1
|
Avila A, Prieto L, Luna-Acosta A. Nine decades of data on environmental chemical pollutant exposure in dogs: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45515-45527. [PMID: 36807041 PMCID: PMC10097795 DOI: 10.1007/s11356-022-24791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
In recent decades, a global concern associated with environmental chemical contamination has emerged as an important risk factor for the development of human diseases. Risk assessment methods based on animal approaches have shown to be very useful as early warning systems. However, questions, knowledge gaps, and limitations still need to be addressed in animals close to humans, such as dogs. The objective of this study was to analyze citation patterns, impact of publications, and most relevant authors, countries, institutional affiliations, and lines of research on environmental chemical contaminants and their relationship with dogs, in terms of exposure and biological effects. For this, a bibliometric analysis was carried out. Results revealed an increase in scientific production on this subject during the last 90 years in journals such as Health Physics, Science of the Total Environment, and Plos One, highlighting authors such as Muggenburg, Sonne, Boecker, and Dietz. The USA, Brazil, Germany, and the UK and universities such as California, Colorado State, and Purdue were the most relevant countries and institutional affiliations in scientific production and collaboration in relation to this topic. There is a growing interest in the development of lines of research related to heavy metals (mercury and lead mainly) and persistent organic compounds (PCBs, PBDEs, pesticides) using dogs as sentinels, as well as new sources of interest related to zoonosis and One Health. Finally, issues related to pollutants, sentinel lymph nodes, and epidemiology appear as new areas of research. These results highlight interesting current challenges and future research perspectives on dogs as sentinels for environmental chemical contamination.
Collapse
Affiliation(s)
- Albert Avila
- Departamento de Ecología y Territorio, Facultad de Estudios Ambientales Y Rurales, Pontificia Universidad Javeriana, Transversal 4 # 42-00, Edificio 67, Piso 8, Bogotá, Colombia.
| | - Laura Prieto
- Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 43-82, Bogotá, Colombia
| | - Andrea Luna-Acosta
- Departamento de Ecología y Territorio, Facultad de Estudios Ambientales Y Rurales, Pontificia Universidad Javeriana, Transversal 4 # 42-00, Edificio 67, Piso 8, Bogotá, Colombia
| |
Collapse
|
2
|
Pocar P, Grieco V, Aidos L, Borromeo V. Endocrine-Disrupting Chemicals and Their Effects in Pet Dogs and Cats: An Overview. Animals (Basel) 2023; 13:ani13030378. [PMID: 36766267 PMCID: PMC9913107 DOI: 10.3390/ani13030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Over the past few decades, several pollutants classified as environmental endocrine-disrupting chemicals (EDCs) have become a matter of significant public health concern. Companion animals play a major role in human society, and pet ownership is substantially increasing worldwide. These intimate human-pet relationships imply sharing much of the same environment, thus including exposure to similar levels of EDCs in daily routine. Here, we review the current knowledge on the sources and routes of exposure to EDCs in domestic indoor and outdoor environments and discuss whether endocrine disruption is a health concern in pets. We summarize the phenomenon of endocrine disruption, providing examples of EDCs with a known impact on dog and cat health. Then, we propose an overview of the literature on the adverse effects of EDCs in domestic pets, with a special focus on the health of reproductive and thyroid systems. Finally, we explore the potential role of companion animals as unintentional sentinels of environmental exposure to EDCs and the implications for public health risk assessment in a "shared risk" scenario. Overall, this review supports the need for an integrated approach considering humans, animals, and the environment as a whole for a comprehensive assessment of the impact of EDCs on human and animal health.
