1
|
Guha A, Popov T, Bartholomew ME, Reed AC, Diehl CK, Subotnik K, Ventura J, Nuechterlein KH, Miller GA, Yee CM. Task-based default mode network connectivity predicts cognitive impairment and negative symptoms in first-episode schizophrenia. Psychophysiology 2024; 61:e14627. [PMID: 38924105 PMCID: PMC11473237 DOI: 10.1111/psyp.14627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024]
Abstract
Individuals diagnosed with schizophrenia (SZ) demonstrate difficulty distinguishing between internally and externally generated stimuli. These aberrations in "source monitoring" have been theorized as contributing to symptoms of the disorder, including hallucinations and delusions. Altered connectivity within the default mode network (DMN) of the brain has been proposed as a mechanism through which discrimination between self-generated and externally generated events is disrupted. Source monitoring abnormalities in SZ have additionally been linked to impairments in selective attention and inhibitory processing, which are reliably observed via the N100 component of the event-related brain potential elicited during an auditory paired-stimulus paradigm. Given overlapping constructs associated with DMN connectivity and N100 in SZ, the present investigation evaluated relationships between these measures of disorder-related dysfunction and sought to clarify the nature of task-based DMN function in SZ. DMN connectivity and N100 measures were assessed using EEG recorded from SZ during their first episode of illness (N = 52) and demographically matched healthy comparison participants (N = 25). SZ demonstrated less evoked theta-band connectivity within DMN following presentation of pairs of identical auditory stimuli than HC. Greater DMN connectivity among SZ was associated with better performance on measures of sustained attention (p = .03) and working memory (p = .09), as well as lower severity of negative symptoms, though it was not predictive of N100 measures. Together, present findings provide EEG evidence of lower task-based connectivity among first-episode SZ, reflecting disruptions of DMN functions that support cognitive processes. Attentional processes captured by N100 appear to be supported by different neural mechanisms.
Collapse
Affiliation(s)
- Anika Guha
- Department of Psychology, University of California, Los Angeles
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus
| | - Tzvetan Popov
- Department of Psychology, Methods of Plasticity Research, University of Zurich, Switzerland
- Department of Psychology, University of Konstanz, Germany
| | | | | | | | - Kenneth Subotnik
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Joseph Ventura
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Keith H. Nuechterlein
- Department of Psychology, University of California, Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Gregory A. Miller
- Department of Psychology, University of California, Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Cindy M. Yee
- Department of Psychology, University of California, Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| |
Collapse
|
2
|
Wang Y, Ouyang L, Fan L, Zheng W, Li Z, Tang J, Yuan L, Li C, Jin K, Liu W, Chen X, He Y, Ma X. Functional and structural abnormalities of thalamus in individuals at early stage of schizophrenia. Schizophr Res 2024; 271:292-299. [PMID: 39079406 DOI: 10.1016/j.schres.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Thalamic abnormalities in schizophrenia are recognized, alongside cognitive deficits. However, the current findings about these abnormalities during the prodromal period remain relatively few and inconsistent. This study applied multimodal methods to explore the alterations in thalamic function and structure and their relationship with cognitive function in first-episode schizophrenia (FES) patients and ultra-high-risk (UHR) individuals, aiming to affirm the thalamus's role in schizophrenia development and cognitive deficits. METHODS 75 FES patients, 60 UHR individuals, and 60 healthy controls (HC) were recruited. Among the three groups, gray matter volume (GMV) and functional connectivity (FC) were evaluated to reflect the structural and functional abnormalities in the thalamus. Pearson correlation was used to calculate the association between these abnormalities and cognitive impairments. RESULTS No significant difference in GMV of the thalamus was found among the abovementioned three groups. Compared with HC individuals, FES patients had decreased thalamocortical FC mostly in the thalamocortical triple network, including the default mode network (DMN), salience network (SN), and executive control network (ECN). UHR individuals had similar but milder dysconnectivity as the FES group. Furthermore, FC between the left thalamus and right putamen was significantly correlated with execution speed and attention in the FES group. CONCLUSIONS Our findings revealed decreased thalamocortical FC associated with cognitive deficits in FES and UHR subjects. This improves our understanding of the functional alterations in thalamus in prodromal stage of schizophrenia and the related factors of the cognitive impairment of the disease. TRIAL REGISTRATION ClinicalTrials.govNCT03965598; https://clinicaltrials.gov/ct2/show/NCT03965598.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lejia Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Wenxiao Zheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinsong Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Ke Jin
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Weiqing Liu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China; Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science (CBS), RIKEN, Wako, Saitama, Japan
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; China National Technology Institute on Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Institute of Mental Health, Changsha, Hunan, China; Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; China National Technology Institute on Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Institute of Mental Health, Changsha, Hunan, China; Hunan Medical Center for Mental Health, Changsha, Hunan, China.
| | - Xiaoqian Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; China National Technology Institute on Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Institute of Mental Health, Changsha, Hunan, China; Hunan Medical Center for Mental Health, Changsha, Hunan, China.
| |
Collapse
|
3
|
Rutherford S, Lasagna CA, Blain SD, Marquand AF, Wolfers T, Tso IF. Social Cognition and Functional Connectivity in Early and Chronic Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00212-X. [PMID: 39117275 DOI: 10.1016/j.bpsc.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Individuals with schizophrenia (SZ) experience impairments in social cognition that contribute to poor functional outcomes. However, mechanisms of social cognitive dysfunction in SZ remain poorly understood, which impedes the design of novel interventions to improve outcomes. In this preregistered project, we examined the representation of social cognition in the brain's functional architecture in early and chronic SZ. METHODS The study contains 2 parts: a confirmatory and an exploratory portion. In the confirmatory portion, we identified resting-state connectivity disruptions evident in early and chronic SZ. We performed a connectivity analysis using regions associated with social cognitive dysfunction in early and chronic SZ to test whether aberrant connectivity observed in chronic SZ (n = 47 chronic SZ and n = 52 healthy control participants) was also present in early SZ (n = 71 early SZ and n = 47 healthy control participants). In the exploratory portion, we assessed the out-of-sample generalizability and precision of predictive models of social cognition. We used machine learning to predict social cognition and established generalizability with out-of-sample testing and confound control. RESULTS Results revealed decreases between the left inferior frontal gyrus and the intraparietal sulcus in early and chronic SZ, which were significantly associated with social and general cognition and global functioning in chronic SZ and with general cognition and global functioning in early SZ. Predictive modeling revealed the importance of out-of-sample evaluation and confound control. CONCLUSIONS This work provides insights into the functional architecture in early and chronic SZ and suggests that inferior frontal gyrus-intraparietal sulcus connectivity could be a prognostic biomarker of social impairments and a target for future interventions (e.g., neuromodulation) focused on improved social functioning.
Collapse
Affiliation(s)
- Saige Rutherford
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Cognition, Brain, Behavior, Nijmegen, the Netherlands; Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.
| | - Carly A Lasagna
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Scott D Blain
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio
| | - Andre F Marquand
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Cognition, Brain, Behavior, Nijmegen, the Netherlands
| | - Thomas Wolfers
- Department of Psychiatry, University of Tübingen, Tübingen, Germany; German Centre for Mental Health, University of Tübingen, Tübingen, Germany
| | - Ivy F Tso
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio
| |
Collapse
|
4
|
Smucny J, Wylie KP, Lesh TA, Carter CS, Tregellas JR. Whole-brain intrinsic functional connectivity predicts symptoms and functioning in early psychosis. J Psychiatr Res 2024; 175:411-417. [PMID: 38781675 PMCID: PMC11374471 DOI: 10.1016/j.jpsychires.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Theories of psychotic illness suggest that abnormal intrinsic functional connectivity may explain its characteristic positive and disorganization symptoms as well as lead to impaired general functioning. Here we used resting state functional magnetic resonance imaging (fMRI) to evaluate associations between these symptoms and the degree to which global connectivity is abnormal in early psychosis (EP). Eighty-six healthy controls (HCs) and 108 individuals with EP with resting state fMRI data were included in primary analyses. The EP group included 83 participants with schizophrenia-spectrum disorders and 25 with bipolar disorder type I with psychotic features. A global intrinsic connectivity "similarity index" for each EP individual was determined by calculating its correlation with the average HC connectivity matrix extracted using Schaefer atlases of multiple parcellations (100, 200, 300, and 400 region parcellations). As hypothesized, connectivity similarity with the average HC matrix was negatively associated with Brief Psychiatric Rating Scale total score, Scale for the Assessment of Positive Symptoms total score, and disorganization symptoms. Similarity was also positively associated with Global Assessment of Functioning score. Results were not driven by sex or diagnosis effects and were consistent across parcellation schemes. These results support the hypothesis that changes in whole-brain connectivity patterns are associated with psychosis symptoms and support the use of functional connectivity as a biomarker for these symptoms in EP.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA.
| | - Korey P Wylie
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, USA
| | - Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| | - Cameron S Carter
- Department of Psychiatry and Human Behavior, University of California, Irvine, USA
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, USA; Research Service, Rocky Mountain Regional VA Medical Center, USA
| |
Collapse
|
5
|
Kotov R, Carpenter WT, Cicero DC, Correll CU, Martin EA, Young JW, Zald DH, Jonas KG. Psychosis superspectrum II: neurobiology, treatment, and implications. Mol Psychiatry 2024; 29:1293-1309. [PMID: 38351173 DOI: 10.1038/s41380-024-02410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
Alternatives to traditional categorical diagnoses have been proposed to improve the validity and utility of psychiatric nosology. This paper continues the companion review of an alternative model, the psychosis superspectrum of the Hierarchical Taxonomy of Psychopathology (HiTOP). The superspectrum model aims to describe psychosis-related psychopathology according to data on distributions and associations among signs and symptoms. The superspectrum includes psychoticism and detachment spectra as well as narrow subdimensions within them. Auxiliary domains of cognitive deficit and functional impairment complete the psychopathology profile. The current paper reviews evidence on this model from neurobiology, treatment response, clinical utility, and measure development. Neurobiology research suggests that psychopathology included in the superspectrum shows similar patterns of neural alterations. Treatment response often mirrors the hierarchy of the superspectrum with some treatments being efficacious for psychoticism, others for detachment, and others for a specific subdimension. Compared to traditional diagnostic systems, the quantitative nosology shows an approximately 2-fold increase in reliability, explanatory power, and prognostic accuracy. Clinicians consistently report that the quantitative nosology has more utility than traditional diagnoses, but studies of patients with frank psychosis are currently lacking. Validated measures are available to implement the superspectrum model in practice. The dimensional conceptualization of psychosis-related psychopathology has implications for research, clinical practice, and public health programs. For example, it encourages use of the cohort study design (rather than case-control), transdiagnostic treatment strategies, and selective prevention based on subclinical symptoms. These approaches are already used in the field, and the superspectrum provides further impetus and guidance for their implementation. Existing knowledge on this model is substantial, but significant gaps remain. We identify outstanding questions and propose testable hypotheses to guide further research. Overall, we predict that the more informative, reliable, and valid characterization of psychopathology offered by the superspectrum model will facilitate progress in research and clinical care.
Collapse
Affiliation(s)
- Roman Kotov
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA.
| | | | - David C Cicero
- Department of Psychology, University of North Texas, Denton, TX, USA
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elizabeth A Martin
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - David H Zald
- Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Katherine G Jonas
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
6
|
Ragazzi TCC, Shuhama R, da Silva PHR, Corsi-Zuelli F, Loureiro CM, da Roza DL, Leoni RF, Menezes PR, Del-Ben CM. Neurocognition and brain functional connectivity in a non-clinical population-based sample with psychotic experiences. Schizophr Res 2024; 267:156-164. [PMID: 38547718 DOI: 10.1016/j.schres.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/17/2024] [Accepted: 03/17/2024] [Indexed: 05/21/2024]
Abstract
We characterized the neurocognitive profile of communed-based individuals and unaffected siblings of patients with psychosis from Brazil reporting psychotic experiences (PEs). We also analyzed associations between PEs and the intra and inter-functional connectivity (FC) in the Default Mode Network (DMN), the Fronto-Parietal Network (FPN) and the Salience Network (SN) measured by functional magnetic resonance imaging. The combined sample of communed-based individuals and unaffected siblings of patients with psychosis comprised 417 (neurocognition) and 85 (FC) volunteers who were divided as having low (<75th percentile) and high (≥75th percentile) PEs (positive, negative, and depressive dimensions) assessed by the Community Assessment of Psychic Experiences. The neurocognitive profile and the estimated current brief intellectual quotient (IQ) were assessed using the digit symbol (processing speed), arithmetic (working memory), block design (visual learning) and information (verbal learning) subtests of Wechsler Adult Intelligence Scale-third edition. Logistic regression models were performed for neurocognitive analysis. For neuroimaging, we used the CONN toolbox to assess FC between the specified regions, and ROI-to-ROI analysis. In the combined sample, high PEs (all dimensions) were related to lower processing speed performance. High negative PEs were related to poor visual learning performance and lower IQ, while high depressive PEs were associated with poor working memory performance. Those with high negative PEs presented FPN hypoconnectivity between the right and left lateral prefrontal cortex. There were no associations between PEs and the DMN and SN FC. Brazilian individuals with high PEs showed neurocognitive impairments like those living in wealthier countries. Hypoconnectivity in the FPN in a community sample with high PEs is coherent with the hypothesis of functional dysconnectivity in schizophrenia.
