1
|
Cavalcante-Silva V, D'Almeida V, Tufik S, Andersen ML. Artificial Intelligence, the Production of Scientific Texts, and the Implications for Sleep Science: Exploring Emerging Paradigms and Perspectives. Sleep Sci 2024; 17:e322-e324. [PMID: 39268338 PMCID: PMC11390161 DOI: 10.1055/s-0044-1788285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/21/2023] [Indexed: 09/15/2024] Open
Abstract
The emergence of artificial intelligence (AI) has revolutionized many fields, including natural language processing, and marks a potential paradigm shift in the way we evaluate knowledge. One significant innovation in this area is ChatGPT, a large language model based on the GPT-3.5 architecture created by OpenAI, with one of its main aims being to aid in general text writing, including scientific texts. Here, we highlight the challenges and opportunities related to using generative AI and discuss both the benefits of its use, such as saving time by streamlining the writing process and reducing the amount of time spent on mundane tasks, and the potential drawbacks, including concerns regarding the accuracy and reliability of the information generated and its ethical use. In respect of both education and the writing of scientific texts, clear rules and objectives and institutional principles must be established for the use of AI. We also consider the positive and negative effects of the use of AI technologies on interpersonal interactions and behavior, and, as sleep scientists, its potential impacts on sleep. Striking a balance between the benefits and potential drawbacks of integrating AI into society demands ongoing research by experts, the wide dissemination of the scientific results, as well as continued public discourse on the subject.
Collapse
Affiliation(s)
- Vanessa Cavalcante-Silva
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Vânia D'Almeida
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Instituto do Sono, Associação Fundo Incentivo à Pesquisa (AFIP), São Paulo, SP, Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Instituto do Sono, Associação Fundo Incentivo à Pesquisa (AFIP), São Paulo, SP, Brazil
| |
Collapse
|
2
|
Elson L, Kamau C, Koech S, Muthama C, Gachomba G, Sinoti E, Chondo E, Mburu E, Wakio M, Lore J, Maia M, Adetifa I, Orindi B, Bejon P, Fillinger U. Tungiasis among children in Kenya is associated with poor nutrition status, absenteeism, poor school performance and high impact on quality of life. PLoS Negl Trop Dis 2024; 18:e0011800. [PMID: 38776337 PMCID: PMC11149845 DOI: 10.1371/journal.pntd.0011800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/04/2024] [Accepted: 05/10/2024] [Indexed: 05/24/2024] Open
Abstract
Tungiasis is a highly neglected tropical skin disease caused by the sand flea, Tunga penetrans. The flea burrows into the skin inducing a strong inflammatory response, leading to pain and mobility restrictions with potential impacts on quality of life. Few countries implement control efforts and there are few data on the impact of the disease to support policy decisions. We conducted a survey to determine the impact of tungiasis among primary school children across nine counties of Kenya. A total of 10,600 pupils aged 8 to 14 years were randomly selected from 97 primary schools and examined for tungiasis. For 81 cases and 578 randomly selected controls, anthropometric measurements were made, and school attendance and exam scores were collected from school records. Of those with tungiasis, 73 were interviewed regarding their quality of life using a tungiasis-specific instrument. Mixed effect ordered logistic and linear models were used to assess associations between disease status and impact variables. Compared to uninfected pupils, those with tungiasis had lower weight-for-age z-scores (adjusted β -0.41, 95% CI: -0.75-0.06, p = 0.020), missed more days of school the previous term (adjusted Incidence Rate Ratio: 1.49, 95% CI: 1.01-2.21, p = 0.046) and were less likely to receive a high score in mathematics (aOR 0.18, 95% CI: 0.08-0.40, p<0.001) and other subjects. Pupils with severe disease (clinical score >10) were four times more likely to experience severe pain than those with mild disease (OR 3.96, 95% CI: 1.35-11.64, p = 0.012) and a higher impact on their quality of life than those with mild disease (aOR 3.57, 95% CI: 1.17-10.8, p = 0.025) when adjusted for covariates. This study has demonstrated tungiasis has a considerable impact on children's lives and academic achievement. This indicates the need for integrated disease management for school-aged children to protect their physical and cognitive development and their future prospects.
