1
|
Shirai T, Okazaki S, Tanifuji T, Numata S, Nakayama T, Yoshida T, Mouri K, Otsuka I, Hiroi N, Hishimoto A. Meta-analyses of epigenetic age acceleration and GrimAge components of schizophrenia or first-episode psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:108. [PMID: 39548083 PMCID: PMC11568310 DOI: 10.1038/s41537-024-00531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Schizophrenia is a common chronic psychiatric disorder that causes age-related dysfunction. The life expectancy in patients with schizophrenia is ≥10 years shorter than that in the general population because of the higher risk of other diseases, such as cardiovascular diseases. Aging studies based on DNA methylation status have received considerable attention. Several epigenetic age accelerations and predicted values of aging-related proteins (GrimAge and GrimAge2 components) have been analyzed in multiple diseases. However, no studies have investigated up to GrimAge and GrimAge2 components between patients with schizophrenia and controls. Therefore, we aimed to conduct multiple regression analyses to investigate the association between schizophrenia and epigenetic age accelerations and GrimAge and GrimAge2 components in seven cohorts. Furthermore, we included patients with first-episode psychosis whose illness duration was often shorter than schizophrenia in our analysis. We integrated these results with meta-analyses, noting the acceleration of GrimAge, GrimAge2, and DunedinPACE, and increase in adrenomedullin, beta-2 microglobulin, cystatin C, and plasminogen activation inhibitor-1 levels, in patients with schizophrenia or first-episode psychosis. These results corroborated the finding that patients with schizophrenia had an increased risk of diabetes, cardiovascular disease, and cognitive dysfunction from a biological perspective. Patients with schizophrenia and first-episode psychosis showed differences in the results when compared with controls. Such analyses may lead to the development of novel therapeutic targets to patients with schizophrenia or relevant diseases from the perspective of aging in the future.
Collapse
Affiliation(s)
- Toshiyuki Shirai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Takaki Tanifuji
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, USA
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomohiko Nakayama
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomohiro Yoshida
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kentaro Mouri
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, USA
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Wang Z, Xue K, Kang Y, Liu Z, Cheng J, Zhang Y, Wei Y. Altered intrinsic neural activity and its molecular analyses in first-episode schizophrenia with auditory verbal hallucinations. Front Neurosci 2024; 18:1478963. [PMID: 39534020 PMCID: PMC11554611 DOI: 10.3389/fnins.2024.1478963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Auditory verbal hallucinations (AVHs) are one of the signature positive symptoms of schizophrenia, affecting a substantial portion of patients with schizophrenia. These hallucinations seriously impact the lives of patients, resulting in a substantial social burden. Recent studies have shown a significant correlation between abnormal local brain activity and the neurobiological mechanisms of AVHs. However, it is not fully clear whether altered intrinsic brain activity in schizophrenia patients with AVHs is correlated with specific neurotransmitter systems. Methods We included 50 first-episode, drug-naïve schizophrenia patients with AVHs, 50 patients without AVHs (NAVHs), and 50 age- and sex-matched healthy controls (HCs). The amplitude of low-frequency fluctuation (ALFF) was utilized to explore the altered intrinsic brain activity in the AVH group. Subsequently, we spatially correlated the altered ALFF with neurotransmitter maps using JuSpace. Results In our study, compared to HCs, the AVH group exhibited significantly reduced ALFF in multiple brain regions, mainly including the left precuneus, bilateral supplementary motor areas, bilateral paracentral lobules, bilateral precentral gyri, and bilateral postcentral gyri. The NAVH group showed significantly reduced ALFF in the left inferior occipital gyrus, left calcarine gyrus, and left lingual gyrus compared to HCs. Furthermore, the AVH group showed higher ALFF in the right inferior frontal gyrus compared to the NAVH group. Additionally, these ALFF alterations in the AVH group were closely related to three neurotransmitters, including dopamine, serotonin and norepinephrine. Conclusion We link neurotransmitters to abnormal intrinsic brain activity in first-episode, drug-naïve schizophrenia patients with AVHs, contributing to a comprehensive understanding of the pathophysiological processes and treatment pathways underlying AVHs.
Collapse
Affiliation(s)
- Ziyu Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Yimeng Kang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Zijun Liu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Yan Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| |
Collapse
|
3
|
Morey RA, Zheng Y, Bayly H, Sun D, Garrett ME, Gasperi M, Maihofer AX, Baird CL, Grasby KL, Huggins AA, Haswell CC, Thompson PM, Medland S, Gustavson DE, Panizzon MS, Kremen WS, Nievergelt CM, Ashley-Koch AE, Logue MW. Genomic structural equation modeling reveals latent phenotypes in the human cortex with distinct genetic architecture. Transl Psychiatry 2024; 14:451. [PMID: 39448598 PMCID: PMC11502831 DOI: 10.1038/s41398-024-03152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Genetic contributions to human cortical structure manifest pervasive pleiotropy. This pleiotropy may be harnessed to identify unique genetically-informed parcellations of the cortex that are neurobiologically distinct from functional, cytoarchitectural, or other cortical parcellation schemes. We investigated genetic pleiotropy by applying genomic structural equation modeling (SEM) to map the genetic architecture of cortical surface area (SA) and cortical thickness (CT) for 34 brain regions recently reported in the ENIGMA cortical GWAS. Genomic SEM uses the empirical genetic covariance estimated from GWAS summary statistics with LD score regression (LDSC) to discover factors underlying genetic covariance, which we are denoting genetically informed brain networks (GIBNs). Genomic SEM can fit a multivariate GWAS from summary statistics for each of the GIBNs, which can subsequently be used for LD score regression (LDSC). We found the best-fitting model of cortical SA identified 6 GIBNs and CT identified 4 GIBNs, although sensitivity analyses indicated that other structures were plausible. The multivariate GWASs of the GIBNs identified 74 genome-wide significant (GWS) loci (p < 5 × 10-8), including many previously implicated in neuroimaging phenotypes, behavioral traits, and psychiatric conditions. LDSC of GIBN GWASs found that SA-derived GIBNs had a positive genetic correlation with bipolar disorder (BPD), and cannabis use disorder, indicating genetic predisposition to a larger SA in the specific GIBN is associated with greater genetic risk of these disorders. A negative genetic correlation was observed between attention deficit hyperactivity disorder (ADHD) and major depressive disorder (MDD). CT GIBNs displayed a negative genetic correlation with alcohol dependence. Even though we observed model instability in our application of genomic SEM to high-dimensional data, jointly modeling the genetic architecture of complex traits and investigating multivariate genetic links across neuroimaging phenotypes offers new insights into the genetics of cortical structure and relationships to psychopathology.
