1
|
Duchêne DA, Chowdhury AA, Yang J, Iglesias-Carrasco M, Stiller J, Feng S, Bhatt S, Gilbert MTP, Zhang G, Tobias JA, Ho SYW. Drivers of avian genomic change revealed by evolutionary rate decomposition. Nature 2025; 641:1208-1216. [PMID: 40108459 PMCID: PMC12119353 DOI: 10.1038/s41586-025-08777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Modern birds have diversified into a striking array of forms, behaviours and ecological roles. Analyses of molecular evolutionary rates can reveal the links between genomic and phenotypic change1-4, but disentangling the drivers of rate variation at the whole-genome scale has been difficult. Using comprehensive estimates of traits and evolutionary rates across a family-level phylogeny of birds5,6, we find that genome-wide mutation rates across lineages are predominantly explained by clutch size and generation length, whereas rate variation across genes is driven by the content of guanine and cytosine. Here, to find the subsets of genes and lineages that dominate evolutionary rate variation in birds, we estimated the influence of individual lineages on decomposed axes of gene-specific evolutionary rates. We find that most of the rate variation occurs along recent branches of the tree, associated with present-day families of birds. Additional tests on axes of rate variation show rapid changes in microchromosomes immediately after the Cretaceous-Palaeogene transition. These apparent pulses of evolution are consistent with major changes in the genetic machineries for meiosis, heart performance, and RNA splicing, surveillance and translation, and correlate with the ecological diversity reflected in increased tarsus length. Collectively, our analyses paint a nuanced picture of avian evolution, revealing that the ancestors of the most diverse lineages of birds underwent major genomic changes related to mutation, gene usage and niche expansion in the early Palaeogene period.
Collapse
Affiliation(s)
- David A Duchêne
- Section of Health Data Science and AI, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Al-Aabid Chowdhury
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Jingyi Yang
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Maider Iglesias-Carrasco
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Doñana Biological Station-Spanish Research Council CSIC, Seville, Spain
| | - Josefin Stiller
- Centre for Biodiversity Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Shaohong Feng
- Center for Evolutionary and Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, China
| | - Samir Bhatt
- Section of Health Data Science and AI, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- MRC Centre for Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Natural History, University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Torres CR, Clarke JA, Groenke JR, Lamanna MC, MacPhee RDE, Musser GM, Roberts EM, O'Connor PM. Cretaceous Antarctic bird skull elucidates early avian ecological diversity. Nature 2025; 638:146-151. [PMID: 39910387 DOI: 10.1038/s41586-024-08390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/12/2024] [Indexed: 02/07/2025]
Abstract
Fossils representing Cretaceous lineages of crown clade birds (Aves) are exceptionally rare but are crucial to elucidating major ecological shifts across early avian divergences. Among the earliest known putative crown birds is Vegavis iaai1-5, a foot-propelled diver from the latest Cretaceous (69.2-68.4 million years ago)6 of Antarctica with controversial phylogenetic affinities2,7-10. Initially recovered by phylogenetic analyses as a stem anatid (ducks and closely related species)1,2,11, Vegavis has since been recovered as a stem member of Anseriformes (waterfowl)7-9, or outside Aves altogether10. Here we report a new, nearly complete skull of Vegavis that provides new insight into its feeding ecology and exhibits morphologies that support placement among waterfowl within crown-group birds. Vegavis has an avian beak (absence of teeth and reduced maxilla) and brain shape (hyperinflated cerebrum and ventrally shifted optic lobes). The temporal fossa is well excavated and expansive, indicating that this bird had hypertrophied jaw musculature. The beak is narrow and pointed, and the mandible lacks retroarticular processes. Together, these features comprise a feeding apparatus unlike that of any other known anseriform but like that of other extant birds that capture prey underwater (for example, grebes and loons). The Cretaceous occurrence of Vegavis, with a feeding ecology unique among known Galloanserae (waterfowl and landfowl), is further indication that the earliest anseriform divergences were marked by evolutionary experiments unrepresented in the extant diversity3,11-13.
Collapse
Affiliation(s)
- Christopher R Torres
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA.
| | - Julia A Clarke
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Joseph R Groenke
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Matthew C Lamanna
- Section of Vertebrate Paleontology, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | - Ross D E MacPhee
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Grace M Musser
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
- Division of Birds, The Smithsonian National Museum of Natural History, Washington, DC, USA
| | - Eric M Roberts
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Patrick M O'Connor
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- Ohio Center for Ecological and Evolutionary Studies, Ohio University, Athens, OH, USA.
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, CO, USA.
| |
Collapse
|
3
|
Hermanson G, Evers S. Shell Constraints on Evolutionary Body Size-Limb Size Allometry Can Explain Morphological Conservatism in the Turtle Body Plan. Ecol Evol 2024; 14:e70504. [PMID: 39539674 PMCID: PMC11557996 DOI: 10.1002/ece3.70504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/17/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Turtles are a small clade of vertebrates despite having existed since the Late Triassic. Turtles have a conservative body plan relative to other amniotes, characterized by the presence of a shell and quadrupedality. This morphology is even retained in strong ecological specialists, such as sea turtles, which are secondarily adapted to marine locomotion by strong allometric scaling in their hands. It is possible that the body plan of turtles is strongly influenced by the presence of the shell, acting as a constraint to achieving greater diversity of body forms. Here, we explore the evolutionary allometric relationships of fore- and hindlimb stylopodia (i.e., humerus and femur) with one another as well as their relationship with shell size (carapace length) to assess evidence of constraint. All turtles, including Triassic shelled stem turtles, have near-isometric relationships that do not vary strongly between clades, and evolve at slow evolutionary rates. This indeed indicates that body proportions of turtles are constrained to a narrow range of possibilities. Minor allometric deviations are seen in highly aquatic sea turtles and softshell turtles, which modified their shells by bone losses. Our allometric regressions allow accurate body size estimations for fossils. Several independent sea turtle lineages converged on maximum sizes of 2.2 m of shell length, which may be a biological maximum for the group.
Collapse
|
4
|
Berv JS, Singhal S, Field DJ, Walker-Hale N, McHugh SW, Shipley JR, Miller ET, Kimball RT, Braun EL, Dornburg A, Parins-Fukuchi CT, Prum RO, Winger BM, Friedman M, Smith SA. Genome and life-history evolution link bird diversification to the end-Cretaceous mass extinction. SCIENCE ADVANCES 2024; 10:eadp0114. [PMID: 39083615 PMCID: PMC11290531 DOI: 10.1126/sciadv.adp0114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Complex patterns of genome evolution associated with the end-Cretaceous [Cretaceous-Paleogene (K-Pg)] mass extinction limit our understanding of the early evolutionary history of modern birds. Here, we analyzed patterns of avian molecular evolution and identified distinct macroevolutionary regimes across exons, introns, untranslated regions, and mitochondrial genomes. Bird clades originating near the K-Pg boundary exhibited numerous shifts in the mode of molecular evolution, suggesting a burst of genomic heterogeneity at this point in Earth's history. These inferred shifts in substitution patterns were closely related to evolutionary shifts in developmental mode, adult body mass, and patterns of metabolic scaling. Our results suggest that the end-Cretaceous mass extinction triggered integrated patterns of evolution across avian genomes, physiology, and life history near the dawn of the modern bird radiation.
Collapse
Affiliation(s)
- Jacob S. Berv
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Paleontology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Zoology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sonal Singhal
- Department of Biology, California State University, Dominguez Hills, Carson, CA 90747, USA
| | - Daniel J. Field
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
- Museum of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Sean W. McHugh
- Department of Evolution, Ecology, and Population Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - J. Ryan Shipley
- Department of Forest Dynamics, Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Zürcherstrasse 111 8903, Birmensdorf, Switzerland
| | - Eliot T. Miller
- Center for Avian Population Studies, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Rebecca T. Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - C. Tomomi Parins-Fukuchi
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Richard O. Prum
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Benjamin M. Winger
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Zoology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matt Friedman
- Museum of Paleontology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Earth and Environmental Sciences, University of Michigan, 1100 North University Avenue, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A. Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Kuhl H, Euclide PT, Klopp C, Cabau C, Zahm M, Lopez-Roques C, Iampietro C, Kuchly C, Donnadieu C, Feron R, Parrinello H, Poncet C, Jaffrelo L, Confolent C, Wen M, Herpin A, Jouanno E, Bestin A, Haffray P, Morvezen R, de Almeida TR, Lecocq T, Schaerlinger B, Chardard D, Żarski D, Larson WA, Postlethwait JH, Timirkhanov S, Kloas W, Wuertz S, Stöck M, Guiguen Y. Multi-genome comparisons reveal gain-and-loss evolution of anti-Mullerian hormone receptor type 2 as a candidate master sex-determining gene in Percidae. BMC Biol 2024; 22:141. [PMID: 38926709 PMCID: PMC11209984 DOI: 10.1186/s12915-024-01935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii, and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. RESULTS We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex-determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplicates (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been likely lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome 18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variations (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex-determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in the testis than in the ovary. CONCLUSIONS Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587, Berlin, Germany.
| | - Peter T Euclide
- Department of Forestry and Natural Resources | Illinois-Indiana Sea Grant, Purdue University, West Lafayette, USA
| | - Christophe Klopp
- Sigenae, Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Cédric Cabau
- Sigenae, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Margot Zahm
- Sigenae, Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | | | | | - Claire Kuchly
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hugues Parrinello
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Charles Poncet
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Lydia Jaffrelo
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Carole Confolent
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ming Wen
- INRAE, LPGP, 35000, Rennes, France
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | | | | | - Anastasia Bestin
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Pierrick Haffray
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Romain Morvezen
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes Cedex, France
| | | | | | | | | | - Daniel Żarski
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Wesley A Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, 17109 Point Lena Loop Road, Auke Bay LaboratoriesJuneau, AK, 99801, USA
| | | | | | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587, Berlin, Germany
| | - Sven Wuertz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587, Berlin, Germany
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587, Berlin, Germany
| | | |
Collapse
|
6
|
Widrig KE, Navalón G, Field DJ. Paleoneurology of stem palaeognaths clarifies the plesiomorphic condition of the crown bird central nervous system. J Morphol 2024; 285:e21710. [PMID: 38760949 DOI: 10.1002/jmor.21710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Lithornithidae, an assemblage of volant Palaeogene fossil birds, provide our clearest insights into the early evolutionary history of Palaeognathae, the clade that today includes the flightless ratites and volant tinamous. The neotype specimen of Lithornis vulturinus, from the early Eocene (approximately 53 million years ago) of Europe, includes a partial neurocranium that has never been thoroughly investigated. Here, we describe these cranial remains including the nearly complete digital endocasts of the brain and bony labyrinth. The telencephalon of Lithornis is expanded and its optic lobes are ventrally shifted, as is typical for crown birds. The foramen magnum is positioned caudally, rather than flexed ventrally as in some crown birds, with the optic lobes, cerebellum, and foramen magnum shifted further ventrally. The overall brain shape is similar to that of tinamous, the only extant clade of flying palaeognaths, suggesting that several aspects of tinamou neuroanatomy may have been evolutionarily conserved since at least the early Cenozoic. The estimated ratio of the optic lobe's surface area relative to the total brain suggests a diurnal ecology. Lithornis may provide the clearest insights to date into the neuroanatomy of the ancestral crown bird, combining an ancestrally unflexed brain with a caudally oriented connection with the spinal cord, a moderately enlarged telencephalon, and ventrally shifted, enlarged optic lobes.