Collapse
Affiliation(s)
- Taciana Cristina Carvalho Ragazzi
- Department of Neuroscience and Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil, 3900, Bandeirantes Avenue, Monte Alegre, 14040-900 Ribeirão Preto, São Paulo, Brazil.
| | - Rosana Shuhama
- Department of Neuroscience and Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil, 3900, Bandeirantes Avenue, Monte Alegre, 14040-900 Ribeirão Preto, São Paulo, Brazil.
| | - Pedro Henrique Rodrigues da Silva
- Department of Physics, InBrain Laboratory, Faculty of Philosophy Sciences and Letters of Ribeirão Preto-University of Sao Paulo, Brazil, 3900, Bandeirantes Avenue, Monte Alegre, 14040-901 Ribeirão Preto, São Paulo, Brazil.
| | - Fabiana Corsi-Zuelli
- Department of Neuroscience and Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil, 3900, Bandeirantes Avenue, Monte Alegre, 14040-900 Ribeirão Preto, São Paulo, Brazil.
| | - Camila Marcelino Loureiro
- Department of Neuroscience and Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil, 3900, Bandeirantes Avenue, Monte Alegre, 14040-900 Ribeirão Preto, São Paulo, Brazil.
| | - Daiane Leite da Roza
- Department of Neuroscience and Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil, 3900, Bandeirantes Avenue, Monte Alegre, 14040-900 Ribeirão Preto, São Paulo, Brazil; Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, SP, Brazil.
| | - Renata Ferranti Leoni
- Department of Physics, InBrain Laboratory, Faculty of Philosophy Sciences and Letters of Ribeirão Preto-University of Sao Paulo, Brazil, 3900, Bandeirantes Avenue, Monte Alegre, 14040-901 Ribeirão Preto, São Paulo, Brazil.
| | - Paulo Rossi Menezes
- Department of Preventive Medicine, Faculty of Medicine, University of São Paulo, Brazil, Population Mental Health Research Centre, Brazil, 455, Dr. Arnaldo Avenue, Cerqueira César, 01246903 São Paulo, São Paulo, Brazil.
| | - Cristina Marta Del-Ben
- Department of Neuroscience and Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil, 3900, Bandeirantes Avenue, Monte Alegre, 14040-900 Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
7
|
Davies C, Martins D, Dipasquale O, McCutcheon RA, De Micheli A, Ramella-Cravaro V, Provenzani U, Rutigliano G, Cappucciati M, Oliver D, Williams S, Zelaya F, Allen P, Murguia S, Taylor D, Shergill S, Morrison P, McGuire P, Paloyelis Y, Fusar-Poli P. Connectome dysfunction in patients at clinical high risk for psychosis and modulation by oxytocin. Mol Psychiatry 2024; 29:1241-1252. [PMID: 38243074 PMCID: PMC11189815 DOI: 10.1038/s41380-024-02406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Abnormalities in functional brain networks (functional connectome) are increasingly implicated in people at Clinical High Risk for Psychosis (CHR-P). Intranasal oxytocin, a potential novel treatment for the CHR-P state, modulates network topology in healthy individuals. However, its connectomic effects in people at CHR-P remain unknown. Forty-seven men (30 CHR-P and 17 healthy controls) received acute challenges of both intranasal oxytocin 40 IU and placebo in two parallel randomised, double-blind, placebo-controlled cross-over studies which had similar but not identical designs. Multi-echo resting-state fMRI data was acquired at approximately 1 h post-dosing. Using a graph theoretical approach, the effects of group (CHR-P vs healthy control), treatment (oxytocin vs placebo) and respective interactions were tested on graph metrics describing the topology of the functional connectome. Group effects were observed in 12 regions (all pFDR < 0.05) most localised to the frontoparietal network. Treatment effects were found in 7 regions (all pFDR < 0.05) predominantly within the ventral attention network. Our major finding was that many effects of oxytocin on network topology differ across CHR-P and healthy individuals, with significant interaction effects observed in numerous subcortical regions strongly implicated in psychosis onset, such as the thalamus, pallidum and nucleus accumbens, and cortical regions which localised primarily to the default mode network (12 regions, all pFDR < 0.05). Collectively, our findings provide new insights on aberrant functional brain network organisation associated with psychosis risk and demonstrate, for the first time, that oxytocin modulates network topology in brain regions implicated in the pathophysiology of psychosis in a clinical status (CHR-P vs healthy control) specific manner.
Collapse
Affiliation(s)
- Cathy Davies
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychiatry, University Hospitals of Genève, Geneva, Switzerland
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Andrea De Micheli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Outreach And Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Valentina Ramella-Cravaro
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Umberto Provenzani
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Grazia Rutigliano
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marco Cappucciati
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dominic Oliver
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Steve Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Allen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Silvia Murguia
- Tower Hamlets Early Detection Service, East London NHS Foundation Trust, London, UK
| | - David Taylor
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Kent and Medway Medical School, Canterbury, UK
| | - Paul Morrison
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
- Outreach And Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Grot S, Smine S, Potvin S, Darcey M, Pavlov V, Genon S, Nguyen H, Orban P. Label-based meta-analysis of functional brain dysconnectivity across mood and psychotic disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110950. [PMID: 38266867 DOI: 10.1016/j.pnpbp.2024.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/11/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging (rsfMRI) studies have revealed patterns of functional brain dysconnectivity in psychiatric disorders such as major depression disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ). Although these disorders have been mostly studied in isolation, there is mounting evidence of shared neurobiological alterations across them. METHODS To uncover the nature of the relatedness between these psychiatric disorders, we conducted an innovative meta-analysis of dysconnectivity findings reported separately in MDD, BD and SZ. Rather than relying on a classical voxel level coordinate-based approach, our procedure extracted relevant neuroanatomical labels from text data and examined findings at the whole brain network level. Data were drawn from 428 rsfMRI studies investigating MDD (158 studies, 7429 patients/7414 controls), BD (81 studies, 3330 patients/4096 patients) and/or SZ (223 studies, 11,168 patients/11,754 controls). Permutation testing revealed commonalities and differences in hypoconnectivity and hyperconnectivity patterns across disorders. RESULTS Hypoconnectivity and hyperconnectivity patterns of higher-order cognitive (default-mode, fronto-parietal, cingulo-opercular) networks were similarly observed across the three disorders. By contrast, dysconnectivity of lower-order (somatomotor, visual, auditory) networks in some cases differed between disorders, notably dissociating SZ from BD and MDD. CONCLUSIONS Findings suggest that functional brain dysconnectivity of higher-order cognitive networks is largely transdiagnostic in nature while that of lower-order networks may best discriminate between mood and psychotic disorders, thus emphasizing the relevance of motor and sensory networks to psychiatric neuroscience.
Collapse
Affiliation(s)
- Stéphanie Grot
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada; Department of Psychiatry and Addictology, University of Montreal, Montréal, Québec, Canada
| | - Salima Smine
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada
| | - Stéphane Potvin
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada; Department of Psychiatry and Addictology, University of Montreal, Montréal, Québec, Canada
| | - Maëliss Darcey
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada
| | - Vilena Pavlov
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada
| | - Sarah Genon
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hien Nguyen
- School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland, Australia; Department of Mathematics and Statistics, Latrobe University, Melbourne, Victoria, Australia
| | - Pierre Orban
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada; Department of Psychiatry and Addictology, University of Montreal, Montréal, Québec, Canada.
| |
Collapse
|
9
|
Zhou Z, Jones K, Ivleva EI, Colon-Perez L. Macro- and Micro-Structural Alterations in the Midbrain in Early Psychosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588901. [PMID: 38645197 PMCID: PMC11030414 DOI: 10.1101/2024.04.10.588901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Introduction Early psychosis (EP) is a critical period in the course of psychotic disorders during which the brain is thought to undergo rapid and significant functional and structural changes 1 . Growing evidence suggests that the advent of psychotic disorders is early alterations in the brain's functional connectivity and structure, leading to aberrant neural network organization. The Human Connectome Project (HCP) is a global effort to map the human brain's connectivity in healthy and disease populations; within HCP, there is a specific dataset that focuses on the EP subjects (i.e., those within five years of the initial psychotic episode) (HCP-EP), which is the focus of our study. Given the critically important role of the midbrain function and structure in psychotic disorders (cite), and EP in particular (cite), we specifically focused on the midbrain macro- and micro-structural alterations and their association with clinical outcomes in HCP-EP. Methods We examined macro- and micro-structural brain alterations in the HCP-EP sample (n=179: EP, n=123, Controls, n=56) as well as their associations with behavioral measures (i.e., symptoms severity) using a stepwise approach, incorporating a multimodal MRI analysis procedure. First, Deformation Based Morphometry (DBM) was carried out on the whole brain 3 Tesla T1w images to examine gross brain anatomy (i.e., seed-based and voxel-based volumes). Second, we extracted Fractional Anisotropy (FA), Axial Diffusivity (AD), and Mean Diffusivity (MD) indices from the Diffusion Tensor Imaging (DTI) data; a midbrain mask was created based on FreeSurfer v.6.0 atlas. Third, we employed Tract-Based Spatial Statistics (TBSS) to determine microstructural alterations in white matter tracts within the midbrain and broader regions. Finally, we conducted correlation analyses to examine associations between the DBM-, DTI- and TBSS-based outcomes and the Positive and Negative Syndrome Scale (PANSS) scores. Results DBM analysis showed alterations in the hippocampus, midbrain, and caudate/putamen. A DTI voxel-based analysis shows midbrain reductions in FA and AD and increases in MD; meanwhile, the hippocampus shows an increase in FA and a decrease in AD and MD. Several key brain regions also show alterations in DTI indices (e.g., insula, caudate, prefrontal cortex). A seed-based analysis centered around a midbrain region of interest obtained from freesurfer segmentation confirms the voxel-based analysis of DTI indices. TBSS successfully captured structural differences within the midbrain and complementary alterations in other main white matter tracts, such as the corticospinal tract and cingulum, suggesting early altered brain connectivity in EP. Correlations between these quantities in the EP group and behavioral scores (i.e., PANSS and CAINS tests) were explored. It was found that midbrain volume noticeably correlates with the Cognitive score of PA and all DTI metrics. FA correlates with the several dimensions of the PANSS, while AD and MD do not show many associations with PANSS or CAINS. Conclusions Our findings contribute to understanding the midbrain-focused circuitry involvement in EP and complimentary alteration in EP. Our work provides a path for future investigations to inform specific brain-based biomarkers of EP and their relationships to clinical manifestations of the psychosis course.
Collapse
|
10
|
Maximo JO, Briend F, Armstrong WP, Kraguljac NV, Lahti AC. Higher-order functional brain networks and anterior cingulate glutamate + glutamine (Glx) in antipsychotic-naïve first episode psychosis patients. Transl Psychiatry 2024; 14:183. [PMID: 38600117 PMCID: PMC11006887 DOI: 10.1038/s41398-024-02854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 04/12/2024] Open
Abstract
Human connectome studies have provided abundant data consistent with the hypothesis that functional dysconnectivity is predominant in psychosis spectrum disorders. Converging lines of evidence also suggest an interaction between dorsal anterior cingulate cortex (dACC) cortical glutamate with higher-order functional brain networks (FC) such as the default mode (DMN), dorsal attention (DAN), and executive control networks (ECN) in healthy controls (HC) and this mechanism may be impaired in psychosis. Data from 70 antipsychotic-medication naïve first-episode psychosis (FEP) and 52 HC were analyzed. 3T Proton magnetic resonance spectroscopy (1H-MRS) data were acquired from a voxel in the dACC and assessed correlations (positive FC) and anticorrelations (negative FC) of the DMN, DAN, and ECN. We then performed regressions to assess associations between glutamate + glutamine (Glx) with positive and negative FC of these same networks and compared them between groups. We found alterations in positive and negative FC in all networks (HC > FEP). A relationship between dACC Glx and positive and negative FC was found in both groups, but when comparing these relationships between groups, we found contrasting associations between these variables in FEP patients compared to HC. We demonstrated that both positive and negative FC in three higher-order resting state networks are already altered in antipsychotic-naïve FEP, underscoring the importance of also considering anticorrelations for optimal characterization of large-scale functional brain networks as these represent biological processes as well. Our data also adds to the growing body of evidence supporting the role of dACC cortical Glx as a mechanism underlying alterations in functional brain network connectivity. Overall, the implications for these findings are imperative as this particular mechanism may differ in untreated or chronic psychotic patients; therefore, understanding this mechanism prior to treatment could better inform clinicians.Clinical trial registration: Trajectories of Treatment Response as Window into the Heterogeneity of Psychosis: A Longitudinal Multimodal Imaging Study, NCT03442101 . Glutamate, Brain Connectivity and Duration of Untreated Psychosis (DUP), NCT02034253 .