Collapse
Affiliation(s)
- Rajendra A Morey
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
| | - Yuanchao Zheng
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Henry Bayly
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Delin Sun
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
| | - Melanie E Garrett
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
- Department of Medicine, Duke Molecular Physiology Institute, Carmichael Building, Duke University Medical Center, Durham, NC, 27701, USA
| | - Marianna Gasperi
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Research Service VA, San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Adam X Maihofer
- Research Service VA, San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - C Lexi Baird
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
| | - Katrina L Grasby
- Psychiatric Genetics, QIMR, Berghofer Medical Research Institute, 4006, Brisbane, QLD, Australia
| | - Ashley A Huggins
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
| | - Courtney C Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute Keck School of Medicine University of Southern California, Los Angeles, CA, 90033, USA
| | - Sarah Medland
- Queensland Institute for Medical Research, Berghofer Medical Research Institute, 4006, Brisbane, QLD, Australia
| | - Daniel E Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Matthew S Panizzon
- Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, 92093, USA
| | - William S Kremen
- Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, 92093, USA
| | - Caroline M Nievergelt
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Research Service VA, San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Allison E Ashley-Koch
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
- Department of Medicine, Duke Molecular Physiology Institute, Carmichael Building, Duke University Medical Center, Durham, NC, 27701, USA
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA.
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA.
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, 02118-2526, USA.
| |
Collapse
|
4
|
Guo J, He C, Song H, Gao H, Yao S, Dong SS, Yang TL. Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives. Neurosci Bull 2024; 40:1333-1352. [PMID: 38703276 PMCID: PMC11365900 DOI: 10.1007/s12264-024-01214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/08/2024] [Indexed: 05/06/2024] Open
Abstract
Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Changyi He
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huimiao Song
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huiwu Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shi Yao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
5
|
Yu T, Pei WZ, Xu CY, Deng CC, Zhang XL. Identification of male schizophrenia patients using brain morphology based on machine learning algorithms. World J Psychiatry 2024; 14:804-811. [PMID: 38984327 PMCID: PMC11230103 DOI: 10.5498/wjp.v14.i6.804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Schizophrenia is a severe psychiatric disease, and its prevalence is higher. However, diagnosis of early-stage schizophrenia is still considered a challenging task. AIM To employ brain morphological features and machine learning method to differentiate male individuals with schizophrenia from healthy controls. METHODS The least absolute shrinkage and selection operator and t tests were applied to select important features from structural magnetic resonance images as input features for classification. Four commonly used machine learning algorithms, the general linear model, random forest (RF), k-nearest neighbors, and support vector machine algorithms, were used to develop the classification models. The performance of the classification models was evaluated according to the area under the receiver operating characteristic curve (AUC). RESULTS A total of 8 important features with significant differences between groups were considered as input features for the establishment of classification models based on the four machine learning algorithms. Compared to other machine learning algorithms, RF yielded better performance in the discrimination of male schizophrenic individuals from healthy controls, with an AUC of 0.886. CONCLUSION Our research suggests that brain morphological features can be used to improve the early diagnosis of schizophrenia in male patients.
Collapse
Affiliation(s)
- Tao Yu
- Department of Clinical Nutrition, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| | - Wen-Zhi Pei
- Department of Psychiatry, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| | - Chun-Yuan Xu
- Department of Clinical Nutrition, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| | - Chen-Chen Deng
- Department of Gynaecology, Anhui Maternal and Child Health Hospital, Hefei 230032, Anhui Province, China
| | - Xu-Lai Zhang
- Department of Psychiatry, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| |
Collapse
|
6
|
Li F, Zhao Q, Tang T, Liu Y, Wang Z, Wang Z, Han X, Xu Z, Chang Y, Li Y. Brain imaging derived phenotypes: a biomarker for the onset of inflammatory bowel disease and a potential mediator of mental complications. Front Immunol 2024; 15:1359540. [PMID: 38469291 PMCID: PMC10925669 DOI: 10.3389/fimmu.2024.1359540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
Background and aims Inflammatory bowel disease (IBD), mainly categorized into Crohn's disease (CD) and ulcerative colitis (UC), is a chronic relapsing gastrointestinal disorder that significantly impairs patients' quality of life. IBD patients often experience comorbidities such as anxiety and depression, and the underlying mechanisms and treatment strategies remain areas of investigation. Methods We conducted a Mendelian randomization(MR) analysis utilizing brain image derived phenotypes (IDP) from the UK Biobank database to investigate the causal relationships between IBD and alterations in brain structural morphology and connectivity of neural tracts. This study aimed to identify biological evidence linking IBD to psychiatric disorders such as anxiety and depression. Results Specifically, the volume of grey matter in the Left Frontal Orbital Cortex exhibited a negative association with the onset of Crohn's disease (odds ratio (OR) [95% confidence interval (CI)]: 0.315[0.180~0.551], adjusted P=0.001), while the volume of the superior frontal cortex in the right hemisphere showed a positive correlation with the development of Ulcerative colitis (OR [95% CI]: 2.285[1.793~2.911], adjusted P<0.001), and the volume of lateral occipital cortex in the left hemisphere demonstrated a positive relationship with Crohn's disease onset (OR [95% CI]: 1.709[1.671~1.747], adjusted P<0.001). In the context of reverse causality, the onset of UC or CD has led to alterations in imaging derived phenotypes associated with five disorders (anxiety, depression, schizophrenia, bipolar disorder, pain) and three functions (memory, emotion, language). Conclusion Our study has demonstrated a causal relationship between IBD and IDPs. IDPs may serve as potential biomarkers for the progression of IBD and as predictive intermediaries for the development of neurological diseases in IBD patients.
