1
|
Wang B, Zhang M, Fan F, Yuan C, Wang Z, Tan Y, Tan S. Subcortical and insula functional connectivity aberrations and clinical implications in first-episode schizophrenia. Asian J Psychiatr 2025; 103:104298. [PMID: 39591757 DOI: 10.1016/j.ajp.2024.104298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION Schizophrenia is a complex mental disorder whose pathophysiology remains elusive, particularly in the roles of subcortex. This study aims to explore the role of subcortex and insula and their relationship with symptom changes in first-episode schizophrenia (FES) patients by utilizing machine learning algorithms and functional connectivity (FC). METHODS The study encompasses 261 participants, sourced from two independent samples of FES patients and their matched healthy controls (HC). The discovery dataset includes 77 FES patients at baseline (FES0W) and 77 matched HCs, with the patients undergoing a follow-up scan after eight weeks of antipsychotic treatment (FES8W, N = 34). A validation dataset from another region comprises 47 FES patients and 47 matched HCs. RESULTS Significant differences in subcortical FCs were observed between FES and controls, correlating with symptom severity and symptom changes. Machine learning models were developed to diagnose schizophrenia on an individual basis, achieving a balanced accuracy of 79.55 % across diverse centers. CONCLUSIONS These findings suggest that subcortical connectivity patterns offer potential as biomarkers for schizophrenia, enabling personalized treatment strategies and improving prognosis by facilitating early diagnosis.
Collapse
Affiliation(s)
- Bixin Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Meng Zhang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Chunyu Yuan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China.
| |
Collapse
|
2
|
Di Camillo F, Grimaldi DA, Cattarinussi G, Di Giorgio A, Locatelli C, Khuntia A, Enrico P, Brambilla P, Koutsouleris N, Sambataro F. Magnetic resonance imaging-based machine learning classification of schizophrenia spectrum disorders: a meta-analysis. Psychiatry Clin Neurosci 2024; 78:732-743. [PMID: 39290174 PMCID: PMC11612547 DOI: 10.1111/pcn.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Recent advances in multivariate pattern recognition have fostered the search for reliable neuroimaging-based biomarkers in psychiatric conditions, including schizophrenia. These approaches consider the complex pattern of alterations in brain function and structure, overcoming the limitations of traditional univariate methods. To assess the reliability of neuroimaging-based biomarkers and the contribution of study characteristics in distinguishing individuals with schizophrenia spectrum disorder (SSD) from healthy controls (HCs), we conducted a systematic review of the studies that used multivariate pattern recognition for this objective. METHODS We systematically searched PubMed, Scopus, and Web of Science for studies on SSD classification using multivariate pattern analysis on magnetic resonance imaging data. We employed a bivariate random-effects meta-analytic model to explore the classification of sensitivity (SE) and specificity (SP) across studies while also evaluating the moderator effects of clinical and non-clinical variables. RESULTS A total of 119 studies (with 12,723 patients with SSD and 13,196 HCs) were identified. The meta-analysis estimated a SE of 79.1% (95% confidence interval [CI], 77.1%-81.0%) and a SP of 80.0% (95% CI, 77.8%-82.0%). In particular, the Positive and Negative Syndrome Scale and the Global Assessment of Functioning scores, age, age of onset, duration of untreated psychosis, deep learning, algorithm type, features selection, and validation methods had significant effects on classification performance. CONCLUSIONS Multivariate pattern analysis reliably identifies neuroimaging-based biomarkers of SSD, achieving ∼80% SE and SP. Despite clinical heterogeneity, discernible brain modifications effectively differentiate SSD from HCs. Classification performance depends on patient-related and methodological factors crucial for the development, validation, and application of prospective models in clinical settings.
Collapse
Affiliation(s)
| | | | - Giulia Cattarinussi
- Department of Neuroscience (DNS)University of PadovaPaduaItaly
- Padova Neuroscience CenterUniversity of PadovaPaduaItaly
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
| | | | - Clara Locatelli
- Department of Mental Health and AddictionsASST Papa Giovanni XXIIIBergamoItaly
| | - Adyasha Khuntia
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian UniversityMunichGermany
- International Max Planck Research School for Translational Psychiatry (IMPRS‐TP)MunichGermany
- Max‐Planck‐Institute of PsychiatryMunichGermany
| | - Paolo Enrico
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian UniversityMunichGermany
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Department of Neurosciences and Mental HealthFondazione IRCSS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Paolo Brambilla
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Department of Neurosciences and Mental HealthFondazione IRCSS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Nikolaos Koutsouleris
- Max‐Planck‐Institute of PsychiatryMunichGermany
- Department of PsychiatryMunich University HospitalMunichGermany
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
| | - Fabio Sambataro
- Department of Neuroscience (DNS)University of PadovaPaduaItaly
- Padova Neuroscience CenterUniversity of PadovaPaduaItaly
| |
Collapse
|
3
|
Du Y, Niu J, Xing Y, Li B, Calhoun VD. Neuroimage Analysis Methods and Artificial Intelligence Techniques for Reliable Biomarkers and Accurate Diagnosis of Schizophrenia: Achievements Made by Chinese Scholars Around the Past Decade. Schizophr Bull 2024:sbae110. [PMID: 38982882 DOI: 10.1093/schbul/sbae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) is characterized by significant cognitive and behavioral disruptions. Neuroimaging techniques, particularly magnetic resonance imaging (MRI), have been widely utilized to investigate biomarkers of SZ, distinguish SZ from healthy conditions or other mental disorders, and explore biotypes within SZ or across SZ and other mental disorders, which aim to promote the accurate diagnosis of SZ. In China, research on SZ using MRI has grown considerably in recent years. STUDY DESIGN The article reviews advanced neuroimaging and artificial intelligence (AI) methods using single-modal or multimodal MRI to reveal the mechanism of SZ and promote accurate diagnosis of SZ, with a particular emphasis on the achievements made by Chinese scholars around the past decade. STUDY RESULTS Our article focuses on the methods for capturing subtle brain functional and structural properties from the high-dimensional MRI data, the multimodal fusion and feature selection methods for obtaining important and sparse neuroimaging features, the supervised statistical analysis and classification for distinguishing disorders, and the unsupervised clustering and semi-supervised learning methods for identifying neuroimage-based biotypes. Crucially, our article highlights the characteristics of each method and underscores the interconnections among various approaches regarding biomarker extraction and neuroimage-based diagnosis, which is beneficial not only for comprehending SZ but also for exploring other mental disorders. CONCLUSIONS We offer a valuable review of advanced neuroimage analysis and AI methods primarily focused on SZ research by Chinese scholars, aiming to promote the diagnosis, treatment, and prevention of SZ, as well as other mental disorders, both within China and internationally.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Ju Niu
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Ying Xing
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Bang Li
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Vince D Calhoun
- The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, 30303, GA, USA
| |
Collapse
|
4
|
Gan L, Wang L, Liu H, Wang G. Based on neural network cascade abnormal texture information dissemination of classification of patients with schizophrenia and depression. Brain Res 2024; 1830:148819. [PMID: 38403037 DOI: 10.1016/j.brainres.2024.148819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
This study used MRI brain image segmentation to identify novel magnetic resonance imaging (MRI) biomarkers to distinguish patients with schizophrenia (SCZ), major depressive disorder (MD), and healthy control (HC). Brain texture measurements, including entropy and contrast, were calculated to capture variability in adjacent MRI voxel intensity. These measures are then applied to group classification in deep learning techniques and combined with hierarchical correlations to locate results. Texture feature maps were extracted from segmented brain MRI scans of 141 patients with schizophrenia (SCZ), 103 patients with major depressive disorder (MD) and 238 healthy controls (HC). Gray scale coassociation matrix (GLCM) is a monomer matrix calculated in a voxel cube. Deep learning methods were evaluated to determine the application capability of texture feature mapping in binary classification (SCZ vs. HC, MD vs. HC, SCZ vs. MD). The method is implemented by repeated nesting and cross-validation for feature selection. Regions that show the highest correlation (positive or negative). In this study, the authors successfully classified SCZ, MD and HC. This suggests that texture analysis can be used as an effective feature extraction method to distinguish different disease states. Compared with other methods, texture analysis can capture richer image information and improve classification accuracy in some cases. The classification accuracy of SCZ and HC, MD and HC, SCZ and MD reached 84.6%, 86.4% and 76.21%, respectively. Among them, SCZ and HC are the most significant features with high sensitivity and specificity.