Collapse
Affiliation(s)
- Klara E Widrig
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Guillermo Navalón
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Daniel J Field
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Museum of Zoology, University of Cambridge, Cambridge, UK
- Fossil Reptiles, Amphibians and Birds Section, The Natural History Museum, London, UK
| |
Collapse
|
7
|
Zhang R, Drummond AJ, Mendes FK. Fast Bayesian Inference of Phylogenies from Multiple Continuous Characters. Syst Biol 2024; 73:102-124. [PMID: 38085256 PMCID: PMC11129596 DOI: 10.1093/sysbio/syad067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/23/2023] [Accepted: 11/07/2023] [Indexed: 05/28/2024] Open
Abstract
Time-scaled phylogenetic trees are an ultimate goal of evolutionary biology and a necessary ingredient in comparative studies. The accumulation of genomic data has resolved the tree of life to a great extent, yet timing evolutionary events remain challenging if not impossible without external information such as fossil ages and morphological characters. Methods for incorporating morphology in tree estimation have lagged behind their molecular counterparts, especially in the case of continuous characters. Despite recent advances, such tools are still direly needed as we approach the limits of what molecules can teach us. Here, we implement a suite of state-of-the-art methods for leveraging continuous morphology in phylogenetics, and by conducting extensive simulation studies we thoroughly validate and explore our methods' properties. While retaining model generality and scalability, we make it possible to estimate absolute and relative divergence times from multiple continuous characters while accounting for uncertainty. We compile and analyze one of the most data-type diverse data sets to date, comprised of contemporaneous and ancient molecular sequences, and discrete and continuous morphological characters from living and extinct Carnivora taxa. We conclude by synthesizing lessons about our method's behavior, and suggest future research venues.
Collapse
Affiliation(s)
- Rong Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School 169857, Singapore
| | - Alexei J Drummond
- Centre for Computational Evolution, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Fábio K Mendes
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
8
|
Stiller J, Feng S, Chowdhury AA, Rivas-González I, Duchêne DA, Fang Q, Deng Y, Kozlov A, Stamatakis A, Claramunt S, Nguyen JMT, Ho SYW, Faircloth BC, Haag J, Houde P, Cracraft J, Balaban M, Mai U, Chen G, Gao R, Zhou C, Xie Y, Huang Z, Cao Z, Yan Z, Ogilvie HA, Nakhleh L, Lindow B, Morel B, Fjeldså J, Hosner PA, da Fonseca RR, Petersen B, Tobias JA, Székely T, Kennedy JD, Reeve AH, Liker A, Stervander M, Antunes A, Tietze DT, Bertelsen MF, Lei F, Rahbek C, Graves GR, Schierup MH, Warnow T, Braun EL, Gilbert MTP, Jarvis ED, Mirarab S, Zhang G. Complexity of avian evolution revealed by family-level genomes. Nature 2024; 629:851-860. [PMID: 38560995 PMCID: PMC11111414 DOI: 10.1038/s41586-024-07323-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.
Collapse
Affiliation(s)
- Josefin Stiller
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Al-Aabid Chowdhury
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | | | - David A Duchêne
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Qi Fang
- BGI Research, Shenzhen, China
| | - Yuan Deng
- BGI Research, Shenzhen, China
- BGI Research, Wuhan, China
| | - Alexey Kozlov
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Greece
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Santiago Claramunt
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Jacqueline M T Nguyen
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Museum Research Institute, Sydney, New South Wales, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Julia Haag
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Peter Houde
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Joel Cracraft
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| | - Metin Balaban
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Uyen Mai
- Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Guangji Chen
- BGI Research, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongsheng Gao
- BGI Research, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Yulong Xie
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zijian Huang
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Cao
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Zhi Yan
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Huw A Ogilvie
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Bent Lindow
- Natural History Museum Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Jon Fjeldså
- Natural History Museum Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Peter A Hosner
- Natural History Museum Denmark, University of Copenhagen, Copenhagen, Denmark
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rute R da Fonseca
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Bent Petersen
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, Faculty of Applied Sciences, AIMST University, Bedong, Malaysia
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Tamás Székely
- Milner Centre for Evolution, University of Bath, Bath, UK
- ELKH-DE Reproductive Strategies Research Group, University of Debrecen, Debrecen, Hungary
| | - Jonathan David Kennedy
- Center for Macroecology, Evolution, and Climate, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andrew Hart Reeve
- Natural History Museum Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Andras Liker
- HUN-REN-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém, Hungary
- Behavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, Hungary
| | | | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | | | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Carsten Rahbek
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Macroecology, Evolution, and Climate, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Institute of Ecology, Peking University, Beijing, China
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Gary R Graves
- Center for Macroecology, Evolution, and Climate, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | - Tandy Warnow
- University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Durham, NC, USA
| | | | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China.
- BGI Research, Wuhan, China.
- Villum Center for Biodiversity Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Brocklehurst N, Field DJ. Tip dating and Bayes factors provide insight into the divergences of crown bird clades across the end-Cretaceous mass extinction. Proc Biol Sci 2024; 291:20232618. [PMID: 38351798 PMCID: PMC10865003 DOI: 10.1098/rspb.2023.2618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
The origin of crown birds (Neornithes) remains contentious owing to conflicting divergence time hypotheses obtained from alternative sources of data. The fossil record suggests limited diversification of Neornithes in the Late Mesozoic and a substantial radiation in the aftermath of the Cretaceous-Palaeogene (K-Pg) mass extinction, approximately 66 Ma. Molecular clock studies, however, have yielded estimates for neornithine origins ranging from the Early Cretaceous (130 Ma) to less than 10 Myr before the K-Pg. We use Bayes factors to compare the fit of node ages from different molecular clock studies to an independent morphological dataset. Our results allow us to reject scenarios of crown bird origins deep in the Early Cretaceous, as well as an origin of crown birds within the last 10 Myr of the Cretaceous. The scenario best supported by our analyses is one where Neornithes originated between the Early and Late Cretaceous (ca 100 Ma), while numerous divergences within major neoavian clades either span or postdate the K-Pg. This study affirms the importance of the K-Pg on the diversification of modern birds, and the potential of combined-evidence tip-dating analyses to illuminate recalcitrant 'rocks versus clocks' debates.
Collapse
Affiliation(s)
- Neil Brocklehurst
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Daniel J. Field
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Museum of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Brownstein CD. A juvenile bird with possible crown-group affinities from a dinosaur-rich Cretaceous ecosystem in North America. BMC Ecol Evol 2024; 24:20. [PMID: 38336630 PMCID: PMC10858573 DOI: 10.1186/s12862-024-02210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Living birds comprise the most speciose and anatomically diverse clade of flying vertebrates, but their poor early fossil record and the lack of resolution around the relationships of the major clades have greatly obscured extant avian origins. RESULTS Here, I describe a Late Cretaceous bird from North America based on a fragmentary skeleton that includes cranial material and portions of the forelimb, hindlimb, and foot and is identified as a juvenile based on bone surface texture. Several features unite this specimen with crown Aves, but its juvenile status precludes the recognition of a distinct taxon. The North American provenance of the specimen supports a cosmopolitan distribution of early crown birds, clashes with the hypothesized southern hemisphere origins of living birds, and demonstrates that crown birds and their closest relatives coexisted with non-avian dinosaurs that independently converged on avian skeletal anatomy, such as the alvarezsaurids and dromaeosaurids. CONCLUSIONS By revealing the ecological and biogeographic context of Cretaceous birds within or near the crown clade, the Lance Formation specimen provides new insights into the contingent nature of crown avian survival through the Cretaceous-Paleogene mass extinction and the subsequent origins of living bird diversity.
Collapse
Affiliation(s)
- Chase Doran Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- , Stamford, USA.
| |
Collapse
|
11
|
Kuhl H, Euclide PT, Klopp C, Cabau C, Zahm M, Roques C, Iampietro C, Kuchly C, Donnadieu C, Feron R, Parrinello H, Poncet C, Jaffrelo L, Confolent C, Wen M, Herpin A, Jouanno E, Bestin A, Haffray P, Morvezen R, de Almeida TR, Lecocq T, Schaerlinger B, Chardard D, Żarski D, Larson W, Postlethwait JH, Timirkhanov S, Kloas W, Wuertz S, Stöck M, Guiguen Y. Multi-genome comparisons reveal gain-and-loss evolution of the anti-Mullerian hormone receptor type 2 gene, an old master sex determining gene, in Percidae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566804. [PMID: 38014084 PMCID: PMC10680665 DOI: 10.1101/2023.11.13.566804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplications (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome-18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variants (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in testis than ovary. Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | - Peter T Euclide
- Department of Forestry and Natural Resources | Illinois-Indiana Sea Grant, Purdue University, West Lafayette, Indiana, USA
| | - Christophe Klopp
- Sigenae, Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Cedric Cabau
- Sigenae, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Margot Zahm
- Sigenae, Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Céline Roques
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Claire Kuchly
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hugues Parrinello
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Charles Poncet
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Lydia Jaffrelo
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Carole Confolent
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ming Wen
- INRAE, LPGP, 35000, Rennes, France
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | | | | | - Anastasia Bestin
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | - Pierrick Haffray
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | - Romain Morvezen
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | | | - Thomas Lecocq
- University of Lorraine, INRAE, UR AFPA, Nancy, France
| | | | | | - Daniel Żarski
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Wes Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories, 17109 Point Lena Loop Road, Juneau, AK, 99801, USA
| | | | | | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | - Sven Wuertz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | | |
Collapse
|
12
|
Widrig KE, Bhullar BS, Field DJ. 3D atlas of tinamou (Neornithes: Tinamidae) pectoral morphology: Implications for reconstructing the ancestral neornithine flight apparatus. J Anat 2023; 243:729-757. [PMID: 37358291 PMCID: PMC10557402 DOI: 10.1111/joa.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
Palaeognathae, the extant avian clade comprising the flightless ratites and flight-capable tinamous (Tinamidae), is the sister group to all other living birds, and recent phylogenetic studies illustrate that tinamous are phylogenetically nested within a paraphyletic assemblage of ratites. As the only extant palaeognaths that have retained the ability to fly, tinamous may provide key information on the nature of the flight apparatus of ancestral crown palaeognaths-and, in turn, crown birds-as well as insight into convergent modifications to the wing apparatus among extant ratite lineages. To reveal new information about the musculoskeletal anatomy of tinamous and facilitate development of computational biomechanical models of tinamou wing function, we generated a three-dimensional musculoskeletal model of the flight apparatus of the extant Andean tinamou (Nothoprocta pentlandii) using diffusible iodine-based contrast-enhanced computed tomography (diceCT). Origins and insertions of the pectoral flight musculature of N. pentlandii are generally consistent with those of other extant volant birds specialized for burst flight, and the entire suite of presumed ancestral neornithine flight muscles are present in N. pentlandii with the exception of the biceps slip. The pectoralis and supracoracoideus muscles are robust, similar to the condition in other extant burst-flying birds such as many extant Galliformes. Contrary to the condition in most extant Neognathae (the sister clade to Palaeognathae), the insertion of the pronator superficialis has a greater distal extent than the pronator profundus, although most other anatomical observations are broadly consistent with the conditions observed in extant neognaths. This work will help form a basis for future comparative studies of the avian musculoskeletal system, with implications for reconstructing the flight apparatus of ancestral crown birds and clarifying musculoskeletal modifications underlying the convergent origins of ratite flightlessness.