Collapse
|
3
|
Kazemi Shariat Panahi H, Dehhaghi M, Lam SS, Peng W, Aghbashlo M, Tabatabaei M, Guillemin GJ. Oncolytic viruses as a promising therapeutic strategy against the detrimental health impacts of air pollution: The case of glioblastoma multiforme. Semin Cancer Biol 2022; 86:1122-1142. [PMID: 34004331 DOI: 10.1016/j.semcancer.2021.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 01/27/2023]
Abstract
Human livelihood highly depends on applying different sources of energy whose utilization is associated with air pollution. On the other hand, air pollution may be associated with glioblastoma multiforme (GBM) development. Unlike other environmental causes of cancer (e.g., irradiation), air pollution cannot efficiently be controlled by geographical borders, regulations, and policies. The unavoidable exposure to air pollution can modify cancer incidence and mortality. GBM treatment with chemotherapy or even its surgical removal has proven insufficient (100% recurrence rate; patient's survival mean of 15 months; 90% fatality within five years) due to glioma infiltrative and migratory capacities. Given the barrage of attention and research investments currently plowed into next-generation cancer therapy, oncolytic viruses are perhaps the most vigorously pursued. Provision of an insight into the current state of the research and future direction is essential for stimulating new ideas with the potentials of filling research gaps. This review manuscript aims to overview types of brain cancer, their burden, and different causative agents. It also describes why air pollution is becoming a concerning factor. The different opinions on the association of air pollution with brain cancer are reviewed. It tries to address the significant controversy in this field by hypothesizing the air-pollution-brain-cancer association via inflammation and atopic conditions. The last section of this review deals with the oncolytic viruses, which have been used in, or are still under clinical trials for GBM treatment. Engineered adenoviruses (i.e., DNX-2401, DNX-2440, CRAd8-S-pk7 loaded Neural stem cells), herpes simplex virus type 1 (i.e., HSV-1 C134, HSV-1 rQNestin34.5v.2, HSV-1 G207, HSV-1 M032), measles virus (i.e., MV-CEA), parvovirus (i.e., ParvOryx), poliovirus (i.e., Poliovirus PVSRIPO), reovirus (i.e., pelareorep), moloney murine leukemia virus (i.e., Toca 511 vector), and vaccinia virus (i.e., vaccinia virus TG6002) as possible life-changing alleviations for GBM have been discussed. To the best of our knowledge, this review is the first review that comprehensively discusses both (i) the negative/positive association of air pollution with GBM; and (ii) the application of oncolytic viruses for GBM, including the most recent advances and clinical trials. It is also the first review that addresses the controversies over air pollution and brain cancer association. We believe that the article will significantly appeal to a broad readership of virologists, oncologists, neurologists, environmentalists, and those who work in the field of (bio)energy. Policymakers may also use it to establish better health policies and regulations about air pollution and (bio)fuels exploration, production, and consumption.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Mona Dehhaghi
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; PANDIS.Org, Australia
| | - Su Shiung Lam
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wanxi Peng
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Mortaza Aghbashlo
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Biofuel Research Team (BRTeam), Terengganu, Malaysia; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; PANDIS.Org, Australia.
| |
Collapse
|
4
|
Bai H, Wang Y, Wu P, Wang Z. Ambient particulate matter (PM10)-induced injury in feline lung cells and nutritional intervention. Heliyon 2022; 8:e09550. [PMID: 35663753 PMCID: PMC9156945 DOI: 10.1016/j.heliyon.2022.e09550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 10/31/2022] Open
Abstract
Ambient particulate matter (APM) is extremely harmful to life's health. In this study, we investigated cellular injury in cat (Felix catus) lung cells (FCA-L2) exposed to organic and water-soluble extracts from APM. As well, the protective effect of vitamin E (VE), lycopene and a mixture of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (molar concentration ratio of 2:1) against this damage was evaluated. Organic and water-soluble extracts induced oxidative stress in FCA-L2 cells, as evidenced by excess reactive oxygen species production and mitochondrial damage, while treatment with VE, lycopene and EPA: DHA remarkably alleviated these indices. It was further found that treatment with EPA: DHA decreased lactate dehydrogenase and malondialdehyde, as well as increased activities of superoxide dismutase, glutathione peroxidase and catalase. Our study confirmed that nutrients mediates APM-induced oxidative stress via antioxidant proteins. Also, these findings could provide new insights into reducing APM-induced cytotoxicity by nutritional supplementation based on antioxidant compounds for animals.
Collapse
|
5
|
Nevárez-Garza AM, Garza-Arredondo AJ, Zamora-Avila DE, Moreno-Degollado G, Rodriguez-Tovar LE. Mixed Pneumoconiosis Associated with Diffuse Pulmonary Ossification in Wild Coyotes (Canis latrans). J Comp Pathol 2021; 189:72-76. [PMID: 34886988 DOI: 10.1016/j.jcpa.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/13/2021] [Accepted: 10/02/2021] [Indexed: 11/19/2022]
Abstract
Mixed pneumoconiosis is a pulmonary disease associated with several inhaled mineral irritants. Dust was found in the alveolar macrophages, alveolar and bronchial walls and pulmonary interstitial tissue of two female coyotes (Canis latrans). The dust contained large amounts of silica, coal, iron and copper particles, which were associated with severe pulmonary disease. Lung injury in the animals was characterized by pulmonary nodules, severe interstitial fibrosis, alveolar hyperplasia and bone formation within alveolar spaces. Coyotes inhaled mineral dust while roaming a field close to three mineral extraction zones. To our knowledge, this is the first report of the concomitant inhalation of multiple minerals in association with diffuse pulmonary ossification in the pulmonary parenchyma of two wild canine animals.