Collapse
Affiliation(s)
- Linfeng Gan
- School of Railway Transportation, Shanghai Institute of Technology, Shanghai 201418, China
| | - Linfeng Wang
- School of Railway Transportation, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hu Liu
- Peking University Health Science Center, Institute of Medical Technology, Beijing 100069, China.
| | - Gang Wang
- School of Railway Transportation, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
5
|
Liang S, Zhao L, Ni P, Wang Q, Guo W, Xu Y, Cai J, Tao S, Li X, Deng W, Palaniyappan L, Li T. Frontostriatal circuitry and the tryptophan kynurenine pathway in major psychiatric disorders. Psychopharmacology (Berl) 2024; 241:97-107. [PMID: 37735237 DOI: 10.1007/s00213-023-06466-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
RATIONALE An imbalance of the tryptophan kynurenine pathway (KP) commonly occurs in psychiatric disorders, though the neurocognitive and network-level effects of this aberration are unclear. OBJECTIVES In this study, we examined the connection between dysfunction in the frontostriatal brain circuits, imbalances in the tryptophan kynurenine pathway (KP), and neurocognition in major psychiatric disorders. METHODS Forty first-episode medication-naive patients with schizophrenia (SCZ), fifty patients with bipolar disorder (BD), fifty patients with major depressive disorder (MDD), and forty-two healthy controls underwent resting-state functional magnetic resonance imaging. Plasma levels of KP metabolites were measured, and neurocognitive function was evaluated. Frontostriatal connectivity and KP metabolites were compared between groups while controlling for demographic and clinical characteristics. Canonical correlation analyses were conducted to explore multidimensional relationships between frontostriatal circuits-KP and KP-cognitive features. RESULTS Patient groups shared hypoconnectivity between bilateral ventrolateral prefrontal cortex (vlPFC) and left insula, with disorder-specific dysconnectivity in SCZ related to PFC, left dorsal striatum hypoconnectivity. The BD group had higher anthranilic acid and lower xanthurenic acid levels than the other groups. KP metabolites and ratios related to disrupted frontostriatal dysconnectivity in a transdiagnostic manner. The SCZ group and MDD group separately had high-dimensional associations between KP metabolites and cognitive measures. CONCLUSIONS The findings suggest that KP may influence cognitive performance across psychiatric conditions via frontostriatal dysfunction.
Collapse
Affiliation(s)
- Sugai Liang
- Department of Neurobiology, Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, Zhejiang, China
| | - Liansheng Zhao
- Mental Health Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peiyan Ni
- Mental Health Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiang Wang
- Mental Health Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, Zhejiang, China
| | - Yan Xu
- Department of Neurobiology, Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, Zhejiang, China
| | - Jia Cai
- Mental Health Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shiwan Tao
- Mental Health Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaojing Li
- Department of Neurobiology, Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, Zhejiang, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, Zhejiang, China
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, H4H1R3, Canada.
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5K8, Canada.
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, Zhejiang, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Zhejiang, 310000, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Zhejiang, 310063, Hangzhou, China.
| |
Collapse
|
6
|
Calarco N, Oliver LD, Joseph M, Hawco C, Dickie EW, DeRosse P, Gold JM, Foussias G, Argyelan M, Malhotra AK, Buchanan RW, Voineskos AN. Multivariate Associations Among White Matter, Neurocognition, and Social Cognition Across Individuals With Schizophrenia Spectrum Disorders and Healthy Controls. Schizophr Bull 2023; 49:1518-1529. [PMID: 36869812 PMCID: PMC10686342 DOI: 10.1093/schbul/sbac216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
BACKGROUND AND HYPOTHESIS Neurocognitive and social cognitive abilities are important contributors to functional outcomes in schizophrenia spectrum disorders (SSDs). An unanswered question of considerable interest is whether neurocognitive and social cognitive deficits arise from overlapping or distinct white matter impairment(s). STUDY DESIGN We sought to fill this gap, by harnessing a large sample of individuals from the multi-center Social Processes Initiative in the Neurobiology of the Schizophrenia(s) (SPINS) dataset, unique in its collection of advanced diffusion imaging and an extensive battery of cognitive assessments. We applied canonical correlation analysis to estimates of white matter microstructure, and cognitive performance, across people with and without an SSD. STUDY RESULTS Our results established that white matter circuitry is dimensionally and strongly related to both neurocognition and social cognition, and that microstructure of the uncinate fasciculus and the rostral body of the corpus callosum may assume a "privileged role" subserving both. Further, we found that participant-wise estimates of white matter microstructure, weighted by cognitive performance, were largely consistent with participants' categorical diagnosis, and predictive of (cross-sectional) functional outcomes. CONCLUSIONS The demonstrated strength of the relationship between white matter circuitry and neurocognition and social cognition underscores the potential for using relationships among these variables to identify biomarkers of functioning, with potential prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Navona Calarco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Michael Joseph
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Pamela DeRosse
- Division of Psychiatry Research, Division of Northwell Health, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Department of Psychiatry, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - James M Gold
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George Foussias
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Miklos Argyelan
- Division of Psychiatry Research, Division of Northwell Health, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Department of Psychiatry, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Anil K Malhotra
- Division of Psychiatry Research, Division of Northwell Health, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Department of Psychiatry, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Robert W Buchanan
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Omlor W, Rabe F, Fuchs S, Cecere G, Homan S, Surbeck W, Kallen N, Georgiadis F, Spiller T, Seifritz E, Weickert T, Bruggemann J, Weickert C, Potkin S, Hashimoto R, Sim K, Rootes-Murdy K, Quide Y, Houenou J, Banaj N, Vecchio D, Piras F, Piras F, Spalletta G, Salvador R, Karuk A, Pomarol-Clotet E, Rodrigue A, Pearlson G, Glahn D, Tomecek D, Spaniel F, Skoch A, Kirschner M, Kaiser S, Kochunov P, Fan FM, Andreassen OA, Westlye LT, Berthet P, Calhoun VD, Howells F, Uhlmann A, Scheffler F, Stein D, Iasevoli F, Cairns MJ, Carr VJ, Catts SV, Di Biase MA, Jablensky A, Green MJ, Henskens FA, Klauser P, Loughland C, Michie PT, Mowry B, Pantelis C, Rasser PE, Schall U, Scott R, Zalesky A, de Bartolomeis A, Barone A, Ciccarelli M, Brunetti A, Cocozza S, Pontillo G, Tranfa M, Di Giorgio A, Thomopoulos SI, Jahanshad N, Thompson PM, van Erp T, Turner J, Homan P. Estimating multimodal brain variability in schizophrenia spectrum disorders: A worldwide ENIGMA study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559032. [PMID: 37961617 PMCID: PMC10634976 DOI: 10.1101/2023.09.22.559032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Objective Schizophrenia is a multifaceted disorder associated with structural brain heterogeneity. Despite its relevance for identifying illness subtypes and informative biomarkers, structural brain heterogeneity in schizophrenia remains incompletely understood. Therefore, the objective of this study was to provide a comprehensive insight into the structural brain heterogeneity associated with schizophrenia. Methods This meta- and mega-analysis investigated the variability of multimodal structural brain measures of white and gray matter in individuals with schizophrenia versus healthy controls. Using the ENIGMA dataset of MRI-based brain measures from 22 international sites with up to 6139 individuals for a given brain measure, we examined variability in cortical thickness, surface area, folding index, subcortical volume and fractional anisotropy. Results We found that individuals with schizophrenia are distinguished by higher heterogeneity in the frontotemporal network with regard to multimodal structural measures. Moreover, individuals with schizophrenia showed higher homogeneity of the folding index, especially in the left parahippocampal region. Conclusions Higher multimodal heterogeneity in frontotemporal regions potentially implies different subtypes of schizophrenia that converge on impaired frontotemporal interaction as a core feature of the disorder. Conversely, more homogeneous folding patterns in the left parahippocampal region might signify a consistent characteristic of schizophrenia shared across subtypes. These findings underscore the importance of structural brain variability in advancing our neurobiological understanding of schizophrenia, and aid in identifying illness subtypes as well as informative biomarkers.