Collapse
Affiliation(s)
- Klara E. Widrig
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
| | - Bhart‐Anjan S. Bhullar
- Department of Earth and Planetary SciencesYale UniversityNew HavenConnecticutUSA
- Peabody Museum of Natural HistoryYale UniversityNew HavenConnecticutUSA
| | - Daniel J. Field
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- Museum of ZoologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
13
|
Carruthers T, Scotland RW. Deconstructing age estimates for angiosperms. Mol Phylogenet Evol 2023:107861. [PMID: 37329931 DOI: 10.1016/j.ympev.2023.107861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Estimates of the age of angiosperms from molecular phylogenies vary considerably. As in all estimates of evolutionary timescales from phylogenies, generating these estimates requires assumptions about the rate that molecular sequences are evolving (using clock models) and the time duration of the branches in a phylogeny (using fossil calibrations and branching processes). Often, it is difficult to demonstrate that these assumptions reflect current knowledge of molecular evolution or the fossil record. In this study we re-estimate the age of angiosperms using a minimal set of assumptions, therefore avoiding many of the assumptions inherent to other methods. The age estimates we generate are similar for each of the four datasets analysed, ranging from 130 to 400 Ma, but are far less precise than in previous studies. We demonstrate that this reduction in precision results from making less stringent assumptions about both rate and time, and that the analysed molecular dataset has very little effect on age estimates.
Collapse
Affiliation(s)
- Tom Carruthers
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Robert W Scotland
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
14
|
Zimova M, Weeks BC, Willard DE, Giery ST, Jirinec V, Burner RC, Winger BM. Body size predicts the rate of contemporary morphological change in birds. Proc Natl Acad Sci U S A 2023; 120:e2206971120. [PMID: 37155909 PMCID: PMC10193942 DOI: 10.1073/pnas.2206971120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 03/04/2023] [Indexed: 05/10/2023] Open
Abstract
Variation in evolutionary rates among species is a defining characteristic of the tree of life and may be an important predictor of species' capacities to adapt to rapid environmental change. It is broadly assumed that generation length is an important determinant of microevolutionary rates, and body size is often used as a proxy for generation length. However, body size has myriad biological correlates that could affect evolutionary rates independently from generation length. We leverage two large, independently collected datasets on recent morphological change in birds (52 migratory species breeding in North America and 77 South American resident species) to test how body size and generation length are related to the rates of contemporary morphological change. Both datasets show that birds have declined in body size and increased in wing length over the past 40 y. We found, in both systems, a consistent pattern wherein smaller species declined proportionally faster in body size and increased proportionally faster in wing length. By contrast, generation length explained less variation in evolutionary rates than did body size. Although the mechanisms warrant further investigation, our study demonstrates that body size is an important predictor of contemporary variation in morphological rates of change. Given the correlations between body size and a breadth of morphological, physiological, and ecological traits predicted to mediate phenotypic responses to environmental change, the relationship between body size and rates of phenotypic change should be considered when testing hypotheses about variation in adaptive responses to climate change.
Collapse
Affiliation(s)
- Marketa Zimova
- Department of Biology, Appalachian State University, Boone, NC 28608
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 49109
| | - Brian C Weeks
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 49109
| | - David E Willard
- Gantz Family Collection Center, The Field Museum, Chicago, IL 60605
| | - Sean T Giery
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Vitek Jirinec
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia, Manaus AM 69067-375, Brazil
- Integral Ecology Research Center, Blue Lake, CA 95525
| | - Ryan C Burner
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603
| | - Benjamin M Winger
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
15
|
Degli Esposti M. The bacterial origin of mitochondria: Incorrect phylogenies and the importance of metabolic traits. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:1-35. [PMID: 36858653 DOI: 10.1016/bs.ircmb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article provides an updated review on the evolution of mitochondria from bacteria, which were likely related to extant alphaproteobacteria. Particular attention is given to the timeline of oxygen history on Earth and the entwined phases of eukaryotic evolution that produced the animals that still populate our planet. Mitochondria of early-branching unicellular eukaryotes and plants appear to retain partial or vestigial traits that were directly inherited from the alphaproteobacterial ancestors of the organelles. Most of such traits define the current aerobic physiology of mitochondria. Conversely, the anaerobic traits that would be essential in the syntrophic associations postulated for the evolution of eukaryotic cells are scantly present in extant alphaproteobacteria, and therefore cannot help defining from which bacterial lineage the ancestors of mitochondria originated. This question has recently been addressed quantitatively, reaching the novel conclusion that marine bacteria related to Iodidimonas may be the living relatives of protomitochondria. Additional evidence is presented that either support or does not contrast this novel view of the bacterial origin of mitochondria.
Collapse
|
16
|
Yu Y, Zhang C, Xu X. Complex macroevolution of pterosaurs. Curr Biol 2023; 33:770-779.e4. [PMID: 36787747 DOI: 10.1016/j.cub.2023.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/13/2022] [Accepted: 01/05/2023] [Indexed: 02/16/2023]
Abstract
Pterosaurs, the earliest flying tetrapods, are the subject of some recent quantitative macroevolutionary analyses from different perspectives.1-2 Here, we use an integrative approach involving newly assembled phylogenetic and body size datasets, net diversification rates, morphological rates, and morphological disparity to gain a holistic understanding of the pterosaur macroevolution. The first two parameters are important in quantitative analyses of macroevolution, but they have been rarely used in previous pterosaur studies.1,3,4,2,5,6,7,8,9,10,11,12 Our study reveals an ∼115-Ma period-from Early Triassic to Early Cretaceous-of multi-wave increasing net diversification rates and disparity, as well as high morphological rates, followed by an ∼65-Ma period-from Early Cretaceous to the end of the Cretaceous-of mostly negative net diversification rates, decreasing disparity, and relatively low morphological rates in pterosaur evolution. Our study demonstrates the following: (1) body size plays an important role in pterosaur lineage diversification during nearly their whole evolutionary history, and the evolution of locomotion, trophic, and ornamental structures also plays a role in different periods; (2) birds, the other major flying tetrapod group at the time, might have affected pterosaur macroevolution for ∼100 Ma; and (3) different mass extinction events might have affected pterosaur evolution differently. Particularly, the revealed decline in pterosaur biodiversity during the Middle and Late Cretaceous periods provides further support for the possible presence of a biodiversity decline of large-sized terrestrial amniotes starting in the mid-Cretaceous,13,14 which may have been caused by multiple factors including a global land area decrease during these periods.
Collapse
Affiliation(s)
- Yilun Yu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.
| | - Xing Xu
- Centre for Vertebrate Evolutionary Biology, Yunnan University, Kunming, China; Shenyang Normal University, Paleontological Museum of Liaoning, Shenyang, China.
| |
Collapse
|
17
|
Smith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, et alSmith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, Stevens MP, Stiers K, Tiambo CK, Tixier-Boichard M, Torgasheva AA, Tracey A, Tregaskes CA, Vervelde L, Wang Y, Warren WC, Waters PD, Webb D, Weigend S, Wolc A, Wright AE, Wright D, Wu Z, Yamagata M, Yang C, Yin ZT, Young MC, Zhang G, Zhao B, Zhou H. Fourth Report on Chicken Genes and Chromosomes 2022. Cytogenet Genome Res 2023; 162:405-528. [PMID: 36716736 PMCID: PMC11835228 DOI: 10.1159/000529376] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - James M. Alfieri
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, California, USA
| | - Giridhar N. Athrey
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Philippe Bardou
- Université de Toulouse, INRAE, ENVT, GenPhySE, Sigenae, Castanet Tolosan, France
| | | | - Yves Bigot
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, Nouzilly, France
| | - Heath Blackmon
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Pavel M. Borodin
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Rachel Carroll
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Mathieu Charles
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Hans Cheng
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | | | | | - Lyndon M. Coghill
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Richard Crooijmans
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Sean Davey
- University of Arizona, Tucson, Arizona, USA
| | - Asya Davidian
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Fabien Degalez
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Jack M. Dekkers
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Martijn Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Abigail B. Diack
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Appolinaire Djikeng
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Alexander Dyomin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Laurent A.F. Frantz
- Queen Mary University of London, Bethnal Green, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Janet E. Fulton
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Elena Gaginskaya
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Svetlana Galkina
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Rodrigo A. Gallardo
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Johannes Geibel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Almas A. Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Cyrill John P. Godinez
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Baybay City, Philippines
| | | | - Jennifer A.M. Graves
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | | | | | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, UK
| | - Lindsay J. Henderson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Lan Huynh
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Evans Ilatsia
- Dairy Research Institute, Kenya Agricultural and Livestock Organization, Naivasha, Kenya
| | | | | | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Terra Kelly
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Steve Kemp
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Colin Kern
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, California, USA
| | | | - Christophe Klopp
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Sandrine Lagarrigue
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Susan J. Lamont
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Margaret Lange
- Centre for Tropical Livestock Genetics and Health (CTLGH) − The Roslin Institute, Edinburgh, UK
| | - Anika Lanke
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Denis M. Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK
| | - John King N. Layos
- College of Agriculture and Forestry, Capiz State University, Mambusao, Philippines
| | - Ophélie Lebrasseur
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Toulouse III Paul Sabatier, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lyubov P. Malinovskaya
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Rebecca J. Martin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Michael J. McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Christine Kamidi Muhonja
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - William Muir
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Kévin Muret
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Terence D. Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Masahide Nishibori
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Moses Ogugo
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, Arkansas, USA
| | - Ochieng Ouko
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Hardip R. Patel
- The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Francesco Perini
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - María Ines Pigozzi
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Peter D. Price
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Christian Reimer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Edward S. Rice
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nicolas Rocos
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | - Thea F. Rogers
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, California, USA
- Veterinary Pest Genetics Research Unit, USDA, Kerrville, Texas, USA
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Robert D. Schnabel
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Valerie A. Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Henner Simianer
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Adrian Smith
- Department of Zoology, University of Oxford, Oxford, UK
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Kyle Stiers
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | | | | | - Anna A. Torgasheva
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alan Tracey
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Clive A. Tregaskes
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Ying Wang
- Department of Animal Science, University of California, Davis, California, USA
| | - Wesley C. Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - David Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Anna Wolc
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Alison E. Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology, IFM Biology, Linköping University, Linköping, Sweden
| | - Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Masahito Yamagata
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Zhong-Tao Yin
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingru Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
18
|
Griffin DK, Larkin DM, O’Connor RE, Romanov MN. Dinosaurs: Comparative Cytogenomics of Their Reptile Cousins and Avian Descendants. Animals (Basel) 2022; 13:106. [PMID: 36611715 PMCID: PMC9817885 DOI: 10.3390/ani13010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Reptiles known as dinosaurs pervade scientific and popular culture, while interest in their genomics has increased since the 1990s. Birds (part of the crown group Reptilia) are living theropod dinosaurs. Chromosome-level genome assemblies cannot be made from long-extinct biological material, but dinosaur genome organization can be inferred through comparative genomics of related extant species. Most reptiles apart from crocodilians have both macro- and microchromosomes; comparative genomics involving molecular cytogenetics and bioinformatics has established chromosomal relationships between many species. The capacity of dinosaurs to survive multiple extinction events is now well established, and birds now have more species in comparison with any other terrestrial vertebrate. This may be due, in part, to their karyotypic features, including a distinctive karyotype of around n = 40 (~10 macro and 30 microchromosomes). Similarity in genome organization in distantly related species suggests that the common avian ancestor had a similar karyotype to e.g., the chicken/emu/zebra finch. The close karyotypic similarity to the soft-shelled turtle (n = 33) suggests that this basic pattern was mostly established before the Testudine-Archosaur divergence, ~255 MYA. That is, dinosaurs most likely had similar karyotypes and their extensive phenotypic variation may have been mediated by increased random chromosome segregation and genetic recombination, which is inherently higher in karyotypes with more and smaller chromosomes.