Collapse
Affiliation(s)
- Fan Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Qi Zhao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuyuan Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Zhaodi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Zhi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Xiaoping Han
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Zifeng Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Yu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Sun S, Xiao S, Guo Z, Gong J, Tang G, Huang L, Wang Y. Meta-analysis of cortical thickness reduction in adult schizophrenia. J Psychiatry Neurosci 2023; 48:E461-E470. [PMID: 38123240 PMCID: PMC10743639 DOI: 10.1503/jpn.230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Numerous neuroimaging studies using surface-based morphometry analyses have reported altered cortical thickness among patients with schizophrenia, but the results have been inconsistent. We sought to provide a whole-brain meta-analysis, which may help enhance the spatial accuracy of identification. METHODS We conducted a meta-analysis of whole-brain studies that explored cortical thickness alteration among adult patients with schizophrenia, including first-episode patients with schizophrenia, and patients with chronic schizophrenia, compared with healthy controls by using the seed-based d mapping with permutation of subject images (SDM-PSI) software. RESULTS A systematic literature search identified 25 studies (33 data sets) of cortical thickness, including 2008 patients with schizophrenia and 2004 healthy controls. Overall, patients with schizophrenia showed decreased cortical thickness in the right inferior frontal gyrus (IFG) and bilateral insula extending to the superior temporal gyrus (STG). Subgroup meta-analysis reported that patients with chronic schizophrenia showed decreased cortical thickness in the right insula extending to the right IFG. There was no significant cortical thickness difference between first-episode patients with schizophrenia and healthy controls. LIMITATIONS The results of meta-regression analyses should be viewed cautiously since they were driven by a small number of studies or did not overlap with the between-group differences found in the primary analyses. CONCLUSION The meta-analysis suggested robust cortical thickness reduction in the IFG, insula and STG among adult patients with schizophrenia, particularly in those with chronic schizophrenia. The results provide useful insights to understanding the underlying pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Shilin Sun
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China (Sun, Xiao, Guo, Tang, Huang, Wang); the Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China (Sun, Xiao, Guo, Gong, Tang, Huang, Wang); the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong)
| | - Shu Xiao
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China (Sun, Xiao, Guo, Tang, Huang, Wang); the Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China (Sun, Xiao, Guo, Gong, Tang, Huang, Wang); the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong)
| | - Zixuan Guo
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China (Sun, Xiao, Guo, Tang, Huang, Wang); the Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China (Sun, Xiao, Guo, Gong, Tang, Huang, Wang); the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong)
| | - Jiaying Gong
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China (Sun, Xiao, Guo, Tang, Huang, Wang); the Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China (Sun, Xiao, Guo, Gong, Tang, Huang, Wang); the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong)
| | - Guixian Tang
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China (Sun, Xiao, Guo, Tang, Huang, Wang); the Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China (Sun, Xiao, Guo, Gong, Tang, Huang, Wang); the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong)
| | - Li Huang
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China (Sun, Xiao, Guo, Tang, Huang, Wang); the Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China (Sun, Xiao, Guo, Gong, Tang, Huang, Wang); the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong)
| | - Ying Wang
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China (Sun, Xiao, Guo, Tang, Huang, Wang); the Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China (Sun, Xiao, Guo, Gong, Tang, Huang, Wang); the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong)
| |
Collapse
|
8
|
Xu Y, Zhang Y. Abnormal voxel-mirrored homotopic connectivity in first-episode, drug-naïve patients with obsessive-compulsive disorder. Eur J Neurosci 2023; 58:3531-3539. [PMID: 37592392 DOI: 10.1111/ejn.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Prior studies suggest that obsessive-compulsive disorder (OCD) can cause both anatomical and functional variations in the brain, but to date, altered functional synchronization between two functional hemispheres remains unclear in OCD patients. Voxel-mirrored homotopic connectivity (VMHC) is defined as the temporal correlation of spontaneous low-frequency blood oxygenation level-dependent signal fluctuations across mirror regions of hemisphere revealing the homotopic connectivity between each voxel in one hemisphere and its mirrored counterpart in the contralateral hemisphere. To investigate the alterations of brain regional function and VMHC in patients with OCD, the current study enrolled 103 OCD patients and 118 healthy controls, undergoing resting-state functional magnetic resonance imaging. Compared to healthy controls (HCs), patients had decreased VMHC in bilateral cerebellum, lingual and fusiform gyrus; bilateral paracentral lobule, pre and postcentral gyrus; and bilateral superior and middle temporal gyrus, putamen and bilateral precuneus without global signal regression. And we found mostly similar results after regressing global signals; apart from the regions mentioned above, decreased in bilateral cuneus and calcarine was also showed. Furthermore, the mean VMHC values of the left cerebellum were negatively correlated with the obsession scores (ρ = -.204, π = .039). The decreased values in right fusiform and putamen were negatively correlated with duration of disease (ρ = -.205, π = .038; ρ = -.196, π = .047). We confirmed a significant VMHC reduction in OCD patients in broad areas. Our findings suggest that the patients tend to disconnect information exchange across hemispheres.
Collapse
Affiliation(s)
- Yinhuan Xu
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Han Y, Yang Y, Zhou Z, Jin X, Shi H, Shao M, Song M, Su X, Wang Q, Liu Q, Li W, Lv L. Cortical anatomical variations, gene expression profiles, and clinical phenotypes in patients with schizophrenia. Neuroimage Clin 2023; 39:103451. [PMID: 37315484 PMCID: PMC10509526 DOI: 10.1016/j.nicl.2023.103451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) patients display significant structural brain abnormalities; nevertheless, the genetic mechanisms regulating cortical anatomical variations and their correlation with the disease phenotype are still ambiguous. STUDY DESIGN We characterized anatomical variation using a surface-based method derived from structural magnetic resonance imaging of patients with SZ and age- and sex-matched healthy controls (HCs). Partial least-squares regression was performed across cortex regions between anatomical variation and average transcriptional profiles of SZ risk genes and all qualified genes from the Allen Human Brain Atlas. The morphological features of each brain region were correlated to symptomology variables in patients with SZ using partial correlation analysis. STUDY RESULTS A total of 203 SZ and 201 HCs were included in the final analysis. We observed significant variation of 55 regions of cortical thickness, 23 regions of volume, 7 regions of area, and 55 regions of local gyrification index (LGI) between SZ and HC groups. Expression profiles of 4 SZ risk genes and 96 genes from all qualified genes showed a correlation to anatomical variability, however, after multiple comparisons, the correlations were no longer significant. LGI variability in multiple frontal subregions was associated with specific symptoms of SZ, whereas cognitive function involving attention/vigilance was linked to LGI variability across nine brain regions. CONCLUSIONS Cortical anatomical variation of patients with schizophrenia is associated with gene transcriptome profiles as well as clinical phenotypes.