Collapse
Affiliation(s)
- Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frederic Briend
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- UMR1253, iBrain, Université de Tours, Inserm, Tours, France
| | - William P Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Okada N, Yahata N, Koshiyama D, Morita K, Sawada K, Kanata S, Fujikawa S, Sugimoto N, Toriyama R, Masaoka M, Koike S, Araki T, Kano Y, Endo K, Yamasaki S, Ando S, Nishida A, Hiraiwa-Hasegawa M, Edden RAE, Sawa A, Kasai K. Longitudinal trajectories of anterior cingulate glutamate and subclinical psychotic experiences in early adolescence: the impact of bullying victimization. Mol Psychiatry 2024; 29:939-950. [PMID: 38182806 PMCID: PMC11176069 DOI: 10.1038/s41380-023-02382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024]
Abstract
Previous studies reported decreased glutamate levels in the anterior cingulate cortex (ACC) in non-treatment-resistant schizophrenia and first-episode psychosis. However, ACC glutamatergic changes in subjects at high-risk for psychosis, and the effects of commonly experienced environmental emotional/social stressors on glutamatergic function in adolescents remain unclear. In this study, adolescents recruited from the general population underwent proton magnetic resonance spectroscopy (MRS) of the pregenual ACC using a 3-Tesla scanner. We explored longitudinal data on the association of combined glutamate-glutamine (Glx) levels, measured by MRS, with subclinical psychotic experiences. Moreover, we investigated associations of bullying victimization, a risk factor for subclinical psychotic experiences, and help-seeking intentions, a coping strategy against stressors including bullying victimization, with Glx levels. Finally, path analyses were conducted to explore multivariate associations. For a contrast analysis, gamma-aminobutyric acid plus macromolecule (GABA+) levels were also analyzed. Negative associations were found between Glx levels and subclinical psychotic experiences at both Times 1 (n = 219, mean age 11.5 y) and 2 (n = 211, mean age 13.6 y), as well as for over-time changes (n = 157, mean interval 2.0 y). Moreover, effects of bullying victimization and bullying victimization × help-seeking intention interaction effects on Glx levels were found (n = 156). Specifically, bullying victimization decreased Glx levels, whereas help-seeking intention increased Glx levels only in bullied adolescents. Finally, associations among bullying victimization, help-seeking intention, Glx levels, and subclinical psychotic experiences were revealed. GABA+ analysis revealed no significant results. This is the first adolescent study to reveal longitudinal trajectories of the association between glutamatergic function and subclinical psychotic experiences and to elucidate the effect of commonly experienced environmental emotional/social stressors on glutamatergic function. Our findings may deepen the understanding of how environmental emotional/social stressors induce impaired glutamatergic neurotransmission that could be the underpinning of liability for psychotic experiences in early adolescence.
Collapse
Affiliation(s)
- Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Noriaki Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Chiba, 263-8555, Japan
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kentaro Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kingo Sawada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Center for Research on Counseling and Support Services, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sho Kanata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shinya Fujikawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Noriko Sugimoto
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Rie Toriyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mio Masaoka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Psychiatry, Teikyo University Mizonokuchi Hospital, Futago 5-1-1, Takatsu-ku, Kawasaki, Kanagawa, 213-8507, Japan
| | - Yukiko Kano
- Department Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kaori Endo
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Syudo Yamasaki
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Shuntaro Ando
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Atsushi Nishida
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Mariko Hiraiwa-Hasegawa
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway Street, Baltimore, MD, 21205, USA
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Biomedical Engineering, Genetic Medicine, and Pharmacology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 600 N Wolfe St, Baltimore, MD, 21287, USA
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
12
|
Onwordi EC, Whitehurst T, Shatalina E, Mansur A, Arumuham A, Osugo M, Marques TR, Jauhar S, Gupta S, Mehrotra R, Rabiner EA, Gunn RN, Natesan S, Howes OD. Synaptic Terminal Density Early in the Course of Schizophrenia: An In Vivo UCB-J Positron Emission Tomographic Imaging Study of SV2A. Biol Psychiatry 2024; 95:639-646. [PMID: 37330164 PMCID: PMC10923626 DOI: 10.1016/j.biopsych.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The synaptic hypothesis is an influential theory of the pathoetiology of schizophrenia (SCZ), which is supported by the finding that there is lower uptake of the synaptic terminal density marker [11C]UCB-J in patients with chronic SCZ than in control participants. However, it is unclear whether these differences are present early in the illness. To address this, we investigated [11C]UCB-J volume of distribution (VT) in antipsychotic-naïve/free patients with SCZ who were recruited from first-episode services compared with healthy volunteers. METHODS Forty-two volunteers (SCZ n = 21, healthy volunteers n = 21) underwent [11C]UCB-J positron emission tomography to index [11C]UCB-J VT and distribution volume ratio in the anterior cingulate, frontal, and dorsolateral prefrontal cortices; the temporal, parietal and occipital lobes; and the hippocampus, thalamus, and amygdala. Symptom severity was assessed in the SCZ group using the Positive and Negative Syndrome Scale. RESULTS We found no significant effects of group on [11C]UCB-J VT or distribution volume ratio in most regions of interest (effect sizes from d = 0.0-0.7, p > .05), with two exceptions: we found lower distribution volume ratio in the temporal lobe (d = 0.7, uncorrected p < .05) and lower VT/fp in the anterior cingulate cortex in patients (d = 0.7, uncorrected p < .05). The Positive and Negative Syndrome Scale total score was negatively associated with [11C]UCB-J VT in the hippocampus in the SCZ group (r = -0.48, p = .03). CONCLUSIONS These findings indicate that large differences in synaptic terminal density are not present early in SCZ, although there may be more subtle effects. When taken together with previous evidence of lower [11C]UCB-J VT in patients with chronic illness, this may indicate synaptic density changes during the course of SCZ.
Collapse
Affiliation(s)
- Ellis Chika Onwordi
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom.
| | - Thomas Whitehurst
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ekaterina Shatalina
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ayla Mansur
- Department of Brain Sciences, Imperial College London, The Commonwealth Building, Hammersmith Hospital, London, United Kingdom; Invicro, Burlington Danes Building, London, United Kingdom
| | - Atheeshaan Arumuham
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Martin Osugo
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tiago Reis Marques
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Sameer Jauhar
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Susham Gupta
- Early Detection and Early Intervention, East London National Health Service Foundation Trust, London, United Kingdom
| | - Ravi Mehrotra
- Early Intervention in Psychosis Team, West Middlesex University Hospital, West London National Health Service Trust, Isleworth, London, United Kingdom
| | - Eugenii A Rabiner
- Invicro, Burlington Danes Building, London, United Kingdom; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Roger N Gunn
- Department of Brain Sciences, Imperial College London, The Commonwealth Building, Hammersmith Hospital, London, United Kingdom; Invicro, Burlington Danes Building, London, United Kingdom
| | - Sridhar Natesan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Oliver D Howes
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
13
|
Jensen KM, Calhoun VD, Fu Z, Yang K, Faria AV, Ishizuka K, Sawa A, Andrés-Camazón P, Coffman BA, Seebold D, Turner JA, Salisbury DF, Iraji A. A whole-brain neuromark resting-state fMRI analysis of first-episode and early psychosis: Evidence of aberrant cortical-subcortical-cerebellar functional circuitry. Neuroimage Clin 2024; 41:103584. [PMID: 38422833 PMCID: PMC10944191 DOI: 10.1016/j.nicl.2024.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Psychosis (including symptoms of delusions, hallucinations, and disorganized conduct/speech) is a main feature of schizophrenia and is frequently present in other major psychiatric illnesses. Studies in individuals with first-episode (FEP) and early psychosis (EP) have the potential to interpret aberrant connectivity associated with psychosis during a period with minimal influence from medication and other confounds. The current study uses a data-driven whole-brain approach to examine patterns of aberrant functional network connectivity (FNC) in a multi-site dataset comprising resting-state functional magnetic resonance images (rs-fMRI) from 117 individuals with FEP or EP and 130 individuals without a psychiatric disorder, as controls. Accounting for age, sex, race, head motion, and multiple imaging sites, differences in FNC were identified between psychosis and control participants in cortical (namely the inferior frontal gyrus, superior medial frontal gyrus, postcentral gyrus, supplementary motor area, posterior cingulate cortex, and superior and middle temporal gyri), subcortical (the caudate, thalamus, subthalamus, and hippocampus), and cerebellar regions. The prominent pattern of reduced cerebellar connectivity in psychosis is especially noteworthy, as most studies focus on cortical and subcortical regions, neglecting the cerebellum. The dysconnectivity reported here may indicate disruptions in cortical-subcortical-cerebellar circuitry involved in rudimentary cognitive functions which may serve as reliable correlates of psychosis.
Collapse
Affiliation(s)
- Kyle M Jensen
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA.
| | - Vince D Calhoun
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Zening Fu
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Kun Yang
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andreia V Faria
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koko Ishizuka
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pablo Andrés-Camazón
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA; Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain
| | - Brian A Coffman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dylan Seebold
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessica A Turner
- Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Dean F Salisbury
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Armin Iraji
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| |
Collapse
|
14
|
Saxena A, Liu S, Handley ED, Dodell-Feder D. Social victimization, default mode network connectivity, and psychotic-like experiences in adolescents. Schizophr Res 2024; 264:462-470. [PMID: 38266514 DOI: 10.1016/j.schres.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
Social victimization (SV) and altered neural connectivity have been associated with each other and psychotic-like experiences (PLE). However, research has not directly examined the associations between these variables, which may speak to mechanisms of psychosis-risk. Here, we utilized two-year follow-up data from the Adolescent Brain Cognitive Development study to test whether SV increases PLE through two neural networks mediating socio-affective processes: the default mode (DMN) and salience networks (SAN). We find that a latent SV factor was significantly associated with PLE outcomes. Simultaneous mediation analyses indicated that the DMN partially mediated the SV-PLE association while the SAN did not. Further, multigroup testing found that while Black and Hispanic adolescents experienced SV differently than their White peers, the DMN similarly partially mediated the effect of SV on PLE for these racial groups. These cross-sectional results highlight the importance of SV and its potential impact on social cognitive neural networks for psychosis risk.
Collapse
Affiliation(s)
| | - Shangzan Liu
- University of Pennsylvania, United States of America
| | | | | |
Collapse
|
15
|
Roell L, Keeser D, Papazov B, Lembeck M, Papazova I, Greska D, Muenz S, Schneider-Axmann T, Sykorova EB, Thieme CE, Vogel BO, Mohnke S, Huppertz C, Roeh A, Keller-Varady K, Malchow B, Stoecklein S, Ertl-Wagner B, Henkel K, Wolfarth B, Tantchik W, Walter H, Hirjak D, Schmitt A, Hasan A, Meyer-Lindenberg A, Falkai P, Maurus I. Effects of Exercise on Structural and Functional Brain Patterns in Schizophrenia-Data From a Multicenter Randomized-Controlled Study. Schizophr Bull 2024; 50:145-156. [PMID: 37597507 PMCID: PMC10754172 DOI: 10.1093/schbul/sbad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
BACKGROUND AND HYPOTHESIS Aerobic exercise interventions in people with schizophrenia have been demonstrated to improve clinical outcomes, but findings regarding the underlying neural mechanisms are limited and mainly focus on the hippocampal formation. Therefore, we conducted a global exploratory analysis of structural and functional neural adaptations after exercise and explored their clinical implications. STUDY DESIGN In this randomized controlled trial, structural and functional MRI data were available for 91 patients with schizophrenia who performed either aerobic exercise on a bicycle ergometer or underwent a flexibility, strengthening, and balance training as control group. We analyzed clinical and neuroimaging data before and after 6 months of regular exercise. Bayesian linear mixed models and Bayesian logistic regressions were calculated to evaluate effects of exercise on multiple neural outcomes and their potential clinical relevance. STUDY RESULTS Our results indicated that aerobic exercise in people with schizophrenia led to structural and functional adaptations mainly within the default-mode network, the cortico-striato-pallido-thalamo-cortical loop, and the cerebello-thalamo-cortical pathway. We further observed that volume increases in the right posterior cingulate gyrus as a central node of the default-mode network were linked to improvements in disorder severity. CONCLUSIONS These exploratory findings suggest a positive impact of aerobic exercise on 3 cerebral networks that are involved in the pathophysiology of schizophrenia. CLINICAL TRIALS REGISTRATION The underlying study of this manuscript was registered in the International Clinical Trials Database, ClinicalTrials.gov (NCT number: NCT03466112, https://clinicaltrials.gov/ct2/show/NCT03466112?term=NCT03466112&draw=2&rank=1) and in the German Clinical Trials Register (DRKS-ID: DRKS00009804).
Collapse
Affiliation(s)
- Lukas Roell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Neuroimaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Neuroimaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Boris Papazov
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Moritz Lembeck
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Irina Papazova
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - David Greska
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Susanne Muenz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Schneider-Axmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Eliska B Sykorova
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Christina E Thieme
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Bob O Vogel
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Sebastian Mohnke
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Charlotte Huppertz
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Astrid Roeh
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Katriona Keller-Varady
- Hannover Medical School, Department of Rehabilitation and Sports Medicine, Hannover, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital Göttingen, Göttingen, Germany
| | - Sophia Stoecklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Karsten Henkel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Bernd Wolfarth
- Department of Sports Medicine, University Hospital Charité Berlin, Berlin, Germany
| | - Wladimir Tantchik
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Dusan Hirjak
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | | | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Isabel Maurus
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
16
|
Holmes A, Levi PT, Chen YC, Chopra S, Aquino KM, Pang JC, Fornito A. Disruptions of Hierarchical Cortical Organization in Early Psychosis and Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1240-1250. [PMID: 37683727 DOI: 10.1016/j.bpsc.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND The cerebral cortex is organized hierarchically along an axis that spans unimodal sensorimotor to transmodal association areas. This hierarchy is often characterized using low-dimensional embeddings, termed gradients, of interregional functional coupling estimates measured with resting-state functional magnetic resonance imaging. Such analyses may offer insights into the pathophysiology of schizophrenia, which has been frequently linked to dysfunctional interactions between association and sensorimotor areas. METHODS To examine disruptions of hierarchical cortical function across distinct stages of psychosis, we applied diffusion map embedding to 2 independent functional magnetic resonance imaging datasets: one comprising 114 patients with early psychosis and 48 control participants, and the other comprising 50 patients with established schizophrenia and 121 control participants. Then, we analyzed the primary sensorimotor-to-association and secondary visual-to-sensorimotor gradients of each participant in both datasets. RESULTS There were no significant differences in regional gradient scores between patients with early psychosis and control participants. Patients with established schizophrenia showed significant differences in the secondary, but not primary, gradient compared with control participants. Gradient differences in schizophrenia were characterized by lower within-network dispersion in the dorsal attention (false discovery rate [FDR]-corrected p [pFDR] < .001), visual (pFDR = .003), frontoparietal (pFDR = .018), and limbic (pFDR = .020) networks and lower between-network dispersion between the visual network and other networks (pFDR < .001). CONCLUSIONS These findings indicate that differences in cortical hierarchical function occur along the secondary visual-to-sensorimotor axis rather than the primary sensorimotor-to-association axis as previously thought. The absence of differences in early psychosis suggests that visual-sensorimotor abnormalities may emerge as the illness progresses.