Collapse
Affiliation(s)
| | - Denis M. Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
| | | | | |
Collapse
|
19
|
Cretaceous ornithurine supports a neognathous crown bird ancestor. Nature 2022; 612:100-105. [PMID: 36450906 DOI: 10.1038/s41586-022-05445-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022]
Abstract
The bony palate diagnoses the two deepest clades of extant birds: Neognathae and Palaeognathae1-5. Neognaths exhibit unfused palate bones and generally kinetic skulls, whereas palaeognaths possess comparatively rigid skulls with the pterygoid and palatine fused into a single element, a condition long considered ancestral for crown birds (Neornithes)3,5-8. However, fossil evidence of palatal remains from taxa close to the origin of Neornithes is scarce, hindering strong inferences regarding the ancestral condition of the neornithine palate. Here we report a new taxon of toothed Late Cretaceous ornithurine bearing a pterygoid that is remarkably similar to those of the extant neognath clade Galloanserae (waterfowl + landfowl). Janavis finalidens, gen. et sp. nov., is generally similar to the well-known Mesozoic ornithurine Ichthyornis in its overall morphology, although Janavis is much larger and exhibits a substantially greater degree of postcranial pneumaticity. We recovered Janavis as the first-known well-represented member of Ichthyornithes other than Ichthyornis, clearly substantiating the persistence of the clade into the latest Cretaceous9. Janavis confirms the presence of an anatomically neognathous palate in at least some Mesozoic non-crown ornithurines10-12, suggesting that pterygoids similar to those of extant Galloanserae may be plesiomorphic for crown birds. Our results, combined with recent evidence on the ichthyornithine palatine12, overturn longstanding assumptions about the ancestral crown bird palate, and should prompt reevaluation of the purported galloanseran affinities of several bizarre early Cenozoic groups such as the 'pseudotoothed birds' (Pelagornithidae)13-15.
Collapse
|
20
|
Ji Y, Feng S, Wu L, Fang Q, Brüniche-Olsen A, DeWoody JA, Cheng Y, Zhang D, Hao Y, Song G, Qu Y, Suh A, Zhang G, Hackett SJ, Lei F. Orthologous microsatellites, transposable elements, and DNA deletions correlate with generation time and body mass in neoavian birds. SCIENCE ADVANCES 2022; 8:eabo0099. [PMID: 36044583 PMCID: PMC9432842 DOI: 10.1126/sciadv.abo0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The rate of mutation accumulation in germline cells can be affected by cell replication and/or DNA damage, which are further related to life history traits such as generation time and body mass. Leveraging the existing datasets of 233 neoavian bird species, here, we investigated whether generation time and body mass contribute to the interspecific variation of orthologous microsatellite length, transposable element (TE) length, and deletion length and how these genomic attributes affect genome sizes. In nonpasserines, we found that generation time is correlated to both orthologous microsatellite length and TE length, and body mass is negatively correlated to DNA deletions. These patterns are less pronounced in passerines. In all species, we found that DNA deletions relate to genome size similarly as TE length, suggesting a role of body mass dynamics in genome evolution. Our results indicate that generation time and body mass shape the evolution of genomic attributes in neoavian birds.
Collapse
Affiliation(s)
- Yanzhu Ji
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| | - Shaohong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
- Evolutionary and Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Fang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Anna Brüniche-Olsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - J. Andrew DeWoody
- Departments of Forestry and Natural Resources and Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Alexander Suh
- School of Biological Sciences, Organism and Environment, University of East Anglia, NR4 7TU, Norwich, UK
- Department of Organismal Biology, Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala SE-752 36, Sweden
| | - Guojie Zhang
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
- Evolutionary and Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Women’s Hospital, School of Medicine, Zhejiang University, Shangcheng District, Hangzhou, 310006, China
| | - Shannon J. Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
21
|
Černý D, Natale R. Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes). Mol Phylogenet Evol 2022; 177:107620. [PMID: 36038056 DOI: 10.1016/j.ympev.2022.107620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 01/20/2023]
Abstract
Shorebirds (Charadriiformes) are a globally distributed clade of modern birds and, due to their ecological and morphological disparity, a frequent subject of comparative studies. While molecular phylogenies have been key to establishing the suprafamilial backbone of the charadriiform tree, a number of relationships at both deep and shallow taxonomic levels remain poorly resolved. The timescale of shorebird evolution also remains uncertain as a result of extensive disagreements among the published divergence dating studies, stemming largely from different choices of fossil calibrations. Here, we present the most comprehensive non-supertree phylogeny of shorebirds to date, based on a total-evidence dataset comprising 353 ingroup taxa (90% of all extant or recently extinct species), 27 loci (15 mitochondrial and 12 nuclear), and 69 morphological characters. We further clarify the timeline of charadriiform evolution by time-scaling this phylogeny using a set of 14 up-to-date and thoroughly vetted fossil calibrations. In addition, we assemble a taxonomically restricted 100-locus dataset specifically designed to resolve outstanding problems in higher-level charadriiform phylogeny. In terms of tree topology, our results are largely congruent with previous studies but indicate that some of the conflicts among earlier analyses reflect a genuine signal of pervasive gene tree discordance. Monophyly of the plovers (Charadriidae), the position of the ibisbill (Ibidorhyncha), and the relationships among the five subfamilies of the gulls (Laridae) could not be resolved even with greatly increased locus and taxon sampling. Moreover, several localized regions of uncertainty persist in shallower parts of the tree, including the interrelationships of the true auks (Alcinae) and anarhynchine plovers. Our node-dating and macroevolutionary rate analyses find support for a Paleocene origin of crown-group shorebirds, as well as exceptionally rapid recent radiations of Old World oystercatchers (Haematopodidae) and select genera of gulls. Our study underscores the challenges involved in estimating a comprehensively sampled and carefully calibrated time tree for a diverse avian clade, and highlights areas in need of further research.
Collapse
Affiliation(s)
- David Černý
- Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA.
| | - Rossy Natale
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA
| |
Collapse
|
22
|
Abstract
General rules are useful tools for understanding how organisms evolve. Cope’s rule (tendency to increase in size over evolutionary time) and Bergmann’s rule (tendency to grow to larger sizes in cooler climates) both relate to body size, an important factor that affects the biology, ecology, and physiology of organisms. These rules are well studied in endotherms but remain poorly understood among ectotherms. Here, we show that paleoclimatic changes strongly shaped the trajectory of body size evolution in tetraodontiform fishes. Their body size evolution is explained by both Cope’s and Bergmann’s rules, highlighting the impact of paleoclimatic changes on aquatic organisms, which rely on their environment for temperature regulation and are likely more susceptible than terrestrial vertebrates to climatic changes. Body size is an important species trait, correlating with life span, fecundity, and other ecological factors. Over Earth’s geological history, climate shifts have occurred, potentially shaping body size evolution in many clades. General rules attempting to summarize body size evolution include Bergmann’s rule, which states that species reach larger sizes in cooler environments and smaller sizes in warmer environments, and Cope’s rule, which poses that lineages tend to increase in size over evolutionary time. Tetraodontiform fishes (including pufferfishes, boxfishes, and ocean sunfishes) provide an extraordinary clade to test these rules in ectotherms owing to their exemplary fossil record and the great disparity in body size observed among extant and fossil species. We examined Bergmann’s and Cope’s rules in this group by combining phylogenomic data (1,103 exon loci from 185 extant species) with 210 anatomical characters coded from both fossil and extant species. We aggregated data layers on paleoclimate and body size from the species examined, and inferred a set of time-calibrated phylogenies using tip-dating approaches for downstream comparative analyses of body size evolution by implementing models that incorporate paleoclimatic information. We found strong support for a temperature-driven model in which increasing body size over time is correlated with decreasing oceanic temperatures. On average, extant tetraodontiforms are two to three times larger than their fossil counterparts, which otherwise evolved during periods of warmer ocean temperatures. These results provide strong support for both Bergmann’s and Cope’s rules, trends that are less studied in marine fishes compared to terrestrial vertebrates and marine invertebrates.
Collapse
|
23
|
Brownstein CD, Lyson TR. Giant gar from directly above the Cretaceous-Palaeogene boundary suggests healthy freshwater ecosystems existed within thousands of years of the asteroid impact. Biol Lett 2022; 18:20220118. [PMID: 35702983 PMCID: PMC9198771 DOI: 10.1098/rsbl.2022.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/12/2022] [Indexed: 11/12/2022] Open
Abstract
The Cretaceous-Palaeogene (K-Pg) mass extinction was responsible for the destruction of global ecosystems and loss of approximately three-quarters of species diversity 66 million years ago. Large-bodied land vertebrates suffered high extinction rates, whereas small-bodied vertebrates living in freshwater ecosystems were buffered from the worst effects. Here, we report a new species of large-bodied (1.4-1.5 m) gar based on a complete skeleton from the Williston Basin of North America. The new species was recovered 18 cm above the K-Pg boundary, making it one of the oldest articulated vertebrate fossils from the Cenozoic. The presence of this freshwater macropredator approximately 1.5-2.5 thousand years after the asteroid impact suggests the rapid recovery and reassembly of North American freshwater food webs and ecosystems after the mass extinction.
Collapse
Affiliation(s)
- Chase Doran Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Stamford Museum and Nature Center, Stamford, CT, USA
| | - Tyler R. Lyson
- Department of Earth Sciences, Denver Museum of Nature and Science, Denver, CO, USA
| |
Collapse
|
24
|
Quintero I, Suchard MA, Jetz W. Macroevolutionary dynamics of climatic niche space. Proc Biol Sci 2022; 289:20220091. [PMID: 35611527 PMCID: PMC9130784 DOI: 10.1098/rspb.2022.0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
How and why lineages evolve along with niche space as they diversify and adapt to different environments is fundamental to evolution. Progress has been hampered by the difficulties of linking a robust empirical characterization of species niches with flexible evolutionary models that describe their evolution. Consequently, the relative influence of abiotic and biotic factors remains poorly understood. Here, we characterize species' two-dimensional temperature and precipitation niche space occupied (i.e. species niche envelope) as complex geometries and assess their evolution across all Aves using a model that captures heterogeneous evolutionary rates on time-calibrated phylogenies. We find that extant birds coevolved from warm, mesic climatic niches into colder and drier environments and responded to the Cretaceous-Palaeogene (K-Pg) boundary with a dramatic increase in disparity. Contrary to expectations of subsiding rates of niche evolution, our results show that overall rates have increased steadily, with some lineages experiencing exceptionally high evolutionary rates, associated with the colonization of novel niche spaces, and others showing niche stasis. Both competition- and environmental change-driven niche evolution transpire and result in highly heterogeneous rates near the present. Our findings highlight the growing ecological and conservation insights arising from the model-based integration of comprehensive environmental and phylogenetic information.