Collapse
Affiliation(s)
- Yong Han
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Zhilu Zhou
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Xueyan Jin
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Han Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Minglong Shao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Meng Song
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Xi Su
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Qi Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Qing Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China.
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
10
|
Guo H, Ye H, Li Z, Li X, Huang W, Yang Y, Xie G, Xu C, Li X, Liang W, Jing H, Zhang C, Tang C, Liang J. Amygdala signal abnormality and cognitive impairment in drug-naïve schizophrenia. BMC Psychiatry 2023; 23:231. [PMID: 37020192 PMCID: PMC10074687 DOI: 10.1186/s12888-023-04728-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Recently studies had showed that the amygdala may take part in the cognitive impairment in schizophrenia (SC). However, the mechanism is still unclear, so we explored the relationship between the amygdala resting state magnetic resonance imaging (rsMRI) signal and cognitive function, to provide a reference for the follow-up study. METHODS We collected 59 drug-naïve SCs and 46 healthy controls (HCs) from the Third People's Hospital of Foshan. The rsMRI technique and automatic segmentation tool were used to extract the volume and functional indicators of the SC's amygdala. The Positive and Negative Syndrome Scale (PANSS) was used to assess the severity of the disease, and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was used to assess cognitive function. Pearson correlation analysis was used to compare the relationship between the structural and functional indicators of the amygdala and PANSS and RBANS. RESULTS (1) There was no significant difference between SC and HC in age, gender and years of education. Compared with HC, the PANSS score of SC increased and the RBANS score decreased significantly. Meanwhile, the left amygdala volume decreased (t=-3.675, p < 0.001), and the Fractional amplitude of low-frequency fluctuations (FALFF) values of bilateral amygdala increased (tL=3.916, p < 0.001; tR=3.131, p = 0.002). (2) The volumes of the left amygdala were negatively correlated with the PANSS score (rL=-0.243, p = 0.039). While the FALFF values of the bilateral amygdala were positively correlated with the PANSS score (rL=0.257, p = 0.026; rR=0.259, p = 0.026). Bilateral amygdala volumes and FALFF values were positively correlated (rL=0.445, p < 0.001; rR=0.326, p = 0.006) and negatively correlated with RBANS score (rL=-0.284, p = 0.014; rR=-0.272, p = 0.020), respectively. CONCLUSION The abnormal volume and function of the amygdala play important roles in the disease process of SC, and are closely related to cognitive impairment.
Collapse
Affiliation(s)
- Huagui Guo
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Haibiao Ye
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Zhijian Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Xuesong Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Wei Huang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Yu Yang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Caixia Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Wenting Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Huan Jing
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Chaohua Tang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China.
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Ćurčić-Blake B, de Vries A, Renken RJ, Marsman JBC, Garrison J, Hugdahl K, Aleman A. Paracingulate Sulcus Length and Cortical Thickness in Schizophrenia Patients With and Without a Lifetime History of Auditory Hallucinations. Schizophr Bull 2023; 49:S48-S57. [PMID: 36840544 PMCID: PMC9960009 DOI: 10.1093/schbul/sbac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
BACKGROUND It has been theorized that hallucinations, a common symptom of schizophrenia, are caused by failures in reality monitoring. The paracingulate sulcus (PCS) has been implicated as a brain structure supporting reality monitoring with the absence or shorter length of PCS associated with an occurrence of hallucinations in schizophrenia. The absence or shorter length of PCS has been associated with an occurrence of hallucinations. There are inconsistent findings in the literature regarding the role of the asymmetry of this structure for hallucinations. Here, we investigated the length of the PCS and cortical thickness of surrounding structures in patients with a lifetime history of auditory verbal hallucinations (AVH). DESIGN Seventy-seven patients and twenty-eight healthy controls (HC) underwent an anatomical MRI scan. PCS length and cortical thickness were estimated using Mango brain visualization and FreeSurfer, respectively. Patients with AVH (n = 45) and patients without AVH were compared (n = 32) to the controls. RESULTS PCS length significantly differed between HC and patient groups (F(2,102) = 3.57, P = .032) in the left but not in the right sulcus. We found significantly longer PCS between HC and AVH group but no difference between patient groups. Similarly, we found significant thinning of cortical structures including structures surrounding anterior parts of PCS between HC and patients either in general or per group, but no significant differences were observed between patient groups. CONCLUSIONS PCS length in the left hemisphere is shorter in schizophrenia patients with hallucinations as compared to HC subjects. The patient group without hallucinations was in between those 2 groups. Cortical thickness of neighboring areas of PCS is diminished in patient groups relative to the healthy comparison subjects. The role of lateralization and functional involvement of the PCS region in processes underlying hallucinations, such as reality monitoring, needs further clarification.
Collapse
Affiliation(s)
- Branislava Ćurčić-Blake
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annemarie de Vries
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Remco J Renken
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Bernard C Marsman
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jane Garrison
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Kenneth Hugdahl
- Department of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Biological and Medical Psychology, University of Bergen, Norway
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Magnetic Resonance Imaging Center, Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Vucurovic K, Raucher-Chéné D, Obert A, Gobin P, Henry A, Barrière S, Traykova M, Gierski F, Portefaix C, Caillies S, Kaladjian A. Activation of the left medial temporal gyrus and adjacent brain areas during affective theory of mind processing correlates with trait schizotypy in a nonclinical population. Soc Cogn Affect Neurosci 2023; 18:6701589. [PMID: 36107738 PMCID: PMC9949503 DOI: 10.1093/scan/nsac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/31/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022] Open
Abstract
Schizophrenia, a severe psychiatric disorder, is associated with abnormal brain activation during theory of mind (ToM) processing. Researchers recently suggested that there is a continuum running from subclinical schizotypal personality traits to fully expressed schizophrenia symptoms. Nevertheless, it remains unclear whether schizotypal personality traits in a nonclinical population are associated with atypical brain activation during ToM tasks. Our aim was to investigate correlations between fMRI brain activation during affective ToM (ToMA) and cognitive ToM (ToMC) tasks and scores on the Schizotypal Personality Questionnaire (SPQ) and the Basic Empathy Scale in 39 healthy individuals. The total SPQ score positively correlated with brain activation during ToMA processing in clusters extending from the left medial temporal gyrus (MTG), lingual gyrus and fusiform gyrus to the parahippocampal gyrus (Brodmann area: 19). During ToMA processing, the right inferior occipital gyrus, right MTG, precuneus and posterior cingulate cortex negatively correlated with the emotional disconnection subscore and the total score of self-reported empathy. These posterior brain regions are known to be involved in memory and language, as well as in creative reasoning, in nonclinical individuals. Our findings highlight changes in brain processing associated with trait schizotypy in nonclinical individuals during ToMA but not ToMC processing.
