1
|
Jambon-Barbara C, Revol B, Hlavaty A, Joyeux-Faure M, Borel JC, Cracowski JL, Pepin JL, Khouri C. Signal detection of drugs associated with obstructive and central sleep apnoea. Sleep Med 2024; 124:315-322. [PMID: 39366087 DOI: 10.1016/j.sleep.2024.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/31/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
We aim to discover new safety signals of drug-induced sleep apnoea (SA), a global health problem affecting approximately 1 billion people worldwide. We first conducted a series of sequence symmetry analyses (SSA) in a cohort composed from all patients who received a first SA diagnosis or treatment between 2006 and 2018 in the Echantillon Généraliste des Bénéficaires (EGB), a random sample of the French healthcare database. We used two primary outcomes to estimate the sequence ratio (SR) for all drug classes available in France: a sensitive one (diagnosis or treatment of SA) and a specific one (Positive Airway Pressure (PAP) therapy). We then performed disproportionality analyses using the "Bayesian neural network method" on all cases of sleep apnoea (MedDRA high level term) reported up to November 2023 in the World Health Organisation (WHO) pharmacovigilance database. Among the 728,167 individuals, 46,193 had an incident diagnosis or treatment for SA and 17,080 had started an incident treatment by PAP therapy. Fifty-eight drug classes had a significant SR, with 7 considered highly plausible: opium alkaloids and derivatives, benzodiazepine derivatives, other centrally acting agents, other anxiolytics, carbamic acid esters, quinine and derivatives and antivertigo preparations; with consistent signals found for the first 3 drug classes in the disproportionality analysis. In this signal detection study, we found that opioids, benzodiazepines (but not Z-drugs) and myorelaxing agents are associated with the onset or aggravation of SA. Moreover, a new safety signal for antivertigo preparations such as betahistine emerged and needs to be further explored.
Collapse
Affiliation(s)
- C Jambon-Barbara
- Grenoble Alpes University Hospital, Pharmacovigilance Unit, F-38000, Grenoble, France; Univ. Grenoble Alpes, HP2 Laboratory, Inserm U1300, F-38000, Grenoble, France
| | - B Revol
- Grenoble Alpes University Hospital, Pharmacovigilance Unit, F-38000, Grenoble, France; Univ. Grenoble Alpes, HP2 Laboratory, Inserm U1300, F-38000, Grenoble, France
| | - A Hlavaty
- Grenoble Alpes University Hospital, Pharmacovigilance Unit, F-38000, Grenoble, France; Univ. Grenoble Alpes, HP2 Laboratory, Inserm U1300, F-38000, Grenoble, France
| | - M Joyeux-Faure
- Univ. Grenoble Alpes, HP2 Laboratory, Inserm U1300, F-38000, Grenoble, France
| | - J C Borel
- Univ. Grenoble Alpes, HP2 Laboratory, Inserm U1300, F-38000, Grenoble, France
| | - J L Cracowski
- Grenoble Alpes University Hospital, Pharmacovigilance Unit, F-38000, Grenoble, France; Univ. Grenoble Alpes, HP2 Laboratory, Inserm U1300, F-38000, Grenoble, France
| | - J L Pepin
- Univ. Grenoble Alpes, HP2 Laboratory, Inserm U1300, F-38000, Grenoble, France; Grenoble Alpes University Hospital, EFCR Laboratory, Grenoble, France
| | - C Khouri
- Grenoble Alpes University Hospital, Pharmacovigilance Unit, F-38000, Grenoble, France; Univ. Grenoble Alpes, HP2 Laboratory, Inserm U1300, F-38000, Grenoble, France; Grenoble Alpes University Hospital, Clinical Pharmacology Department INSERM CIC1406, F-38000, Grenoble, France.