Collapse
|
8
|
Chandrashekar PB, Alatkar S, Wang J, Hoffman GE, He C, Jin T, Khullar S, Bendl J, Fullard JF, Roussos P, Wang D. DeepGAMI: deep biologically guided auxiliary learning for multimodal integration and imputation to improve genotype-phenotype prediction. Genome Med 2023; 15:88. [PMID: 37904203 PMCID: PMC10617196 DOI: 10.1186/s13073-023-01248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Genotypes are strongly associated with disease phenotypes, particularly in brain disorders. However, the molecular and cellular mechanisms behind this association remain elusive. With emerging multimodal data for these mechanisms, machine learning methods can be applied for phenotype prediction at different scales, but due to the black-box nature of machine learning, integrating these modalities and interpreting biological mechanisms can be challenging. Additionally, the partial availability of these multimodal data presents a challenge in developing these predictive models. METHOD To address these challenges, we developed DeepGAMI, an interpretable neural network model to improve genotype-phenotype prediction from multimodal data. DeepGAMI leverages functional genomic information, such as eQTLs and gene regulation, to guide neural network connections. Additionally, it includes an auxiliary learning layer for cross-modal imputation allowing the imputation of latent features of missing modalities and thus predicting phenotypes from a single modality. Finally, DeepGAMI uses integrated gradient to prioritize multimodal features for various phenotypes. RESULTS We applied DeepGAMI to several multimodal datasets including genotype and bulk and cell-type gene expression data in brain diseases, and gene expression and electrophysiology data of mouse neuronal cells. Using cross-validation and independent validation, DeepGAMI outperformed existing methods for classifying disease types, and cellular and clinical phenotypes, even using single modalities (e.g., AUC score of 0.79 for Schizophrenia and 0.73 for cognitive impairment in Alzheimer's disease). CONCLUSION We demonstrated that DeepGAMI improves phenotype prediction and prioritizes phenotypic features and networks in multiple multimodal datasets in complex brains and brain diseases. Also, it prioritized disease-associated variants, genes, and regulatory networks linked to different phenotypes, providing novel insights into the interpretation of gene regulatory mechanisms. DeepGAMI is open-source and available for general use.
Collapse
Affiliation(s)
- Pramod Bharadwaj Chandrashekar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53076, USA
| | - Sayali Alatkar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53076, USA
| | - Jiebiao Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Department of Psychiatry and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chenfeng He
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53076, USA
| | - Ting Jin
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53076, USA
| | - Saniya Khullar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53076, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Department of Psychiatry and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Department of Psychiatry and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Department of Psychiatry and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53076, USA.
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53076, USA.
| |
Collapse
|
9
|
Porter A, Fei S, Damme KSF, Nusslock R, Gratton C, Mittal VA. A meta-analysis and systematic review of single vs. multimodal neuroimaging techniques in the classification of psychosis. Mol Psychiatry 2023; 28:3278-3292. [PMID: 37563277 PMCID: PMC10618094 DOI: 10.1038/s41380-023-02195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Psychotic disorders are characterized by structural and functional abnormalities in brain networks. Neuroimaging techniques map and characterize such abnormalities using unique features (e.g., structural integrity, coactivation). However, it is unclear if a specific method, or a combination of modalities, is particularly effective in identifying differences in brain networks of someone with a psychotic disorder. METHODS A systematic meta-analysis evaluated machine learning classification of schizophrenia spectrum disorders in comparison to healthy control participants using various neuroimaging modalities (i.e., T1-weighted imaging (T1), diffusion tensor imaging (DTI), resting state functional connectivity (rs-FC), or some combination (multimodal)). Criteria for manuscript inclusion included whole-brain analyses and cross-validation to provide a complete picture regarding the predictive ability of large-scale brain systems in psychosis. For this meta-analysis, we searched Ovid MEDLINE, PubMed, PsychInfo, Google Scholar, and Web of Science published between inception and March 13th 2023. Prediction results were averaged for studies using the same dataset, but parallel analyses were run that included studies with pooled sample across many datasets. We assessed bias through funnel plot asymmetry. A bivariate regression model determined whether differences in imaging modality, demographics, and preprocessing methods moderated classification. Separate models were run for studies with internal prediction (via cross-validation) and external prediction. RESULTS 93 studies were identified for quantitative review (30 T1, 9 DTI, 40 rs-FC, and 14 multimodal). As a whole, all modalities reliably differentiated those with schizophrenia spectrum disorders from controls (OR = 2.64 (95%CI = 2.33 to 2.95)). However, classification was relatively similar across modalities: no differences were seen across modalities in the classification of independent internal data, and a small advantage was seen for rs-FC studies relative to T1 studies in classification in external datasets. We found large amounts of heterogeneity across results resulting in significant signs of bias in funnel plots and Egger's tests. Results remained similar, however, when studies were restricted to those with less heterogeneity, with continued small advantages for rs-FC relative to structural measures. Notably, in all cases, no significant differences were seen between multimodal and unimodal approaches, with rs-FC and unimodal studies reporting largely overlapping classification performance. Differences in demographics and analysis or denoising were not associated with changes in classification scores. CONCLUSIONS The results of this study suggest that neuroimaging approaches have promise in the classification of psychosis. Interestingly, at present most modalities perform similarly in the classification of psychosis, with slight advantages for rs-FC relative to structural modalities in some specific cases. Notably, results differed substantially across studies, with suggestions of biased effect sizes, particularly highlighting the need for more studies using external prediction and large sample sizes. Adopting more rigorous and systematized standards will add significant value toward understanding and treating this critical population.
Collapse
Affiliation(s)
- Alexis Porter
- Department of Psychology, Northwestern University, Evanston, IL, USA.
| | - Sihan Fei
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Katherine S F Damme
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Policy Research, Northwestern University, Chicago, IL, USA
| |
Collapse
|
10
|
Identification of texture MRI brain abnormalities on first-episode psychosis and clinical high-risk subjects using explainable artificial intelligence. Transl Psychiatry 2022; 12:481. [PMID: 36385133 PMCID: PMC9668814 DOI: 10.1038/s41398-022-02242-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Structural MRI studies in first-episode psychosis and the clinical high-risk state have consistently shown volumetric abnormalities. Aim of the present study was to introduce radiomics texture features in identification of psychosis. Radiomics texture features describe the interrelationship between voxel intensities across multiple spatial scales capturing the hidden information of underlying disease dynamics in addition to volumetric changes. Structural MR images were acquired from 77 first-episode psychosis (FEP) patients, 58 clinical high-risk subjects with no later transition to psychosis (CHR_NT), 15 clinical high-risk subjects with later transition (CHR_T), and 44 healthy controls (HC). Radiomics texture features were extracted from non-segmented images, and two-classification schemas were performed for the identification of FEP vs. HC and FEP vs. CHR_NT. The group of CHR_T was used as external validation in both schemas. The classification of a subject's clinical status was predicted by importing separately (a) the difference of entropy feature map and (b) the contrast feature map, resulting in classification balanced accuracy above 72% in both analyses. The proposed framework enhances the classification decision for FEP, CHR_NT, and HC subjects, verifies diagnosis-relevant features and may potentially contribute to identification of structural biomarkers for psychosis, beyond and above volumetric brain changes.
Collapse
|
11
|
Levman J, Jennings M, Rouse E, Berger D, Kabaria P, Nangaku M, Gondra I, Takahashi E. A morphological study of schizophrenia with magnetic resonance imaging, advanced analytics, and machine learning. Front Neurosci 2022; 16:926426. [PMID: 36046472 PMCID: PMC9420897 DOI: 10.3389/fnins.2022.926426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
We have performed a morphological analysis of patients with schizophrenia and compared them with healthy controls. Our analysis includes the use of publicly available automated extraction tools to assess regional cortical thickness (inclusive of within region cortical thickness variability) from structural magnetic resonance imaging (MRI), to characterize group-wise abnormalities associated with schizophrenia based on a publicly available dataset. We have also performed a correlation analysis between the automatically extracted biomarkers and a variety of patient clinical variables available. Finally, we also present the results of a machine learning analysis. Results demonstrate regional cortical thickness abnormalities in schizophrenia. We observed a correlation (rho = 0.474) between patients’ depression and the average cortical thickness of the right medial orbitofrontal cortex. Our leading machine learning technology evaluated was the support vector machine with stepwise feature selection, yielding a sensitivity of 92% and a specificity of 74%, based on regional brain measurements, including from the insula, superior frontal, caudate, calcarine sulcus, gyrus rectus, and rostral middle frontal regions. These results imply that advanced analytic techniques combining MRI with automated biomarker extraction can be helpful in characterizing patients with schizophrenia.