Collapse
Affiliation(s)
- Lynne Elson
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust, Kilifi, Kenya
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | - Marta Maia
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust, Kilifi, Kenya
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ifedayo Adetifa
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust, Kilifi, Kenya
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Benedict Orindi
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust, Kilifi, Kenya
| | - Phillip Bejon
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust, Kilifi, Kenya
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ulrike Fillinger
- International Centre for Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
3
|
Honn KA, Morris MB, Jackson ML, Van Dongen HPA, Gunzelmann G. Effects of Sleep Deprivation on Performance during a Change Signal Task with Adaptive Dynamics. Brain Sci 2023; 13:1062. [PMID: 37508994 PMCID: PMC10377671 DOI: 10.3390/brainsci13071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Augmented cognition, which refers to real-time modifications to a human-system interface to improve performance and includes dynamic task environments with automated adaptations, can serve to protect against performance impairment under challenging work conditions. However, the effectiveness of augmented cognition as a countermeasure for performance impairment due to sleep loss is unknown. Here, in a controlled laboratory study, an adaptive version of a Change Signal task was administered repeatedly to healthy adults randomized to 62 h of total sleep deprivation (TSD) or a rested control condition. In the computerized task, a left- or right-facing arrow was presented to start each trial. In a subset of trials, a second arrow facing the opposite direction was presented after a delay. Subjects were to respond within 1000 ms of the trial start by pressing the arrow key corresponding to the single arrow (Go trials) or to the second arrow when present (Change trials). The Change Signal Delay (CSD)-i.e., the delay between the appearance of the first and second arrows-was shortened following incorrect responses and lengthened following correct responses so that subsequent Change trials became easier or harder, respectively. The task featured two distinct CSD dynamics, which produced relatively stable low and high error rates when subjects were rested (Low and High Error Likelihood trials, respectively). During TSD, the High Error Likelihood trials produced the same, relatively high error rate, but the Low Error Likelihood trials produced a higher error rate than in the rested condition. Thus, sleep loss altered the effectiveness of the adaptive dynamics in the Change Signal task. A principal component analysis revealed that while subjects varied in their performance of the task along a single dominant dimension when rested, a second inter-individual differences dimension emerged during TSD. These findings suggest a need for further investigation of the interaction between augmented cognition approaches and sleep deprivation in order to determine whether and how augmented cognition can be relied upon as a countermeasure to performance impairment in operational settings with sleep loss.
Collapse
Affiliation(s)
- Kimberly A. Honn
- Sleep and Performance Research Center & Department of Translational Medicine and Physiology, Washington State University, Spokane, WA 99202, USA;
| | - Megan B. Morris
- Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433, USA
| | - Melinda L. Jackson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Hans P. A. Van Dongen
- Sleep and Performance Research Center & Department of Translational Medicine and Physiology, Washington State University, Spokane, WA 99202, USA;
| | - Glenn Gunzelmann
- Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433, USA
| |
Collapse
|
4
|
Peng Z, Hou Y, Xu L, Wang H, Wu S, Song T, Shao Y, Yang Y. Recovery sleep attenuates impairments in working memory following total sleep deprivation. Front Neurosci 2023; 17:1056788. [PMID: 37144096 PMCID: PMC10151529 DOI: 10.3389/fnins.2023.1056788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction The detrimental effects of sleep deprivation (SD) on cognitive function and quality of life are well known, and sleep disturbances are a major physical and mental health issue worldwide. Working memory plays an important role in many complex cognitive processes. Therefore, it is necessary to identify strategies that can effectively counteract the negative effects of SD on working memory. Methods In the present study, we utilized event-related potentials (ERPs) to investigate the restorative effects of 8 h of recovery sleep (RS) on working memory impairments induced by total sleep deprivation for 36 h. We analyzed ERP data from 42 healthy male participants who were randomly assigned to two groups. The nocturnal sleep (NS) group completed a 2-back working memory task before and after normal sleep for 8 h. The sleep deprivation (SD) group completed a 2-back working memory task before and after 36 h of total sleep deprivation (TSD) and after 8 h of RS. Electroencephalographic data were recorded during each task. Results The N2 and P3 components-which are related to working memory-exhibited low-amplitude and slow-wave characteristics after 36 h of TSD. Additionally, we observed a significant decrease in N2 latency after 8 h of RS. RS also induced significant increases in the amplitude of the P3 component and in the behavioral indicators. Discussion Overall, 8 h of RS attenuated the decrease in working memory performance caused by 36 h of TSD. However, the effects of RS appear to be limited.