Collapse
Affiliation(s)
- Ksenija Vucurovic
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Centre Rémois de Psychothérapie et Neuromodulation, 51100 Reims, France
| | - Delphine Raucher-Chéné
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France.,McGill University, Douglas Mental Health University Institute, 11290 Montreal, Canada
| | - Alexandre Obert
- Champollion National University Institute, Cognition Sciences, Technology & Ergonomics Laboratory, University of Toulouse, 81000 Albi, France
| | - Pamela Gobin
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Audrey Henry
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Sarah Barrière
- Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Martina Traykova
- Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Fabien Gierski
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France.,INSERM U1247 GRAP, Research Group on Alcohol and Drugs, Université de Picardie Jules Verne, 80000 Amiens, France
| | - Christophe Portefaix
- Radiology Department, Reims University Hospital, 51100 Reims, France.,University of Reims Champagne-Ardenne, CReSTIC Laboratory, 51100 Reims, France
| | - Stéphanie Caillies
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France
| | - Arthur Kaladjian
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France.,University of Reims Champagne-Ardenne Faculty of Medicine, 51100 Reims, France
| |
Collapse
|
13
|
Zong X, Wang G, Nie Z, Ma S, Kang L, Zhang N, Weng S, Tan Q, Zheng J, Hu M. Longitudinal multi-omics alterations response to 8-week risperidone monotherapy: Evidence linking cortical thickness, transcriptomics and epigenetics. Front Psychiatry 2023; 14:1127353. [PMID: 36937723 PMCID: PMC10018025 DOI: 10.3389/fpsyt.2023.1127353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Background Antipsychotic treatment-related alterations of cortical thickness (CT) and clinical symptoms have been previously corroborated, but less is known about whether the changes are driven by gene expression and epigenetic modifications. Methods Utilizing a prospective design, we recruited 42 treatment-naive first-episode schizophrenia patients (FESP) and 38 healthy controls. Patients were scanned by TI weighted imaging before and after 8-week risperidone monotherapy. CT estimation was automatically performed with the FreeSurfer software package. Participants' peripheral blood genomic DNA methylation (DNAm) status, quantified by using Infinium® Human Methylation 450K BeadChip, was examined in parallel with T1 scanning. In total, CT measures from 118 subjects and genomic DNAm status from 114 subjects were finally collected. Partial least squares (PLS) regression was used to detect the spatial associations between longitudinal CT variations after treatment and cortical transcriptomic data acquired from the Allen Human Brain Atlas. Canonical correlation analysis (CCA) was then performed to identify multivariate associations between DNAm of PLS1 genes and patients' clinical improvement. Results We detected the significant PLS1 component (2,098 genes) related to longitudinal alterations of CT, and the PLS1 genes were significantly enriched in neurobiological processes, and dopaminergic- and cancer-related pathways. Combining Laplacian score and CCA analysis, we further linked DNAm of 33 representative genes from the 2,098 PLS1 genes with patients' reduction rate of clinical symptoms. Conclusions This study firstly revealed that changes of CT and clinical behaviors after treatment may be transcriptionally and epigenetically underlied. We define a "three-step" roadmap which represents a vital step toward the exploration of treatment- and treatment response-related biomarkers on the basis of multiple omics rather than a single omics type as a strategy for advancing precise care.
Collapse
Affiliation(s)
- Xiaofen Zong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhaowen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Simeng Ma
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shenhong Weng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Shenhong Weng
| | - Qing Tan
- School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan, Hubei, China
- Qing Tan
| | - Junjie Zheng
- The Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- The Functional Brain Imaging Institute, Nanjing Medical University, Nanjing, Jiangsu, China
- Junjie Zheng
| | - Maolin Hu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Maolin Hu
| |
Collapse
|
14
|
Wang Y, Ning H, Ren J, Pan C, Yu M, Xue C, Wang X, Zhou G, Chen Y, Liu W. Integrated Clinical Features with Plasma and Multi-modal Neuroimaging Biomarkers to Diagnose Mild Cognitive Impairment in Early Drug-Naive Parkinson's Disease. ACS Chem Neurosci 2022; 13:3523-3533. [PMID: 36417458 DOI: 10.1021/acschemneuro.2c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The pathogenesis of cognitive impairment in Parkinson's disease (PD) patients remains unclear, and there is no ideal diagnostic tool available at present. We assessed integrated clinical features with plasma and multi-modal neuroimaging biomarkers to identify mild cognitive impairment (MCI) in early drug-naive PD patients. 49 early drug-naive PD patients, including 26 with MCI (PD-MCI) and 23 with normal cognition (PD-NC), and 20 controls were recruited. Plasma markers [α-synuclein, beta-amyloid 1-40 (Aβ40), beta-amyloid 1-42 (Aβ42), and phosphorylated Tau 181 (p-Tau181) levels], functional connectivity (FC) of the default mode network, and cortical thickness (CTh) were evaluated to identify PD-MCI. The PD-MCI group had significantly higher plasma p-Tau181 levels and p-Tau181/Aβ42 ratio and lower Aβ42/Aβ40 ratio compared to the PD-NC group. Compared to PD-NC, the PD-MCI group showed increased FC between left posterior cingulate cortex (pCC) and the left parahippocampal gyrus (PHG), and between the right hippocampal formation and the left anterior cingulate and paracingulate gyri, and the right middle temporal gyrus. Additionally, the PD-MCI group had thinner cortex thickness in the right lateral occipital and frontal pole compared to the PD-NC group. The final model combining clinical characteristics and several variables (age, sex, plasma p-Tau181 level, Aβ42/Aβ40 ratio, the right lateral occipital CTh, and the FC value between the left pCC and left PHG) had the highest diagnostic accuracy for PD-MCI (AUC = 0.987, 95% CI 0.903-1.000; p = 0.001 compared to age and sex alone). The combination of clinical features, plasma biomarkers, and multi-modal neuroimaging biomarkers can identify early cognitive decline in PD patients.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Houxu Ning
- Department of Chinese Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chenxi Pan
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Miao Yu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao Wang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Gaiyan Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yubing Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
15
|