Collapse
Affiliation(s)
- Alexander Holmes
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia.
| | - Priscila T Levi
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Yu-Chi Chen
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia; Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Kevin M Aquino
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - James C Pang
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Harikumar A, Solovyeva KP, Misiura M, Iraji A, Plis SM, Pearlson GD, Turner JA, Calhoun VD. Revisiting Functional Dysconnectivity: a Review of Three Model Frameworks in Schizophrenia. Curr Neurol Neurosci Rep 2023; 23:937-946. [PMID: 37999830 PMCID: PMC11126894 DOI: 10.1007/s11910-023-01325-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW Over the last decade, evidence suggests that a combination of behavioral and neuroimaging findings can help illuminate changes in functional dysconnectivity in schizophrenia. We review the recent connectivity literature considering several vital models, considering connectivity findings, and relationships with clinical symptoms. We reviewed resting state fMRI studies from 2017 to 2023. We summarized the role of two sets of brain networks (cerebello-thalamo-cortical (CTCC) and the triple network set) across three hypothesized models of schizophrenia etiology (neurodevelopmental, vulnerability-stress, and neurotransmitter hypotheses). RECENT FINDINGS The neurotransmitter and neurodevelopmental models best explained CTCC-subcortical dysfunction, which was consistently connected to symptom severity and motor symptoms. Triple network dysconnectivity was linked to deficits in executive functioning, and the salience network (SN)-default mode network dysconnectivity was tied to disordered thought and attentional deficits. This paper links behavioral symptoms of schizophrenia (symptom severity, motor, executive functioning, and attentional deficits) to various hypothesized mechanisms.
Collapse
Affiliation(s)
- Amritha Harikumar
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Kseniya P Solovyeva
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Maria Misiura
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Armin Iraji
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Sergey M Plis
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Jessica A Turner
- The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vince D Calhoun
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA.
| |
Collapse
|
18
|
Cattarinussi G, Grimaldi DA, Sambataro F. Spontaneous Brain Activity Alterations in First-Episode Psychosis: A Meta-analysis of Functional Magnetic Resonance Imaging Studies. Schizophr Bull 2023; 49:1494-1507. [PMID: 38029279 PMCID: PMC10686347 DOI: 10.1093/schbul/sbad044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
BACKGROUND AND HYPOTHESIS Several studies have shown that spontaneous brain activity, including the total and fractional amplitude of low-frequency fluctuations (LFF) and regional homogeneity (ReHo), is altered in psychosis. Nonetheless, neuroimaging results show a high heterogeneity. For this reason, we gathered the extant literature on spontaneous brain activity in first-episode psychosis (FEP), where the effects of long-term treatment and chronic disease are minimal. STUDY DESIGN A systematic research was conducted on PubMed, Scopus, and Web of Science to identify studies exploring spontaneous brain activity and local connectivity in FEP estimated using functional magnetic resonance imaging. 20 LFF and 15 ReHo studies were included. Coordinate-Based Activation Likelihood Estimation Meta-Analyses stratified by brain measures, age (adolescent vs adult), and drug-naïve status were performed to identify spatially-convergent alterations in spontaneous brain activity in FEP. STUDY RESULTS We found a significant increase in LFF in FEP compared to healthy controls (HC) in the right striatum and in ReHo in the left striatum. When pooling together all studies on LFF and ReHo, spontaneous brain activity was increased in the bilateral striatum and superior and middle frontal gyri and decreased in the right precentral gyrus and the right inferior frontal gyrus compared to HC. These results were also replicated in the adult and drug-naïve samples. CONCLUSIONS Abnormalities in the frontostriatal circuit are present in early psychosis independently of treatment status. Our findings support the view that altered frontostriatal can represent a core neural alteration of the disorder and could be a target of treatment.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Department of Neuroscience (DNS), Padova Neuroscience Center, University of Padova, Padua, Italy
| | | | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Department of Neuroscience (DNS), Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
19
|
Forsyth JK, Bearden CE. Rethinking the First Episode of Schizophrenia: Identifying Convergent Mechanisms During Development and Moving Toward Prediction. Am J Psychiatry 2023; 180:792-804. [PMID: 37908094 DOI: 10.1176/appi.ajp.20230736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| | - Carrie E Bearden
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| |
Collapse
|
20
|
Wang X, Zhang Y, Huang J, Wang Y, Niu Y, Lui SSY, Hui L, Chan RCK. Revisiting reward impairments in schizophrenia spectrum disorders: a systematic review and meta-analysis for neuroimaging findings. Psychol Med 2023; 53:7189-7202. [PMID: 36994747 DOI: 10.1017/s0033291723000703] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
BACKGROUND Abnormal reward functioning is central to anhedonia and amotivation symptoms of schizophrenia (SCZ). Reward processing encompasses a series of psychological components. This systematic review and meta-analysis examined the brain dysfunction related to reward processing of individuals with SCZ spectrum disorders and risks, covering multiple reward components. METHODS After a systematic literature search, 37 neuroimaging studies were identified and divided into four groups based on their target psychology components (i.e. reward anticipation, reward consumption, reward learning, effort computation). Whole-brain Seed-based d Mapping (SDM) meta-analyses were conducted for all included studies and each component. RESULTS The meta-analysis for all reward-related studies revealed reduced functional activation across the SCZ spectrum in the striatum, orbital frontal cortex, cingulate cortex, and cerebellar areas. Meanwhile, distinct abnormal patterns were found for reward anticipation (decreased activation of the cingulate cortex and striatum), reward consumption (decreased activation of cerebellum IV/V areas, insula and inferior frontal gyri), and reward learning processing (decreased activation of the striatum, thalamus, cerebellar Crus I, cingulate cortex, orbitofrontal cortex, and parietal and occipital areas). Lastly, our qualitative review suggested that decreased activation of the ventral striatum and anterior cingulate cortex was also involved in effort computation. CONCLUSIONS These results provide deep insights on the component-based neuro-psychopathological mechanisms for anhedonia and amotivation symptoms of the SCZ spectrum.
Collapse
Affiliation(s)
- Xuan Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yinghao Zhang
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhe Niu
- Department of Psychology, University of California, San Diego, La Jolla, USA
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Li Hui
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Tse NY, Ratheesh A, Ganesan S, Zalesky A, Cash RFH. Functional dysconnectivity in youth depression: Systematic review, meta-analysis, and network-based integration. Neurosci Biobehav Rev 2023; 153:105394. [PMID: 37739327 DOI: 10.1016/j.neubiorev.2023.105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/11/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Youth depression has been associated with heterogenous patterns of aberrant brain connectivity. To make sense of these divergent findings, we conducted a systematic review encompassing 19 resting-state fMRI seed-to-whole-brain studies (1400 participants, comprising 795 youths with major depression and 605 matched healthy controls). We incorporated separate meta-analyses of connectivity abnormalities across the levels of the most commonly seeded brain networks (default-mode and limbic networks) and, based on recent additions to the literature, an updated meta-analysis of amygdala dysconnectivity in youth depression. Our findings indicated broad and distributed findings at an anatomical level, which could not be captured by conventional meta-analyses in terms of spatial convergence. However, we were able to parse the complexity of region-to-region dysconnectivity by considering constituent regions as components of distributed canonical brain networks. This integration revealed dysconnectivity centred on central executive, default mode, salience, and limbic networks, converging with findings from the adult depression literature and suggesting similar neurobiological underpinnings of youth and adult depression.
Collapse
Affiliation(s)
- Nga Yan Tse
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia.
| | - Aswin Ratheesh
- Orygen, Melbourne, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Saampras Ganesan
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia; Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia; Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Australia
| | - Robin F H Cash
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia; Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
22
|
Matéos M, Hacein-Bey L, Hanafi R, Mathys L, Amad A, Pruvo JP, Krystal S. Advanced imaging in first episode psychosis: a systematic review. J Neuroradiol 2023; 50:464-469. [PMID: 37028754 DOI: 10.1016/j.neurad.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
First-episode psychosis (FEP) is defined as the first occurrence of delusions, hallucinations, or psychic disorganization of significant magnitude, lasting more than 7 days. Evolution is difficult to predict since the first episode remains isolated in one third of cases, while recurrence occurs in another third, and the last third progresses to a schizo-affective disorder. It has been suggested that the longer psychosis goes unnoticed and untreated, the more severe the probability of relapse and recovery. MRI has become the gold standard for imaging psychiatric disorders, especially first episode psychosis. Besides ruling out some neurological conditions that may have psychiatric manifestations, advanced imaging techniques allow for identifying imaging biomarkers of psychiatric disorders. We performed a systematic review of the literature to determine how advanced imaging in FEP may have high diagnostic specificity and predictive value regarding the evolution of disease.
Collapse
Affiliation(s)
- Marjorie Matéos
- Lille University Hospital Center, Department of Neuroradiology, Lille, France.
| | - Lotfi Hacein-Bey
- Neuroradiology, Radiology Department, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Riyad Hanafi
- Lille University Hospital Center, Department of Neuroradiology, Lille, France; Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Luc Mathys
- Lille University Hospital Center, Department of Neuroradiology, Lille, France
| | - Ali Amad
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Department of neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jean-Pierre Pruvo
- Lille University Hospital Center, Department of Neuroradiology, Lille, France; Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Sidney Krystal
- Lille University Hospital Center, Department of Neuroradiology, Lille, France; Radiology Department, A. de Rothschild Foundation Hospital, Paris, France; Neurospin, CEA, Université Paris-Saclay, Gif-Sur-Yvette, Paris, France
| |
Collapse
|
23
|
Ha M, Park SH, Park I, Kim T, Lee J, Kim M, Kwon JS. Aberrant cortico-thalamo-cerebellar network interactions and their association with impaired cognitive functioning in patients with schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:50. [PMID: 37573437 PMCID: PMC10423253 DOI: 10.1038/s41537-023-00375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/04/2023] [Indexed: 08/14/2023]
Abstract
Evidence indicating abnormal functional connectivity (FC) among the cortex, thalamus, and cerebellum in schizophrenia patients has increased. However, the role of the thalamus and cerebellum when integrated into intrinsic networks and how those integrated networks interact in schizophrenia patients are largely unknown. We generated an integrative network map by merging thalamic and cerebellar network maps, which were parcellated using a winner-take-all approach, onto a cortical network map. Using cognitive networks, the default mode network (DMN), the dorsal attention network (DAN), the salience network (SAL), and the central executive network (CEN) as regions of interest, the FC of 48 schizophrenia patients was compared with that of 57 healthy controls (HCs). The association between abnormal FC and cognitive impairment was also investigated in patients. FC was lower between the SAL-CEN, SAL-DMN, and DMN-CEN and within-CEN in schizophrenia patients than in HCs. Hypoconnectivity between the DMN-CEN was correlated with impaired cognition in schizophrenia patients. Our findings broadly suggest the plausible role of the thalamus and cerebellum in integrative intrinsic networks in patients, which may contribute to the disrupted triple network and cognitive dysmetria in schizophrenia.
Collapse
Affiliation(s)
- Minji Ha
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Soo Hwan Park
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Inkyung Park
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jungha Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Cattarinussi G, Gugliotta AA, Sambataro F. The Risk for Schizophrenia-Bipolar Spectrum: Does the Apple Fall Close to the Tree? A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6540. [PMID: 37569080 PMCID: PMC10418911 DOI: 10.3390/ijerph20156540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) are severe psychiatric disorders that share clinical features and several risk genes. Important information about their genetic underpinnings arises from intermediate phenotypes (IPs), quantifiable biological traits that are more prevalent in unaffected relatives (RELs) of patients compared to the general population and co-segregate with the disorders. Within IPs, neuropsychological functions and neuroimaging measures have the potential to provide useful insight into the pathophysiology of SCZ and BD. In this context, the present narrative review provides a comprehensive overview of the available evidence on deficits in neuropsychological functions and neuroimaging alterations in unaffected relatives of SCZ (SCZ-RELs) and BD (BD-RELs). Overall, deficits in cognitive functions including intelligence, memory, attention, executive functions, and social cognition could be considered IPs for SCZ. Although the picture for cognitive alterations in BD-RELs is less defined, BD-RELs seem to present worse performances compared to controls in executive functioning, including adaptable thinking, planning, self-monitoring, self-control, and working memory. Among neuroimaging markers, SCZ-RELs appear to be characterized by structural and functional alterations in the cortico-striatal-thalamic network, while BD risk seems to be associated with abnormalities in the prefrontal, temporal, thalamic, and limbic regions. In conclusion, SCZ-RELs and BD-RELs present a pattern of cognitive and neuroimaging alterations that lie between patients and healthy individuals. Similar abnormalities in SCZ-RELs and BD-RELs may be the phenotypic expression of the shared genetic mechanisms underlying both disorders, while the specificities in neuropsychological and neuroimaging profiles may be associated with the differential symptom expression in the two disorders.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, 35131 Padova, Italy; (G.C.); (A.A.G.)
