in a Neurodevelopmental Model of Schizophrenia Through a Mechanism That Involves Nitric Oxide. Front Pharmacol 2022; 13:924955. [PMID: 35903343 PMCID: PMC9315304 DOI: 10.3389/fphar.2022.924955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
The disruption of neurodevelopment is a hypothesis for the emergence of schizophrenia. Some evidence supports the hypothesis that a redox imbalance could account for the developmental impairments associated with schizophrenia. Additionally, there is a deficit in glutathione (GSH), a main antioxidant, in this disorder. The injection of metilazoximetanol acetate (MAM) on the 17th day of gestation in Wistar rats recapitulates the neurodevelopmental and oxidative stress hypothesis of schizophrenia. The offspring of rats exposed to MAM treatment present in early adulthood behavioral and neurochemical deficits consistent with those seen in schizophrenia. The present study investigated if the acute and chronic (250 mg/kg) treatment during adulthood with N-acetyl-L-cysteine (NAC), a GSH precursor, can revert the behavioral deficits [hyperlocomotion, prepulse inhibition (PPI), and social interaction (SI)] in MAM rats and if the NAC-chronic-effects could be canceled by L-arginine (250 mg/kg, i.p, for 5 days), nitric oxide precursor. Analyses of markers involved in the inflammatory response, such as astrocytes (glial fibrillary acid protein, GFAP) and microglia (binding adapter molecule 1, Iba1), and parvalbumin (PV) positive GABAergic, were conducted in the prefrontal cortex [PFC, medial orbital cortex (MO) and prelimbic cortex (PrL)] and dorsal and ventral hippocampus [CA1, CA2, CA3, and dentate gyrus (DG)] in rats under chronic treatment with NAC. MAM rats showed decreased time of SI and increased locomotion, and both acute and chronic NAC treatments were able to recover these behavioral deficits. L-arginine blocked NAC behavioral effects. MAM rats presented increases in GFAP density at PFC and Iba1 at PFC and CA1. NAC increased the density of Iba1 cells at PFC and of PV cells at MO and CA1 of the ventral hippocampus. The results indicate that NAC recovered the behavioral deficits observed in MAM rats through a mechanism involving nitric oxide. Our data suggest an ongoing inflammatory process in MAM rats and support a potential antipsychotic effect of NAC.
Collapse
|
46
|
Wada M, Noda Y, Iwata Y, Tsugawa S, Yoshida K, Tani H, Hirano Y, Koike S, Sasabayashi D, Katayama H, Plitman E, Ohi K, Ueno F, Caravaggio F, Koizumi T, Gerretsen P, Suzuki T, Uchida H, Müller DJ, Mimura M, Remington G, Grace AA, Graff-Guerrero A, Nakajima S. Dopaminergic dysfunction and excitatory/inhibitory imbalance in treatment-resistant schizophrenia and novel neuromodulatory treatment. Mol Psychiatry 2022; 27:2950-2967. [PMID: 35444257 DOI: 10.1038/s41380-022-01572-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Antipsychotic drugs are the mainstay in the treatment of schizophrenia. However, one-third of patients do not show adequate improvement in positive symptoms with non-clozapine antipsychotics. Additionally, approximately half of them show poor response to clozapine, electroconvulsive therapy, or other augmentation strategies. However, the development of novel treatment for these conditions is difficult due to the complex and heterogenous pathophysiology of treatment-resistant schizophrenia (TRS). Therefore, this review provides key findings, potential treatments, and a roadmap for future research in this area. First, we review the neurobiological pathophysiology of TRS, particularly the dopaminergic, glutamatergic, and GABAergic pathways. Next, the limitations of existing and promising treatments are presented. Specifically, this article focuses on the therapeutic potential of neuromodulation, including electroconvulsive therapy, repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation. Finally, we propose multivariate analyses that integrate various perspectives of the pathogenesis, such as dopaminergic dysfunction and excitatory/inhibitory imbalance, thereby elucidating the heterogeneity of TRS that could not be obtained by conventional statistics. These analyses can in turn lead to a precision medicine approach with closed-loop neuromodulation targeting the detected pathophysiology of TRS.