Collapse
Affiliation(s)
- Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
- Center for Clinical Research, Nova Scotia Health Authority - Research, Innovation and Discovery, Halifax, NS, Canada
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts Institute of Technology, Boston, MA, United States
- *Correspondence: Jacob Levman,
| | - Maxwell Jennings
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
- Department of Mathematics and Statistics, St. Francis Xavier University, Antigonish, NS, Canada
| | - Ethan Rouse
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Derek Berger
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Priya Kabaria
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Masahito Nangaku
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Iker Gondra
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Emi Takahashi
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts Institute of Technology, Boston, MA, United States
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Yue W, Huang H, Duan J. Potential diagnostic biomarkers for schizophrenia. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:385-416. [PMID: 37724326 PMCID: PMC10388817 DOI: 10.1515/mr-2022-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 09/20/2023]
Abstract
Schizophrenia (SCH) is a complex and severe mental disorder with high prevalence, disability, mortality and carries a heavy disease burden, the lifetime prevalence of SCH is around 0.7%-1.0%, which has a profound impact on the individual and society. In the clinical practice of SCH, key problems such as subjective diagnosis, experiential treatment, and poor overall prognosis are still challenging. In recent years, some exciting discoveries have been made in the research on objective biomarkers of SCH, mainly focusing on genetic susceptibility genes, metabolic indicators, immune indices, brain imaging, electrophysiological characteristics. This review aims to summarize the biomarkers that may be used for the prediction and diagnosis of SCH.
Collapse
Affiliation(s)
- Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University) and Chinese Academy of Medical Sciences Research Unit, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University Health System, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Hu M, Qian X, Liu S, Koh AJ, Sim K, Jiang X, Guan C, Zhou JH. Structural and diffusion MRI based schizophrenia classification using 2D pretrained and 3D naive Convolutional Neural Networks. Schizophr Res 2022; 243:330-341. [PMID: 34210562 DOI: 10.1016/j.schres.2021.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/11/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
The ability of automatic feature learning makes Convolutional Neural Network (CNN) potentially suitable to uncover the complex and widespread brain changes in schizophrenia. Despite that, limited studies have been done on schizophrenia identification using interpretable deep learning approaches on multimodal neuroimaging data. Here, we developed a deep feature approach based on pre-trained 2D CNN and naive 3D CNN models trained from scratch for schizophrenia classification by integrating 3D structural and diffusion magnetic resonance imaging (MRI) data. We found that the naive 3D CNN models outperformed the pretrained 2D CNN models and the handcrafted feature-based machine learning approach using support vector machine during both cross-validation and testing on an independent dataset. Multimodal neuroimaging-based models accomplished performance superior to models based on a single modality. Furthermore, we identified brain grey matter and white matter regions critical for illness classification at the individual- and group-level which supported the salience network and striatal dysfunction hypotheses in schizophrenia. Our findings underscore the potential of CNN not only to automatically uncover and integrate multimodal 3D brain imaging features for schizophrenia identification, but also to provide relevant neurobiological interpretations which are crucial for developing objective and interpretable imaging-based probes for prognosis and diagnosis in psychiatric disorders.
Collapse
Affiliation(s)
- Mengjiao Hu
- NTU Institute for Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, Singapore; Center for Sleep and Cognition, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xing Qian
- Center for Sleep and Cognition, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Siwei Liu
- Center for Sleep and Cognition, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amelia Jialing Koh
- Center for Sleep and Cognition, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kang Sim
- West Region, Institute of Mental Health (IMH), Singapore, Singapore; Department of Research, Institute of Mental Health (IMH), Singapore, Singapore
| | - Xudong Jiang
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Juan Helen Zhou
- Center for Sleep and Cognition, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Center for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
Luvsannyam E, Jain MS, Pormento MKL, Siddiqui H, Balagtas ARA, Emuze BO, Poprawski T. Neurobiology of Schizophrenia: A Comprehensive Review. Cureus 2022; 14:e23959. [PMID: 35541299 PMCID: PMC9080788 DOI: 10.7759/cureus.23959] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 12/21/2022] Open
Abstract
Schizophrenia is a debilitating disease that presents with both positive and negative symptoms affecting cognition and emotions. Extensive studies have analyzed the different factors that contribute to the disorder. There is evidence of significant genetic etiology involving multiple genes such as dystrobrevin binding protein 1 (DTNBP1) and neuregulin 1 (NRG1). There is no clear link between neurotransmitter changes and the pathophysiology of schizophrenia; however, studies have shown that subcortical dopamine dysfunction is the key mechanism. Specific regions of gray and white matter changes are observed in patients with schizophrenia; gray matter changes being more significant after the onset of psychosis. These pathological changes may be implicated in the impairment of executive functioning, attention, and working memory. The disease can be managed with pharmacological treatments based on individual patient profile, patient compliance, and disease severity. The challenge of disease management sometimes persists due to the side effects. A better understanding of the pathological processes in schizophrenia may lead to more specific and effective therapies.
Collapse
|
15
|
Buchsbaum MS, Mitelman SA, Christian BT, Merrill BM, Buchsbaum BR, Mitelman D, Mukherjee J, Lehrer DS. Four-modality imaging of unmedicated subjects with schizophrenia: 18F-fluorodeoxyglucose and 18F-fallypride PET, diffusion tensor imaging, and MRI. Psychiatry Res Neuroimaging 2022; 320:111428. [PMID: 34954446 DOI: 10.1016/j.pscychresns.2021.111428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022]
Abstract
Diminished prefrontal function, dopaminergic abnormalities in the striatum and thalamus, reductions in white matter integrity and frontotemporal gray matter deficits are the most replicated findings in schizophrenia. We used four imaging modalities (18F-fluorodeoxyglucose and 18F-fallypride PET, diffusion tensor imaging, structural MRI) in 19 healthy and 25 schizophrenia subjects to assess the relationship between functional (dopamine D2/D3 receptor binding potential, glucose metabolic rate) and structural (fractional anisotropy, MRI) correlates of schizophrenia and their additive diagnostic prediction potential. Multivariate ANOVA was used to compare structural and functional image sets for identification of schizophrenia. Integration of data from all four modalities yielded better predictive power than less inclusive combinations, specifically in the thalamus, left dorsolateral prefrontal and temporal regions. Among the modalities, fractional anisotropy showed highest discrimination in white matter whereas 18F-fallypride binding showed highest discrimination in gray matter. Structural and functional modalities displayed comparable discriminative power but different topography, with higher sensitivity of structural modalities in the left prefrontal region. Combination of functional and structural imaging modalities with inclusion of both gray and white matter appears most effective in diagnostic discrimination. The highest sensitivity of 18F-fallypride PET to gray matter changes in schizophrenia supports the primacy of dopaminergic abnormalities in its pathophysiology.
Collapse
Affiliation(s)
- Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, Irvine and San Diego, 11388 Sorrento Valley Road, San Diego, CA 92121, United States
| | - Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, United States.
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI 53705, United States
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St., Toronto, Ontario, Canada, M6A 2E1
| | - Danielle Mitelman
- The Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, United States
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| |
Collapse
|
16
|
Wang J, Ke P, Zang J, Wu F, Wu K. Discriminative Analysis of Schizophrenia Patients Using Topological Properties of Structural and Functional Brain Networks: A Multimodal Magnetic Resonance Imaging Study. Front Neurosci 2022; 15:785595. [PMID: 35087373 PMCID: PMC8787107 DOI: 10.3389/fnins.2021.785595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Interest in the application of machine learning (ML) techniques to multimodal magnetic resonance imaging (MRI) data for the diagnosis of schizophrenia (SZ) at the individual level is growing. However, a few studies have applied the features of structural and functional brain networks derived from multimodal MRI data to the discriminative analysis of SZ patients at different clinical stages. In this study, 205 normal controls (NCs), 61 first-episode drug-naive SZ (FESZ) patients, and 79 chronic SZ (CSZ) patients were recruited. We acquired their structural MRI, diffusion tensor imaging, and resting-state functional MRI data and constructed brain networks for each participant, including the gray matter network (GMN), white matter network (WMN), and functional brain network (FBN). We then calculated 3 nodal properties for each brain network, including degree centrality, nodal efficiency, and betweenness centrality. Two classifications (SZ vs. NC and FESZ vs. CSZ) were performed using five ML algorithms. We found that the SVM classifier with the input features of the combination of nodal properties of both the GMN and FBN achieved the best performance to discriminate SZ patients from NCs [accuracy, 81.2%; area under the receiver operating characteristic curve (AUC), 85.2%; p < 0.05]. Moreover, the SVM classifier with the input features of the combination of the nodal properties of both the GMN and WMN achieved the best performance to discriminate FESZ from CSZ patients (accuracy, 86.2%; AUC, 92.3%; p < 0.05). Furthermore, the brain areas in the subcortical/cerebellum network and the frontoparietal network showed significant importance in both classifications. Together, our findings provide new insights to understand the neuropathology of SZ and further highlight the potential advantages of multimodal network properties for identifying SZ patients at different clinical stages.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Engineering, Guangzhou Xinhua University, Guangzhou, China
| | - Pengfei Ke
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Jinyu Zang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- *Correspondence: Fengchun Wu,
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China
- Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Kai Wu,
| |
Collapse
|
17
|
Sun Y, Zhang Z, Kakkos I, Matsopoulos GK, Yuan J, Suckling J, Xu L, Cao S, Chen W, Hu X, Li T, Sim K, Qi P, Sun Y. Inferring the Individual Psychopathologic Deficits with Structural Connectivity in a Longitudinal Cohort of Schizophrenia. IEEE J Biomed Health Inform 2022; 26:2536-2546. [PMID: 34982705 DOI: 10.1109/jbhi.2021.3139701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The prediction of schizophrenia-related psychopathologic deficits is exceedingly important in the fields of psychiatry and clinical practice. However, objective association of the brain structure alterations to the illness clinical symptoms is challenging. Although, schizophrenia has been characterized as a brain dysconnectivity syndrome, evidence accounting for neuroanatomical network alterations remain scarce. Moreover, the absence of generalized connectome biomarkers for the assessment of illness progression further perplexes the prediction of long-term symptom severity. In this paper, a combination of individualized prediction models with quantitative graph theoretical analysis was adopted, providing a comprehensive appreciation of the extent to which the brain network properties are affected over time in schizophrenia. Specifically, Connectome-based Prediction Models were employed on Structural Connectivity (SC) features, efficiently capturing individual network-related differences, while identifying the anatomical connectivity disturbances contributing to the prediction of psychopathological deficits. Our results demonstrated distinctions among widespread cortical circuits responsible for different domains of symptoms, indicating the complex neural mechanisms underlying schizophrenia. Furthermore, the generated models were able to significantly predict changes of symptoms using SC features at follow-up, while the preserved SC features suggested an association with improved positive and overall symptoms. Moreover, cross-sectional significant deficits were observed in network efficiency and a progressive aberration of global integration in patients compared to healthy controls, representing a group-consensus pathological map, while supporting the dysconnectivity hypothesis.