Collapse
Affiliation(s)
- Ignacio Quintero
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Marc A. Suchard
- Department of Human Genetics, University of California, Los Angeles, 695 Charles E. Young Dr., Los Angeles, CA 90095, USA,Department of Biostatistics, University of California, Los Angeles, 695 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA,Center for Biodiversity and Global Change, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
25
|
Ritchie AM, Hua X, Bromham L. Investigating the reliability of molecular estimates of evolutionary time when substitution rates and speciation rates vary. BMC Ecol Evol 2022; 22:61. [PMID: 35538412 PMCID: PMC9088092 DOI: 10.1186/s12862-022-02015-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background An accurate timescale of evolutionary history is essential to testing hypotheses about the influence of historical events and processes, and the timescale for evolution is increasingly derived from analysis of DNA sequences. But variation in the rate of molecular evolution complicates the inference of time from DNA. Evidence is growing for numerous factors, such as life history and habitat, that are linked both to the molecular processes of mutation and fixation and to rates of macroevolutionary diversification. However, the most widely used methods rely on idealised models of rate variation, such as the uncorrelated and autocorrelated clocks, and molecular dating methods are rarely tested against complex models of rate change. One relationship that is not accounted for in molecular dating is the potential for interaction between molecular substitution rates and speciation, a relationship that has been supported by empirical studies in a growing number of taxa. If these relationships are as widespread as current evidence suggests, they may have a significant influence on molecular dates. Results We simulate phylogenies and molecular sequences under three different realistic rate variation models—one in which speciation rates and substitution rates both vary but are unlinked, one in which they covary continuously and one punctuated model in which molecular change is concentrated in speciation events, using empirical case studies to parameterise realistic simulations. We test three commonly used “relaxed clock” molecular dating methods against these realistic simulations to explore the degree of error in molecular dates under each model. We find average divergence time inference errors ranging from 12% of node age for the unlinked model when reconstructed under an uncorrelated rate prior using BEAST 2, to up to 91% when sequences evolved under the punctuated model are reconstructed under an autocorrelated prior using PAML. Conclusions We demonstrate the potential for substantial errors in molecular dates when both speciation rates and substitution rates vary between lineages. This study highlights the need for tests of molecular dating methods against realistic models of rate variation generated from empirical parameters and known relationships. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02015-8.
Collapse
|
26
|
Ritchie AM, Hua X, Bromham L. Diversification Rate is Associated with Rate of Molecular Evolution in Ray-Finned Fish (Actinopterygii). J Mol Evol 2022; 90:200-214. [PMID: 35262772 PMCID: PMC8975766 DOI: 10.1007/s00239-022-10052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/24/2022] [Indexed: 10/27/2022]
Abstract
Understanding the factors that drive diversification of taxa across the tree of life is a key focus of macroevolutionary research. While the effects of life history, ecology, climate and geography on diversity have been studied for many taxa, the relationship between molecular evolution and diversification has received less attention. However, correlations between rates of molecular evolution and diversification rate have been detected in a range of taxa, including reptiles, plants and birds. A correlation between rates of molecular evolution and diversification rate is a prediction of several evolutionary theories, including the evolutionary speed hypothesis which links variation in mutation rates to differences in speciation rates. If it is widespread, such correlations could also have significant practical impacts, if they are not adequately accounted for in phylogenetic inference of evolutionary rates and timescales. Ray-finned fish (Actinopterygii) offer a prime target to test for this relationship due to their extreme variation in clade size suggesting a wide range of diversification rates. We employ both a sister-pairs approach and a whole-tree approach to test for correlations between substitution rate and net diversification. We also collect life history and ecological trait data and account for potential confounding factors including body size, latitude, max depth and reef association. We find evidence to support a relationship between diversification and synonymous rates of nuclear evolution across two published backbone phylogenies, as well as weak evidence for a relationship between mitochondrial nonsynonymous rates and diversification at the genus level.
Collapse
Affiliation(s)
- Andrew M Ritchie
- Research School of Biological Sciences, Australian National University, Canberra, ACT 2600, Australia. .,Research School of Biological Sciences, Australian National University, Robertson Building, 134 Linnaeus Way, Canberra, ACT 2600, Australia.
| | - Xia Hua
- Research School of Biological Sciences, Australian National University, Canberra, ACT 2600, Australia.,Mathematical Sciences Institute, Australian National University, Canberra, ACT 2600, Australia
| | - Lindell Bromham
- Research School of Biological Sciences, Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
27
|
Carruthers T, Scotland RW. exTREEmaTIME: a method for incorporating uncertainty into divergence time estimates. Biol Open 2022; 11:274355. [PMID: 35147180 PMCID: PMC8845097 DOI: 10.1242/bio.059181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
We present a method of divergence time estimation (exTREEmaTIME) that aims to effectively account for uncertainty in divergence time estimates. The method requires a minimal set of assumptions, and, based on these assumptions, estimates the oldest possible divergence times and youngest possible divergence times that are consistent with the assumptions. We use a series of simulations and empirical analyses to illustrate that exTREEmaTIME is effective at representing uncertainty. We then describe how exTREEmaTIME can act as a basis to determine the implications of the more stringent assumptions that are incorporated into other methods of divergence time estimation that produce more precise estimates. This is critically important given that many of the assumptions that are incorporated into these methods are highly complex, difficult to justify biologically, and as such can lead to estimates that are highly inaccurate. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tom Carruthers
- The Jodrell Building, Royal Botanic Gardens Kew, Richmond, London TW9 3AE, UK
| | - Robert W Scotland
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
28
|
Schneider JV, Jungcurt T, Cardoso D, Amorim AM, Paule J, Zizka G. Predominantly Eastward Long-Distance Dispersal in Pantropical Ochnaceae Inferred From Ancestral Range Estimation and Phylogenomics. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.813336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ochnaceae is a pantropical family with multiple transoceanic disjunctions at deep and shallow levels. Earlier attempts to unravel the processes that led to such biogeographic patterns suffered from insufficient phylogenetic resolution and unclear delimitation of some of the genera. In the present study, we estimated divergence time and ancestral ranges based on a phylogenomic framework with a well-resolved phylogenetic backbone to tackle issues of the timing and direction of dispersal that may explain the modern global distribution of Ochnaceae. The nuclear data provided the more robust framework for divergence time estimation compared to the plastome-scale data, although differences in the inferred clade ages were mostly small. While Ochnaceae most likely originated in West Gondwana during the Late Cretaceous, all crown-group disjunctions are inferred as dispersal-based, most of them as transoceanic long-distance dispersal (LDD) during the Cenozoic. All LDDs occurred in an eastward direction except for the SE Asian clade of Sauvagesieae, which was founded by trans-Pacific dispersal from South America. The most species-rich clade by far, Ochninae, originated from either a widespread neotropical-African ancestor or a solely neotropical ancestor which then dispersed to Africa. The ancestors of this clade then diversified in Africa, followed by subsequent dispersal to the Malagasy region and tropical Asia on multiple instances in three genera during the Miocene-Pliocene. In particular, Ochna might have used the South Arabian land corridor to reach South Asia. Thus, the pantropical distribution of Ochnaceae is the result of LDD either transoceanic or via land bridges/corridors, whereas vicariance might have played a role only along the stem of the family.
Collapse
|
29
|
Dynamic Patterns of Sex Chromosome Evolution in Neognath Birds: Many Independent Barriers to Recombination at the ATP5F1A Locus. BIRDS 2022. [DOI: 10.3390/birds3010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Avian sex chromosomes evolved after the divergence of birds and crocodilians from their common ancestor, so they are younger than the better-studied chromosomes of mammals. It has long been recognized that there may have been several stages to the evolution of avian sex chromosomes. For example, the CHD1 undergoes recombination in paleognaths but not neognaths. Genome assemblies have suggested that there may be variation in the timing of barriers to recombination among Neognathae, but there remains little understanding of the extent of this variability. Here, we look at partial sequences of ATP5F1A, which is on the avian Z and W chromosomes. It is known that recombination of this gene has independently ceased in Galliformes, Anseriformes, and at least five neoavian orders, but whether there are other independent cessations of recombination among Neoaves is not understood. We analyzed a combination of data extracted from published chromosomal-level genomes with data collected using PCR and cloning to identify Z and W copies in 22 orders. Our results suggest that there may be at least 19 independent cessations of recombination within Neognathae, and 3 clades that may still be undergoing recombination (or have only recently ceased recombination). Analyses of ATP5F1A protein sequences revealed an increased amino acid substitution rate for W chromosome gametologs, suggesting relaxed purifying selection on the W chromosome. Supporting this hypothesis, we found that the increased substitution rate was particularly pronounced for buried residues, which are expected to be more strongly constrained by purifying selection. This highlights the dynamic nature of avian sex chromosomes, and that this level of variation among clades means they should be a good system to understand sex chromosome evolution.
Collapse
|
30
|
Benito J, Chen A, Wilson LE, Bhullar BAS, Burnham D, Field DJ. Forty new specimens of Ichthyornis provide unprecedented insight into the postcranial morphology of crownward stem group birds. PeerJ 2022; 10:e13919. [PMID: 36545383 PMCID: PMC9762251 DOI: 10.7717/peerj.13919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/28/2022] [Indexed: 12/23/2022] Open
Abstract
Ichthyornis has long been recognized as a pivotally important fossil taxon for understanding the latest stages of the dinosaur-bird transition, but little significant new postcranial material has been brought to light since initial descriptions of partial skeletons in the 19th Century. Here, we present new information on the postcranial morphology of Ichthyornis from 40 previously undescribed specimens, providing the most complete morphological assessment of the postcranial skeleton of Ichthyornis to date. The new material includes four partially complete skeletons and numerous well-preserved isolated elements, enabling new anatomical observations such as muscle attachments previously undescribed for Mesozoic euornitheans. Among the elements that were previously unknown or poorly represented for Ichthyornis, the new specimens include an almost-complete axial series, a hypocleideum-bearing furcula, radial carpal bones, fibulae, a complete tarsometatarsus bearing a rudimentary hypotarsus, and one of the first-known nearly complete three-dimensional sterna from a Mesozoic avialan. Several pedal phalanges are preserved, revealing a remarkably enlarged pes presumably related to foot-propelled swimming. Although diagnosable as Ichthyornis, the new specimens exhibit a substantial degree of morphological variation, some of which may relate to ontogenetic changes. Phylogenetic analyses incorporating our new data and employing alternative morphological datasets recover Ichthyornis stemward of Hesperornithes and Iaceornis, in line with some recent hypotheses regarding the topology of the crownward-most portion of the avian stem group, and we establish phylogenetically-defined clade names for relevant avialan subclades to help facilitate consistent discourse in future work. The new information provided by these specimens improves our understanding of morphological evolution among the crownward-most non-neornithine avialans immediately preceding the origin of crown group birds.
Collapse
Affiliation(s)
- Juan Benito
- Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, United Kingdom.,Department of Earth Sciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - Albert Chen
- Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, United Kingdom.,Department of Earth Sciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - Laura E Wilson
- Fort Hays State University, Sternberg Museum of Natural History and Department of Geosciences, Hays, Kansas, United States
| | - Bhart-Anjan S Bhullar
- Yale Peabody Museum of Natural History, New Haven, Conneticut, United States.,Department of Earth & Planetary Sciences, Yale University, New Haven, Conneticut, United States
| | - David Burnham
- University of Kansas, Biodiversity Institute and Natural History Museum, Lawrence, Kansas, United States
| | - Daniel J Field
- Department of Earth Sciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom.,University Museum of Zoology, Cambridge, United Kingdom
| |
Collapse
|
31
|
Kiat Y, Slavenko A, Sapir N. Body mass and geographic distribution determined the evolution of the wing flight-feather molt strategy in the Neornithes lineage. Sci Rep 2021; 11:21573. [PMID: 34732791 PMCID: PMC8566465 DOI: 10.1038/s41598-021-00964-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
The evolutionary history of many organisms is characterized by major changes in morphology and distribution. Specifically, alterations of body mass and geographic distribution may profoundly influence organismal life-history traits. Here, we reconstructed the evolutionary history of flight-feather molt strategy using data from 1,808 Neornithes species. Our analysis suggests that the ancestral molt strategy of first-year birds was partial or entirely absent, and that complete wing flight-feather molt in first-year birds first evolved in the late Eocene and Oligocene (25-40 Ma), at least 30 Myr after birds first evolved. Complete flight-feather molt occurred mainly at equatorial latitudes and in relatively low body mass species, following a diversification of body mass within the lineage. We conclude that both body mass and geographic distribution shaped the evolution of molt strategies and propose that the evolutionary transition towards complete juvenile molt in the Neornithes is a novel, relatively late adaptation.