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Alessio A. Gugliotta
- Department of Neuroscience (DNS), University of Padova, 35131 Padova, Italy; (G.C.); (A.A.G.)
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, 35131 Padova, Italy; (G.C.); (A.A.G.)
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| |
Collapse
|
25
|
Menon V, Palaniyappan L, Supekar K. Integrative Brain Network and Salience Models of Psychopathology and Cognitive Dysfunction in Schizophrenia. Biol Psychiatry 2023; 94:108-120. [PMID: 36702660 DOI: 10.1016/j.biopsych.2022.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023]
Abstract
Brain network models of cognitive control are central to advancing our understanding of psychopathology and cognitive dysfunction in schizophrenia. This review examines the role of large-scale brain organization in schizophrenia, with a particular focus on a triple-network model of cognitive control and its role in aberrant salience processing. First, we provide an overview of the triple network involving the salience, frontoparietal, and default mode networks and highlight the central role of the insula-anchored salience network in the aberrant mapping of salient external and internal events in schizophrenia. We summarize the extensive evidence that has emerged from structural, neurochemical, and functional brain imaging studies for aberrancies in these networks and their dynamic temporal interactions in schizophrenia. Next, we consider the hypothesis that atypical striatal dopamine release results in misattribution of salience to irrelevant external stimuli and self-referential mental events. We propose an integrated triple-network salience-based model incorporating striatal dysfunction and sensitivity to perceptual and cognitive prediction errors in the insula node of the salience network and postulate that dysregulated dopamine modulation of salience network-centered processes contributes to the core clinical phenotype of schizophrenia. Thus, a powerful paradigm to characterize the neurobiology of schizophrenia emerges when we combine conceptual models of salience with large-scale cognitive control networks in a unified manner. We conclude by discussing potential therapeutic leads on restoring brain network dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California.
| | - Lena Palaniyappan
- Department of Psychiatry and Robarts Research Institute, University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
26
|
Gunasekera B, Wilson R, O'Neill A, Blest-Hopley G, O'Daly O, Bhattacharyya S. Cannabidiol attenuates insular activity during motivational salience processing in patients with early psychosis. Psychol Med 2023; 53:4732-4741. [PMID: 35775365 DOI: 10.1017/s0033291722001672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The mechanisms underlying the antipsychotic potential of cannabidiol (CBD) remain unclear but growing evidence indicates that dysfunction in the insula, a key brain region involved in the processing of motivationally salient stimuli, may have a role in the pathophysiology of psychosis. Here, we investigate whether the antipsychotic mechanisms of CBD are underpinned by their effects on insular activation, known to be involved in salience processing. METHODS A within-subject, crossover, double-blind, placebo-controlled investigation of 19 healthy controls and 15 participants with early psychosis was conducted. Administration of a single dose of CBD was compared with placebo in psychosis participants while performing the monetary incentive delay task, an fMRI paradigm. Anticipation of reward and loss were used to contrast motivationally salient stimuli against a neutral control condition. RESULTS No group differences in brain activation between psychosis patients compared with healthy controls were observed. Attenuation of insula activation was observed following CBD, compared to placebo. Sensitivity analyses controlling for current cannabis use history did not affect the main results. CONCLUSION Our findings are in accordance with existing evidence suggesting that CBD modulates brain regions involved in salience processing. Whether such effects underlie the putative antipsychotic effects of CBD remains to be investigated.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Robin Wilson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Aisling O'Neill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Centre for Neuroimaging Sciences, King's College London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
27
|
van Boxel R, Gangadin SS, Janssen H, van der Steur S, van der Vinne LJC, Dortants L, Pelgrim TAD, Draisma LWR, Tuura R, van der Meer P, Batalla A, Bossong MG. The impact of cannabidiol treatment on resting state functional connectivity, prefrontal metabolite levels and reward processing in recent-onset patients with a psychotic disorder. J Psychiatr Res 2023; 163:93-101. [PMID: 37207437 DOI: 10.1016/j.jpsychires.2023.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/21/2023]
Abstract
The first clinical trials with cannabidiol (CBD) as treatment for psychotic disorders have shown its potential as an effective and well-tolerated antipsychotic agent. However, the neurobiological mechanisms underlying the antipsychotic profile of CBD are currently unclear. Here we investigated the impact of 28-day adjunctive CBD or placebo treatment (600 mg daily) on brain function and metabolism in 31 stable recent-onset psychosis patients (<5 years after diagnosis). Before and after treatment, patients underwent a Magnetic Resonance Imaging (MRI) session including resting state functional MRI, proton Magnetic Resonance Spectroscopy (1H-MRS) and functional MRI during reward processing. Symptomatology and cognitive functioning were also assessed. CBD treatment significantly changed functional connectivity in the default mode network (DMN; time × treatment interaction p = 0.037), with increased connectivity in the CBD (from 0.59 ± 0.39 to 0.80 ± 0.32) and reduced connectivity in the placebo group (from 0.77 ± 0.37 to 0.62 ± 0.33). Although there were no significant treatment effects on prefrontal metabolite concentrations, we showed that decreased positive symptom severity over time was associated with both diminishing glutamate (p = 0.029) and N-acetyl-aspartate (NAA; neuronal integrity marker) levels (p = 0.019) in the CBD, but not the placebo group. CBD treatment did not have an impact on brain activity patterns during reward anticipation and receipt or functional connectivity in executive and salience networks. Our results show that adjunctive CBD treatment of recent-onset psychosis patients induced changes in DMN functional connectivity, but not prefrontal metabolite concentrations or brain activity during reward processing. These findings suggest that DMN connectivity alteration may be involved in the therapeutic effects of CBD.
Collapse
Affiliation(s)
- Ruben van Boxel
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Shiral S Gangadin
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Section of Neuropsychiatry, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, the Netherlands
| | - Hella Janssen
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Sanne van der Steur
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Lucia J C van der Vinne
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Lon Dortants
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Teuntje A D Pelgrim
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Psychiatry, Parnassia Psychiatric Institute, Amsterdam, the Netherlands
| | - Luc W R Draisma
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Ruth Tuura
- Center of MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Pim van der Meer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Albert Batalla
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Matthijs G Bossong
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
28
|
Wu Z, Hu G, Cao B, Liu X, Zhang Z, Dadario NB, Shi Q, Fan X, Tang Y, Cheng Z, Wang X, Zhang X, Hu X, Zhang J, You Y. Non-traditional cognitive brain network involvement in insulo-Sylvian gliomas: a case series study and clinical experience using Quicktome. Chin Neurosurg J 2023; 9:16. [PMID: 37231522 DOI: 10.1186/s41016-023-00325-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/16/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Patients with insulo-Sylvian gliomas continue to present with severe morbidity in cognitive functions primarily due to neurosurgeons' lack of familiarity with non-traditional brain networks. We sought to identify the frequency of invasion and proximity of gliomas to portions of these networks. METHODS We retrospectively analyzed data from 45 patients undergoing glioma surgery centered in the insular lobe. Tumors were categorized based on their proximity and invasiveness of non-traditional cognitive networks and traditionally eloquent structures. Diffusion tensor imaging tractography was completed by creating a personalized brain atlas using Quicktome to determine eloquent and non-eloquent networks in each patient. Additionally, we prospectively collected neuropsychological data on 7 patients to compare tumor-network involvement with change in cognition. Lastly, 2 prospective patients had their surgical plan influenced by network mapping determined by Quicktome. RESULTS Forty-four of 45 patients demonstrated tumor involvement (< 1 cm proximity or invasion) with components of non-traditional brain networks involved in cognition such as the salience network (SN, 60%) and the central executive network (CEN, 56%). Of the seven prospective patients, all had tumors involved with the SN, CEN (5/7, 71%), and language network (5/7, 71%). The mean scores of MMSE and MOCA before surgery were 18.71 ± 6.94 and 17.29 ± 6.26, respectively. The two cases who received preoperative planning with Quicktome had a postoperative performance that was anticipated. CONCLUSIONS Non-traditional brain networks involved in cognition are encountered during surgical resection of insulo-Sylvian gliomas. Quicktome can improve the understanding of the presence of these networks and allow for more informed surgical decisions based on patient functional goals.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guanjie Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bowen Cao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xingdong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zifeng Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, Newark, NJ, 08901, USA
| | - Qinyu Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiao Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yao Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhangchun Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiefeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xia Zhang
- International Joint Research Center On Precision Brain Medicine, XD Group Hospital, Shaanxi Province, Xi'an, 710077, China
| | - Xiaorong Hu
- International Joint Research Center On Precision Brain Medicine, XD Group Hospital, Shaanxi Province, Xi'an, 710077, China.
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
29
|
Howes OD, Onwordi EC. The synaptic hypothesis of schizophrenia version III: a master mechanism. Mol Psychiatry 2023; 28:1843-1856. [PMID: 37041418 PMCID: PMC10575788 DOI: 10.1038/s41380-023-02043-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
The synaptic hypothesis of schizophrenia has been highly influential. However, new approaches mean there has been a step-change in the evidence available, and some tenets of earlier versions are not supported by recent findings. Here, we review normal synaptic development and evidence from structural and functional imaging and post-mortem studies that this is abnormal in people at risk and with schizophrenia. We then consider the mechanism that could underlie synaptic changes and update the hypothesis. Genome-wide association studies have identified a number of schizophrenia risk variants converging on pathways regulating synaptic elimination, formation and plasticity, including complement factors and microglial-mediated synaptic pruning. Induced pluripotent stem cell studies have demonstrated that patient-derived neurons show pre- and post-synaptic deficits, synaptic signalling alterations, and elevated, complement-dependent elimination of synaptic structures compared to control-derived lines. Preclinical data show that environmental risk factors linked to schizophrenia, such as stress and immune activation, can lead to synapse loss. Longitudinal MRI studies in patients, including in the prodrome, show divergent trajectories in grey matter volume and cortical thickness compared to controls, and PET imaging shows in vivo evidence for lower synaptic density in patients with schizophrenia. Based on this evidence, we propose version III of the synaptic hypothesis. This is a multi-hit model, whereby genetic and/or environmental risk factors render synapses vulnerable to excessive glia-mediated elimination triggered by stress during later neurodevelopment. We propose the loss of synapses disrupts pyramidal neuron function in the cortex to contribute to negative and cognitive symptoms and disinhibits projections to mesostriatal regions to contribute to dopamine overactivity and psychosis. It accounts for the typical onset of schizophrenia in adolescence/early adulthood, its major risk factors, and symptoms, and identifies potential synaptic, microglial and immune targets for treatment.
Collapse
Affiliation(s)
- Oliver D Howes
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Ellis Chika Onwordi
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, E1 2AB, UK.
| |
Collapse
|
30
|
Rong B, Huang H, Gao G, Sun L, Zhou Y, Xiao L, Wang H, Wang G. Widespread Intra- and Inter-Network Dysconnectivity among Large-Scale Resting State Networks in Schizophrenia. J Clin Med 2023; 12:jcm12093176. [PMID: 37176617 PMCID: PMC10179370 DOI: 10.3390/jcm12093176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/08/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Schizophrenia is characterized by the distributed dysconnectivity of resting-state multiple brain networks. However, the abnormalities of intra- and inter-network functional connectivity (FC) in schizophrenia and its relationship to symptoms remain unknown. The aim of the present study is to compare the intra- and inter-connectivity of the intrinsic networks between a large sample of patients with schizophrenia and healthy controls. Using the Region of interest (ROI) to ROI FC analyses, the intra- and inter-network FC of the eight resting state networks [default mode network (DMN); salience network (SN); frontoparietal network (FPN); dorsal attention network (DAN); language network (LN); visual network (VN); sensorimotor network (SMN); and cerebellar network (CN)] were investigated in 196 schizophrenia and 169-healthy controls. Compared to the healthy control group, the schizophrenia group exhibited increased intra-network FC in the DMN and decreased intra-network FC in the CN. Additionally, the schizophrenia group showed the decreased inter-network FC mainly involved the SN-DMN, SN-LN and SN-CN while increased inter-network FC in the SN-SMN and SN-DAN (p < 0.05, FDR-corrected). Our study suggests widespread intra- and inter-network dysconnectivity among large-scale RSNs in schizophrenia, mainly involving the DMN, SN and SMN, which may further contribute to the dysconnectivity hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Bei Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guoqing Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Limin Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Zhou
- Institute of Psychology, CAS Key Laboratory of Behavioral Science, Beijing 100101, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
31
|
Zouraraki C, Karamaouna P, Giakoumaki SG. Cognitive Processes and Resting-State Functional Neuroimaging Findings in High Schizotypal Individuals and Schizotypal Personality Disorder Patients: A Systematic Review. Brain Sci 2023; 13:615. [PMID: 37190580 PMCID: PMC10137138 DOI: 10.3390/brainsci13040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Ample research findings indicate that there is altered brain functioning in the schizophrenia spectrum. Nevertheless, functional neuroimaging findings remain ambiguous for healthy individuals expressing high schizotypal traits and patients with schizotypal personality disorder (SPD). The purpose of this systematic review was to identify patterns of task-related and resting-state neural abnormalities across these conditions. MEDLINE-PubMed and PsycINFO were systematically searched and forty-eight studies were selected. Forty studies assessed healthy individuals with high schizotypal traits and eight studies examined SPD patients with functional neuroimaging techniques (fNIRS; fMRI; Resting-state fMRI). Functional alterations in striatal, frontal and temporal regions were found in healthy individuals with high schizotypal traits. Schizotypal personality disorder was associated with default mode network abnormalities but further research is required in order to better conceive its neural correlates. There was also evidence for functional compensatory mechanisms associated with both conditions. To conclude, the findings suggest that brain dysfunctions are evident in individuals who lie along the subclinical part of the spectrum, further supporting the continuum model for schizophrenia susceptibility. Additional research is required in order to delineate the counterbalancing processes implicated in the schizophrenia spectrum, as this approach will provide promising insights for both conversion and protection from conversion into schizophrenia.