Collapse
Affiliation(s)
- Alicia M Nevárez-Garza
- Cuerpo Académico de Zoonosis y Enfermedades Emergentes, General Escobedo, Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Nuevo León, Nuevo León, Mexico
| | - Aimé J Garza-Arredondo
- Cuerpo Académico de Nutrición y Producción Agroalimentaria, Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Nuevo León, Nuevo León, Mexico
| | - Diana E Zamora-Avila
- Cuerpo Académico de Epidemiología Veterinaria, Monterrey, Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Nuevo León, Nuevo León, México
| | - Gustavo Moreno-Degollado
- Cuerpo Académico de Epidemiología Veterinaria, Monterrey, Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Nuevo León, Nuevo León, México
| | - Luis E Rodriguez-Tovar
- Cuerpo Académico de Zoonosis y Enfermedades Emergentes, General Escobedo, Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Nuevo León, Nuevo León, Mexico.
| |
Collapse
|
6
|
Deweirdt J, Quignard JF, Lacomme S, Gontier E, Mornet S, Savineau JP, Marthan R, Guibert C, Baudrimont I. In vitro study of carbon black nanoparticles on human pulmonary artery endothelial cells: effects on calcium signaling and mitochondrial alterations. Arch Toxicol 2020; 94:2331-2348. [PMID: 32394085 DOI: 10.1007/s00204-020-02764-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Human exposure to manufactured nanoparticles (NPs) is a public health concern. Endothelial cells lining the inner surface of arteries could be one of the primary targets for inhaled nanoparticles. Moreover, it is well known that alteration in calcium signaling is a critical event involved in the physiopathology of cardiovascular diseases. The objective of this study was to assess the role of oxidative stress in carbon black FW2 NPs-induced alteration in calcium signaling and mitochondria in human pulmonary artery endothelial cells. To this end, cells were exposed for 4 or 24 h to FW2 NPs (1-10 μg/cm2) and the following endpoints were studied: (i) production of ROS by fluorimetry and electron paramagnetic resonance, (ii) variation in intracellular calcium concentration by confocal microscopy, and (iii) mitochondrial alteration and apoptosis by confocal microscopy and transmission electronic microscopy. Exposure to FW2 NPs concentration-dependently increases oxidative stress, evidenced by the production of superoxide anion leading to an alteration in calcium content of intracellular organelles, such as endoplasmic reticulum and mitochondria activating, in turn, intrinsic apoptosis. This study provides evidence that FW2 NPs exposure impairs calcium signaling and mitochondria triggered by oxidative stress, and, thus, could act as a cardiovascular disease risk owing to the key role of calcium homeostasis in the control of vascular tone.
Collapse
Affiliation(s)
- J Deweirdt
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U 1045, 33604, Pessac, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France
| | - J F Quignard
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U 1045, 33604, Pessac, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France
| | - S Lacomme
- CNRS, Bordeaux Imaging Center UMS 3420 CNRS-US4 INSERM, 33000, Bordeaux, France
| | - E Gontier
- CNRS, Bordeaux Imaging Center UMS 3420 CNRS-US4 INSERM, 33000, Bordeaux, France
| | - S Mornet
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33076, Bordeaux, France
| | - J P Savineau
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U 1045, 33604, Pessac, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France
| | - R Marthan
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U 1045, 33604, Pessac, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France.,CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, 33000, Bordeaux, France
| | - C Guibert
- Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France
| | - I Baudrimont
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U 1045, 33604, Pessac, France. .,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France.
| |
Collapse
|
7
|
Amadi CN, Frazzoli C, Orisakwe OE. Sentinel species for biomonitoring and biosurveillance of environmental heavy metals in Nigeria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:21-60. [PMID: 32397948 DOI: 10.1080/26896583.2020.1714370] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nigeria receives copious annual precipitation to nourish its forests and agriculture, it has an extensive river drainage system, and it possesses valuable mineral deposits that stimulate both commercial and artisan mining activities. The combination of these features complicates Nigeria's efforts to produce adequate amounts of healthy foods to support its population. Toxic heavy metals like lead, cadmium, and mercury, and toxic metalloids such as arsenic, are also present in its mineral deposits and they migrate gradually into the soil and water of Nigeria by natural means. However, mining activities can liberate higher levels of toxic metals, which adversely affect Nigerian ecosystems and its food chains. Thus, environmental pollution due to anthropogenic activities is a major public health concern in Nigeria. This review covers the importance of native Nigerian and African wild and cultivated plants along with livestock and wild animals as sentinel species to evaluate heavy metals as environmental stressors and the use of sentinel species for food safety monitoring and for predicting potential risks to human health.