Collapse
Affiliation(s)
- Ziyi Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yanhong Hou
- Department of Psychology Medical, The 8th Medical Centre of PLA General Hospital, Beijing, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Haiteng Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Shuqing Wu
- Center of Stress Medicine, East China Institute of Biotechnology, Peking University, Beijing, China
| | - Tao Song
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yan Yang
- Department of Radiology, The 8th Medical Centre of PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Hao C, Li M, Ning Q, Ma N. One night of 10-h sleep restores vigilance after total sleep deprivation: the role of delta and theta power during recovery sleep. Sleep Biol Rhythms 2023; 21:165-173. [PMID: 38469277 PMCID: PMC10899914 DOI: 10.1007/s41105-022-00428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
A series of studies have demonstrated that impaired vigilance performance caused by total sleep deprivation could restore to baseline when recovery sleep is longer than the habitual sleep. However, it is unclear which factors on the recovery night affected the restoration of vigilance performance impaired by sleep deprivation. 22 participant's sleep electroencephalograms were recorded with polysomnography in 8-h baseline sleep and one-night 10-h recovery sleep following 36-h sleep deprivation. Participants completed a 10-min psychomotor vigilance task and subjective ratings after baseline and recovery sleep the following day. Objective vigilance and subjective ratings were impaired by sleep deprivation and recovered to baseline after one-night 10-h recovery sleep. Compared with baseline sleep, sleep depth increased with enhanced delta and theta power density, and sleep duration was also prolonged during recovery sleep. The vigilance performance difference between recovery and baseline sleep was taken as a behavioral index of the restoration of vigilance. The restoration of vigilance was correlated with the delta and theta power density of stage N3 in the frontal and central region during the recovery sleep. These findings indicated that one-night 10-h recovery sleep could restore the impaired objective vigilance and subjective ratings caused by sleep deprivation. The recuperative effect of vigilance relies on individual differences in sleep intensity. Individuals with higher sleep intensity in recovery sleep obtained better vigilance recovery.
Collapse
Affiliation(s)
- Chao Hao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631 China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631 China
| | - Mingzhu Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631 China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631 China
| | - Qian Ning
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631 China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631 China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631 China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
6
|
Huang Y, Zhang Y, Zhang Y, Mai X. Effects of Transcranial Direct Current Stimulation Over the Left Primary Motor Cortex on Verbal Intelligence. Front Hum Neurosci 2022; 16:888590. [PMID: 35693542 PMCID: PMC9177941 DOI: 10.3389/fnhum.2022.888590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies have shown that changes in gray matter density and volume in the left primary motor cortex are significantly associated with changes in individuals’ verbal intelligence quotient (VIQ), but not with their performance intelligence quotient (PIQ). In the present study, we examined the effects of transcranial direct current stimulation (tDCS) over the left primary motor cortex on performance in intelligence tests. We chose four subtests (two each for VIQ and PIQ) of the Wechsler Adult Intelligence Scale-Chinese Revised version and randomized participants into anodal, cathodal, and sham groups. We found that anodal stimulation significantly improved performance in verbal intelligence subtests compared to cathodal and sham stimulation, while performance intelligence subtest scores did not change in any stimulation condition. These findings suggest that the excitation level of the left primary motor cortex has a unique effect on verbal intelligence.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Psychology, Renmin University of China, Beijing, China
| | - Yinling Zhang
- Department of Psychology, Renmin University of China, Beijing, China
| | - Yizhe Zhang