Collapse
Affiliation(s)
- Chrysoula Zouraraki
- Laboratory of Neuropsychology, Department of Psychology, University of Crete, 74100 Rethymno, Greece; (C.Z.); (P.K.)
- University of Crete Research Center for the Humanities, The Social and Education Sciences (UCRC), University of Crete, Gallos University Campus, 74100 Rethymno, Greece
| | - Penny Karamaouna
- Laboratory of Neuropsychology, Department of Psychology, University of Crete, 74100 Rethymno, Greece; (C.Z.); (P.K.)
- University of Crete Research Center for the Humanities, The Social and Education Sciences (UCRC), University of Crete, Gallos University Campus, 74100 Rethymno, Greece
| | - Stella G. Giakoumaki
- Laboratory of Neuropsychology, Department of Psychology, University of Crete, 74100 Rethymno, Greece; (C.Z.); (P.K.)
- University of Crete Research Center for the Humanities, The Social and Education Sciences (UCRC), University of Crete, Gallos University Campus, 74100 Rethymno, Greece
| |
Collapse
|
32
|
Sreeraj VS, Shivakumar V, Bhalerao GV, Kalmady SV, Narayanaswamy JC, Venkatasubramanian G. Resting-state functional connectivity correlates of antipsychotic treatment in unmedicated schizophrenia. Asian J Psychiatr 2023; 82:103459. [PMID: 36682158 DOI: 10.1016/j.ajp.2023.103459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND Antipsychotics may modulate the resting state functional connectivity(rsFC) to improve clinical symptoms in schizophrenia(Sz). Existing literature has potential confounders like past medication effects and evaluating preselected regions/networks. We aimed to evaluate connectivity pattern changes with antipsychotics in unmedicated Sz using Multivariate pattern analysis(MVPA), a data-driven technique for whole-brain connectome analysis. METHODS Forty-seven unmedicated patients with Sz(DSM-IV-TR) underwent clinical evaluation and neuroimaging at baseline and after 3-months of antipsychotic treatment. Resting-state functional MRI was analysed using group-MVPA to derive 5-components. The brain region with significant connectivity pattern changes with antipsychotics was identified, and post-hoc seed-to-voxel analysis was performed to identify connectivity changes and their association with symptom changes. RESULTS Connectome-MVPA analysis revealed the connectivity pattern of a cluster localised to left anterior cingulate and paracingulate gyri (ACC/PCG) (peak coordinates:x = -04,y = +30,z = +26;k = 12;cluster-pFWE=0.002) to differ significantly after antipsychotics. Specifically, its connections with clusters of precuneus/posterior cingulate cortex(PCC) and left inferior temporal gyrus(ITG) correlated with improvement in positive and negative symptoms scores, respectively. CONCLUSION ACC/PCG, a hub of the default mode network, seems to mediate the antipsychotic effects in unmedicated Sz. Evaluating causality models with data from randomised controlled design using the MVPA approach would further enhance our understanding of therapeutic connectomics in Sz.
Collapse
Affiliation(s)
- Vanteemar S Sreeraj
- InSTAR Clinic and Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| | - Venkataram Shivakumar
- InSTAR Clinic and Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India; Department of Integrative Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | - Sunil V Kalmady
- Alberta Machine Intelligence Institute, Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada; Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ganesan Venkatasubramanian
- InSTAR Clinic and Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
33
|
Kim M, Kim T, Ha M, Oh H, Moon SY, Kwon JS. Large-Scale Thalamocortical Triple Network Dysconnectivities in Patients With First-Episode Psychosis and Individuals at Risk for Psychosis. Schizophr Bull 2023; 49:375-384. [PMID: 36453986 PMCID: PMC10016393 DOI: 10.1093/schbul/sbac174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND AND HYPOTHESIS Aberrant thalamocortical connectivity and large-scale network interactions among the default mode network (DMN), salience network (SN), and executive control network (ECN) (ie, triple networks) have been regarded as critical in schizophrenia pathophysiology. Despite the importance of network properties and the role of the thalamus as an integrative hub, large-scale thalamocortical triple network functional connectivities (FCs) in different stages of the psychotic disorder have not yet been reported. STUDY DESIGN Thirty-nine first-episode psychosis (FEP) patients, 75 individuals at clinical high risk (CHR) for psychosis, 46 unaffected relatives (URs) of schizophrenia patients with high genetic loading, and 110 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI). Modular community detection was used to identify cortical and thalamic resting-state networks, and thalamocortical network interactions were compared across the groups. STUDY RESULTS Thalamic triple networks included higher-order thalamic nuclei. Thalamic SN-cortical ECN FC was greater in the FEP group than in the CHR, UR, and HC groups. Thalamic DMN-cortical DMN and thalamic SN-cortical DMN FCs were greater in FEP and CHR participants. Thalamic ECN-cortical DMN and thalamic ECN-cortical SN FCs were greater in FEP patients and URs. CONCLUSIONS These results highlight critical modulatory functions of thalamic triple networks and the shared and distinct patterns of thalamocortical triple network dysconnectivities across different stages of psychotic disorders. The current study findings suggest that large-scale thalamocortical triple network dysconnectivities may be used as an integrative biomarker for extending our understanding of the psychosis pathophysiology and for targeting network-based neuromodulation therapeutics.
Collapse
Affiliation(s)
- Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minji Ha
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Harin Oh
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sun-Young Moon
- Department of Psychiatry, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
34
|
Machine learning methods to predict outcomes of pharmacological treatment in psychosis. Transl Psychiatry 2023; 13:75. [PMID: 36864017 PMCID: PMC9981732 DOI: 10.1038/s41398-023-02371-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
In recent years, machine learning (ML) has been a promising approach in the research of treatment outcome prediction in psychosis. In this study, we reviewed ML studies using different neuroimaging, neurophysiological, genetic, and clinical features to predict antipsychotic treatment outcomes in patients at different stages of schizophrenia. Literature available on PubMed until March 2022 was reviewed. Overall, 28 studies were included, among them 23 using a single-modality approach and 5 combining data from multiple modalities. The majority of included studies considered structural and functional neuroimaging biomarkers as predictive features used in ML models. Specifically, functional magnetic resonance imaging (fMRI) features contributed to antipsychotic treatment response prediction of psychosis with good accuracies. Additionally, several studies found that ML models based on clinical features might present adequate predictive ability. Importantly, by examining the additive effects of combining features, the predictive value might be improved by applying multimodal ML approaches. However, most of the included studies presented several limitations, such as small sample sizes and a lack of replication tests. Moreover, considerable clinical and analytical heterogeneity among included studies posed a challenge in synthesizing findings and generating robust overall conclusions. Despite the complexity and heterogeneity of methodology, prognostic features, clinical presentation, and treatment approaches, studies included in this review suggest that ML tools may have the potential to predict treatment outcomes of psychosis accurately. Future studies need to focus on refining feature characterization, validating prediction models, and evaluate their translation in real-world clinical practice.
Collapse
|
35
|
Xi C, Li A, Lai J, Huang X, Zhang P, Yan S, Jiao M, Huang H, Hu S. Brain-gut microbiota multimodal predictive model in patients with bipolar depression. J Affect Disord 2023; 323:140-152. [PMID: 36400152 DOI: 10.1016/j.jad.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND The "microbiota-gut-brain axis" which bridges the brain and gut microbiota is involved in the pathological mechanisms of bipolar disorder (BD), but rare is known about the exact association patterns and the potential for clinical diagnosis and treatment outcome prediction. METHODS At baseline, fecal samples and resting-state MRI data were collected from 103 BD depression patients and 39 healthy controls (HCs) for metagenomic sequencing and network-based functional connectivity (FC), grey matter volume (GMV) analyses. All patients then received 4-weeks quetiapine treatment and were further classified as responders and non-responders. Based on pre-treatment datasets, the correlation networks were established between gut microbiota and neuroimaging measures and the multimodal kernal combination support vector machine (SVM) classifiers were constructed to distinguish BD patients from HCs, and quetiapine responders from non-responders. RESULTS The multi-modal pre-treatment characteristics of quetiapine responders, were closer to the HCs compared to non-responders. And the correlation network analyses found the substantial correlations existed in HC between the Anaerotruncus_ unclassified,Porphyromonas_asaccharolytica,Actinomyces_graevenitzii et al. and the functional connectomes involved default mode network (DMN),somatomotor (SM), visual, limbic and basal ganglia networks were disrupted in BD. Moreover, in terms of the multimodal classifier, it reached optimized area under curve (AUC-ROC) at 0.9517 when classified BD from HC, and also acquired 0.8292 discriminating quetiapine responders from non-responders, which consistently better than even using the best unique modality. LIMITATIONS Lack post-treatment and external validation datasets; size of HCs is modest. CONCLUSIONS Multi-modalities of combining pre-treatment gut microbiota with neuroimaging endophenotypes might be a superior approach for accurate diagnosis and quetiapine efficacy prediction in BD.
Collapse
Affiliation(s)
- Caixi Xi
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorders' Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310003, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 310003, China
| | - Ang Li
- Gene Hospital of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorders' Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310003, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 310003, China
| | - Xiaojie Huang
- Polytechnic Institute of Zhejiang University, Hangzhou 310015, China
| | - Peifen Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorders' Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310003, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 310003, China
| | - Su Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengfan Jiao
- Gene Hospital of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huimin Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorders' Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310003, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 310003, China.
| |
Collapse
|
36
|
Young IM, Dadario NB, Tanglay O, Chen E, Cook B, Taylor HM, Crawford L, Yeung JT, Nicholas PJ, Doyen S, Sughrue ME. Connectivity Model of the Anatomic Substrates and Network Abnormalities in Major Depressive Disorder: A Coordinate Meta-Analysis of Resting-State Functional Connectivity. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2023.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
37
|
Kim A, Ha M, Kim T, Park S, Lho SK, Moon SY, Kim M, Kwon JS. Triple-Network Dysconnectivity in Patients With First-Episode Psychosis and Individuals at Clinical High Risk for Psychosis. Psychiatry Investig 2022; 19:1037-1045. [PMID: 36588438 PMCID: PMC9806514 DOI: 10.30773/pi.2022.0091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE In the triple-network model, the salience network (SN) plays a crucial role in switching between the default-mode network (DMN) and the central executive network (CEN). Aberrant patterns of triple-network connectivity have been reported in schizophrenia patients, while findings have been less consistent for patients in the early stages of psychotic disorders. Thus, the present study examined the connectivity among the SN, DMN, and CEN in first-episode psychosis (FEP) patients and individuals at clinical high risk (CHR) for psychosis. METHODS Thirty-nine patients with FEP, 78 patients with CHR for psychosis, and 110 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging. We compared the SN, DMN, and CEN connectivity patterns of the three groups. The role of the SN in networks with significant connectivity differences was examined by mediation analysis. RESULTS FEP patients showed lower SN-DMN and SN-CEN (cluster-level F=5.83, false discovery rate [FDR] corrected-p=0.001) connectivity than HCs. There was lower SN-DMN connectivity (cluster-level F=3.06, FDR corrected-p=0.053) at a trend level in CHR subjects compared to HCs. Between HCs and FEP patients, mediation analysis showed that SN-DMN connectivity was a mediator between group and SN-CEN connectivity. Additionally, SN-CEN connectivity functioned as a mediator between group and SN-DMN connectivity. CONCLUSION Aberrant connectivity between the SN and DMN/CEN suggests disrupted network switching in FEP patients, although CHR subjects showed trend-level SN-DMN dysconnectivity. Our findings suggest that dysfunctional triple-network dynamics centered on the SN can appear in patients in the early stages of psychotic disorders.
Collapse
Affiliation(s)
- Ahra Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minji Ha
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sunghyun Park
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Silvia Kyungjin Lho
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Young Moon
- Department of Psychiatry, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
38
|
Impaired dynamic functional brain properties and their relationship to symptoms in never treated first-episode patients with schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:90. [PMID: 36309537 PMCID: PMC9617869 DOI: 10.1038/s41537-022-00299-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Studies of dynamic functional connectivity (dFC) and topology can provide novel insights into the neurophysiology of brain dysfunction in schizophrenia and its relation to core symptoms of psychosis. Limited investigations of these disturbances have been conducted with never-treated first-episode patients to avoid the confounds of treatment or chronic illness. Therefore, we recruited 95 acutely ill, first-episode, never-treated patients with schizophrenia and examined brain dFC patterns relative to healthy controls using resting-state functional magnetic resonance imaging and a sliding-window approach. We compared the dynamic attributes at the group level and found patients spent more time in a hypoconnected state and correspondingly less time in a hyperconnected state. Patients demonstrated decreased dynamics of nodal efficiency and eigenvector centrality (EC) in the right medial prefrontal cortex, which was associated with psychosis severity reflected in Positive and Negative Syndrome Scale ratings. We also observed increased dynamics of EC in temporal and sensorimotor regions. These findings were supported by validation analysis. To supplement the group comparison analyses, a support vector classifier was used to identify the dynamic attributes that best distinguished patients from controls at the individual level. Selected features for case-control classification were highly coincident with the properties having significant between-group differences. Our findings provide novel neuroimaging evidence about dynamic characteristics of brain physiology in acute schizophrenia. The clinically relevant atypical pattern of dynamic shifting between brain states in schizophrenia may represent a critical aspect of illness pathophysiology underpinning its defining cognitive, behavioral, and affective features.