Collapse
Affiliation(s)
- Cecilia Nwadiuto Amadi
- Faculty of Pharmacy, Department of Experimental Pharmacology & Toxicology, University of Port-Harcourt, Port Harcourt, Nigeria
| | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Orish Ebere Orisakwe
- Faculty of Pharmacy, Department of Experimental Pharmacology & Toxicology, University of Port-Harcourt, Port Harcourt, Nigeria
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
8
|
Lin CH, Lo PY, Wu HD. An observational study of the role of indoor air pollution in pets with naturally acquired bronchial/lung disease. Vet Med Sci 2020; 6:314-320. [PMID: 31901015 PMCID: PMC7397909 DOI: 10.1002/vms3.231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Indoor air pollution (IAP) is an emerging issue for both human and veterinary patients under the concept of ‘One Health’. The association between IAP and respiratory disease in companion animals has been reported. Objectives The present study investigated the relationship between quantifiable indoor air quality and clinical characteristics of naturally acquired bronchial/lung disease in pet dogs and cats. Methods A total of 36 clinical cases (20 dogs and 16 cats) with naturally acquired bronchial/lung disease were prospectively recruited. Lower airway samples were collected and analysed, and clinical signs and the information from pulmonary function testing were examined. Indoor air quality was estimated by the average concentration of particles measuring ≤2.5 μm (PM2.5, μg/m3) and volatile organic compounds (VOC, ppm) in the animals’ domestic microenvironments. Results Exposure to IAP was not found to be correlated with the severity of clinical signs, pulmonary function changes or bronchoalveolar lavage fluid cytology in cats with bronchial/lung disease. However, a hypercellular response in canine lower airways was found to be associated with poor indoor air quality, including unacceptable indoor PM2.5 levels (>35 μg/m3) or increases in VOC concentration (>1 ppm) in places most commonly frequented by the dogs in the home. Conclusions Poor indoor air quality may exacerbate airway disease in pets and should not be ignored in modern society.
Collapse
Affiliation(s)
- Chung-Hui Lin
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Ying Lo
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan
| | - Huey-Dong Wu
- Section of Respiratory Therapy, Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Reis J, Spencer PS, Wasay M, Grisold W, Carroll WM. Clean air for Brain Heath; ongoing agenda of 2018 World Brain Day. J Neurol Sci 2019; 397:61-62. [PMID: 30594104 DOI: 10.1016/j.jns.2018.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
Affiliation(s)
- J Reis
- University of Strasbourg, Strasbourg, France; World Federation of Neurology, Pakistan
| | - P S Spencer
- Oregon Health & Science University, Portland, OR, United States; World Federation of Neurology, Pakistan
| | - M Wasay
- Aga Khan University, Karachi, Pakistan; World Brain Day Committee, WFN, Pakistan.
| | - W Grisold
- World Federation of Neurology, Pakistan
| | | |
Collapse
|
10
|
González-Gómez X, Cambeiro-Pérez N, Martínez-Carballo E, Simal-Gándara J. Screening of organic pollutants in pet hair samples and the significance of environmental factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:311-319. [PMID: 29289779 DOI: 10.1016/j.scitotenv.2017.12.270] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Organic pollutants (OPs) represent a wide range of chemicals that are potentially harmful for human and wildlife health. Many of these pollutants have been identified as endocrine disruptors that can alter hormonal balance producing adverse biological effects such as neurotoxicity, reproductive disorders, carcinogenicity and hepatotoxicity. For years, hair has been selected as a non-invasive source to assess levels of animal contamination. In the present study, a multiclass screening method for determining about 60 organic pollutants in pet hair was designed and validated for qualitative and quantitative purposes. Concentrations from different classes of organochlorine, and organophosphate pesticides (OCPs, and OPPs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (NDL-PCBs and DL-PCBs), polybrominated diphenyl ethers (PBDEs) and organophosphate esters (OPEs) were identified in the selected pet hair samples from Ourense (NW, Spain). We detected most of these pollutants in the selected hair pets. The mean concentrations found ranged from 89 to 6556ng/g for OPEs, from 8.6 to 1031ng/g for PAHs, from 8.6 to 256ng/g for PBDEs, from 29 to 184ng/g for OPPs, from 0.29 to 139 for OCPs, from 0.30 to 59ng/g for NDL-PCBs and from 1.2 to 14ng/g for DL-PCBs. To our knowledge, this is the first study to document the presence of OPs in pets from North-West Spain and it could provide baseline information for future monitoring of OPs in the area.