Collapse
Affiliation(s)
- Yosef Kiat
- grid.18098.380000 0004 1937 0562Department of Evolutionary and Environmental Biology & Institute of Evolution, University of Haifa, 3498838 Haifa, Israel
| | - Alex Slavenko
- grid.11835.3e0000 0004 1936 9262School of Biosciences, University of Sheffield, Sheffield, UK
| | - Nir Sapir
- grid.18098.380000 0004 1937 0562Department of Evolutionary and Environmental Biology & Institute of Evolution, University of Haifa, 3498838 Haifa, Israel
| |
Collapse
|
32
|
Harmon LJ, Pennell MW, Henao-Diaz LF, Rolland J, Sipley BN, Uyeda JC. Causes and Consequences of Apparent Timescaling Across All Estimated Evolutionary Rates. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-011921-023644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evolutionary rates play a central role in connecting micro- and macroevolution. All evolutionary rate estimates, including rates of molecular evolution, trait evolution, and lineage diversification, share a similar scaling pattern with time: The highest rates are those measured over the shortest time interval. This creates a disconnect between micro- and macroevolution, although the pattern is the opposite of what some might expect: Patterns of change over short timescales predict that evolution has tremendous potential to create variation and that potential is barely tapped by macroevolution. In this review, we discuss this shared scaling pattern across evolutionary rates. We break down possible explanations for scaling into two categories, estimation error and model misspecification, and discuss how both apply to each type of rate. We also discuss the consequences of this ubiquitous pattern, which can lead to unexpected results when comparing ratesover different timescales. Finally, after addressing purely statistical concerns, we explore a few possibilities for a shared unifying explanation across the three types of rates that results from a failure to fully understand and account for how biological processes scale over time.
Collapse
Affiliation(s)
- Luke J. Harmon
- Institute for Bioinformatics and Evolutionary Studies (IBEST) and Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844, USA
| | - Matthew W. Pennell
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - L. Francisco Henao-Diaz
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jonathan Rolland
- Laboratoire Evolution et Diversité Biologique, CNRS, UMR5174, Université Toulouse III–Paul Sabatier, 31062 Toulouse, France
| | - Breanna N. Sipley
- Program for Bioinformatics and Computational Biology, University of Idaho, Moscow, Idaho 83844, USA
| | - Josef C. Uyeda
- Department of Biological Sciences, Virginia Tech University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
33
|
Hughes JJ, Berv JS, Chester SGB, Sargis EJ, Field DJ. Ecological selectivity and the evolution of mammalian substrate preference across the K-Pg boundary. Ecol Evol 2021; 11:14540-14554. [PMID: 34765124 PMCID: PMC8571592 DOI: 10.1002/ece3.8114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
The Cretaceous-Paleogene (K-Pg) mass extinction 66 million years ago was characterized by a worldwide ecological catastrophe and rapid species turnover. Large-scale devastation of forested environments resulting from the Chicxulub asteroid impact likely influenced the evolutionary trajectories of multiple clades in terrestrial environments, and it has been hypothesized to have biased survivorship in favour of nonarboreal lineages across the K-Pg boundary. Here, we evaluate patterns of substrate preferences across the K-Pg boundary among crown group mammals, a group that underwent rapid diversification following the mass extinction. Using Bayesian, likelihood, and parsimony reconstructions, we identify patterns of mammalian ecological selectivity that are broadly similar to those previously hypothesized for birds. Models based on extant taxa indicate predominant K-Pg survivorship among semi- or nonarboreal taxa, followed by numerous independent transitions to arboreality in the early Cenozoic. However, contrary to the predominant signal, some or all members of total-clade Euarchonta (Primates + Dermoptera + Scandentia) appear to have maintained arboreal habits across the K-Pg boundary, suggesting ecological flexibility during an interval of global habitat instability. We further observe a pronounced shift in character state transitions away from plesiomorphic arboreality associated with the K-Pg transition. Our findings are consistent with the hypothesis that predominantly nonarboreal taxa preferentially survived the end-Cretaceous mass extinction, and emphasize the pivotal influence of the K-Pg transition in shaping the early evolutionary trajectories of extant terrestrial vertebrates.
Collapse
Affiliation(s)
- Jonathan J. Hughes
- Department of Ecology & Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
| | - Jacob S. Berv
- Department of Ecology & Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- University of Michigan Museum of PaleontologyUniversity of MichiganAnn ArborMichiganUSA
| | - Stephen G. B. Chester
- Department of AnthropologyBrooklyn CollegeCity University of New YorkBrooklynNew YorkUSA
- Department of AnthropologyThe Graduate CenterCity University of New YorkNew YorkNew YorkUSA
- New York Consortium in Evolutionary PrimatologyNew YorkNew YorkUSA
| | - Eric J. Sargis
- Department of AnthropologyYale UniversityNew HavenConnecticutUSA
- Divisions of Vertebrate Paleontology and Vertebrate ZoologyYale Peabody Museum of Natural HistoryNew HavenConnecticutUSA
- Yale Institute for Biospheric StudiesNew HavenConnecticutUSA
| | - Daniel J. Field
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- Museum of ZoologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
34
|
Ducatez S, Field DJ. Disentangling the avian altricial-precocial spectrum: Quantitative assessment of developmental mode, phylogenetic signal, and dimensionality. Evolution 2021; 75:2717-2735. [PMID: 34608994 DOI: 10.1111/evo.14365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 01/12/2023]
Abstract
The altricial-precocial spectrum describes patterns of variation in avian developmental mode that greatly influence avian life histories. Appraising a given species' position on this spectrum is therefore fundamental to understanding patterns of avian life history evolution. However, evaluating avian developmental mode remains a relatively subjective task reliant on untested assumptions, including the notion that developmental strategies are distributed along a single dimension of statistical variation. Here, we present a quantitative multivariate framework that objectively discriminates among meaningfully different modes of avian development. We gathered information on seven hatchling and post-hatching traits for up to 4000 extant bird species, and find that most traits related to developmental mode show high phylogenetic signal and little intraclade variation, allowing unknown values to be reliably interpolated. Principal component analyses (PCAs) of these traits illustrate that most variation in hatchling state can be quantified along one dimension of trait space. However, our PCAs also reveal an important second dimension explaining variation in post-hatching behavior, enabling factors related to hatchling state and post-hatching behavior to be disentangled. In order to facilitate future macroevolutionary studies of variation in avian developmental strategies, as well as explorations of covariation between developmental mode and other aspects of avian biology, we present PC scores for 9993 extant avian species.
Collapse
Affiliation(s)
- Simon Ducatez
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.,Institut de Recherche pour le Développement (IRD), UMR 241 EIO (Ecosystèmes Insulaires Océaniens), Papeete, Tahiti, French Polynesia
| | - Daniel J Field
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.,Museum of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Evolution and dispersal of snakes across the Cretaceous-Paleogene mass extinction. Nat Commun 2021; 12:5335. [PMID: 34521829 PMCID: PMC8440539 DOI: 10.1038/s41467-021-25136-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 07/22/2021] [Indexed: 02/08/2023] Open
Abstract
Mass extinctions have repeatedly shaped global biodiversity. The Cretaceous-Paleogene (K-Pg) mass extinction caused the demise of numerous vertebrate groups, and its aftermath saw the rapid diversification of surviving mammals, birds, frogs, and teleost fishes. However, the effects of the K-Pg extinction on the evolution of snakes-a major clade of predators comprising over 3,700 living species-remains poorly understood. Here, we combine an extensive molecular dataset with phylogenetically and stratigraphically constrained fossil calibrations to infer an evolutionary timescale for Serpentes. We reveal a potential diversification among crown snakes associated with the K-Pg mass extinction, led by the successful colonisation of Asia by the major extant clade Afrophidia. Vertebral morphometrics suggest increasing morphological specialisation among marine snakes through the Paleogene. The dispersal patterns of snakes following the K-Pg underscore the importance of this mass extinction event in shaping Earth's extant vertebrate faunas.
Collapse
|
36
|
Holosteans contextualize the role of the teleost genome duplication in promoting the rise of evolutionary novelties in the ray-finned fish innate immune system. Immunogenetics 2021; 73:479-497. [PMID: 34510270 DOI: 10.1007/s00251-021-01225-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/06/2021] [Indexed: 01/16/2023]
Abstract
Over 99% of ray-finned fishes (Actinopterygii) are teleosts, a clade that comprises half of all living vertebrate species that have diversified across virtually all fresh and saltwater ecosystems. This ecological breadth raises the question of how the immunogenetic diversity required to persist under heterogeneous pathogen pressures evolved. The teleost genome duplication (TGD) has been hypothesized as the evolutionary event that provided the substrate for rapid genomic evolution and innovation. However, studies of putative teleost-specific innate immune receptors have been largely limited to comparisons either among teleosts or between teleosts and distantly related vertebrate clades such as tetrapods. Here we describe and characterize the receptor diversity of two clustered innate immune gene families in the teleost sister lineage: Holostei (bowfin and gars). Using genomic and transcriptomic data, we provide a detailed investigation of the phylogenetic history and conserved synteny of gene clusters encoding diverse immunoglobulin domain-containing proteins (DICPs) and novel immune-type receptors (NITRs). These data demonstrate an ancient linkage of DICPs to the major histocompatibility complex (MHC) and reveal an evolutionary origin of NITR variable-joining (VJ) exons that predate the TGD by at least 50 million years. Further characterizing the receptor diversity of Holostean DICPs and NITRs illuminates a sequence diversity that rivals the diversity of these innate immune receptor families in many teleosts. Taken together, our findings provide important historical context for the evolution of these gene families that challenge prevailing expectations concerning the consequences of the TGD during actinopterygiian evolution.
Collapse
|
37
|
Wang Z, Zhang J, Xu X, Witt C, Deng Y, Chen G, Meng G, Feng S, Xu L, Szekely T, Zhang G, Zhou Q. Phylogeny and sex chromosome evolution of palaeognathae. J Genet Genomics 2021; 49:109-119. [PMID: 34872841 DOI: 10.1016/j.jgg.2021.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
Many paleognaths (ratites and tinamous) have a pair of homomorphic ZW sex chromosomes in contrast to the highly differentiated sex chromosomes of most other birds. To understand the evolutionary causes for the different tempos of sex chromosome evolution, we produced female genomes of 12 paleognathous species and reconstructed the phylogeny and the evolutionary history of paleognathous sex chromosomes. We uncovered that Palaeognathae sex chromosomes had undergone stepwise recombination suppression and formed a pattern of "evolutionary strata". Nine of the 15 studied species' sex chromosomes have maintained homologous recombination in their long pseudoautosomal regions extending more than half of the entire chromosome length. We found that in older strata, the W chromosome suffered more serious functional gene loss. Their homologous Z-linked regions, compared with other genomic regions, have produced an excess of species-specific autosomal duplicated genes that evolved female-specific expression, in contrast to their broadly expressed progenitors. We speculate the "defeminization" of Z chromosome with underrepresentation of female-biased genes and slow divergence of sex chromosomes of paleognaths might be related to their distinctive mode of sexual selection targeting females that evolved in their common ancestors.