Collapse
|
18
|
Wortinger LA, Barth C, Nerland S, Jørgensen KN, Shadrin AA, Szabo A, Haukvik UK, Westlye LT, Andreassen OA, Thoresen M, Agartz I. Association of Birth Asphyxia With Regional White Matter Abnormalities Among Patients With Schizophrenia and Bipolar Disorders. JAMA Netw Open 2021; 4:e2139759. [PMID: 34928356 PMCID: PMC8689382 DOI: 10.1001/jamanetworkopen.2021.39759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE White matter (WM) abnormalities are commonly reported in psychiatric disorders. Whether peripartum insufficiencies in brain oxygenation, known as birth asphyxia, are associated with WM of patients with severe mental disorders is unclear. OBJECTIVE To examine the association between birth asphyxia and WM in adult patients with schizophrenia and bipolar disorders (BDs) compared with healthy adults. DESIGN, SETTING, AND PARTICIPANTS In this case-control study, all individuals participating in the ongoing Thematically Organized Psychosis project were linked to the Medical Birth Registry of Norway (MBRN), where a subset of 271 patients (case group) and 529 healthy individuals (control group) had undergone diffusion-weighted imaging (DWI). Statistical analyses were performed from June 16, 2020, to March 9, 2021. EXPOSURES Birth asphyxia was defined based on measures from standardized reporting at birth in the MBRN. MAIN OUTCOMES AND MEASURES Associations between birth asphyxia and WM regions of interest diffusion metrics, ie, fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), were compared between groups using analysis of covariance, adjusted for age, age squared, and sex. RESULTS Of the 850 adults included in the study, 271 were in the case group (140 [52%] female individuals; mean [SD] age, 28.64 [7.43] years) and 579 were in the control group (245 [42%] female individuals; mean [SD] age, 33.54 [8.31] years). Birth asphyxia measures were identified in 15% to 16% of participants, independent of group. The posterior limb of the internal capsule (PLIC) showed a significant diagnostic group × birth asphyxia interaction (F(1, 843) = 11.46; P = .001), reflecting a stronger association between birth asphyxia and FA in the case group than the control group. RD, but not AD, also displayed a significant diagnostic group × birth asphyxia interaction (F(1, 843) = 9.28; P = .002) in the PLIC, with higher values in patients with birth asphyxia and similar effect sizes as observed for FA. CONCLUSIONS AND RELEVANCE In this case-control study, abnormalities in the PLIC of adult patients with birth asphyxia may suggest a greater susceptibility to hypoxia in patients with severe mental illness, which could lead to myelin damage or impeded brain development. Echoing recent early-stage schizophrenia studies, abnormalities of the PLIC are relevant to psychiatric disorders, as the PLIC contains important WM brain pathways associated with language, cognitive function, and sensory function, which are impaired in schizophrenia and BDs.
Collapse
Affiliation(s)
- Laura A. Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A. Shadrin
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Unn Kristin Haukvik
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
- Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Marianne Thoresen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Neonatal Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Korda AI, Ruef A, Neufang S, Davatzikos C, Borgwardt S, Meisenzahl EM, Koutsouleris N. Identification of voxel-based texture abnormalities as new biomarkers for schizophrenia and major depressive patients using layer-wise relevance propagation on deep learning decisions. Psychiatry Res Neuroimaging 2021; 313:111303. [PMID: 34034096 PMCID: PMC9060641 DOI: 10.1016/j.pscychresns.2021.111303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 01/27/2023]
Abstract
Non-segmented MRI brain images are used for the identification of new Magnetic Resonance Imaging (MRI) biomarkers able to differentiate between schizophrenic patients (SCZ), major depressive patients (MD) and healthy controls (HC). Brain texture measures such as entropy and contrast, capturing the neighboring variation of MRI voxel intensities, were computed and fed into deep learning technique for group classification. Layer-wise relevance was applied for the localization of the classification results. Texture feature map of non-segmented brain MRI scans were extracted from 141 SCZ, 103 MD and 238 HC. The gray level co-occurrence matrix (GLCM) was calculated on a voxel-by-voxel basis in a cube of voxels. Deep learning tested if texture feature map could predict diagnostic group membership of three classes under a binary classification (SCZ vs. HC, MD vs. HC, SCZ vs. MD). The method was applied in a repeated nested cross-validation scheme and cross-validated feature selection. The regions with the highest relevance (positive/negative) are presented. The method was applied on non-segmented images reducing the computation complexity and the error associated with segmentation process.
Collapse
Affiliation(s)
- A I Korda
- Department of Psychiatry and Psychotherapy, University Hospital Lübeck (UKSH), Ratzeburger Allee 160, 23562 Lübeck, Germany.
| | - A Ruef
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Nussbaumstr. 7, 80336 Munich, Germany
| | - S Neufang
- Department of Psychiatry and Psychotherapy, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - C Davatzikos
- Department of Radiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104, United States
| | - S Borgwardt
- Department of Psychiatry and Psychotherapy, University Hospital Lübeck (UKSH), Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - E M Meisenzahl
- Department of Psychiatry and Psychotherapy, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - N Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Nussbaumstr. 7, 80336 Munich, Germany
| |
Collapse
|
20
|
Cui LB, Zhang YJ, Lu HL, Liu L, Zhang HJ, Fu YF, Wu XS, Xu YQ, Li XS, Qiao YT, Qin W, Yin H, Cao F. Thalamus Radiomics-Based Disease Identification and Prediction of Early Treatment Response for Schizophrenia. Front Neurosci 2021; 15:682777. [PMID: 34290581 PMCID: PMC8289251 DOI: 10.3389/fnins.2021.682777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Background Emerging evidence suggests structural and functional disruptions of the thalamus in schizophrenia, but whether thalamus abnormalities are able to be used for disease identification and prediction of early treatment response in schizophrenia remains to be determined. This study aims at developing and validating a method of disease identification and prediction of treatment response by multi-dimensional thalamic features derived from magnetic resonance imaging in schizophrenia patients using radiomics approaches. Methods A total of 390 subjects, including patients with schizophrenia and healthy controls, participated in this study, among which 109 out of 191 patients had clinical characteristics of early outcome (61 responders and 48 non-responders). Thalamus-based radiomics features were extracted and selected. The diagnostic and predictive capacity of multi-dimensional thalamic features was evaluated using radiomics approach. Results Using radiomics features, the classifier accurately discriminated patients from healthy controls, with an accuracy of 68%. The features were further confirmed in prediction and random forest of treatment response, with an accuracy of 75%. Conclusion Our study demonstrates a radiomics approach by multiple thalamic features to identify schizophrenia and predict early treatment response. Thalamus-based classification could be promising to apply in schizophrenia definition and treatment selection.