Collapse
Affiliation(s)
- Xiana González-Gómez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, 32004 Ourense, Spain.
| | - Noelia Cambeiro-Pérez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, 32004 Ourense, Spain.
| | - Elena Martínez-Carballo
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, 32004 Ourense, Spain.
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, 32004 Ourense, Spain.
| |
Collapse
|
11
|
Calderón-Garcidueñas L, Reynoso-Robles R, Pérez-Guillé B, Mukherjee PS, Gónzalez-Maciel A. Combustion-derived nanoparticles, the neuroenteric system, cervical vagus, hyperphosphorylated alpha synuclein and tau in young Mexico City residents. ENVIRONMENTAL RESEARCH 2017; 159:186-201. [PMID: 28803148 DOI: 10.1016/j.envres.2017.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Mexico City (MC) young residents are exposed to high levels of fine particulate matter (PM2.5), have high frontal concentrations of combustion-derived nanoparticles (CDNPs), accumulation of hyperphosphorylated aggregated α-synuclein (α-Syn) and early Parkinson's disease (PD). Swallowed CDNPs have easy access to epithelium and submucosa, damaging gastrointestinal (GI) barrier integrity and accessing the enteric nervous system (ENS). This study is focused on the ENS, vagus nerves and GI barrier in young MC v clean air controls. Electron microscopy of epithelial, endothelial and neural cells and immunoreactivity of stomach and vagus to phosphorylated ɑ-synuclein Ser129 and Hyperphosphorylated-Tau (Htau) were evaluated and CDNPs measured in ENS. CDNPs were abundant in erythrocytes, unmyelinated submucosal, perivascular and intramuscular nerve fibers, ganglionic neurons and vagus nerves and associated with organelle pathology. ɑSyn and Htau were present in 25/27 MC gastric,15/26 vagus and 18/27 gastric and 2/26 vagus samples respectively. We strongly suggest CDNPs are penetrating and damaging the GI barrier and reaching preganglionic parasympathetic fibers and the vagus nerve. This work highlights the potential role of CDNPs in the neuroenteric hyperphosphorylated ɑ-Syn and tau pathology as seen in Parkinson and Alzheimer's diseases. Highly oxidative, ubiquitous CDNPs constitute a biologically plausible path into Parkinson's and Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT 59812, USA; Universidad del Valle de México, Mexico City 14370, Mexico.
| | | | | | | | | |
Collapse
|
12
|
Calderón-Garcidueñas L, González-González LO, Kulesza RJ, Fech TM, Pérez-Guillé G, Luna MAJB, Soriano-Rosales RE, Solorio E, Miramontes-Higuera JDJ, Gómez-Maqueo Chew A, Bernal-Morúa AF, Mukherjee PS, Torres-Jardón R, Mills PC, Wilson WJ, Pérez-Guillé B, D'Angiulli A. Exposures to fine particulate matter (PM 2.5) and ozone above USA standards are associated with auditory brainstem dysmorphology and abnormal auditory brainstem evoked potentials in healthy young dogs. ENVIRONMENTAL RESEARCH 2017; 158:324-332. [PMID: 28672130 DOI: 10.1016/j.envres.2017.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/29/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Delayed central conduction times in the auditory brainstem have been observed in Mexico City (MC) healthy children exposed to fine particulate matter (PM2.5) and ozone (O3) above the current United States Environmental Protection Agency (US-EPA) standards. MC children have α synuclein brainstem accumulation and medial superior olivary complex (MSO) dysmorphology. The present study used a dog model to investigate the potential effects of air pollution on the function and morphology of the auditory brainstem. METHODOLOGY Twenty-four dogs living in clean air v MC, average age 37.1 ± 26.3 months, underwent brainstem auditory evoked potential (BAEP) measurements. Eight dogs (4 MC, 4 Controls) were analysed for auditory brainstem morphology and histopathology. RESULTS MC dogs showed ventral cochlear nuclei hypotrophy and MSO dysmorphology with a significant decrease in cell body size, decreased neuronal packing density with regions in the nucleus devoid of neurons and marked gliosis. MC dogs showed significant delayed BAEP absolute wave I, III and V latencies compared to controls. CONCLUSIONS MC dogs show auditory nuclei dysmorphology and BAEPs consistent with an alteration of the generator sites of the auditory brainstem response waveform. This study puts forward the usefulness of BAEPs to study auditory brainstem neurodegenerative changes associated with air pollution in dogs. Recognition of the role of non-invasive BAEPs in urban dogs is warranted to elucidate novel neurodegenerative pathways link to air pollution and a promising early diagnostic strategy for Alzheimer's Disease.