Collapse
Affiliation(s)
- Masataka Wada
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Yusuke Iwata
- Department of Neuropsychiatry, University of Yamanashi Faculty of Medicine, Yamanashi, Japan
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan.,Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Hideaki Tani
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Kyushu University, Fukuoka, Japan.,Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Haruyuki Katayama
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Eric Plitman
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Fumihiko Ueno
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Fernando Caravaggio
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Teruki Koizumi
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan.,Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Philip Gerretsen
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Takefumi Suzuki
- Department of Neuropsychiatry, University of Yamanashi Faculty of Medicine, Yamanashi, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Gary Remington
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ariel Graff-Guerrero
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan. .,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| |
Collapse
|
47
|
Ning H, Liu F, Zhang T, Zhao Y, Li Y, Zhao Z, Liu C, Zhang W, Wang H, Li F. A signal-amplification electrochemiluminescence sensor based on layer-by-layer assembly of perylene diimide derivatives for dopamine detection at low potential. Anal Chim Acta 2022; 1214:339963. [DOI: 10.1016/j.aca.2022.339963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
|
48
|
de Oliveira Figueiredo EC, Calì C, Petrelli F, Bezzi P. Emerging evidence for astrocyte dysfunction in schizophrenia. Glia 2022; 70:1585-1604. [PMID: 35634946 PMCID: PMC9544982 DOI: 10.1002/glia.24221] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a complex, chronic mental health disorder whose heterogeneous genetic and neurobiological background influences early brain development, and whose precise etiology is still poorly understood. Schizophrenia is not characterized by gross brain pathology, but involves subtle pathological changes in neuronal populations and glial cells. Among the latter, astrocytes critically contribute to the regulation of early neurodevelopmental processes, and any dysfunctions in their morphological and functional maturation may lead to aberrant neurodevelopmental processes involved in the pathogenesis of schizophrenia, such as mitochondrial biogenesis, synaptogenesis, and glutamatergic and dopaminergic transmission. Studies of the mechanisms regulating astrocyte maturation may therefore improve our understanding of the cellular and molecular mechanisms underlying the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
| | - Corrado Calì
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Francesco Petrelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Pharmacology and Physiology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
49
|
Saleem A, Qurat-ul-Ain, Akhtar MF. Alternative Therapy of Psychosis: Potential Phytochemicals and Drug Targets in the Management of Schizophrenia. Front Pharmacol 2022; 13:895668. [PMID: 35656298 PMCID: PMC9152363 DOI: 10.3389/fphar.2022.895668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Schizophrenia is a chronic mental and behavioral disorder characterized by clusters of symptoms including hallucinations, delusions, disorganized thoughts and social withdrawal. It is mainly contributed by defects in dopamine, glutamate, cholinergic and serotonergic pathways, genetic and environmental factors, prenatal infections, oxidative stress, immune system activation and inflammation. Management of schizophrenia is usually carried out with typical and atypical antipsychotics, but it yields modest benefits with a diversity of side effects. Therefore, the current study was designed to determine the phytochemicals as new drug candidates for treatment and management of schizophrenia. These phytochemicals alter and affect neurotransmission, cell signaling pathways, endocannabinoid receptors, neuro-inflammation, activation of immune system and status of oxidative stress. Phytochemicals exhibiting anti-schizophrenic activity are mostly flavonoids, polyphenols, alkaloids, terpenoids, terpenes, polypropanoids, lactones and glycosides. However, well-designed clinical trials are consequently required to investigate potential protective effect and therapeutic benefits of these phytochemicals against schizophrenia.
Collapse
Affiliation(s)
- Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Qurat-ul-Ain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| |
Collapse
|
50
|
Kiemes A, Gomes FV, Cash D, Uliana DL, Simmons C, Singh N, Vernon AC, Turkheimer F, Davies C, Stone JM, Grace AA, Modinos G. GABA A and NMDA receptor density alterations and their behavioral correlates in the gestational methylazoxymethanol acetate model for schizophrenia. Neuropsychopharmacology 2022; 47:687-695. [PMID: 34743200 PMCID: PMC8782908 DOI: 10.1038/s41386-021-01213-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 01/19/2023]
Abstract
Hippocampal hyperactivity driven by GABAergic interneuron deficits and NMDA receptor hypofunction is associated with the hyperdopaminergic state often observed in schizophrenia. Furthermore, previous research in the methylazoxymethanol acetate (MAM) rat model has demonstrated that repeated peripubertal diazepam administration can prevent the emergence of adult hippocampal hyperactivity, dopamine-system hyperactivity, and associated psychosis-relevant behaviors. Here, we sought to characterize hippocampal GABAA and NMDA receptors in MAM-treated rats and to elucidate the receptor mechanisms underlying the promising effects of peripubertal diazepam exposure. Quantitative receptor autoradiography was used to measure receptor density in the dorsal hippocampus CA1, ventral hippocampus CA1, and ventral subiculum. Specifically, [3H]-Ro15-4513 was used to quantify the density of α5GABAA receptors (α5GABAAR), [3H]-flumazenil to quantify α1-3;5GABAAR, and [3H]-MK801 to quantify NMDA receptors. MAM rats exhibited anxiety and schizophrenia-relevant behaviors as measured by elevated plus maze and amphetamine-induced hyperlocomotion (AIH), although diazepam only partially rescued these behaviors. α5GABAAR density was reduced in MAM-treated rats in all hippocampal sub-regions, and negatively correlated with AIH. Ventral hippocampus CA1 α5GABAAR density was positively correlated with anxiety-like behavior. Dorsal hippocampus CA1 NMDA receptor density was increased in MAM-treated rats, and positively correlated with AIH. [3H]-flumazenil revealed no significant effects. Finally, we found no significant effect of diazepam treatment on receptor densities, potentially related to the only partial rescue of schizophrenia-relevant phenotypes. Overall, our findings provide first evidence of α5GABAAR and NMDA receptor abnormalities in the MAM model, suggesting that more selective pharmacological agents may become a novel therapeutic mechanism in schizophrenia.
Collapse
Affiliation(s)
- Amanda Kiemes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Nisha Singh
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James M Stone
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|