Collapse
Affiliation(s)
- Long-Biao Cui
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Ya-Juan Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Hong-Liang Lu
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Lin Liu
- School of Life Sciences and Technology, Xidian University, Xi'an, China.,Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Hai-Jun Zhang
- Department of Clinical Aerospace Medicine, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xu-Sha Wu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yong-Qiang Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao-Sa Li
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Ting Qiao
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Cao
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Lai JW, Ang CKE, Acharya UR, Cheong KH. Schizophrenia: A Survey of Artificial Intelligence Techniques Applied to Detection and Classification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6099. [PMID: 34198829 PMCID: PMC8201065 DOI: 10.3390/ijerph18116099] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Artificial Intelligence in healthcare employs machine learning algorithms to emulate human cognition in the analysis of complicated or large sets of data. Specifically, artificial intelligence taps on the ability of computer algorithms and software with allowable thresholds to make deterministic approximate conclusions. In comparison to traditional technologies in healthcare, artificial intelligence enhances the process of data analysis without the need for human input, producing nearly equally reliable, well defined output. Schizophrenia is a chronic mental health condition that affects millions worldwide, with impairment in thinking and behaviour that may be significantly disabling to daily living. Multiple artificial intelligence and machine learning algorithms have been utilized to analyze the different components of schizophrenia, such as in prediction of disease, and assessment of current prevention methods. These are carried out in hope of assisting with diagnosis and provision of viable options for individuals affected. In this paper, we review the progress of the use of artificial intelligence in schizophrenia.
Collapse
Affiliation(s)
- Joel Weijia Lai
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (J.W.L.); (C.K.E.A.)
| | - Candice Ke En Ang
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (J.W.L.); (C.K.E.A.)
- MOH Holdings Pte Ltd, 1 Maritime Square, Singapore 099253, Singapore
| | - U. Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Clementi 599489, Singapore;
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Clementi 599491, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| | - Kang Hao Cheong
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (J.W.L.); (C.K.E.A.)
| |
Collapse
|
22
|
Sasabayashi D, Takahashi T, Takayanagi Y, Suzuki M. Anomalous brain gyrification patterns in major psychiatric disorders: a systematic review and transdiagnostic integration. Transl Psychiatry 2021; 11:176. [PMID: 33731700 PMCID: PMC7969935 DOI: 10.1038/s41398-021-01297-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Anomalous patterns of brain gyrification have been reported in major psychiatric disorders, presumably reflecting their neurodevelopmental pathology. However, previous reports presented conflicting results of patients having hyper-, hypo-, or normal gyrification patterns and lacking in transdiagnostic consideration. In this article, we systematically review previous magnetic resonance imaging studies of brain gyrification in schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorder at varying illness stages, highlighting the gyral pattern trajectory for each disorder. Patients with each psychiatric disorder may exhibit deviated primary gyri formation under neurodevelopmental genetic control in their fetal life and infancy, and then exhibit higher-order gyral changes due to mechanical stress from active brain changes (e.g., progressive reduction of gray matter volume and white matter integrity) thereafter, representing diversely altered pattern trajectories from those of healthy controls. Based on the patterns of local connectivity and changes in neurodevelopmental gene expression in major psychiatric disorders, we propose an overarching model that spans the diagnoses to explain how deviated gyral pattern trajectories map onto clinical manifestations (e.g., psychosis, mood dysregulation, and cognitive impairments), focusing on the common and distinct gyral pattern changes across the disorders in addition to their correlations with specific clinical features. This comprehensive understanding of the role of brain gyrification pattern on the pathophysiology may help to optimize the prediction and diagnosis of psychiatric disorders using objective biomarkers, as well as provide a novel nosology informed by neural circuits beyond the current descriptive diagnostics.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan. .,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
| | - Tsutomu Takahashi
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,Arisawabashi Hospital, Toyama, Japan
| | - Michio Suzuki
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
23
|
Chen J, Li X, Calhoun VD, Turner JA, van Erp TGM, Wang L, Andreassen OA, Agartz I, Westlye LT, Jönsson E, Ford JM, Mathalon DH, Macciardi F, O'Leary DS, Liu J, Ji S. Sparse deep neural networks on imaging genetics for schizophrenia case-control classification. Hum Brain Mapp 2021; 42:2556-2568. [PMID: 33724588 PMCID: PMC8090768 DOI: 10.1002/hbm.25387] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/20/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Deep learning methods hold strong promise for identifying biomarkers for clinical application. However, current approaches for psychiatric classification or prediction do not allow direct interpretation of original features. In the present study, we introduce a sparse deep neural network (DNN) approach to identify sparse and interpretable features for schizophrenia (SZ) case–control classification. An L0‐norm regularization is implemented on the input layer of the network for sparse feature selection, which can later be interpreted based on importance weights. We applied the proposed approach on a large multi‐study cohort with gray matter volume (GMV) and single nucleotide polymorphism (SNP) data for SZ classification. A total of 634 individuals served as training samples, and the classification model was evaluated for generalizability on three independent datasets of different scanning protocols (N = 394, 255, and 160, respectively). We examined the classification power of pure GMV features, as well as combined GMV and SNP features. Empirical experiments demonstrated that sparse DNN slightly outperformed independent component analysis + support vector machine (ICA + SVM) framework, and more effectively fused GMV and SNP features for SZ discrimination, with an average error rate of 28.98% on external data. The importance weights suggested that the DNN model prioritized to select frontal and superior temporal gyrus for SZ classification with high sparsity, with parietal regions further included with lower sparsity, echoing previous literature. The results validate the application of the proposed approach to SZ classification, and promise extended utility on other data modalities and traits which ultimately may result in clinically useful tools.
Collapse
Affiliation(s)
- Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology and Emory University), Atlanta, Georgia, USA
| | - Xiang Li
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology and Emory University), Atlanta, Georgia, USA.,Department of Computer Science, Georgia State University, Atlanta, Georgia, USA.,Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Jessica A Turner
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology and Emory University), Atlanta, Georgia, USA.,Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Theo G M van Erp
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, California, USA.,Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, Illinois, USA
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Erik Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway.,Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Judith M Ford
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA.,Veterans Affairs San Francisco Healthcare System, San Francisco, California, USA
| | - Daniel H Mathalon
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA.,Veterans Affairs San Francisco Healthcare System, San Francisco, California, USA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Daniel S O'Leary
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology and Emory University), Atlanta, Georgia, USA.,Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Shihao Ji
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Liu W, Zhang X, Qiao Y, Cai Y, Yin H, Zheng M, Zhu Y, Wang H. Functional Connectivity Combined With a Machine Learning Algorithm Can Classify High-Risk First-Degree Relatives of Patients With Schizophrenia and Identify Correlates of Cognitive Impairments. Front Neurosci 2020; 14:577568. [PMID: 33324147 PMCID: PMC7725002 DOI: 10.3389/fnins.2020.577568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Schizophrenia (SCZ) is an inherited disease, with the familial risk being among the most important factors when evaluating an individual's risk for SCZ. However, robust imaging biomarkers for the disease that can be used for diagnosis and determination of the prognosis are lacking. Here, we explore the potential of functional connectivity (FC) for use as a biomarker for the early detection of high-risk first-degree relatives (FDRs). Thirty-eight first-episode SCZ patients, 38 healthy controls (HCs), and 33 FDRs were scanned using resting-state functional magnetic resonance imaging. The subjects' brains were parcellated into 200 regions using the Craddock atlas, and the FC between each pair of regions was used as a classification feature. Multivariate pattern analysis using leave-one-out cross-validation achieved a correct classification rate of 88.15% [sensitivity 84.06%, specificity 92.18%, and area under the receiver operating characteristic curve (AUC) 0.93] for differentiating SCZ patients from HCs. FC located within the default mode, frontal-parietal, auditory, and sensorimotor networks contributed mostly to the accurate classification. The FC patterns of each FDR were input into each classification model as test data to obtain a corresponding prediction label (a total of 76 individual classification scores), and the averaged individual classification score was then used as a robust measure to characterize whether each FDR showed an SCZ-type or HC-type FC pattern. A significant negative correlation was found between the average classification scores of the FDRs and their semantic fluency scores. These findings suggest that FC combined with a machine learning algorithm could help to predict whether FDRs are likely to show an SCZ-specific or HC-specific FC pattern.