- Psychological Counseling Center, Shanghai University, Shanghai, China
| | - Xiaoqin Mai
- Department of Psychology, Renmin University of China, Beijing, China
- *Correspondence: Xiaoqin Mai,
| |
Collapse
|
7
|
Flores CC, Loschky SS, Marshall W, Spano GM, Massaro Cenere M, Tononi G, Cirelli C. Identification of ultrastructural signatures of sleep and wake in the fly brain. Sleep 2022; 45:zsab235. [PMID: 35554595 PMCID: PMC9113029 DOI: 10.1093/sleep/zsab235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
The cellular consequences of sleep loss are poorly characterized. In the pyramidal neurons of mouse frontal cortex, we found that mitochondria and secondary lysosomes occupy a larger proportion of the cytoplasm after chronic sleep restriction compared to sleep, consistent with increased cellular burden due to extended wake. For each morphological parameter, the within-animal variance was high, suggesting that the effects of sleep and sleep loss vary greatly among neurons. However, the analysis was based on 4-5 mice/group and a single section/cell. Here, we applied serial block-face scanning electron microscopy to identify signatures of sleep and sleep loss in the Drosophila brain. Stacks of images were acquired and used to obtain full 3D reconstructions of the cytoplasm and nucleus of 263 Kenyon cells from adult flies collected after a night of sleep (S) or after 11 h (SD11) or 35 h (SD35) of sleep deprivation (9 flies/group). Relative to S flies, SD35 flies showed increased density of dark clusters of chromatin and Golgi apparata and a trend increase in the percent of cell volume occupied by mitochondria, consistent with increased need for energy and protein supply during extended wake. Logistic regression models could assign each neuron to the correct experimental group with good accuracy, but in each cell, nuclear and cytoplasmic changes were poorly correlated, and within-fly variance was substantial in all experimental groups. Together, these results support the presence of ultrastructural signatures of sleep and sleep loss but underscore the complexity of their effects at the single-cell level.
Collapse
Affiliation(s)
- Carlos C Flores
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sophia S Loschky
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - William Marshall
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Mathematics and Statistics, Brock University, St. Catharines, ON, Canada
| | | | | | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Working around the Clock: Is a Person’s Endogenous Circadian Timing for Optimal Neurobehavioral Functioning Inherently Task-Dependent? Clocks Sleep 2022; 4:23-36. [PMID: 35225951 PMCID: PMC8883919 DOI: 10.3390/clockssleep4010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Neurobehavioral task performance is modulated by the circadian and homeostatic processes of sleep/wake regulation. Biomathematical modeling of the temporal dynamics of these processes and their interaction allows for prospective prediction of performance impairment in shift-workers and provides a basis for fatigue risk management in 24/7 operations. It has been reported, however, that the impact of the circadian rhythm—and in particular its timing—is inherently task-dependent, which would have profound implications for our understanding of the temporal dynamics of neurobehavioral functioning and the accuracy of biomathematical model predictions. We investigated this issue in a laboratory study designed to unambiguously dissociate the influences of the circadian and homeostatic processes on neurobehavioral performance, as measured during a constant routine protocol preceded by three days on either a simulated night shift or a simulated day shift schedule. Neurobehavioral functions were measured every 3 h using three functionally distinct assays: a digit symbol substitution test, a psychomotor vigilance test, and the Karolinska Sleepiness Scale. After dissociating the circadian and homeostatic influences and accounting for inter-individual variability, peak circadian performance occurred in the late biological afternoon (in the “wake maintenance zone”) for all three neurobehavioral assays. Our results are incongruent with the idea of inherent task-dependent differences in the endogenous circadian impact on performance. Rather, our results suggest that neurobehavioral functions are under top-down circadian control, consistent with the way they are accounted for in extant biomathematical models.