Collapse
Affiliation(s)
- Zongji Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria; Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Xiaoman Xu
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Christopher Witt
- Department of Biology and the Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yuan Deng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Guangji Chen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Guanliang Meng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Shaohong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Luohao Xu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
| | - Tamas Szekely
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Milner Center for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA1 7AY, UK
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria; Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.
| |
Collapse
|
38
|
Ogilvie HA, Mendes FK, Vaughan TG, Matzke NJ, Stadler T, Welch D, Drummond AJ. Novel Integrative Modeling of Molecules and Morphology across Evolutionary Timescales. Syst Biol 2021; 71:208-220. [PMID: 34228807 PMCID: PMC8677526 DOI: 10.1093/sysbio/syab054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Evolutionary models account for either population- or species-level processes but usually not both. We introduce a new model, the FBD-MSC, which makes it possible for the first time to integrate both the genealogical and fossilization phenomena, by means of the multispecies coalescent (MSC) and the fossilized birth–death (FBD) processes. Using this model, we reconstruct the phylogeny representing all extant and many fossil Caninae, recovering both the relative and absolute time of speciation events. We quantify known inaccuracy issues with divergence time estimates using the popular strategy of concatenating molecular alignments and show that the FBD-MSC solves them. Our new integrative method and empirical results advance the paradigm and practice of probabilistic total evidence analyses in evolutionary biology.[Caninae; fossilized birth–death; molecular clock; multispecies coalescent; phylogenetics; species trees.]
Collapse
Affiliation(s)
- Huw A Ogilvie
- Department of Computer Science, Rice University, Houston TX, 77005, USA
| | - Fábio K Mendes
- Centre for Computational Evolution, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Timothy G Vaughan
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, 4058, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Nicholas J Matzke
- Centre for Computational Evolution, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, 4058, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - David Welch
- Centre for Computational Evolution, The University of Auckland, Auckland, 1010, New Zealand.,School of Computer Science, The University of Auckland, Auckland, 1010, New Zealand
| | - Alexei J Drummond
- Centre for Computational Evolution, The University of Auckland, Auckland, 1010, New Zealand.,School of Computer Science, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
39
|
Torres CR, Norell MA, Clarke JA. Bird neurocranial and body mass evolution across the end-Cretaceous mass extinction: The avian brain shape left other dinosaurs behind. SCIENCE ADVANCES 2021; 7:eabg7099. [PMID: 34330706 PMCID: PMC8324052 DOI: 10.1126/sciadv.abg7099] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/15/2021] [Indexed: 05/30/2023]
Abstract
Birds today are the most diverse clade of terrestrial vertebrates, and understanding why extant birds (Aves) alone among dinosaurs survived the Cretaceous-Paleogene mass extinction is crucial to reconstructing the history of life. Hypotheses proposed to explain this pattern demand identification of traits unique to Aves. However, this identification is complicated by a lack of data from non-avian birds. Here, we interrogate survivorship hypotheses using data from a new, nearly complete skull of Late Cretaceous (~70 million years) bird Ichthyornis and reassess shifts in bird body size across the Cretaceous-Paleogene boundary. Ichthyornis exhibited a wulst and segmented palate, previously proposed to have arisen within extant birds. The origin of Aves is marked by larger, reshaped brains indicating selection for relatively large telencephala and eyes but not by uniquely small body size. Sensory system differences, potentially linked to these shifts, may help explain avian survivorship relative to other dinosaurs.
Collapse
Affiliation(s)
- Christopher R Torres
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
- Jackson School of Geoscience, University of Texas at Austin, Austin, TX, USA
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Mark A Norell
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Julia A Clarke
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
- Jackson School of Geoscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
40
|
Roycroft E, Achmadi A, Callahan CM, Esselstyn JA, Good JM, Moussalli A, Rowe KC. Molecular Evolution of Ecological Specialisation: Genomic Insights from the Diversification of Murine Rodents. Genome Biol Evol 2021; 13:6275684. [PMID: 33988699 PMCID: PMC8258016 DOI: 10.1093/gbe/evab103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Adaptive radiations are characterized by the diversification and ecological differentiation of species, and replicated cases of this process provide natural experiments for understanding the repeatability and pace of molecular evolution. During adaptive radiation, genes related to ecological specialization may be subject to recurrent positive directional selection. However, it is not clear to what extent patterns of lineage-specific ecological specialization (including phenotypic convergence) are correlated with shared signatures of molecular evolution. To test this, we sequenced whole exomes from a phylogenetically dispersed sample of 38 murine rodent species, a group characterized by multiple, nested adaptive radiations comprising extensive ecological and phenotypic diversity. We found that genes associated with immunity, reproduction, diet, digestion, and taste have been subject to pervasive positive selection during the diversification of murine rodents. We also found a significant correlation between genome-wide positive selection and dietary specialization, with a higher proportion of positively selected codon sites in derived dietary forms (i.e., carnivores and herbivores) than in ancestral forms (i.e., omnivores). Despite striking convergent evolution of skull morphology and dentition in two distantly related worm-eating specialists, we did not detect more genes with shared signatures of positive or relaxed selection than in a nonconvergent species comparison. Although a small number of the genes we detected can be incidentally linked to craniofacial morphology or diet, protein-coding regions are unlikely to be the primary genetic basis of this complex convergent phenotype. Our results suggest a link between positive selection and derived ecological phenotypes, and highlight specific genes and general functional categories that may have played an integral role in the extensive and rapid diversification of murine rodents.
Collapse
Affiliation(s)
- Emily Roycroft
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Sciences Department, Museums Victoria, Melbourne, Victoria, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Anang Achmadi
- Museum Zoologicum Bogoriense, Research Center for Biology, Cibinong, Jawa Barat, Indonesia
| | - Colin M Callahan
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Jacob A Esselstyn
- Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, Los Angeles, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA.,Wildlife Biology Program, University of Montana, Missoula, Montana, USA
| | - Adnan Moussalli
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Sciences Department, Museums Victoria, Melbourne, Victoria, Australia
| | - Kevin C Rowe
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Sciences Department, Museums Victoria, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Marjanović D. The Making of Calibration Sausage Exemplified by Recalibrating the Transcriptomic Timetree of Jawed Vertebrates. Front Genet 2021; 12:521693. [PMID: 34054911 PMCID: PMC8149952 DOI: 10.3389/fgene.2021.521693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/22/2021] [Indexed: 01/20/2023] Open
Abstract
Molecular divergence dating has the potential to overcome the incompleteness of the fossil record in inferring when cladogenetic events (splits, divergences) happened, but needs to be calibrated by the fossil record. Ideally but unrealistically, this would require practitioners to be specialists in molecular evolution, in the phylogeny and the fossil record of all sampled taxa, and in the chronostratigraphy of the sites the fossils were found in. Paleontologists have therefore tried to help by publishing compendia of recommended calibrations, and molecular biologists unfamiliar with the fossil record have made heavy use of such works (in addition to using scattered primary sources and copying from each other). Using a recent example of a large node-dated timetree inferred from molecular data, I reevaluate all 30 calibrations in detail, present the current state of knowledge on them with its various uncertainties, rerun the dating analysis, and conclude that calibration dates cannot be taken from published compendia or other secondary or tertiary sources without risking strong distortions to the results, because all such sources become outdated faster than they are published: 50 of the (primary) sources I cite to constrain calibrations were published in 2019, half of the total of 280 after mid-2016, and 90% after mid-2005. It follows that the present work cannot serve as such a compendium either; in the slightly longer term, it can only highlight known and overlooked problems. Future authors will need to solve each of these problems anew through a thorough search of the primary paleobiological and chronostratigraphic literature on each calibration date every time they infer a new timetree, and that literature is not optimized for that task, but largely has other objectives.
Collapse
Affiliation(s)
- David Marjanović
- Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, Germany
| |
Collapse
|
42
|
Carruthers T, Sanderson MJ, Scotland RW. The Implications of Lineage-Specific Rates for Divergence Time Estimation. Syst Biol 2021; 69:660-670. [PMID: 31808929 PMCID: PMC7302051 DOI: 10.1093/sysbio/syz080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 11/29/2022] Open
Abstract
Rate variation adds considerable complexity to divergence time estimation in molecular phylogenies. Here, we evaluate the impact of lineage-specific rates—which we define as among-branch-rate-variation that acts consistently across the entire genome. We compare its impact to residual rates—defined as among-branch-rate-variation that shows a different pattern of rate variation at each sampled locus, and gene-specific rates—defined as variation in the average rate across all branches at each sampled locus. We show that lineage-specific rates lead to erroneous divergence time estimates, regardless of how many loci are sampled. Further, we show that stronger lineage-specific rates lead to increasing error. This contrasts to residual rates and gene-specific rates, where sampling more loci significantly reduces error. If divergence times are inferred in a Bayesian framework, we highlight that error caused by lineage-specific rates significantly reduces the probability that the 95% highest posterior density includes the correct value, and leads to sensitivity to the prior. Use of a more complex rate prior—which has recently been proposed to model rate variation more accurately—does not affect these conclusions. Finally, we show that the scale of lineage-specific rates used in our simulation experiments is comparable to that of an empirical data set for the angiosperm genus Ipomoea. Taken together, our findings demonstrate that lineage-specific rates cause error in divergence time estimates, and that this error is not overcome by analyzing genomic scale multilocus data sets. [Divergence time estimation; error; rate variation.]
Collapse
Affiliation(s)
- Tom Carruthers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 East Lowell, Tucson, AZ 85721-0088, USA
| | - Robert W Scotland
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
43
|
Abstract
Understanding and representing uncertainty is crucial in academic research because it enables studies to build on the conclusions of previous studies, leading to robust advances in a particular field. Here, we evaluate the nature of uncertainty and the manner by which it is represented in divergence time estimation, a field that is fundamental to many aspects of macroevolutionary research, and where there is evidence that uncertainty has been seriously underestimated. We address this issue in the context of methods used in divergence time estimation, and with respect to the manner by which time-calibrated phylogenies are interpreted. With respect to methods, we discuss how the assumptions underlying different methods may not adequately reflect uncertainty about molecular evolution, the fossil record, or diversification rates. Therefore, divergence time estimates may not adequately reflect uncertainty and may be directly contradicted by subsequent findings. For the interpretation of time-calibrated phylogenies, we discuss how the use of time-calibrated phylogenies for reconstructing general evolutionary timescales leads to inferences about macroevolution that are highly sensitive to methodological limitations in how uncertainty is accounted for. By contrast, we discuss how the use of time-calibrated phylogenies to test specific hypotheses leads to inferences about macroevolution that are less sensitive to methodological limitations. Given that many biologists wish to use time-calibrated phylogenies to reconstruct general evolutionary timescales, we conclude that the development of methods of divergence time estimation that adequately account for uncertainty is necessary. [Divergence time estimation; macroevolution; uncertainty.].