| |
Collapse
|
2
|
Wang Y, Liu X, Zhang Q, Zhao D, Zhou B, Pan Z, Zha S, Hu K. Bioluminescence-optogenetics-mediated gene therapy in a sleep-disordered breathing mouse model. Biomed Pharmacother 2024; 178:117159. [PMID: 39029402 DOI: 10.1016/j.biopha.2024.117159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Obstructive sleep apnea (OSA) incurs a huge individual, societal, and economic burden. Specific and selective targeting of hypoglossal motor neurons could be an effective means to treat OSA. Bioluminescent-optogenetics (BL-OG) is a novel genetic regulatory approach in which luminopsins, fusion proteins of light-generating luciferase and light-sensing ion channels, increase neuronal excitability when exposed to a suitable substrate. Here we develop and validate the feasibility of BL-OG for sleep-disordered breathing (SDB). Upon confirming that diet-induced obese mice represent an excellent SDB model, we employed a method of targeting the hypoglossal nucleus (12 N) by peripherally injecting retrogradely transported rAAV2/Retro. With AAV transduction, the eLMO3 protein is expressed in hypoglossal motor neurons (HMN); administration of CTZ results in production of bioluminescence that in turn activates the tethered channelrhodopsin, leading to an increase in the firing of HMN and a 2.7 ± 0.8-fold increase in phasic activity of the genioglossus muscle, a 7.6 ± 1.8-fold increase in tonic activity, and improvements in hypoventilation and apnea index without impacting sleep structure. This is therefore the first study to leverage the rAAV2/Retro vector to execute the BL-OG approach in SDB, which amplified genioglossus muscle discharge activity and increased airflow in mice after activation. This study marks the pioneering utilization of BL-OG in SDB research.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xu Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingfeng Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Beini Zhou
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhou Pan
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shiqian Zha
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
3
|
Thomas DC, Somaiya T, Meira E Cruz M, Kodaganallur Pitchumani P, Ardeshna A, Ravi A, Prabhakar S. The enigma of sleep: Implications of sleep neuroscience for the dental clinician and patient. J Am Dent Assoc 2024; 155:735-746. [PMID: 39007793 DOI: 10.1016/j.adaj.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Sleep disturbances have been shown to result in considerable morbidity and mortality. It is important for dental clinicians to understand the neuroscience behind sleep disorders. TYPES OF STUDIES REVIEWED The authors conducted a search of the literature published from January 1990 through March 2024 of sleep medicine-related articles, with a focus on neuroscience. The authors prioritized articles about the science of sleep as related to dental medicine. RESULTS The authors found a proliferation of articles related to sleep neuroscience along with its implications in dental medicine. The authors also found that the intricate neuroscientific principles of sleep medicine are being investigated robustly. The salient features of, and the differences between, central and obstructive sleep apneas have been elucidated. Sleep genes, such as CRY, PER1, PER2, and CLOCK, and their relationship to cancer and neurodegeneration are also additions to this rapidly developing science. CONCLUSIONS AND PRACTICAL IMPLICATIONS The dental clinician has the potential to be the first to screen patients for possible sleep disorders and make prompt referrals to the appropriate medical professionals. This can be lifesaving as well as minimize potential future morbidity for the patient.
Collapse
|
4
|
Zhang Q, Song L, Fu M, He J, Yang G, Jiang Z. Optogenetics in oral and craniofacial research. J Zhejiang Univ Sci B 2024; 25:656-671. [PMID: 39155779 PMCID: PMC11337086 DOI: 10.1631/jzus.b2300322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/17/2023] [Indexed: 08/20/2024]
Abstract
Optogenetics combines optics and genetic engineering to control specific gene expression and biological functions and has the advantages of precise spatiotemporal control, noninvasiveness, and high efficiency. Genetically modified photosensory sensors are engineered into proteins to modulate conformational changes with light stimulation. Therefore, optogenetic techniques can provide new insights into oral biological processes at different levels, ranging from the subcellular and cellular levels to neural circuits and behavioral models. Here, we introduce the origins of optogenetics and highlight the recent progress of optogenetic approaches in oral and craniofacial research, focusing on the ability to apply optogenetics to the study of basic scientific neural mechanisms and to establish different oral behavioral test models in vivo (orofacial movement, licking, eating, and drinking), such as channelrhodopsin (ChR), archaerhodopsin (Arch), and halorhodopsin from Natronomonas pharaonis (NpHR). We also review the synergic and antagonistic effects of optogenetics in preclinical studies of trigeminal neuralgia and maxillofacial cellulitis. In addition, optogenetic tools have been used to control the neurogenic differentiation of dental pulp stem cells in translational studies. Although the scope of optogenetic tools is increasing, there are limited large animal experiments and clinical studies in dental research. Potential future directions include exploring therapeutic strategies for addressing loss of taste in patients with coronavirus disease 2019 (COVID-19), studying oral bacterial biofilms, enhancing craniomaxillofacial and periodontal tissue regeneration, and elucidating the possible pathogenesis of dry sockets, xerostomia, and burning mouth syndrome.