Takahashi T, Sasabayashi D, Takayanagi Y, Furuichi A, Kobayashi H, Yuasa Y, Noguchi K, Suzuki M. Gross anatomical features of the insular cortex in schizophrenia and schizotypal personality disorder: Potential relationships with vulnerability, illness stages, and clinical subtypes. Front Psychiatry 2022; 13:1050712. [PMID: 36465304 PMCID: PMC9715601 DOI: 10.3389/fpsyt.2022.1050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Patients with schizophrenia have a higher number of insular gyri; however, it currently remains unclear whether the brain characteristics of patients with schizotypal personality disorder (SPD), a mild form of schizophrenia, are similar. It is also unknown whether insular gross anatomical features are associated with the illness stages and clinical subtypes of schizophrenia. Materials and methods This magnetic resonance imaging study examined gross anatomical variations in the insular cortex of 133 patients with schizophrenia, 47 with SPD, and 88 healthy controls. The relationships between the insular gross anatomy and schizophrenia subgroups (71 first-episode and 58 chronic groups, 38 deficit and 37 non-deficit subtype groups) were also investigated. Results The number of insular gyri was higher in the schizophrenia and SPD patients than in the controls, where the patients were characterized by well-developed accessory, middle short, and posterior long insular gyri. The insular gross anatomy did not significantly differ between the first-episode and chronic schizophrenia subgroups; however, the relationship between the developed accessory gyrus and more severe positive symptoms was specific to the first-episode group. The prevalence of a right middle short gyrus was higher in the deficit schizophrenia group than in the non-deficit group. Discussion These findings suggest that schizophrenia and SPD patients may share an altered insular gross morphology as a vulnerability factor associated with early neurodevelopmental anomalies, which may also contribute to positive symptomatology in the early illness stages and clinical subtypes of schizophrenia.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Arisawabashi Hospital, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Haruko Kobayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yusuke Yuasa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
16
|
Xie Y, Ding H, Du X, Chai C, Wei X, Sun J, Zhuo C, Wang L, Li J, Tian H, Liang M, Zhang S, Yu C, Qin W. Morphometric Integrated Classification Index: A Multisite Model-Based, Interpretable, Shareable and Evolvable Biomarker for Schizophrenia. Schizophr Bull 2022; 48:1217-1227. [PMID: 35925032 PMCID: PMC9673259 DOI: 10.1093/schbul/sbac096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Multisite massive schizophrenia neuroimaging data sharing is becoming critical in understanding the pathophysiological mechanism and making an objective diagnosis of schizophrenia; it remains challenging to obtain a generalizable and interpretable, shareable, and evolvable neuroimaging biomarker for schizophrenia diagnosis. STUDY DESIGN A Morphometric Integrated Classification Index (MICI) was proposed as a potential biomarker for schizophrenia diagnosis based on structural magnetic resonance imaging data of 1270 subjects from 10 sites (588 schizophrenia patients and 682 normal controls). An optimal XGBoost classifier plus sample-weighted SHapley Additive explanation algorithms were used to construct the MICI measure. STUDY RESULTS The MICI measure achieved comparable performance with the sample-weighted ensembling model and merged model based on raw data (Delong test, P > 0.82) while outperformed the single-site models (Delong test, P < 0.05) in either the independent-sample testing datasets from the 9 sites or the independent-site dataset (generalizable). Besides, when new sites were embedded in, the performance of this measure was gradually increasing (evolvable). Finally, MICI was strongly associated with the severity of schizophrenia brain structural abnormality, with the patients' positive and negative symptoms, and with the brain expression profiles of schizophrenia risk genes (interpretable). CONCLUSIONS In summary, the proposed MICI biomarker may provide a simple and explainable way to support clinicians for objectively diagnosing schizophrenia. Finally, we developed an online model share platform to promote biomarker generalization and provide free individual prediction services (http://micc.tmu.edu.cn/mici/index.html).
Collapse
Affiliation(s)
- Yingying Xie
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Ding
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China,School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Xiaotong Du
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Chai
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotong Wei
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Sun
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Chuanjun Zhuo
- Department of Psychiatry Functional Neuroimaging Laboratory, Tianjin Mental Health Center, Tianjin Anding Hospital, Tianjin, China
| | - Lina Wang
- Department of Psychiatry Functional Neuroimaging Laboratory, Tianjin Mental Health Center, Tianjin Anding Hospital, Tianjin, China
| | - Jie Li
- Department of Psychiatry Functional Neuroimaging Laboratory, Tianjin Mental Health Center, Tianjin Anding Hospital, Tianjin, China
| | | | - Meng Liang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China,School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | | | | | - Wen Qin
- To whom correspondence should be addressed; Department of Radiology, and Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital. Anshan Road No 154, Heping District, Tianjin 300052, China.
| |
Collapse
|
17
|
Ren H, Wang Q, Li C, Li Z, Li J, Dai L, Dong M, Zhou J, He J, Liao Y, He Y, Chen X, Tang J. Differences in Cortical Thickness in Schizophrenia Patients With and Without Auditory Verbal Hallucinations. Front Mol Neurosci 2022; 15:845970. [PMID: 35645736 PMCID: PMC9135141 DOI: 10.3389/fnmol.2022.845970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Auditory verbal hallucinations (AVHs) are one of the most common and severe symptoms of schizophrenia (SCZ), but the neuroanatomical mechanisms underlying AVHs remain unclear. This study aimed to investigate whether persistent AVHs (pAVH) are associated with cortical thinning of certain brain regions in patients with SCZ. With the use of the 3T magnetic resonance imaging (MRI) technology, we acquired and analyzed data from 79 SCZ patients with pAVH (pAVH group), 60 SCZ patients without AVHs (non-AVH group), and 83 healthy controls (HC group). The severity of pAVH was assessed by the P3 hallucination items in the Positive and Negative Syndrome Scale (PANSS) and the Auditory Hallucinations Rating Scale (AHRS). Cortical thickness analysis was used to compare the region of interest (ROI) cortical thickness between the groups. The relationship between the severity of pAVH and cortical thickness was also explored. Compared with the non-AVH and HC groups, the pAVH group exhibited significantly reduced cortical thickness in the bilateral lateral orbitofrontal region (p < 0.0007, after Bonferroni correction); no significant difference was found between the non-AVH group and the HC group. The cortical thickness of the left lateral orbitofrontal cortex (P3: r = −0.44, p < 0.001; AHRS: r = −0.45, p < 0.001) and the right lateral orbitofrontal cortex (P3: r = −0.36, p = 0.002; AHRS: r = −0.33, p = 0.004) were negatively correlated with the severity of pAVH (after Bonferroni correction, p < 0.0125). Therefore, abnormal thickness of the bilateral lateral orbitofrontal cortices might be associated with pAVHs in SCZ patients.