Collapse
Affiliation(s)
- Tom Carruthers
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens Kew, Richmond, London, TW9 3AE, UK
| | - Robert W Scotland
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
44
|
Ritchie AM, Hua X, Cardillo M, Yaxley KJ, Dinnage R, Bromham L. Phylogenetic diversity metrics from molecular phylogenies: modelling expected degree of error under realistic rate variation. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Andrew M. Ritchie
- Research School of Biological Sciences Australian National University Canberra ACT Australia
| | - Xia Hua
- Research School of Biological Sciences Australian National University Canberra ACT Australia
- Mathematical Sciences Institute Australian National University Canberra ACT Australia
| | - Marcel Cardillo
- Research School of Biological Sciences Australian National University Canberra ACT Australia
| | - Keaghan J. Yaxley
- Research School of Biological Sciences Australian National University Canberra ACT Australia
| | - Russell Dinnage
- Research School of Biological Sciences Australian National University Canberra ACT Australia
| | - Lindell Bromham
- Research School of Biological Sciences Australian National University Canberra ACT Australia
| |
Collapse
|
45
|
Koenen EJM, Ojeda DI, Bakker FT, Wieringa JJ, Kidner C, Hardy OJ, Pennington RT, Herendeen PS, Bruneau A, Hughes CE. The Origin of the Legumes is a Complex Paleopolyploid Phylogenomic Tangle Closely Associated with the Cretaceous-Paleogene (K-Pg) Mass Extinction Event. Syst Biol 2020; 70:508-526. [PMID: 32483631 PMCID: PMC8048389 DOI: 10.1093/sysbio/syaa041] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/06/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
The consequences of the Cretaceous–Paleogene (K–Pg) boundary (KPB) mass extinction for the evolution of plant diversity remain poorly understood, even though evolutionary turnover of plant lineages at the KPB is central to understanding assembly of the Cenozoic biota. The apparent concentration of whole genome duplication (WGD) events around the KPB may have played a role in survival and subsequent diversification of plant lineages. To gain new insights into the origins of Cenozoic biodiversity, we examine the origin and early evolution of the globally diverse legume family (Leguminosae or Fabaceae). Legumes are ecologically (co-)dominant across many vegetation types, and the fossil record suggests that they rose to such prominence after the KPB in parallel with several well-studied animal clades including Placentalia and Neoaves. Furthermore, multiple WGD events are hypothesized to have occurred early in legume evolution. Using a recently inferred phylogenomic framework, we investigate the placement of WGDs during early legume evolution using gene tree reconciliation methods, gene count data and phylogenetic supernetwork reconstruction. Using 20 fossil calibrations we estimate a revised timeline of legume evolution based on 36 nuclear genes selected as informative and evolving in an approximately clock-like fashion. To establish the timing of WGDs we also date duplication nodes in gene trees. Results suggest either a pan-legume WGD event on the stem lineage of the family, or an allopolyploid event involving (some of) the earliest lineages within the crown group, with additional nested WGDs subtending subfamilies Papilionoideae and Detarioideae. Gene tree reconciliation methods that do not account for allopolyploidy may be misleading in inferring an earlier WGD event at the time of divergence of the two parental lineages of the polyploid, suggesting that the allopolyploid scenario is more likely. We show that the crown age of the legumes dates to the Maastrichtian or early Paleocene and that, apart from the Detarioideae WGD, paleopolyploidy occurred close to the KPB. We conclude that the early evolution of the legumes followed a complex history, in which multiple auto- and/or allopolyploidy events coincided with rapid diversification and in association with the mass extinction event at the KPB, ultimately underpinning the evolutionary success of the Leguminosae in the Cenozoic. [Allopolyploidy; Cretaceous–Paleogene (K–Pg) boundary; Fabaceae, Leguminosae; paleopolyploidy; phylogenomics; whole genome duplication events]
Collapse
Affiliation(s)
- Erik J M Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Dario I Ojeda
- Service Évolution Biologique et Écologie, Faculté des Sciences, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.,Norwegian Institute of Bioeconomy Research, Høgskoleveien 8, 1433 Ås, Norway
| | - Freek T Bakker
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jan J Wieringa
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
| | - Catherine Kidner
- Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK.,School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Rd, Edinburgh, EH9 3JU, UK
| | - Olivier J Hardy
- Service Évolution Biologique et Écologie, Faculté des Sciences, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium
| | - R Toby Pennington
- Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK.,Geography, University of Exeter, Amory Building, Rennes Drive, Exeter, EX4 4RJ, UK
| | | | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montreal, QC H1X 2B2, Canada
| | - Colin E Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| |
Collapse
|
46
|
Deep-Time Demographic Inference Suggests Ecological Release as Driver of Neoavian Adaptive Radiation. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12040164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Assessing the applicability of theory to major adaptive radiations in deep time represents an extremely difficult problem in evolutionary biology. Neoaves, which includes 95% of living birds, is believed to have undergone a period of rapid diversification roughly coincident with the Cretaceous–Paleogene (K-Pg) boundary. We investigate whether basal neoavian lineages experienced an ecological release in response to ecological opportunity, as evidenced by density compensation. We estimated effective population sizes (Ne) of basal neoavian lineages by combining coalescent branch lengths (CBLs) and the numbers of generations between successive divergences. We used a modified version of Accurate Species TRee Algorithm (ASTRAL) to estimate CBLs directly from insertion–deletion (indel) data, as well as from gene trees using DNA sequence and/or indel data. We found that some divergences near the K-Pg boundary involved unexpectedly high gene tree discordance relative to the estimated number of generations between speciation events. The simplest explanation for this result is an increase in Ne, despite the caveats discussed herein. It appears that at least some early neoavian lineages, similar to the ancestor of the clade comprising doves, mesites, and sandgrouse, experienced ecological release near the time of the K-Pg mass extinction.
Collapse
|
47
|
Yusuf L, Heatley MC, Palmer JPG, Barton HJ, Cooney CR, Gossmann TI. Noncoding regions underpin avian bill shape diversification at macroevolutionary scales. Genome Res 2020; 30:553-565. [PMID: 32269134 PMCID: PMC7197477 DOI: 10.1101/gr.255752.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Recent progress has been made in identifying genomic regions implicated in trait evolution on a microevolutionary scale in many species, but whether these are relevant over macroevolutionary time remains unclear. Here, we directly address this fundamental question using bird beak shape, a key evolutionary innovation linked to patterns of resource use, divergence, and speciation, as a model trait. We integrate class-wide geometric-morphometric analyses with evolutionary sequence analyses of 10,322 protein-coding genes as well as 229,001 genomic regions spanning 72 species. We identify 1434 protein-coding genes and 39,806 noncoding regions for which molecular rates were significantly related to rates of bill shape evolution. We show that homologs of the identified protein-coding genes as well as genes in close proximity to the identified noncoding regions are involved in craniofacial embryo development in mammals. They are associated with embryonic stem cell pathways, including BMP and Wnt signaling, both of which have repeatedly been implicated in the morphological development of avian beaks. This suggests that identifying genotype-phenotype association on a genome-wide scale over macroevolutionary time is feasible. Although the coding and noncoding gene sets are associated with similar pathways, the actual genes are highly distinct, with significantly reduced overlap between them and bill-related phenotype associations specific to noncoding loci. Evidence for signatures of recent diversifying selection on our identified noncoding loci in Darwin finch populations further suggests that regulatory rather than coding changes are major drivers of morphological diversification over macroevolutionary times.
Collapse
Affiliation(s)
- Leeban Yusuf
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Centre for Biological Diversity, School of Biology, University of St. Andrews, Fife, KY16 9TF, United Kingdom
| | - Matthew C Heatley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Joseph P G Palmer
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| | - Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Organismal and Evolutionary Biology Research Programme, Viikinkaari 9 (PL 56), University of Helsinki, Helsinki, FI-00014, Finland
| | - Christopher R Cooney
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Department of Animal Behaviour, Bielefeld University, Bielefeld, DE-33501, Germany
| |
Collapse
|
48
|
Field DJ, Benito J, Chen A, Jagt JWM, Ksepka DT. Late Cretaceous neornithine from Europe illuminates the origins of crown birds. Nature 2020; 579:397-401. [PMID: 32188952 DOI: 10.1038/s41586-020-2096-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/04/2020] [Indexed: 11/09/2022]
Abstract
Our understanding of the earliest stages of crown bird evolution is hindered by an exceedingly sparse avian fossil record from the Mesozoic era. The most ancient phylogenetic divergences among crown birds are known to have occurred in the Cretaceous period1-3, but stem-lineage representatives of the deepest subclades of crown birds-Palaeognathae (ostriches and kin), Galloanserae (landfowl and waterfowl) and Neoaves (all other extant birds)-are unknown from the Mesozoic era. As a result, key questions related to the ecology4,5, biogeography3,6,7 and divergence times1,8-10 of ancestral crown birds remain unanswered. Here we report a new Mesozoic fossil that occupies a position close to the last common ancestor of Galloanserae and fills a key phylogenetic gap in the early evolutionary history of crown birds10,11. Asteriornis maastrichtensis, gen. et sp. nov., from the Maastrichtian age of Belgium (66.8-66.7 million years ago), is represented by a nearly complete, three-dimensionally preserved skull and associated postcranial elements. The fossil represents one of the only well-supported crown birds from the Mesozoic era12, and is the first Mesozoic crown bird with well-represented cranial remains. Asteriornis maastrichtensis exhibits a previously undocumented combination of galliform (landfowl)-like and anseriform (waterfowl)-like features, and its presence alongside a previously reported Ichthyornis-like taxon from the same locality13 provides direct evidence of the co-occurrence of crown birds and avialan stem birds. Its occurrence in the Northern Hemisphere challenges biogeographical hypotheses of a Gondwanan origin of crown birds3, and its relatively small size and possible littoral ecology may corroborate proposed ecological filters4,5,9 that influenced the persistence of crown birds through the end-Cretaceous mass extinction.
Collapse
Affiliation(s)
- Daniel J Field
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.
| | - Juan Benito
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.,Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, UK
| | - Albert Chen
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.,Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, UK
| | - John W M Jagt
- Natuurhistorisch Museum Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
49
|
Budd GE, Mann RP. The dynamics of stem and crown groups. SCIENCE ADVANCES 2020; 6:eaaz1626. [PMID: 32128421 PMCID: PMC7030935 DOI: 10.1126/sciadv.aaz1626] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/03/2019] [Indexed: 05/22/2023]
Abstract
The fossil record of the origins of major groups such as animals and birds has generated considerable controversy, especially when it conflicts with timings based on molecular clock estimates. Here, we model the diversity of "stem" (basal) and "crown" (modern) members of groups using a "birth-death model," the results of which qualitatively match many large-scale patterns seen in the fossil record. Typically, the stem group diversifies rapidly until the crown group emerges, at which point its diversity collapses, followed shortly by its extinction. Mass extinctions can disturb this pattern and create long stem groups such as the dinosaurs. Crown groups are unlikely to emerge either cryptically or just before mass extinctions, in contradiction to popular hypotheses such as the "phylogenetic fuse". The patterns revealed provide an essential context for framing ecological and evolutionary explanations for how major groups originate, and strengthen our confidence in the reliability of the fossil record.
Collapse
Affiliation(s)
- Graham E. Budd
- Department of Earth Sciences, Palaeobiology Programme, Uppsala University, Uppsala, Sweden
- Corresponding author.
| | - Richard P. Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds, UK
- The Alan Turing Institute, London, UK
| |
Collapse
|
50
|
Mackiewicz P, Urantówka AD, Kroczak A, Mackiewicz D. Resolving Phylogenetic Relationships within Passeriformes Based on Mitochondrial Genes and Inferring the Evolution of Their Mitogenomes in Terms of Duplications. Genome Biol Evol 2019; 11:2824-2849. [PMID: 31580435 PMCID: PMC6795242 DOI: 10.1093/gbe/evz209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.
Collapse
Affiliation(s)
- Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
| | - Adam Dawid Urantówka
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Aleksandra Kroczak
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Dorota Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
| |
Collapse
|