Collapse
Affiliation(s)
- Qinmeng Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Luyao Song
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
- Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China. ,
- Zhejiang University School of Medicine, Hangzhou 310058, China. ,
| |
Collapse
|
5
|
Tang H, Zhang K, Zhang C, Zheng K, Gui L, Yan B. Bioinformatics-based identification of key candidate genes and signaling pathways in patients with Parkinson's disease and obstructive sleep apnea. Sleep Breath 2024; 28:1477-1489. [PMID: 38316731 DOI: 10.1007/s11325-024-03003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVES Existing evidence exhibits that obstructive sleep apnea (OSA) is a potential consequence of Parkinson's disease (PD) or a contributor to PD progression. This investigation aimed to detect potential critical genes and molecular mechanisms underlying interactions between PD and OSA through bioinformatics analyses. METHODS The Gene Expression Omnibus (GEO) database was employed to obtain the expression profiles GSE20163 and GSE135917. The identification of common genes connected to PD and OSA was performed utilizing weighted gene co-expression network analysis and the R 4.0.4 program. The Cytoscape program was utilized to generate a network of protein-protein interactions (PPI), and the CytoHubba plugin was utilized to detect hub genes. Subsequently, functional enrichment analyses of the hub genes were conducted. Markers with increased diagnostic values for PD and OSA were confirmed using the GEO datasets GSE8397 and GSE38792. RESULTS Typically, 57 genes that are common were identified in PD and OSA. Among these common genes, the top 10 hub genes in the PPI network were chosen. The verified datasets confirmed the presence of three important genes: CADPS, CHGA, and SCG3. Functional enrichment analysis revealed that these hub genes mostly participate in GABAergic synapses. CONCLUSION Our findings suggest that CADPS, CHGA, and SCG3 are key genes involved in molecular mechanisms underlying interactions between OSA and PD. Functional enrichment of hub genes indicated a link between GABAergic synapses and the shared pathogenesis of PD and OSA. These candidate genes and corresponding pathways offer novel insights regarding biological targets that underlie the transcriptional connection between OSA and PD.
Collapse
Affiliation(s)
- Huan Tang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Kejia Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chi Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Kai Zheng
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Luying Gui
- Department of Mathematics, Nanjing University of Science and Technology, Nanjing, China
| | - Bin Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
6
|
Vetrivelan R, Bandaru SS. Neural Control of REM Sleep and Motor Atonia: Current Perspectives. Curr Neurol Neurosci Rep 2023; 23:907-923. [PMID: 38060134 DOI: 10.1007/s11910-023-01322-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW Since the formal discovery of rapid eye movement (REM) sleep in 1953, we have gained a vast amount of knowledge regarding the specific populations of neurons, their connections, and synaptic mechanisms regulating this stage of sleep and its accompanying features. This article discusses REM sleep circuits and their dysfunction, specifically emphasizing recent studies using conditional genetic tools. RECENT FINDINGS Sublaterodorsal nucleus (SLD) in the dorsolateral pons, especially the glutamatergic subpopulation in this region (SLDGlut), are shown to be indispensable for REM sleep. These neurons appear to be single REM generators in the rodent brain and may initiate and orchestrate all REM sleep events, including cortical and hippocampal activation and muscle atonia through distinct pathways. However, several cell groups in the brainstem and hypothalamus may influence SLDGlut neuron activity, thereby modulating REM sleep timing, amounts, and architecture. Damage to SLDGlut neurons or their projections involved in muscle atonia leads to REM behavior disorder, whereas the abnormal activation of this pathway during wakefulness may underlie cataplexy in narcolepsy. Despite some opposing views, it has become evident that SLDGlut neurons are the sole generators of REM sleep and its associated characteristics. Further research should prioritize a deeper understanding of their cellular, synaptic, and molecular properties, as well as the mechanisms that trigger their activation during cataplexy and make them susceptible in RBD.