Collapse
Affiliation(s)
- Honghong Ren
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Qianjin Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Chunwang Li
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Zongchang Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Jinguang Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Lulin Dai
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Min Dong
- Guangdong Mental Health Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jun Zhou
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Jingqi He
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yanhui Liao
- Department of Psychiatry, School of Medicine, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Ying He
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xiaogang Chen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
- *Correspondence: Xiaogang Chen, , orcid.org/0000-0002-3706-1697
| | - Jinsong Tang
- Department of Psychiatry, School of Medicine, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Jinsong Tang, , orcid.org/0000-0003-3796-1377
| |
Collapse
|
18
|
Adámek P, Langová V, Horáček J. Early-stage visual perception impairment in schizophrenia, bottom-up and back again. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:27. [PMID: 35314712 PMCID: PMC8938488 DOI: 10.1038/s41537-022-00237-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/17/2022] [Indexed: 01/01/2023]
Abstract
Visual perception is one of the basic tools for exploring the world. However, in schizophrenia, this modality is disrupted. So far, there has been no clear answer as to whether the disruption occurs primarily within the brain or in the precortical areas of visual perception (the retina, visual pathways, and lateral geniculate nucleus [LGN]). A web-based comprehensive search of peer-reviewed journals was conducted based on various keyword combinations including schizophrenia, saliency, visual cognition, visual pathways, retina, and LGN. Articles were chosen with respect to topic relevance. Searched databases included Google Scholar, PubMed, and Web of Science. This review describes the precortical circuit and the key changes in biochemistry and pathophysiology that affect the creation and characteristics of the retinal signal as well as its subsequent modulation and processing in other parts of this circuit. Changes in the characteristics of the signal and the misinterpretation of visual stimuli associated with them may, as a result, contribute to the development of schizophrenic disease.
Collapse
Affiliation(s)
- Petr Adámek
- Third Faculty of Medicine, Charles University, Prague, Czech Republic. .,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic.
| | - Veronika Langová
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| | - Jiří Horáček
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
19
|
Chen M, Wang J, Zhou S, Zhang C, Deng D, Liu F, Luo W, Zhu J, Yu Y. Brain Structure as a Correlate of Odor Identification and Cognition in Type 2 Diabetes. Front Hum Neurosci 2022; 16:773309. [PMID: 35237139 PMCID: PMC8882582 DOI: 10.3389/fnhum.2022.773309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: It has been reported that type 2 diabetes (T2DM) is associated with olfactory identification (OI) impairments and cognitive decline. However, the relationship between OI impairments and cognitive decline is largely unknown in T2DM patients.Methods: Sixty-eight T2DM patients and 68 healthy controls underwent 3D-T1 MRI scans, olfactory and cognitive assessments. The cortical thickness of olfaction-related brain regions, olfactory and cognitive scores were compared between groups. Correlation analyses were carried out among cognition, olfaction, and cortical thickness of olfaction-related brain regions.Results: First, the cognitive and olfactory test scores of T2DM patients were lower than healthy subjects. Second, higher olfactory scores were associated with increased cortical thickness in the left parahippocampal gyrus and bilateral insula in T2DM. Third, higher olfactory scores were associated with higher cognitive performance in T2DM. Fourth, some cognitive performances were related to cortical thickness in the left parahippocampal gyrus and left insula in T2DM.Conclusion: These findings indicated that olfactory dysfunction may be useful for future applications that attempt to predict cognitive decline or develop tailored therapies in T2DM patients.
Collapse
Affiliation(s)
- Mimi Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shanlei Zhou
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Datong Deng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fujun Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Luo
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yongqiang Yu Jiajia Zhu
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yongqiang Yu Jiajia Zhu
| |
Collapse
|
20
|
Wei Q, Yan W, Zhang R, Yang X, Xie S. Aberrant cortical surface and cognition function in drug-naive first-episode schizophrenia. Ann Gen Psychiatry 2022; 21:4. [PMID: 35144626 PMCID: PMC8830089 DOI: 10.1186/s12991-022-00381-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/23/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Impaired cognitive function is a central symptom of schizophrenia and is often correlated with inferior global functional outcomes. However, the role of some neurobiological factors such as cortical structure alterations in the underlying cognitive damages in schizophrenia remains unclear. The present study attempted to explore the neurobiomarkers of cognitive function in drug-naive, first-episode schizophrenia by using structural magnetic resonance imaging (MRI). METHODS The present study was conducted in patients with drug-naive, first-episode schizophrenia (SZ) and healthy controls (HCs). MRI T1 images were pre-processed using CAT12. Surface-based morphometry (SBM) was utilised to evaluate structural parameters such as cortical thickness and sulcus depth. The positive and negative syndrome scale (PANSS) and Chinese version of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) consensus cognitive battery (MCCB) were employed to estimate the psychotic symptoms and cognition, respectively. RESULTS A total of 117 patients with drug-naive first-episode schizophrenia (SZ) and 98 healthy controls (HCs) were included. Both the cortical thickness and sulcus depth in the frontal lobe were lower in patients with SZ than in the HCs under family-wise error correction (p < 0.05). Attention and visual learning in MCCB were positively correlated with the right lateral orbitofrontal cortical thickness in the patients with SZ (p < 0.01). CONCLUSIONS The reduced surface value of multiple cortical structures, particularly the cortical thickness and sulcus depth in the frontal lobe, could be the potential biomarkers for cognitive impairment in SZ.