Collapse
|
9
|
Griggs S, Harper A, Hickman RL. A systematic review of sleep deprivation and neurobehavioral function in young adults. Appl Nurs Res 2022; 63:151552. [PMID: 35034695 PMCID: PMC8766996 DOI: 10.1016/j.apnr.2021.151552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 02/03/2023]
Abstract
AIM To examine the effect of sleep deprivation (total and partial) on neurobehavioral function compared to a healthy sleep opportunity (7-9 h) in young adults 18-30 years. BACKGROUND More than one-third of young adults are sleep deprived, which negatively affects a range of neurobehavioral functions, including psychomotor vigilance performance (cognitive), affect, and daytime sleepiness. METHODS A systematic review of randomized controlled trials (RCTs) on sleep deprivation and neurobehavioral function. Multiple electronic databases (Cochrane Central Registry of Controlled Trials [CENTRAL], PubMed, PsycINFO, CINAHL, and Web of Science) were searched for relevant RCTs published in English from the establishment of each database to December 31, 2020. RESULTS Nineteen RCTs were selected (N = 766, mean age = 23.7 ± 3.1 years; 44.8% female). Seven were between-person (5 were parallel-group designs and 2 had multiple arms), and 12 were within-person designs (9 were cross over and 3 used a Latin square approach). Total sleep deprivation had the strongest detrimental effect on psychomotor vigilance performance, with the largest effects on vigilance tasks in young adults in the included studies. CONCLUSION Acute sleep deprivation degrades multiple dimensions of neurobehavioral function including psychomotor vigilance performance, affect, and daytime sleepiness in young adults. The effect of chronic sleep deprivation on the developing brain and associated neurobehavioral functions in young adults remains unclear.
Collapse
Affiliation(s)
- Stephanie Griggs
- Case Western Reserve University, Frances Payne Bolton School of Nursing, Cleveland, Ohio, USA 44106
| | - Alison Harper
- Case Western Reserve University, Frances Payne Bolton School of Nursing, Department of Anthropology, Cleveland, Ohio, USA 44106
| | - Ronald L. Hickman
- Ruth M. Anderson Endowed Professor of Nursing and Associate Dean for Research Case Western Reserve University, Frances Payne Bolton School of Nursing, Cleveland, OH, USA 44106
| |
Collapse
|
10
|
Yamazaki EM, Casale CE, Brieva TE, Antler CA, Goel N. Concordance of multiple methods to define resiliency and vulnerability to sleep loss depends on Psychomotor Vigilance Test metric. Sleep 2021; 45:6384814. [PMID: 34624897 DOI: 10.1093/sleep/zsab249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/08/2021] [Indexed: 01/16/2023] Open
Abstract
STUDY OBJECTIVES Sleep restriction (SR) and total sleep deprivation (TSD) reveal well-established individual differences in Psychomotor Vigilance Test (PVT) performance. While prior studies have used different methods to categorize such resiliency/vulnerability, none have systematically investigated whether these methods categorize individuals similarly. METHODS 41 adults participated in a 13-day laboratory study consisting of 2 baseline, 5 SR, 4 recovery, and one 36h TSD night. The PVT was administered every 2h during wakefulness. Three approaches (Raw Score [average SR performance], Change from Baseline [average SR minus average baseline performance], and Variance [intraindividual variance of SR performance]), and within each approach, six thresholds (±1 standard deviation and the best/worst performing 12.5%, 20%, 25%, 33%, and 50%) classified Resilient/Vulnerable groups. Kendall's tau-b correlations examined the concordance of group categorizations of approaches within and between PVT lapses and 1/reaction time (RT). Bias-corrected and accelerated bootstrapped t-tests compared group performance. RESULTS Correlations comparing the approaches ranged from moderate to perfect for lapses and zero to moderate for 1/RT. Defined by all approaches, the Resilient groups had significantly fewer lapses on nearly all study days. Defined by the Raw Score approach only, the Resilient groups had significantly faster 1/RT on all study days. Between-measures comparisons revealed significant correlations between the Raw Score approach for 1/RT and all approaches for lapses. CONCLUSION The three approaches defining vigilant attention resiliency/vulnerability to sleep loss resulted in groups comprised of similar individuals for PVT lapses but not for 1/RT. Thus, both method and metric selection for defining vigilant attention resiliency/vulnerability to sleep loss is critical.