Collapse
Affiliation(s)
- Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA.
| | - Sathyajit Sai Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| |
Collapse
|
7
|
Kaczmarski P, Sochal M, Strzelecki D, Białasiewicz P, Gabryelska A. Influence of glutamatergic and GABAergic neurotransmission on obstructive sleep apnea. Front Neurosci 2023; 17:1213971. [PMID: 37521710 PMCID: PMC10372424 DOI: 10.3389/fnins.2023.1213971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Glutamate and γ-aminobutyric acid (GABA) are the two main neurotransmitters in the human brain. The balance between their excitatory and inhibitory functions is crucial for maintaining the brain's physiological functions. Disturbance of glutamatergic or GABAergic neurotransmission leads to serious health problems including neurodegeneration, affective and sleep disorders. Both GABA and glutamate are involved in the control of the sleep-wake cycle. The disturbances in their function may cause sleep and sleep-related disorders. Obstructive sleep apnea (OSA) is the most common sleep respiratory disorder and is characterized by repetitive collapse of the upper airway resulting in intermittent hypoxia and sleep fragmentation. The complex pathophysiology of OSA is the basis of the development of numerous comorbid diseases. There is emerging evidence that GABA and glutamate disturbances may be involved in the pathogenesis of OSA, as well as its comorbidities. Additionally, the GABA/glutamate targeted pharmacotherapy may also influence the course of OSA, which is important in the implementation of wildly used drugs including benzodiazepines, anesthetics, and gabapentinoids. In this review, we summarize current knowledge on the influence of disturbances in glutamatergic and GABAergic neurotransmission on obstructive sleep apnea.
Collapse
Affiliation(s)
- Piotr Kaczmarski
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Łódź, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
8
|
Dergacheva O, Polotsky VY, Mendelowitz D. Oxytocin mediated excitation of hypoglossal motoneurons: implications for treating obstructive sleep apnea. Sleep 2023; 46:zsad009. [PMID: 36846973 PMCID: PMC10091096 DOI: 10.1093/sleep/zsad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/21/2022] [Indexed: 03/01/2023] Open
Abstract
Clinical studies have shown that oxytocin administered intranasally (IN) decreased the incidence and duration of obstructive events in patients with obstructive sleep apnea (OSA). Although the mechanisms by which oxytocin promotes these beneficial effects are unknown, one possible target of oxytocin could be the excitation of tongue-projecting hypoglossal motoneurons in the medulla, that exert central control of upper airway patency. This study tested the hypothesis that IN oxytocin enhances tongue muscle activity via the excitation of hypoglossal motoneurons projecting to tongue protrudor muscles (PMNs). To test this hypothesis we performed in vivo and in vitro electrophysiological studies in C57BL6/J mice as well as fluorescent imaging studies in transgenic mice in which neurons that express oxytocin receptors co-express fluorescent protein. IN oxytocin significantly increased the amplitude of inspiratory-related tongue muscle activity. This effect was abolished by severing the medial branch of hypoglossal nerve that innervates PMNs of the tongue. Oxytocin receptor-positive neurons were more prevalent in the population of PMNs than in retractor-projecting hypoglossal motoneurons (RMNs). Oxytocin administration increased action potential firing in PMNs, but had no significant effect on firing activity in RMNs. In conclusion, IN oxytocin stimulates respiratory-relating tongue muscle activity likely acting on central hypoglossal motoneurons that provide tongue protrusion and upper airway opening. This mechanism may play a role in oxytocin-induced reductions in upper airway obstructions in patients with OSA.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
9
|
Wollman LB, Flanigan EG, Fregosi RF. Chronic, episodic nicotine exposure alters GABAergic synaptic transmission to hypoglossal motor neurons and genioglossus muscle function at a critical developmental age. J Neurophysiol 2022; 128:1483-1500. [PMID: 36350047 PMCID: PMC9722256 DOI: 10.1152/jn.00397.