Collapse
Affiliation(s)
- Qianqian Wei
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Wei Yan
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Rongrong Zhang
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xuna Yang
- Medical Department, Suzhou Guangji Hospital, Suzhou, 215008, China.
| | - Shiping Xie
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
21
|
Assari S. Cingulo-opercular and Cingulo-parietal Brain Networks Functional Connectivity in Pre-adolescents: Multiplicative Effects of Race, Ethnicity, and Parental Education. ACTA ACUST UNITED AC 2021; 6:76-99. [PMID: 34734154 DOI: 10.22158/rhs.v6n2p76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction A growing body of research has shown a diminished association between socioeconomic status (SES) indicators and a wide range of neuroimaging indicators for racial and ethnic minorities compared to majority groups. However, less is known about these effects for resting-state functional connectivity between various brain networks. Purpose This study investigated racial and ethnic variation in the correlation between parental education and resting-state functional connectivity between the cingulo-opercular (CO) and cingulo-parietal (CP) networks in children. Methods This cross-sectional study used data from the Adolescent Brain Cognitive Development (ABCD) study; we analyzed the resting-state functional Magnetic Resonance Imaging (rsfMRI) data of 8,464 American pre-adolescents between the ages of 9 and 10. The main outcome measured was resting-state functional connectivity between the CO and CP networks calculated using rsfMRI. The independent variable was parental education, which was treated as a nominal variable. Age, sex, and family marital status were the study covariates. Race and ethnicity were the moderators. Mixed-effects regression models were used for data analysis, with and without interaction terms between parental education and race and ethnicity. Results Higher parental education was associated with higher resting-state functional connectivity between the CO and CP networks. Race and ethnicity both showed statistically significant interactions with parental education on children's resting-state functional connectivity between CO and CP networks, suggesting that the correlation between parental education and the resting-state functional connectivity was significantly weaker for Black and Hispanic pre-adolescents compared to White and non-Hispanic pre-adolescents. Conclusions In line with the Minorities' Diminished Returns theory, the association between parental education and pre-adolescents resting-state functional connectivity between CO and CP networks may be weaker in Black and Hispanic children than in White and non-Hispanic children. The weaker link between parental education and brain functional connectivity for Blacks and Hispanics than for Whites and non-Hispanics may reflect racism, racialization, and social stratification that collectively minimize the returns of SES indicators, such as parental education for non-Whites, who become others in the US.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Family Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA.,Department of Urban Public Health, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA.,Marginalization-related Diminished Returns (MDRs) Research Center, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| |
Collapse
|
22
|
Zhu X, Ward J, Cullen B, Lyall DM, Strawbridge RJ, Lyall LM, Smith DJ. Phenotypic and genetic associations between anhedonia and brain structure in UK Biobank. Transl Psychiatry 2021; 11:395. [PMID: 34282121 PMCID: PMC8289859 DOI: 10.1038/s41398-021-01522-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Anhedonia is a core symptom of multiple psychiatric disorders and has been associated with alterations in brain structure. Genome-wide association studies suggest that anhedonia is heritable, with a polygenic architecture, but few studies have explored the association between genetic loading for anhedonia-indexed by polygenic risk scores for anhedonia (PRS-anhedonia)-and structural brain imaging phenotypes. Here, we investigated how anhedonia and PRS-anhedonia were associated with brain structure within the UK Biobank cohort. Brain measures (including total grey/white matter volumes, subcortical volumes, cortical thickness (CT) and white matter integrity) were analysed using linear mixed models in relation to anhedonia and PRS-anhedonia in 19,592 participants (9225 males; mean age = 62.6 years, SD = 7.44). We found that state anhedonia was significantly associated with reduced total grey matter volume (GMV); increased total white matter volume (WMV); smaller volumes in thalamus and nucleus accumbens; reduced CT within the paracentral cortex, the opercular part of inferior frontal gyrus, precentral cortex, insula and rostral anterior cingulate cortex; and poorer integrity of many white matter tracts. PRS-anhedonia was associated with reduced total GMV; increased total WMV; reduced white matter integrity; and reduced CT within the parahippocampal cortex, superior temporal gyrus and insula. Overall, both state anhedonia and PRS-anhedonia were associated with individual differences in multiple brain structures, including within reward-related circuits. These associations may represent vulnerability markers for psychopathology relevant to a range of psychiatric disorders.
Collapse
Affiliation(s)
- Xingxing Zhu
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK.
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Breda Cullen
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Donald M Lyall
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Rona J Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Health Data Research (HDR), Glasgow, UK
| | - Laura M Lyall
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Daniel J Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, UK
| |
Collapse
|
23
|
Takahashi T, Kido M, Sasabayashi D, Nakamura M, Furuichi A, Takayanagi Y, Noguchi K, Suzuki M. Gray Matter Changes in the Insular Cortex During the Course of the Schizophrenia Spectrum. Front Psychiatry 2020; 11:659. [PMID: 32754066 PMCID: PMC7366364 DOI: 10.3389/fpsyt.2020.00659] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022] Open
Abstract
Progressive gray matter reductions in the insular cortex have been reported in the early phases of schizophrenia (Sz); however, the trajectory of these reductions during the course of the illness currently remains unclear. Furthermore, it has not yet been established whether patients with schizotypal (SzTypal) features exhibit progressive changes in the insular cortex. This follow-up magnetic resonance imaging study examined volume changes in the short and long insular cortices (mean inter-scan interval = 2.6 years) of 23 first-episode (FE) and 17 chronic patients with Sz, 14 with SzTypal disorder, and 21 healthy controls. Baseline comparisons revealed smaller insular cortex volumes bilaterally in Sz patients (particularly in the chronic group) than in SzTypal patients and healthy controls. FESz patients showed significantly larger gray matter reductions in the insular cortex over time (left: -3.4%/year; right: -2.9%/year) than those in healthy controls (-0.1%/year for both hemispheres) without the effect of subregion or antipsychotic medication, whereas chronic Sz (left: -1.5%/year; right: -1.6%/year) and SzTypal (left: 0.5%/year; right: -0.6%/year) patients did not. Active atrophy of the right insular cortex during FE correlated with fewer improvements in positive symptoms in the Sz groups, while mild atrophy of the left insular cortex during the chronic phase was associated with the severity of negative symptoms in the follow-up period. The present results support dynamic volumetric changes in the insular cortex being specific to overt Sz among the spectrum disorders examined and their degree and role in symptomatology appear to differ across the illness stages.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|