Collapse
Affiliation(s)
| | | | - Randy J Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Tatiana M Fech
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | | | | | | | | | | | | | | | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Paul C Mills
- The University of Queensland, QLD 4072, Australia
| | | | | | - Amedeo D'Angiulli
- Department of Psychology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
13
|
Deweirdt J, Quignard JF, Crobeddu B, Baeza-Squiban A, Sciare J, Courtois A, Lacomme S, Gontier E, Muller B, Savineau JP, Marthan R, Guibert C, Baudrimont I. Involvement of oxidative stress and calcium signaling in airborne particulate matter - induced damages in human pulmonary artery endothelial cells. Toxicol In Vitro 2017; 45:340-350. [PMID: 28688989 DOI: 10.1016/j.tiv.2017.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 11/30/2022]
Abstract
Recent studies have revealed that particulate matter (PM) exert deleterious effects on vascular function. Pulmonary artery endothelial cells (HPAEC), which are involved in the vasomotricity regulation, can be a direct target of inhaled particles. Modifications in calcium homeostasis and oxidative stress are critical events involved in the physiopathology of vascular diseases. The objectives of this study were to assess the effects of PM2.5 on oxidative stress and calcium signaling in HPAEC. Different endpoints were studied, (i) intrinsic and intracellular production of reactive oxygen species (ROS) by the H2DCF-DA probe, (ii) intrinsic, intracellular and mitochondrial production of superoxide anion (O2-) by electronic paramagnetic resonance spectroscopy and MitoSOX probe, (iii) reactive nitrosative species (RNS) production by Griess reaction, and (vi) calcium signaling by the Fluo-4 probe. In acellular conditions, PM2.5 leads to an intrinsic free radical production (ROS, O2-) and a 4h-exposure to PM2.5 (5-15μg/cm2), induced, in HPAEC, an increase of RNS, of global ROS and of cytoplasmic and mitochondrial O2- levels. The basal intracellular calcium ion level [Ca2+]i was also increased after 4h-exposure to PM2.5 and a pre-treatment with superoxide dismutase and catalase significantly reduced this response. This study provides evidence that the alteration of intracellular calcium homeostasis induced by PM2.5 is closely correlated to an increase of oxidative stress.
Collapse
Affiliation(s)
- J Deweirdt
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - J F Quignard
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - B Crobeddu
- Université Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, F-75205 Paris, France
| | - A Baeza-Squiban
- Université Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, F-75205 Paris, France
| | - J Sciare
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA-CNRS, Centre de Saclay, F-91190 Gif sur Yvette, France; Energy Environment Water Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
| | - A Courtois
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Centre Hospitalier Universitaire de Bordeaux, Centre AntiPoison et de Toxicovigilance d'Aquitaine et de Poitou Charente et Service d'Exploration Fonctionnelle Respiratoire, Place Amélie Raba Léon, Bordeaux F-33076, France
| | - S Lacomme
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Bordeaux Imaging Center UMS 3420 CNRS - US4 INSERM, Pôle d'imagerie électronique, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - E Gontier
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Bordeaux Imaging Center UMS 3420 CNRS - US4 INSERM, Pôle d'imagerie électronique, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - B Muller
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - J P Savineau
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - R Marthan
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Centre Hospitalier Universitaire de Bordeaux, Centre AntiPoison et de Toxicovigilance d'Aquitaine et de Poitou Charente et Service d'Exploration Fonctionnelle Respiratoire, Place Amélie Raba Léon, Bordeaux F-33076, France
| | - C Guibert
- Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - I Baudrimont
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France.