Collapse
Affiliation(s)
- Wenming Liu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiao Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuting Qiao
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanhui Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Minwen Zheng
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuanqiang Zhu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
25
|
Machine Learning in Neuroimaging: A New Approach to Understand Acupuncture for Neuroplasticity. Neural Plast 2020; 2020:8871712. [PMID: 32908491 PMCID: PMC7463415 DOI: 10.1155/2020/8871712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
The effects of acupuncture facilitating neural plasticity for treating diseases have been identified by clinical and experimental studies. In the last two decades, the application of neuroimaging techniques in acupuncture research provided visualized evidence for acupuncture promoting neuroplasticity. Recently, the integration of machine learning (ML) and neuroimaging techniques becomes a focus in neuroscience and brings a new and promising approach to understand the facilitation of acupuncture on neuroplasticity at the individual level. This review is aimed at providing an overview of this rapidly growing field by introducing the commonly used ML algorithms in neuroimaging studies briefly and analyzing the characteristics of the acupuncture studies based on ML and neuroimaging, so as to provide references for future research.
Collapse
|
26
|
Rashid B, Calhoun V. Towards a brain-based predictome of mental illness. Hum Brain Mapp 2020; 41:3468-3535. [PMID: 32374075 PMCID: PMC7375108 DOI: 10.1002/hbm.25013] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
Neuroimaging-based approaches have been extensively applied to study mental illness in recent years and have deepened our understanding of both cognitively healthy and disordered brain structure and function. Recent advancements in machine learning techniques have shown promising outcomes for individualized prediction and characterization of patients with psychiatric disorders. Studies have utilized features from a variety of neuroimaging modalities, including structural, functional, and diffusion magnetic resonance imaging data, as well as jointly estimated features from multiple modalities, to assess patients with heterogeneous mental disorders, such as schizophrenia and autism. We use the term "predictome" to describe the use of multivariate brain network features from one or more neuroimaging modalities to predict mental illness. In the predictome, multiple brain network-based features (either from the same modality or multiple modalities) are incorporated into a predictive model to jointly estimate features that are unique to a disorder and predict subjects accordingly. To date, more than 650 studies have been published on subject-level prediction focusing on psychiatric disorders. We have surveyed about 250 studies including schizophrenia, major depression, bipolar disorder, autism spectrum disorder, attention-deficit hyperactivity disorder, obsessive-compulsive disorder, social anxiety disorder, posttraumatic stress disorder, and substance dependence. In this review, we present a comprehensive review of recent neuroimaging-based predictomic approaches, current trends, and common shortcomings and share our vision for future directions.
Collapse
Affiliation(s)
- Barnaly Rashid
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Vince Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
27
|
Liang S, Deng W, Li X, Wang Q, Greenshaw AJ, Guo W, Kong X, Li M, Zhao L, Meng Y, Zhang C, Yu H, Li XM, Ma X, Li T. Aberrant posterior cingulate connectivity classify first-episode schizophrenia from controls: A machine learning study. Schizophr Res 2020; 220:187-193. [PMID: 32220502 DOI: 10.1016/j.schres.2020.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Posterior cingulate cortex (PCC) is a key aspect of the default mode network (DMN). Aberrant PCC functional connectivity (FC) is implicated in schizophrenia, but the potential for PCC related changes as biological classifier of schizophrenia has not yet been evaluated. METHODS We conducted a data-driven approach using resting-state functional MRI data to explore differences in PCC-based region- and voxel-wise FC patterns, to distinguish between patients with first-episode schizophrenia (FES) and demographically matched healthy controls (HC). Discriminative PCC FCs were selected via false discovery rate estimation. A gradient boosting classifier was trained and validated based on 100 FES vs. 93 HC. Subsequently, classification models were tested in an independent dataset of 87 FES patients and 80 HC using resting-state data acquired on a different MRI scanner. RESULTS Patients with FES had reduced connectivity between PCC and frontal areas, left parahippocampal regions, left anterior cingulate cortex, and right inferior parietal lobule, but hyperconnectivity with left lateral temporal regions. Predictive voxel-wise clusters were similar to region-wise selected brain areas functionally connected with PCC in relation to discriminating FES from HC subject categories. Region-wise analysis of FCs yielded a relatively high predictive level for schizophrenia, with an average accuracy of 72.28% in the independent samples, while selected voxel-wise connectivity yielded an accuracy of 68.72%. CONCLUSION FES exhibited a pattern of both increased and decreased PCC-based connectivity, but was related to predominant hypoconnectivity between PCC and brain areas associated with DMN, that may be a useful differential feature revealing underpinnings of neuropathophysiology for schizophrenia.
Collapse
Affiliation(s)
- Sugai Liang
- Mental Health Center, Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Deng
- Mental Health Center, Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaojing Li
- Mental Health Center, Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiang Wang
- Mental Health Center, Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Andrew J Greenshaw
- Department of Psychiatry, University of Alberta, Edmonton T6G 2B7, AB, Canada
| | - Wanjun Guo
- Mental Health Center, Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangzhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525, XD, Netherlands
| | - Mingli Li
- Mental Health Center, Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center, Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yajing Meng
- Mental Health Center, Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengcheng Zhang
- Mental Health Center, Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hua Yu
- Mental Health Center, Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xin-Min Li
- Department of Psychiatry, University of Alberta, Edmonton T6G 2B7, AB, Canada
| | - Xiaohong Ma
- Mental Health Center, Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tao Li
- Mental Health Center, Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
28
|
Hua M, Peng Y, Zhou Y, Qin W, Yu C, Liang M. Disrupted pathways from limbic areas to thalamus in schizophrenia highlighted by whole-brain resting-state effective connectivity analysis. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109837. [PMID: 31830509 DOI: 10.1016/j.pnpbp.2019.109837] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/22/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Numerous neuroimaging studies have revealed that schizophrenia was characterized by wide-spread dysconnection among brain regions during rest measured by functional connectivity (FC). In contrast with FC, effective connectivity (EC) provides information about directionality of brain connections and is thus valuable in mechanistic investigation of schizophrenic brain. However, a systematic characterization of whole-brain resting-state EC (rsEC) and how it captures different information compared with resting-state FC (rsFC) in schizophrenia are still lacking. AIMS To systematically characterize the abnormalities of rsEC, compared with rsFC, in schizophrenia, and to test its discriminative power as a neuroimaging marker for schizophrenia diagnosis. METHOD Whole-brain rsEC and rsFC networks were constructed using resting-state fMRI data and compared between 103 patients with schizophrenia and 110 healthy participants. Pattern classifications between patients and controls based on whole-brain rsEC and rsFC were further performed using multivariate pattern analysis. RESULTS We identified 17 rsEC significantly disrupted (mostly decreased) in patients, among which all were associated with the thalamus and 15 were from limbic areas (including hippocampus, parahippocampus and cingulate cortex) to the thalamus. In contrast, abnormal rsFC were widely distributed in the whole brain. The classification accuracies for distinguishing patients and controls using whole-brain rsEC and rsFC patterns were 78.6% and 82.7%, respectively, and was further improved to 84.5% when combining rsEC and rsFC. CONCLUSIONS Schizophrenia is featured by disrupted 'limbic areas-to-thalamus' rsEC, in contrast with diffusively altered rsFC. Moreover, both rsEC and rsFC contain valuable and complementary information which may be used as diagnostic markers for schizophrenia.
Collapse
Affiliation(s)
- Minghui Hua
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Yanmin Peng
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Yuan Zhou
- CAS Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunshui Yu
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China; Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
29
|
Bi XA, Hu X, Wu H, Wang Y. Multimodal Data Analysis of Alzheimer's Disease Based on Clustering Evolutionary Random Forest. IEEE J Biomed Health Inform 2020; 24:2973-2983. [PMID: 32071013 DOI: 10.1109/jbhi.2020.2973324] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) has become a severe medical challenge. Advances in technologies produced high-dimensional data of different modalities including functional magnetic resonance imaging (fMRI) and single nucleotide polymorphism (SNP). Understanding the complex association patterns among these heterogeneous and complementary data is of benefit to the diagnosis and prevention of AD. In this paper, we apply the appropriate correlation analysis method to detect the relationships between brain regions and genes, and propose "brain region-gene pairs" as the multimodal features of the sample. In addition, we put forward a novel data analysis method from technology aspect, cluster evolutionary random forest (CERF), which is suitable for "brain region-gene pairs". The idea of clustering evolution is introduced to improve the generalization performance of random forest which is constructed by randomly selecting samples and sample features. Through hierarchical clustering of decision trees in random forest, the decision trees with higher similarity are clustered into one class, and the decision trees with the best performance are retained to enhance the diversity between decision trees. Furthermore, based on CERF, we integrate feature construction, feature selection and sample classification to find the optimal combination of different methods, and design a comprehensive diagnostic framework for AD. The framework is validated by the samples with both fMRI and SNP data from ADNI. The results show that we can effectively identify AD patients and discover some brain regions and genes associated with AD significantly based on this framework. These findings are conducive to the clinical treatment and prevention of AD.