Collapse
|
39
|
Panula JM, Alho J, Lindgren M, Kieseppä T, Suvisaari J, Raij TT. State-like changes in the salience network correlate with delusion severity in first-episode psychosis patients. Neuroimage Clin 2022; 36:103234. [PMID: 36270161 PMCID: PMC9668644 DOI: 10.1016/j.nicl.2022.103234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/17/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND HYPOTHESIS Delusions are characteristic of psychotic disorders; however, the brain correlates of delusions remain poorly known. Imaging studies on delusions typically compare images across individuals. Related confounding of inter-individual differences beyond delusions may be avoided by comparing delusional and non-delusional states within individuals. STUDY DESIGN We studied correlations of delusions using intra-subject correlation (intra-SC) and inter-subject correlation of functional magnetic resonance imaging (fMRI) signal time series, obtained during a movie stimulus at baseline and follow-up. We included 27 control subjects and 24 first-episode psychosis patients, who were free of delusions at follow-up, to calculate intra-SC between fMRI signals obtained during the two time points. In addition, we studied changes in functional connectivity at baseline and during the one-year follow-up using regions where delusion severity correlated with intra-SC as seeds. RESULTS The intra-SC correlated negatively with the baseline delusion severity in the bilateral anterior insula. In addition, we observed a subthreshold cluster in the anterior cingulate. These three regions constitute the cortical salience network (SN). Functional connectivity between the bilateral insula and the precuneus was weaker in the patients at baseline than in patients at follow-up or in control subjects at any time point. CONCLUSIONS The results suggest that intra-SC is a powerful tool to study brain correlates of symptoms and highlight the role of the SN and internetwork dysconnectivity between the SN and the default mode network in delusions.
Collapse
Affiliation(s)
- Jonatan M Panula
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Neuroscience and Biomedical Engineering and Advanced Magnetic Imaging Center, Aalto University School of Science, Espoo, Finland.
| | - Jussi Alho
- Department of Neuroscience and Biomedical Engineering and Advanced Magnetic Imaging Center, Aalto University School of Science, Espoo, Finland
| | - Maija Lindgren
- Mental Health, Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tuula Kieseppä
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jaana Suvisaari
- Mental Health, Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tuukka T Raij
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Neuroscience and Biomedical Engineering and Advanced Magnetic Imaging Center, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
40
|
Zhang M, Yang F, Fan H, Fan F, Wang Z, Xiang H, Huang W, Tan Y, Tan S, Hong LE. Increased connectivity of insula sub-regions correlates with emotional dysregulation in patients with first-episode schizophrenia. Psychiatry Res Neuroimaging 2022; 326:111535. [PMID: 36084435 DOI: 10.1016/j.pscychresns.2022.111535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Dysfunctional insula is crucial in the development of social cognition deficits, especially emotional dysregulation in patients with schizophrenia. However, function networks of insula sub-regions in schizophrenia are rarely investigated. In this study, functional connectivity between insula sub-regions and whole-brain voxels and its relationship with social cognition ability were investigated in patients with first-episode schizophrenia (FES). This study included 47 patients with FES and 47 healthy controls (HCs). Resting-state functional connectivity (rsFC) was assessed using a seed-based approach, and social cognition was measured by the "managing emotions" branch of the Mayer-Salovey-Caruso Emotional Intelligence Test. Differences in rsFC of insula sub-regions between the two groups were examined. Patients with FES showed increased rsFC between the left anterior insula (AI) and the right inferior frontal gyrus or the right anterior middle cingulate cortex (aMCC) and between the right middle insula and the right aMCC. Moreover, the increased AI-aMCC connectivity correlated negatively with the "managing emotion" scores in patients. This study highlights the altered functional connectivity of insula sub-regions and its correlation with emotional dysregulation in patients with FES. Our findings provide some insights into underlying neuropathological mechanisms associated with emotional regulation deficiency in patients with schizophrenia.
Collapse
Affiliation(s)
- Meng Zhang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Fude Yang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China.
| | - Hongzhen Fan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Fengmei Fan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Zhiren Wang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Hong Xiang
- Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Wenqian Huang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Yunlong Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Shuping Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China.
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21288, United States of America
| |
Collapse
|
41
|
Sarpal DK, Tarcijonas G, Calabro FJ, Foran W, Haas GL, Luna B, Murty VP. Context-specific abnormalities of the central executive network in first-episode psychosis: relationship with cognition. Psychol Med 2022; 52:2299-2308. [PMID: 33222723 PMCID: PMC9805803 DOI: 10.1017/s0033291720004201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cognitive impairments, which contribute to the profound functional deficits observed in psychotic disorders, have found to be associated with abnormalities in trial-level cognitive control. However, neural tasks operate within the context of sustained cognitive states, which can be assessed with 'background connectivity' following the removal of task effects. To date, little is known about the integrity of brain processes supporting the maintenance of a cognitive state in individuals with psychotic disorders. Thus, here we examine background connectivity during executive processing in a cohort of participants with first-episode psychosis (FEP). METHODS The following fMRI study examined background connectivity of the dorsolateral prefrontal cortex (DLPFC), during working memory engagement in a group of 43 patients with FEP, relative to 35 healthy controls (HC). Findings were also examined in relation to measures of executive function. RESULTS The FEP group relative to HC showed significantly lower background DLPFC connectivity with bilateral superior parietal lobule (SPL) and left inferior parietal lobule. Background connectivity between DLPFC and SPL was also positively associated with overall cognition across all subjects and in our FEP group. In comparison, resting-state frontoparietal connectivity did not differ between groups and was not significantly associated with overall cognition, suggesting that psychosis-related alterations in executive networks only emerged during states of goal-oriented behavior. CONCLUSIONS These results provide novel evidence indicating while frontoparietal connectivity at rest appears intact in psychosis, when engaged during a cognitive state, it is impaired possibly undermining cognitive control capacities in FEP.
Collapse
Affiliation(s)
- Deepak K. Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Goda Tarcijonas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Finnegan J. Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gretchen L. Haas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vishnu P. Murty
- Department of Psychology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
42
|
Zhou X, Tan Y, Yu H, Liu J, Lan X, Deng Y, Yu F, Wang C, Chen J, Zeng X, Liu D, Zhang J. Early alterations in cortical morphology after neoadjuvant chemotherapy in breast cancer patients: A longitudinal magnetic resonance imaging study. Hum Brain Mapp 2022; 43:4513-4528. [PMID: 35665982 PMCID: PMC9491291 DOI: 10.1002/hbm.25969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/13/2022] Open
Abstract
There is growing evidence that chemotherapy may have a significant impact on the brains of breast cancer patients, causing changes in cortical morphology. However, early morphological alterations induced by chemotherapy in breast cancer patients are unclear. To investigate the patterns of those alterations, we compared female breast cancer patients (n = 45) longitudinally before (time point 0, TP0) and after (time point 1, TP1) the first cycle of neoadjuvant chemotherapy, using voxel‐based morphometry (VBM) and surface‐based morphometry (SBM). VBM and SBM alteration data underwent correlation analysis. We also compared cognition‐related neuropsychological tests in the breast cancer patients between TP0 and TP1. Reductions in gray matter volume, cortical thickness, sulcal depth, and gyrification index were found in most brain areas, while increments were found to be mainly concentrated in and around the hippocampus. Reductions of fractal dimension mainly occurred in the limbic and occipital lobes, while increments mainly occurred in the anterior and posterior central gyrus. Significant correlations were found between altered VBM and altered SBM mainly in the bilateral superior frontal gyrus. We found no significant differences in the cognition‐related neuropsychological tests before and after chemotherapy. The altered brain regions are in line with those associated with impaired cognitive domains in previous studies. We conclude that breast cancer patients showed widespread morphological alterations soon after neoadjuvant chemotherapy, despite an absence of cognitive impairments. The affected brain regions may indicate major targets of early brain damage after chemotherapy.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Hong Yu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiang Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaosong Lan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yongchun Deng
- Breast Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Feng Yu
- Breast Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiao Chen
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaohua Zeng
- Breast Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
43
|
Deng M, Liu Z, Shen Y, Cao H, Zhang M, Xi C, Zhang W, Tan W, Zhang J, Chen E, Lee E, Pu W. Treatment Effect of Long-Term Antipsychotics on Default-Mode Network Dysfunction in Drug-Naïve Patients With First-Episode Schizophrenia: A Longitudinal Study. Front Pharmacol 2022; 13:833518. [PMID: 35685640 PMCID: PMC9171718 DOI: 10.3389/fphar.2022.833518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background: The maintenance of antipsychotic treatment is an efficient way to prevent the relapse of schizophrenia (SCZ). Previous studies have identified beneficial effects of antipsychotics on brain structural and functional abnormalities during mostly the acute phase in SCZ, but seldom is known about the effects of long-term antipsychotics on the brain. The present study focused on the long-term antipsychotic effect on the default mode network (DMN) dysfunction in SCZ. Methods: A longitudinal study of the functional connectivity (FC) of 11 DMN subdivisions was conducted in 86 drug-naive first-episode patients with SCZ at the baseline and after a long-term atypical antipsychotic treatment (more than 6 months) based on the resting-state functional magnetic resonance image. In total, 52 patients completed the follow-up of clinical and neuroimaging investigations. Results: At the baseline, relative to healthy controls, altered connectivities within the DMN and between the DMN and the external attention system (EAS) were observed in patients. After treatment, along with significant relief of symptoms, most FC alterations between the DMN and the EAS at the baseline were improved after treatment, although the rehabilitation of FC within the DMN was only observed at the link between the posterior cingulate cortex and precuneus. Greater reductions in negative and positive symptoms were both related to the changes of DMN-EAS FC in patients. Conclusion: Our findings provide evidence that maintenance antipsychotics on SCZ is beneficial for the improvement of DMN-EAS competitive imbalance, which may partly contribute to the efficient relapse prevention of this severe mental disorder.
Collapse
Affiliation(s)
- Mengjie Deng
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
- China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Zhening Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
- China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Yanyu Shen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hengyi Cao
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Hempstead, NY, United States
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, United States
| | - Manqi Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, United States
- School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Chang Xi
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
- China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Wen Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
- China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Wenjian Tan
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
- China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Jinqiang Zhang
- Department of Clinical Psychology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Eric Chen
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Edwin Lee
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Weidan Pu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
- China National Clinical Research Center for Mental Health Disorders, Changsha, China
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, China
- *Correspondence: Weidan Pu,
| |
Collapse
|
44
|
Bulbul O, Kurt E, Ulasoglu-Yildiz C, Demiralp T, Ucok A. Altered Resting State Functional Connectivity and Its Correlation with Cognitive Functions at Ultra High Risk for Psychosis. Psychiatry Res Neuroimaging 2022; 321:111444. [PMID: 35093807 DOI: 10.1016/j.pscychresns.2022.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 01/10/2023]
Abstract
The aim of this study is to identify robust resting state-functional connectivity (rs-FC) alterations and their correlations with the neuropsychological characteristics of Ultra-High Risk (UHR) for psychosis subjects compared to healthy controls (HCs). Twenty individuals with UHR and sixteen HCs underwent resting-state functional magnetic resonance imaging (rs-fMRI) and a cognitive battery evaluating attention, episodic memory and executive functions. Compared to HCs, UHR individuals showed working memory and set-shifting impairments. In functional connectivity (FC) analyses, the Default Mode Network (DMN) of the UHR subjects displayed increased FC with the visual areas and decreased FC with the Dorsal Attention Network (DAN). Additionally, the salience network (SN) of the UHR subjects displayed increased connectivity with wide posterior cortical areas in the temporal, parietal and occipital lobes, corresponding to posterior nodes of the SN itself, the Somato-Motor Network (SMN) and the DAN. The SN connectivity with the left SMN and DAN was positively correlated with the Trail Making Test - B scores of the UHR subjects. These findings show that the SN and DMN, which mostly show abnormal connectivity patterns in psychosis, are also affected in UHR subjects, while the SN plays a more central role with its hyperconnectivity to the DAN and SMN.