| |
Collapse
|
14
|
Calderón-Garcidueñas L, Maronpot RR, Torres-Jardon R, Henríquez-Roldán C, Schoonhoven R, Acuña-Ayala H, Villarreal-Calderón A, Nakamura J, Fernando R, Reed W, Azzarelli B, Swenberg JA. DNA Damage in Nasal and Brain Tissues of Canines Exposed to Air Pollutants Is Associated with Evidence of Chronic Brain Inflammation and Neurodegeneration. Toxicol Pathol 2016; 31:524-38. [PMID: 14692621 DOI: 10.1080/01926230390226645] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute, subchronic, or chronic exposures to particulate matter (PM) and pollutant gases affect people in urban areas and those exposed to fires, disasters, and wars. Respiratory tract inflammation, production of mediators of inflammation capable of reaching the brain, systemic circulation of PM, and disruption of the nasal respiratory and olfactory barriers are likely in these populations. DNA damage is crucial in aging and in age-associated diseases such as Alzheimer's disease. We evaluated apurinic/apyrimidinic (AP) sites in nasal and brain genomic DNA, and explored by immunohistochemistry the expression of nuclear factor NF κB p65, inducible nitric oxide synthase (iNOS), cyclo-oxygenase 2 (COX2), metallothionein I and II, apolipoprotein E, amyloid precursor protein (APP), and beta-amyloid1-42 in healthy dogs naturally exposed to urban pollution in Mexico City. Nickel (Ni) and vanadium (V) were measured by inductively coupled plasma mass spectrometry (ICP-MS). Forty mongrel dogs, ages 7 days—10 years were studied (14 controls from Tlaxcala and 26 exposed to urban pollution in South West Metropolitan Mexico City (SWMMC)). Nasal respiratory and olfactory epithelium were found to be early pollutant targets. Olfactory bulb and hippocampal AP sites were significantly higher in exposed than in control age matched animals. Ni and V were present in a gradient from olfactory mucosa > olfactory bulb > frontal cortex. Exposed dogs had (a) nuclear neuronal NF κB p65, (b) endothelial, glial and neuronal iNOS, (c) endothelial and glial COX2, (d) ApoE in neuronal, glial and vascular cells, and (e) APP and β amyloid1-42 in neurons, diffuse plaques (the earliest at age 11 months), and in subarachnoid blood vessels. Increased AP sites and the inflammatory and stress protein brain responses were early and significant in dogs exposed to urban pollution. Oil combustion PM-associated metals Ni and V were detected in the brain. There was an acceleration of Alzheimer's-type pathology in dogs chronically exposed to air pollutants. Respiratory tract inflammation and deteriorating olfactory and respiratory barriers may play a role in the observed neuropathology. These data suggest that Alzheimer's disease may be the sequela of air pollutant exposures and the resulting systemic inflammation.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Environmental Pathology Program, University of North Carolina at Chapel Hill, North Carolina 27599-7310, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Calderón-Garcidueñas L, Reed W, Maronpot RR, Henríquez-Roldán C, Delgado-Chavez R, Calderón-Garcidueñas A, Dragustinovis I, Franco-Lira M, Aragón-Flores M, Solt AC, Altenburg M, Torres-Jardón R, Swenberg JA. Brain Inflammation and Alzheimer's-Like Pathology in Individuals Exposed to Severe Air Pollution. Toxicol Pathol 2016; 32:650-8. [PMID: 15513908 DOI: 10.1080/01926230490520232] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Air pollution is a complex mixture of gases (e.g., ozone), particulate matter, and organic compounds present in outdoor and indoor air. Dogs exposed to severe air pollution exhibit chronic inflammation and acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by pollutants. We investigated whether residency in cities with high levels of air pollution is associated with human brain inflammation. Expression of cyclooxygenase-2 (COX2), an inflammatory mediator, and accumulation of the 42-amino acid form of β-amyloid (A β42), a cause of neuronal dysfunction, were measured in autopsy brain tissues of cognitively and neurologically intact lifelong residents of cities having low (n:9) or high (n:10) levels of air pollution. Genomic DNA apurinic/apyrimidinic sites, nuclear factor- κB activation and apolipoprotein E genotype were also evaluated. Residents of cities with severe air pollution had significantly higher COX2 expression in frontal cortex and hippocampus and greater neuronal and astrocytic accumulation of A β42 compared to residents in low air pollution cities. Increased COX2 expression and A β42 accumulation were also observed in the olfactory bulb. These findings suggest that exposure to severe airpollution is associated with brain inflammation and A β 42 accumulation, two causes of neuronal dysfunction that precede the appearance of neuritic plaques and neurofibrillary tangles, hallmarks of Alzheimer's disease.