Collapse
Affiliation(s)
- Erika M Yamazaki
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Courtney E Casale
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Tess E Brieva
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Caroline A Antler
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
11
|
Floor vibrations for motivation and feedback in the rat vibration actuating search task. PLoS One 2021; 16:e0257980. [PMID: 34570800 PMCID: PMC8475976 DOI: 10.1371/journal.pone.0257980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022] Open
Abstract
Motivating rodents to perform cognitive tasks often relies on the application of aversive stimuli. The Vibration Actuating Search Task (VAST) is a novel open-field task in which gradient floor vibration provides motivation for the rodent to navigate in the direction of diminishing vibration to an unmarked target destination. Using floor vibration as a motivational stimulus may overcome several of the potential confounds associated with stimuli used in other tasks. In a series of three experiments, we determined whether (1) rats exhibit place preference for floor vibration over other aversive stimuli (i.e., water, foot shock, and bright light), (2) exposure to floor vibration is associated with a lower corticosterone response than exposure to these other stimuli, (3) rats successfully acquire the VAST, and (4) VAST performance is sensitive to 6 h of sleep deprivation (SD). Our results showed that rats exhibited place preference for vibration over water, foot shock, and bright light environments, and that corticosterone levels were lower in rats exposed to vibration than those exposed to water. VAST performance also significantly improved over two days of testing for some metrics, and SD impaired VAST performance. Overall, we conclude that (1) rats exhibit place preference for vibration over other stimuli commonly used to motivate task performance, (2) the vibrations employed by the VAST produce lower concentrations of circulating corticosterone than forced swimming, (3) rats can learn to use gradient floor vibration as a mode of performance feedback within two days of testing, and (4) VAST performance is substantially impaired by SD. Thus, the VAST is an effective and practical testbed for studying the mechanisms by which SD causes deficits in feedback-dependent decision making.
Collapse
|
12
|
Brieva TE, Casale CE, Yamazaki EM, Antler CA, Goel N. Cognitive throughput and working memory raw scores consistently differentiate resilient and vulnerable groups to sleep loss. Sleep 2021; 44:6333652. [PMID: 34333658 DOI: 10.1093/sleep/zsab197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/06/2021] [Indexed: 12/19/2022] Open
Abstract
STUDY OBJECTIVES Substantial individual differences exist in cognitive deficits due to sleep restriction (SR) and total sleep deprivation (TSD), with various methods used to define such neurobehavioral differences. We comprehensively compared numerous methods for defining cognitive throughput and working memory resiliency and vulnerability. METHODS 41 adults participated in a 13-day experiment: 2 baseline, 5 SR, 4 recovery, and one 36h TSD night. The Digit Symbol Substitution Test (DSST) and Digit Span Test (DS) were administered every 2h. Three approaches (Raw Score [average SR performance], Change from Baseline [average SR minus average baseline performance], and Variance [intraindividual variance of SR performance]), and six thresholds (±1 standard deviation, and the best/worst performing 12.5%, 20%, 25%, 33%, 50%) classified Resilient/Vulnerable groups. Kendall's tau-b correlations compared the group categorizations' concordance within and between DSST number correct and DS total number correct. Bias-corrected and accelerated bootstrapped t-tests compared group performance. . RESULTS The approaches generally did not categorize the same participants into Resilient/Vulnerable groups within or between measures. The Resilient groups categorized by the Raw Score approach had significantly better DSST and DS performance across all thresholds on all study days, while the Resilient groups categorized by the Change from Baseline approach had significantly better DSST and DS performance for several thresholds on most study days. By contrast, the Variance approach showed no significant DSST and DS performance group differences. CONCLUSION Various approaches to define cognitive throughput and working memory resilience/vulnerability to sleep loss are not synonymous. The Raw Score approach can be reliably used to differentiate resilient and vulnerable groups using DSST and DS performance during sleep loss.