Collapse
|
30
|
Predicting response to electroconvulsive therapy combined with antipsychotics in schizophrenia using multi-parametric magnetic resonance imaging. Schizophr Res 2020; 216:262-271. [PMID: 31826827 DOI: 10.1016/j.schres.2019.11.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/04/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022]
Abstract
Electroconvulsive therapy (ECT) has been shown to be effective in schizophrenia, particularly when rapid symptom reduction is needed or in cases of resistance to drug treatment. However, there are no markers available to predict response to ECT. Here, we examine whether multi-parametric magnetic resonance imaging (MRI)-based radiomic features can predict response to ECT for individual patients. A total of 57 treatment-resistant schizophrenia patients, or schizophrenia patients with an acute episode or suicide attempts were randomly divided into primary (42 patients) and test (15 patients) cohorts. We collected T1-weighted structural MRI and diffusion MRI for 57 patients before receiving ECT and extracted 600 radiomic features for feature selection and prediction. To predict a continuous improvement in symptoms (ΔPANSS), the prediction process was performed with a support vector regression model based on a leave-one-out cross-validation framework in primary cohort and was tested in test cohort. The multi-parametric MRI-based radiomic model, including four structural MRI feature from left inferior frontal gyrus, right insula, left middle temporal gyrus and right superior temporal gyrus respectively and six diffusion MRI features from tracts connecting frontal or temporal gyrus possessed a low root mean square error of 15.183 in primary cohort and 14.980 in test cohort. The Pearson's correlation coefficients between predicted and actual values were 0.671 and 0.777 respectively. These results demonstrate that multi-parametric MRI-based radiomic features may predict response to ECT for individual patients. Such features could serve as prognostic neuroimaging biomarkers that provide a critical step toward individualized treatment response prediction in schizophrenia.
Collapse
|
31
|
A longitudinal neurite and free water imaging study in patients with a schizophrenia spectrum disorder. Neuropsychopharmacology 2019; 44:1932-1939. [PMID: 31153156 PMCID: PMC6785103 DOI: 10.1038/s41386-019-0427-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
Diffusion tensor imaging (DTI) studies show widespread white matter abnormalities in schizophrenia, but it is difficult to directly relate these parameters to biological processes. Neurite orientation dispersion and density imaging (NODDI) is geared toward biophysical characterization of white matter microstructure, but only few studies have leveraged this technique to study white matter alterations. We recruited 42 schizophrenia patients (30 antipsychotic-naïve and 12 currently untreated) and 42 matched controls in this prospective study. We assessed the orientation dispersion index (ODI) and extracellular free water (FW) using single-shell DTI data before and after a 6-week trial of risperidone. Longitudinal data were available for 27 patients. Voxelwise analyses showed significantly increased ODI in the posterior limb of the internal capsule in unmedicated patients (242 voxels; x = -24; y = 6; z = 6; p < 0.01; α < 0.04), but no alterations in FW. Whole brain measures did not reveal alterations in ODI but a 6.3% trend-level increase in FW in unmedicated SZ (t = -1.873; p = 0.07). Baseline ODI was negatively correlated with subsequent response to antipsychotic treatment (r = -0.38; p = 0.049). Here, we demonstrated altered fiber complexity in medication-naïve and unmedicated patients with a schizophrenia spectrum illness. Lesser whole brain fiber uniformity was predictive of poor response to treatment, suggesting this measure may be a clinically relevant biomarker. Interestingly, we found no significant changes in NODDI indices after short-term treatment with risperidone. Our data show that biophysical diffusion models have promise for the in vivo evaluation of brain microstructure in this devastating neuropsychiatric syndrome.
Collapse
|
32
|
Lou C, Zhao J, Shi R, Wang Q, Zhou W, Wang Y, Wang G, Huang L, Feng X, Zhou F. sefOri: selecting the best-engineered sequence features to predict DNA replication origins. Bioinformatics 2019; 36:49-55. [DOI: 10.1093/bioinformatics/btz506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/25/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
AbstractMotivationCell divisions start from replicating the double-stranded DNA, and the DNA replication process needs to be precisely regulated both spatially and temporally. The DNA is replicated starting from the DNA replication origins. A few successful prediction models were generated based on the assumption that the DNA replication origin regions have sequence level features like physicochemical properties significantly different from the other DNA regions.ResultsThis study proposed a feature selection procedure to further refine the classification model of the DNA replication origins. The experimental data demonstrated that as large as 26% improvement in the prediction accuracy may be achieved on the yeast Saccharomyces cerevisiae. Moreover, the prediction accuracies of the DNA replication origins were improved for all the four yeast genomes investigated in this study.Availability and implementationThe software sefOri version 1.0 was available at http://www.healthinformaticslab.org/supp/resources.php. An online server was also provided for the convenience of the users, and its web link may be found in the above-mentioned web page.Supplementary informationSupplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chenwei Lou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Jian Zhao
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Ruoyao Shi
- BioKnow Health Informatics Lab, College of Life Sciences, Jilin University, Changchun 130012, China
| | - Qian Wang
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Wenyang Zhou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Yubo Wang
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Guoqing Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun 130012, China
| | - Lan Huang
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Xin Feng
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Fengfeng Zhou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| |
Collapse
|
33
|
Anderson AN, King JB, Anderson JS. Neuroimaging in Psychiatry and Neurodevelopment: why the emperor has no clothes. Br J Radiol 2019; 92:20180910. [PMID: 30864835 DOI: 10.1259/bjr.20180910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neuroimaging has been a dominant force in guiding research into psychiatric and neurodevelopmental disorders for decades, yet researchers have been unable to formulate sensitive or specific imaging tests for these conditions. The search for neuroimaging biomarkers has been constrained by limited reproducibility of imaging techniques, limited tools for evaluating neurochemistry, heterogeneity of patient populations not defined by brain-based phenotypes, limited exploration of temporal components of brain function, and relatively few studies evaluating developmental and longitudinal trajectories of brain function. Opportunities for development of clinically impactful imaging metrics include longer duration functional imaging data sets, new engineering approaches to mitigate suboptimal spatiotemporal resolution, improvements in image post-processing and analysis strategies, big data approaches combined with data sharing of multisite imaging samples, and new techniques that allow dynamical exploration of brain function across multiple timescales. Despite narrow clinical impact of neuroimaging methods, there is reason for optimism that imaging will contribute to diagnosis, prognosis, and treatment monitoring for psychiatric and neurodevelopmental disorders in the near future.
Collapse
Affiliation(s)
| | - Jace B King
- 2Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
| | - Jeffrey S Anderson
- 2Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
| |
Collapse
|
34
|
Lin Y, Li M, Zhou Y, Deng W, Ma X, Wang Q, Guo W, Li Y, Jiang L, Hu X, Zhang N, Li T. Age-Related Reduction in Cortical Thickness in First-Episode Treatment-Naïve Patients with Schizophrenia. Neurosci Bull 2019; 35:688-696. [PMID: 30790217 DOI: 10.1007/s12264-019-00348-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/25/2018] [Indexed: 02/05/2023] Open
Abstract
Substantial evidence supports the neurodevelopmental hypothesis of schizophrenia. Meanwhile, progressive neurodegenerative processes have also been reported, leading to the hypothesis that neurodegeneration is a characteristic component in the neuropathology of schizophrenia. However, a major challenge for the neurodegenerative hypothesis is that antipsychotic drugs used by patients have profound impact on brain structures. To clarify this potential confounding factor, we measured the cortical thickness across the whole brain using high-resolution T1-weighted magnetic resonance imaging in 145 first-episode and treatment-naïve patients with schizophrenia and 147 healthy controls. The results showed that, in the patient group, the frontal, temporal, parietal, and cingulate gyri displayed a significant age-related reduction of cortical thickness. In the control group, age-related cortical thickness reduction was mostly located in the frontal, temporal, and cingulate gyri, albeit to a lesser extent. Importantly, relative to healthy controls, patients exhibited a significantly smaller age-related cortical thickness in the anterior cingulate, inferior temporal, and insular gyri in the right hemisphere. These results provide evidence supporting the existence of neurodegenerative processes in schizophrenia and suggest that these processes already occur in the early stage of the illness.
Collapse
Affiliation(s)
- Yin Lin
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of Psychology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Mingli Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhou
- Department of Radiology, Hospital for Chengdu Office of Tibetan Autonomous Region, Branch Hospital of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Deng
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaohong Ma
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wang
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wanjun Guo
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinfei Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijun Jiang
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xun Hu
- Huaxi Biobank, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nanyin Zhang
- Department of Biomedical Engineering, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Tao Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. .,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|