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Regulation of GABAergic signaling through nicotinic acetylcholine receptor (nAChR) activation is critical for neuronal development. Here, we test the hypothesis that chronic episodic developmental nicotine exposure (eDNE) disrupts GABAergic signaling, leading to dysfunction of hypoglossal motor neurons (XIIMNs), which innervate the tongue muscles. We studied control and eDNE pups at two developmentally vulnerable age ranges: postnatal days (P)1-5 and P10-12. The amplitude and frequency of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs, mIPSCs) at baseline were not altered by eDNE at either age. In contrast, eDNE increased GABAAR-α1 receptor expression on XIIMNs and, in the older group, the postsynaptic response to muscimol (GABAA receptor agonist). Activation of nAChRs with exogenous nicotine increased the frequency of GABAergic sIPSCs in control and eDNE neurons at P1-5. By P10-12, acute nicotine increased sIPSC frequency in eDNE but not control neurons. In vivo experiments showed that the breathing-related activation of tongue muscles, which are innervated by XIIMNs, is reduced at P10-12. This effect was partially mitigated by subcutaneous muscimol, but only in the eDNE pups. Taken together, these data indicate that eDNE alters GABAergic transmission to XIIMNs at a critical developmental age, and this is expressed as reduced breathing-related drive to XIIMNs in vivo.NEW & NOTEWORTHY Here, we provide a thorough assessment of the effects of nicotine exposure on GABAergic synaptic transmission, from the cellular to the systems level. This work makes significant advances in our understanding of the impact of nicotine exposure during development on GABAergic neurotransmission within the respiratory network and the potential role this plays in the excitatory/inhibitory imbalance that is thought to be an important mechanism underlying neonatal breathing disorders, including sudden infant death syndrome.
Collapse
Affiliation(s)
- Lila Buls Wollman
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | | | - Ralph F Fregosi
- Department of Physiology, The University of Arizona, Tucson, Arizona
- Department of Neuroscience, The University of Arizona, Tucson, Arizona
| |
Collapse
|
10
|
The Association between Use of Benzodiazepine Receptor Agonists and the Risk of Obstructive Sleep Apnea: A Nationwide Population-Based Nested Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189720. [PMID: 34574645 PMCID: PMC8467455 DOI: 10.3390/ijerph18189720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022]
Abstract
Obstructive sleep apnea (OSA) is characterized by recurrent upper airway collapse. Benzodiazepine receptor agonists (BZRAs) are associated with pharyngeal muscle relaxation, increased apnea duration, and hypoxia, which might worsen OSA. This study aimed to examine the association between the use of BZRAs and the risk of OSA. The study was conducted using data from the National Health Insurance Database of Taiwan between 2002 and 2011. We only included new users who were never exposed to any BZRAs and identified 1848 participants with OSA, and 1848 matched controls. A logistic regression model was used to determine the association between the use of BZRAs and the development of OSA. BZRA exposure was divided into usage patterns, dosage, duration, and pharmacokinetic class. We found an increased risk of OSA in current users and recent past users compared with distant past users. Patients with a higher cumulative dose of BZRAs were more likely to develop OSA compared to those with a lower cumulative dose. We found an increased risk of OSA in patients treated with BZRAs, especially for current users and those with higher cumulative doses. A reduced risk of OSA was found in Z-drug users compared with benzodiazepine users.
Collapse
|
11
|
Doyle BM, Singer ML, Fleury-Curado T, Rana S, Benevides ES, Byrne BJ, Polotsky VY, Fuller DD. Gene delivery to the hypoglossal motor system: preclinical studies and translational potential. Gene Ther 2021; 28:402-412. [PMID: 33574581 PMCID: PMC8355248 DOI: 10.1038/s41434-021-00225-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Dysfunction and/or reduced activity in the tongue muscles contributes to conditions such as dysphagia, dysarthria, and sleep disordered breathing. Current treatments are often inadequate, and the tongue is a readily accessible target for therapeutic gene delivery. In this regard, gene therapy specifically targeting the tongue motor system offers two general strategies for treating lingual disorders. First, correcting tongue myofiber and/or hypoglossal (XII) motoneuron pathology in genetic neuromuscular disorders may be readily achieved by intralingual delivery of viral vectors. The retrograde movement of viral vectors such as adeno-associated virus (AAV) enables targeted distribution to XII motoneurons via intralingual viral delivery. Second, conditions with impaired or reduced tongue muscle activation can potentially be treated using viral-driven chemo- or optogenetic approaches to activate or inhibit XII motoneurons and/or tongue myofibers. Further considerations that are highly relevant to lingual gene therapy include (1) the diversity of the motoneurons which control the tongue, (2) the patterns of XII nerve branching, and (3) the complexity of tongue muscle anatomy and biomechanics. Preclinical studies show considerable promise for lingual directed gene therapy in neuromuscular disease, but the potential of such approaches is largely untapped.