Collapse
Affiliation(s)
- Oznur Bulbul
- Department of Psychiatry, Erenkoy Training and Research Hospital for Psychiatric and Neurological Diseases, Istanbul, Turkey.
| | - Elif Kurt
- Hulusi Behçet Life Sciences Research Laboratory, Istanbul University, Çapa, Istanbul 34093, Turkey; Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Çapa, Istanbul 34093, Turkey
| | - Cigdem Ulasoglu-Yildiz
- Hulusi Behçet Life Sciences Research Laboratory, Istanbul University, Çapa, Istanbul 34093, Turkey; Department of Psychology, Faculty of Humanities and Social Sciences, Istinye University, Istanbul, Turkey
| | - Tamer Demiralp
- Hulusi Behçet Life Sciences Research Laboratory, Istanbul University, Çapa, Istanbul 34093, Turkey; Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Çapa, Istanbul 34093, Turkey
| | - Alp Ucok
- Department of Psychiatry, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
45
|
Li W, Xu J, Xiang Q, Zhuo K, Zhang Y, Liu D, Li Y. Neurometabolic and functional changes of default-mode network relate to clinical recovery in first-episode psychosis patients: A longitudinal 1H-MRS and fMRI study. Neuroimage Clin 2022; 34:102970. [PMID: 35240468 PMCID: PMC8889416 DOI: 10.1016/j.nicl.2022.102970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Antipsychotic treatment has improved the disrupted functional connectivity (FC) and neurometabolites levels of the default mode network (DMN) in schizophrenia patients, but a direct relationship between FC change, neurometabolic level alteration, and symptom improvement has not been built. This study examined the association between the alterations in DMN FC, the changes of neurometabolites levels in the medial prefrontal cortex (MPFC), and the improvementsinpsychopathology in a longitudinal study of drug-naïve first-episode psychosis (FEP) patients. METHODS Thirty-two drug-naïve FEP patients and 30 matched healthy controls underwent repeated assessments with the Positive and Negative Syndrome Scale (PANSS) and 3T proton magnetic resonance spectroscopy as well as resting-state functional magnetic resonance imaging. The levels of γ-aminobutyric acid, glutamate, N-acetyl-aspartate in MPFC, and the FC of DMN were measured. After 8-week antipsychotic treatment, 24 patients were re-examined. RESULTS After treatment, the changes in γ-aminobutyric acid were correlated with the alterations of FC between the MPFC and DMN, while the changes in N-acetyl-aspartate were associated with the alterations of FC between the posterior cingulate cortex/precuneus and DMN. The FC changes of both regions were correlated with patients PANSS positive score reductions. The structural equation modeling analyses revealed that the changes of DMN FC mediated the relationship between the changes of neurometabolites and the symptom improvements of the patients. CONCLUSIONS The derived neurometabolic-functional changes underlying the clinical recovery provide insights into the prognosis of FEP patients. It is noteworthy that this is an exploratory study, and future work with larger sample size is needed to validate our findings.
Collapse
Affiliation(s)
- Wenli Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jiale Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Qiong Xiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Kaiming Zhuo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Yaoyu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Dengtang Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Huashan Hospital, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Institute of Mental Health, Fudan University, Shanghai 200030, PR China.
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| |
Collapse
|
46
|
O'Neill A, Dooley N, Healy C, Carey E, Roddy D, Frodl T, O’Hanlon E, Cannon M. Longitudinal grey matter development associated with psychotic experiences in young people. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 3:264-273. [PMID: 37124352 PMCID: PMC10140460 DOI: 10.1016/j.bpsgos.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022] Open
Abstract
Background Gray matter abnormalities are observed across the psychosis spectrum. The trajectory of these abnormalities in healthy adolescents reporting subthreshold psychotic experiences (PEs) may provide insight into the neural mechanisms underlying psychotic symptoms. The risk of psychosis and additional psychopathology is even higher among these individuals who also report childhood adversity/DSM-5 diagnoses. Thus, the aims of this longitudinal study were to investigate PE-related volumetric changes in young people, noting any effects of childhood adversity/DSM-5 diagnosis. Methods A total of 211 young people 11 to 13 years of age participated in the initial Adolescent Brain Development study. PE classification was determined by expert consensus at each time point. Participants underwent neuroimaging at 3 time points over 6 years. A total of 76 participants with at least one scan were included in the final sample; 34 who met criteria for PEs at least once across all the time points (PE group) and 42 control subjects. Data from 20 bilateral regions of interest were extracted for linear mixed-effects analyses. Results Right hippocampal volume increased over time in the control group, with no increase in the PE group (p = .00352). DSM-5 diagnosis and childhood adversity were not significantly associated with right hippocampal volume. There was no significant effect of group or interaction in any other region. Conclusions These findings further implicate right hippocampal volumetric abnormalities in the pathophysiology underlying PEs. Furthermore, as suggested by previous studies in those at clinical high risk for psychosis and those with first-episode psychosis, it is possible that these deficits may be a marker for later clinical outcomes.
Collapse
|
47
|
Zick JL, Crowe DA, Blackman RK, Schultz K, Bergstrand DW, DeNicola AL, Carter RE, Ebner TJ, Lanier LM, Netoff TI, Chafee MV. Disparate insults relevant to schizophrenia converge on impaired spike synchrony and weaker synaptic interactions in prefrontal local circuits. Curr Biol 2022; 32:14-25.e4. [PMID: 34678162 PMCID: PMC10038008 DOI: 10.1016/j.cub.2021.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/25/2021] [Accepted: 10/05/2021] [Indexed: 01/29/2023]
Abstract
Schizophrenia results from hundreds of known causes, including genetic, environmental, and developmental insults that cooperatively increase risk of developing the disease. In spite of the diversity of causal factors, schizophrenia presents with a core set of symptoms and brain abnormalities (both structural and functional) that particularly impact the prefrontal cortex. This suggests that many different causal factors leading to schizophrenia may cause prefrontal neurons and circuits to fail in fundamentally similar ways. The nature of convergent malfunctions in prefrontal circuits at the cell and synaptic levels leading to schizophrenia are not known. Here, we apply convergence-guided search to identify core pathological changes in the functional properties of prefrontal circuits that lie downstream of mechanistically distinct insults relevant to the disease. We compare the impacts of blocking NMDA receptors in monkeys and deleting a schizophrenia risk gene in mice on activity timing and effective communication in prefrontal local circuits. Although these manipulations operate through distinct molecular pathways and biological mechanisms, we found they produced convergent pathophysiological effects on prefrontal local circuits. Both manipulations reduced the frequency of synchronous (0-lag) spiking between prefrontal neurons and weakened functional interactions between prefrontal neurons at monosynaptic lags as measured by information transfer between the neurons. The two observations may be related, as reduction in synchronous spiking between prefrontal neurons would be expected to weaken synaptic connections between them via spike-timing-dependent synaptic plasticity. These data suggest that the link between spike timing and synaptic connectivity could comprise the functional vulnerability that multiple risk factors exploit to produce disease.
Collapse
Affiliation(s)
- Jennifer L Zick
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Crowe
- Department of Biology, Augsburg University, Minneapolis, MN 55454, USA
| | - Rachael K Blackman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelsey Schultz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Adele L DeNicola
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lorene M Lanier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew V Chafee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Brain Sciences Center, VA Medical Center, Minneapolis, MN 55417, USA.
| |
Collapse
|
48
|
Millman ZB, Schiffman J, Gold JM, Akouri-Shan L, Demro C, Fitzgerald J, Rakhshan Rouhakhtar PJ, Klaunig M, Rowland LM, Waltz JA. Linking Salience Signaling With Early Adversity and Affective Distress in Individuals at Clinical High Risk for Psychosis: Results From an Event-Related fMRI Study. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac039. [PMID: 35799887 PMCID: PMC9250803 DOI: 10.1093/schizbullopen/sgac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Evidence suggests dysregulation of the salience network in individuals with psychosis, but few studies have examined the intersection of stress exposure and affective distress with prediction error (PE) signals among youth at clinical high-risk (CHR). Here, 26 individuals at CHR and 19 healthy volunteers (HVs) completed a monetary incentive delay task in conjunction with fMRI. We compared these groups on the amplitudes of neural responses to surprising outcomes-PEs without respect to their valence-across the whole brain and in two regions of interest, the anterior insula and amygdala. We then examined relations of these signals to the severity of depression, anxiety, and trauma histories in the CHR group. Relative to HV, youth at CHR presented with aberrant PE-evoked activation of the temporoparietal junction and weaker deactivation of the precentral gyrus, posterior insula, and associative striatum. No between-group differences were observed in the amygdala or anterior insula. Among youth at CHR, greater trauma histories were correlated with stronger PE-evoked amygdala activation. No associations were found between affective symptoms and the neural responses to PE. Our results suggest that unvalenced PE signals may provide unique information about the neurobiology of CHR syndromes and that early adversity exposure may contribute to neurobiological heterogeneity in this group. Longitudinal studies of young people with a range of risk syndromes are needed to further disentangle the contributions of distinct aspects of salience signaling to the development of psychopathology.
Collapse
Affiliation(s)
- Zachary B Millman
- Psychotic Disorders Division, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02114, USA
| | - Jason Schiffman
- Department of Psychological Science, University of California, Irvine, 4201 Social and Behavioral Sciences Gateway, Irvine, CA 92697-7085, USA
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - James M Gold
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, USA
| | - LeeAnn Akouri-Shan
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Caroline Demro
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - John Fitzgerald
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Pamela J Rakhshan Rouhakhtar
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Mallory Klaunig
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, USA
| | - James A Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, USA
| |
Collapse
|
49
|
Brakowski J, Manoliu A, Homan P, Bosch OG, Herdener M, Seifritz E, Kaiser S, Kirschner M. Aberrant striatal coupling with default mode and central executive network relates to self-reported avolition and anhedonia in schizophrenia. J Psychiatr Res 2022; 145:263-275. [PMID: 33187692 DOI: 10.1016/j.jpsychires.2020.10.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Avolition and anhedonia are common symptoms in schizophrenia and are related to poor long-term prognosis. There is evidence for aberrant cortico-striatal function and connectivity as neural substrate of avolition and anhedonia. However, it remains unclear how both relate to shared or distinct striatal coupling with large-scale intrinsic networks. Using resting state functional magnetic resonance imaging (rs-fMRI) this study investigated the association of large-scale cortico-striatal functional connectivity with self-reported and clinician-rated avolition and anhedonia in subjects with schizophrenia. METHODS Seventeen subjects with schizophrenia (SZ) and 28 healthy controls (HC) underwent rs-fMRI. Using Independent Component Analysis (ICA), we assessed Independent Components (ICs) reflecting intrinsic connectivity networks (ICNs), intra intrinsic functional connectivity within the ICs (intra-iFC), and intrinsic functional connectivity between different ICs (inter-iFC). Avolition and anhedonia were assessed using the Self Evaluation Scale for Negative Symptoms and the Brief Negative Symptom Scale. RESULTS ICA revealed three striatal components and six cortical ICNs. Both self-rated avolition and anhedonia correlated with increased inter-iFC between the caudate and posterior Default Mode Network (pDMN) and between the caudate and Central Executive Network (CEN). In contrast, clinician-rated avolition and anhedonia were not correlated with cortico-striatal connectivity. Group comparison revealed trend-wise decreased inter-iFC between the caudate and Salience Network (SN) in schizophrenia patients compared to HC. DISCUSSION Self-rated, but not clinician-rated, avolition and anhedonia was associated with aberrant striatal coupling with the default mode and the central executive network. These findings suggest that self-reported and clinician-rated scores might capture different aspects of motivational and hedonic deficits in schizophrenia and therefore relate to different cortico-striatal functional abnormalities.
Collapse
Affiliation(s)
- Janis Brakowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland.
| | - Andrei Manoliu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Russell Square House, 10-12, Russell Square London, WC1B 5EH, United Kingdom
| | - Philipp Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland
| | - Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland
| | - Marcus Herdener
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Chemin Du Petit-Bel-Air, 1226, Thônex, Switzerland
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland; Montreal Neurological Institute, McGill University, 3801 University St, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
50
|
Yuan L, Ma X, Li D, Li Z, Ouyang L, Fan L, Yang Z, Zhang Z, Li C, He Y, Chen X. Abnormal Brain Network Interaction Associated With Positive Symptoms in Drug-Naive Patients With First-Episode Schizophrenia. Front Psychiatry 2022; 13:870709. [PMID: 35656348 PMCID: PMC9152123 DOI: 10.3389/fpsyt.2022.870709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Positive symptoms are marked features of schizophrenia, and emerging evidence has suggested that abnormalities of the brain network underlying these symptoms may play a crucial role in the pathophysiology of the disease. We constructed two brain functional networks based on the positive and negative correlations between positive symptom scores and brain connectivity in drug-naive patients with first-episode schizophrenia (FES, n = 45) by using a machine-learning approach (connectome-based predictive modeling, CPM). The accuracy of the model was r = 0.47 (p = 0.002). The positively and negatively associated network strengths were then compared among FES subjects, individuals at genetic high risk (GHR, n = 41) for schizophrenia, and healthy controls (HCs, n = 48). The results indicated that the positively associated network contained more cross-subnetwork connections (96.02% of 176 edges), with a focus on the default-mode network (DMN)-salience network (SN) and the DMN-frontoparietal task control (FPT) network. The negatively associated network had fewer cross-subnetwork connections (71.79% of 117 edges) and focused on the sensory/somatomotor hand (SMH)-Cingulo opercular task control (COTC) network, the DMN, and the visual network with significantly decreased connectivity in the COTC-SMH network in FES (FES < GHR, p = 0.01; FES < HC, p = 0.01). Additionally, the connectivity strengths of the right supplementary motor area (SMA) (p < 0.001) and the right precentral gyrus (p < 0.0001) were reduced in FES. To the best of our knowledge, this is the first study to generate two brain networks associated with positive symptoms by utilizing CPM in FES. Abnormal segregation, interactions of brain subnetworks, and impaired SMA might lead to salience attribution abnormalities and, thus, as a result, induce positive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xiaoqian Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - David Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Lejia Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Zihao Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Zhenmei Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| |
Collapse
|