Collapse
Affiliation(s)
- Tess E Brieva
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Courtney E Casale
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Erika M Yamazaki
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Caroline A Antler
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
13
|
Yamazaki EM, Antler CA, Lasek CR, Goel N. Residual, differential neurobehavioral deficits linger after multiple recovery nights following chronic sleep restriction or acute total sleep deprivation. Sleep 2021; 44:5959861. [PMID: 33274389 DOI: 10.1093/sleep/zsaa224] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
STUDY OBJECTIVES The amount of recovery sleep needed to fully restore well-established neurobehavioral deficits from sleep loss remains unknown, as does whether the recovery pattern differs across measures after total sleep deprivation (TSD) and chronic sleep restriction (SR). METHODS In total, 83 adults received two baseline nights (10-12-hour time in bed [TIB]) followed by five 4-hour TIB SR nights or 36-hour TSD and four recovery nights (R1-R4; 12-hour TIB). Neurobehavioral tests were completed every 2 hours during wakefulness and a Maintenance of Wakefulness Test measured physiological sleepiness. Polysomnography was collected on B2, R1, and R4 nights. RESULTS TSD and SR produced significant deficits in cognitive performance, increases in self-reported sleepiness and fatigue, decreases in vigor, and increases in physiological sleepiness. Neurobehavioral recovery from SR occurred after R1 and was maintained for all measures except Psychomotor Vigilance Test (PVT) lapses and response speed, which failed to completely recover. Neurobehavioral recovery from TSD occurred after R1 and was maintained for all cognitive and self-reported measures, except for vigor. After TSD and SR, R1 recovery sleep was longer and of higher efficiency and better quality than R4 recovery sleep. CONCLUSIONS PVT impairments from SR failed to reverse completely; by contrast, vigor did not recover after TSD; all other deficits were reversed after sleep loss. These results suggest that TSD and SR induce sustained, differential biological, physiological, and/or neural changes, which remarkably are not reversed with chronic, long-duration recovery sleep. Our findings have critical implications for the population at large and for military and health professionals.
Collapse
Affiliation(s)
- Erika M Yamazaki
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL
| | - Caroline A Antler
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL
| | - Charlotte R Lasek
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL
| |
Collapse
|
14
|
Peng Z, Dai C, Cai X, Zeng L, Li J, Xie S, Wang H, Yang T, Shao Y, Wang Y. Total Sleep Deprivation Impairs Lateralization of Spatial Working Memory in Young Men. Front Neurosci 2020; 14:562035. [PMID: 33122988 PMCID: PMC7573126 DOI: 10.3389/fnins.2020.562035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 11/23/2022] Open
Abstract
Total sleep deprivation (TSD) negatively affects cognitive function. Previous research has focused on individual variation in cognitive function following TSD, but we know less about how TSD influences the lateralization of spatial working memory. This study used event-related-potential techniques to explore asymmetry in spatial-working-memory impairment. Fourteen healthy male participants performed a two-back task with electroencephalogram (EEG) recordings conducted at baseline and after 36 h of TSD. We selected 12 EEG points corresponding to left and right sides of the brain and then observed changes in N2 and P3 components related to spatial working memory. Before TSD, P3 amplitude differed significantly between the left and right sides of the brain. This difference disappeared after TSD. Compared with baseline, P3 amplitude decreased for a duration as extended as the prolonged latency of N2 components. After 36 h of TSD, P3 amplitude decreased more in the right hemisphere than the left. We therefore conclude that TSD negatively affected spatial working memory, possibly through removing the right hemisphere advantage.
Collapse
Affiliation(s)
- Ziyi Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Cimin Dai
- School of Psychology, Beijing Sport University, Beijing, China
| | - Xiaoping Cai
- Department of Cadra Word 3 Division, PLA Army General Hospital, Beijing, China
| | - Lingjing Zeng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Jialu Li
- School of Psychology, Beijing Sport University, Beijing, China
| | - Songyue Xie
- School of Psychology, Beijing Sport University, Beijing, China
| | - Haiteng Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Tianyi Yang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yi Wang
- China Institute of Sports and Health Science, Beijing Sport University, Beijing, China.,State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Centre, Beijing, China
| |
Collapse
|