Collapse
Affiliation(s)
- Brendan M Doyle
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Rehabilitation Science PhD Program, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Michele L Singer
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Rehabilitation Science PhD Program, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Thomaz Fleury-Curado
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Ethan S Benevides
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Rehabilitation Science PhD Program, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Vsevolod Y Polotsky
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
da Silva MP, Magalhães KS, de Souza DP, Moraes DJA. Chronic intermittent hypoxia increases excitability and synaptic excitation of protrudor and retractor hypoglossal motoneurones. J Physiol 2021; 599:1917-1932. [PMID: 33507557 DOI: 10.1113/jp280788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Dysfunctions in the hypoglossal control of tongue extrinsic muscles are implicated in obstructive sleep apnoea (OSA) syndrome. Chronic intermittent hypoxia (CIH), an important feature of OSA syndrome, produces deleterious effects on the motor control of oropharyngeal resistance, but whether the hypoglossal motoneurones innervating the tongue extrinsic muscles are affected by CIH is unknown. We show that CIH enhanced the respiratory-related activity of rat hypoglossal nerve innervating the protrudor and retractor tongue extrinsic muscles. Intracellular recordings revealed increases in respiratory-related firing frequency and synaptic excitation of inspiratory protrudor and retractor hypoglossal motoneurones after CIH. CIH also increased their intrinsic excitability, depolarised resting membrane potential and reduced K+ -dominated leak conductance. CIH affected the breathing-related synaptic control and intrinsic electrophysiological properties of protrudor and retractor hypoglossal motoneurones to optimise the neural control of oropharyngeal function. ABSTRACT Inspiratory-related tongue movements and oropharyngeal motor actions are controlled mainly by the protrudor and retractor extrinsic tongue muscles, which are innervated by the hypoglossal motoneurones. Chronic intermittent hypoxia (CIH), an important feature of obstructive sleep apnoea syndrome, produces detrimental effects on the contractile function of the tongue extrinsic muscles and the medullary inspiratory network of rodents. However, the impact of the CIH on the electrophysiological properties of protrudor and retractor hypoglossal motoneurones has not been described before. Using nerves and intracellular recordings in in situ preparation of rats (5 weeks old), we tested the hypothesis that CIH (FiO2 of 0.06, SaO2 74%, during 30-40 s, every 9 min, 8 h/day for 10 days) increases the intrinsic excitability of protrudor and retractor motoneurones from the hypoglossal motor nucleus of rats. Recordings of hypoglossal nerve, before its bifurcation to innervate the tongue protrudor and retractor muscles, revealed that CIH enhances its pre-inspiratory, simultaneously with the presence of active expiration, and inspiratory activities. These changes were mediated by increases in the respiratory-related firing frequency and synaptic excitation of inspiratory protrudor and retractor hypoglossal motoneurones. Besides, CIH increases their intrinsic excitability and depolarises resting membrane potential by reducing a K+ -dominated leak conductance. In conclusion, CIH enhances the respiratory-related neural control of oropharyngeal function of rats by increasing the synaptic excitation, intrinsic excitability, and reducing leak conductance in both protrudor and retractor hypoglossal motoneurones. We propose that these network and cellular changes are important to optimise the oropharyngeal resistance in conditions related to intermittent hypoxia.
Collapse
Affiliation(s)
- Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karolyne S Magalhães
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniel P de Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
13
|
Larson ED, Vandenbeuch A, Anderson CB, Kinnamon SC. GAD65Cre Drives Reporter Expression in Multiple Taste Cell Types. Chem Senses 2021; 46:bjab033. [PMID: 34160573 PMCID: PMC8276891 DOI: 10.1093/chemse/bjab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In taste buds, Type I cells represent the majority of cells (50-60%) and primarily have a glial-like function in taste buds. However, recent studies suggest that they have additional sensory and signaling functions including amiloride-sensitive salt transduction, oxytocin modulation of taste, and substance P mediated GABA release. Nonetheless, the overall function of Type I cells in transduction and signaling remains unclear, primarily because of the lack of a reliable reporter for this cell type. GAD65 expression is specific to Type I taste cells and GAD65 has been used as a Cre driver to study Type I cells in salt taste transduction. To test the specificity of transgene-driven expression, we crossed GAD65Cre mice with floxed tdTomato and Channelrhodopsin (ChR2) lines and examined the progeny with immunochemistry, chorda tympani recording, and calcium imaging. We report that while many tdTomato+ taste cells express NTPDase2, a specific marker of Type I cells, we see some expression of tdTomato in both Gustducin and SNAP25-positive taste cells. We also see ChR2 in cells just outside the fungiform taste buds. Chorda tympani recordings in the GAD65Cre/ChR2 mice show large responses to blue light. Furthermore, several isolated tdTomato-positive taste cells responded to KCl depolarization with increases in intracellular calcium, indicating the presence of voltage-gated calcium channels. Taken together, these data suggest that GAD65Cre mice drive expression in multiple taste cell types and thus cannot be considered a reliable reporter of Type I cell function.
Collapse
Affiliation(s)
- Eric D Larson
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus and Rocky Mountain Taste and Smell Center, Aurora, CO, USA
| | - Aurelie Vandenbeuch
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus and Rocky Mountain Taste and Smell Center, Aurora, CO, USA
| | - Catherine B Anderson
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus and Rocky Mountain Taste and Smell Center, Aurora, CO, USA
| | - Sue C Kinnamon
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus and Rocky Mountain Taste and Smell Center, Aurora, CO, USA
| |
Collapse
|
14
|
Targa A, Dakterzada F, Benítez ID, de Gonzalo-Calvo D, Moncusí-Moix A, López R, Pujol M, Arias A, de Batlle J, Sánchez-de-la-Torre M, Barbé F, Piñol-Ripoll G. Circulating MicroRNA Profile Associated with Obstructive Sleep Apnea in Alzheimer's Disease. Mol Neurobiol 2020; 57:4363-4372. [PMID: 32720075 DOI: 10.1007/s12035-020-02031-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/22/2020] [Indexed: 11/29/2022]
Abstract
The diagnosis of obstructive sleep apnea (OSA) in Alzheimer's disease (AD) by polysomnography (PSG) is challenging due to the required collaboration of the patients. In addition, screening questionnaires have demonstrated limited usefulness with this subpopulation. Considering this, we investigated the circulating microRNA (miRNA) profile associated with OSA in AD patients. This study included a carefully selected cohort of females with mild-moderate AD confirmed by biological evaluation (n = 29). The individuals were submitted to one-night PSG to diagnose OSA (apnea-hypopnea index ≥ 15/h) and the blood was collected in the following morning. The plasma miRNA profile was evaluated using RT-qPCR. The patients had a mean (SD) age of 75.8 (5.99) years old with a body mass index of 28.6 (3.83) kg m-2. We observed a subset of 15 miRNAs differentially expressed between OSA and non-OSA patients, of which 10 were significantly correlated with the severity of OSA. Based on this, we built a prediction model that generated an AUC (95% CI) of 0.95 (0.88-1.00) including 5 of the differentially expressed miRNAs that correlated with OSA severity: miR-26a-5p, miR-30a-3p, miR-374a-5p, miR-377-3p, and miR-545-3p. Our preliminary results suggest a plasma miRNA signature associated with the presence of OSA in AD patients. Further studies will be necessary to validate these findings.
Collapse
Affiliation(s)
- A Targa
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - F Dakterzada
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Rovira Roure n° 44, 25198, Lleida, Spain
| | - I D Benítez
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - D de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain
| | - A Moncusí-Moix
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - R López
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Rovira Roure n° 44, 25198, Lleida, Spain
| | - M Pujol
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain
| | - A Arias
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Rovira Roure n° 44, 25198, Lleida, Spain
| | - J de Batlle
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - M Sánchez-de-la-Torre
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Group of Precision Medicine in Chronic Diseases, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain
| | - F Barbé
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Rovira Roure n° 44, 25198, Lleida, Spain.
| |
Collapse
|