Collapse
|
16
|
Calderón-Garcidueñas L, Franco-Lira M, Torres-Jardón R, Henriquez-Roldán C, Barragán-Mejía G, Valencia-Salazar G, González-Maciel A, Reynoso-Robles R, Villarreal-Calderón R, Reed W. Pediatric Respiratory and Systemic Effects of Chronic Air Pollution Exposure: Nose, Lung, Heart, and Brain Pathology. Toxicol Pathol 2016; 35:154-62. [PMID: 17325984 DOI: 10.1080/01926230601059985] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Exposures to particulate matter and gaseous air pollutants have been associated with respiratory tract inflammation, disruption of the nasal respiratory and olfactory barriers, systemic inflammation, production of mediators of inflammation capable of reaching the brain and systemic circulation of particulate matter. Mexico City (MC) residents are exposed to significant amounts of ozone, particulate matter and associated lipopolysaccharides. MC dogs exhibit brain inflammation and an acceleration of Alzheimer’s-like pathology, suggesting that the brain is adversely affected by air pollutants. MC children, adolescents and adults have a significant upregulation of cyclooxygenase-2 (COX2) and interleukin-1β (IL-1β) in olfactory bulb and frontal cortex, as well as neuronal and astrocytic accumulation of the 42 amino acid form of β-amyloid peptide (Aβ42), including diffuse amyloid plaques in frontal cortex. The pathogenesis of Alzheimer’s disease (AD) is characterized by brain inflammation and the accumulation of Aβ42, which precede the appearance of neuritic plaques and neurofibrillary tangles, the pathological hallmarks of AD. Our findings of nasal barrier disruption, systemic inflammation, and the upregulation of COX2 and IL-1β expression and Aβ42 accumulation in brain suggests that sustained exposures to significant concentrations of air pollutants such as particulate matter could be a risk factor for AD and other neurodegenerative diseases.
Collapse
|
17
|
Barrier M, Bégorre MA, Baudrimont I, Dubois M, Freund-Michel V, Marthan R, Savineau JP, Muller B, Courtois A. Involvement of Heme Oxygenase-1 in particulate matter-induced impairment of NO-dependent relaxation in rat intralobar pulmonary arteries. Toxicol In Vitro 2016; 32:205-11. [DOI: 10.1016/j.tiv.2016.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/06/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
|
18
|
Ruiz-Suárez N, Camacho M, Boada LD, Henríquez-Hernández LA, Rial C, Valerón PF, Zumbado M, González MA, Luzardo OP. The assessment of daily dietary intake reveals the existence of a different pattern of bioaccumulation of chlorinated pollutants between domestic dogs and cats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:45-52. [PMID: 26026408 DOI: 10.1016/j.scitotenv.2015.05.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
Pet dogs and cats have been proposed as sentinel species to assess environmental contamination and human exposure to a variety of pollutants, including POPs. However, some authors have reported that dogs but not cats exhibit intriguingly low levels of some of the most commonly detected POPs, such as DDT and its metabolites. This research was designed to explore these differences between dogs and cats. Thus, we first determined the concentrations of 53 persistent and semi-persistent pollutants (16 polycyclic aromatic hydrocarbons (PAHs), 18 polychlorinated biphenyls (PCBs) and 19 organochlorine pesticides (OCPs)) in samples of the most consumed brands of commercial feed for dogs and cats, and we calculated the daily dietary intake of these pollutants in both species. Higher levels of pollutants were found in dog food and our results showed that the median values of intake were about twice higher in dogs than in cats for all the three groups of pollutants (ΣPAHs: 274.8 vs. 141.8; ΣOCPs: 233.1 vs. 83; ΣPCBs: 101.8 vs. 43.8 (ng/kg bw/day); respectively). Additionally, we determined the plasma levels of the same pollutants in 42 and 35 pet dogs and cats, respectively. All these animals lived indoors and were fed on the commercial brands of feed analyzed. As expected (considering the intake), the plasma levels of PAHs were higher in dogs than in cats. However, for organochlorines (OCPs and PCBs) the plasma levels were much higher in cats than in dogs (as much as 23 times higher for DDTs), in spite of the higher intake in dogs. This reveals a lower capacity of bioaccumulation of some pollutants in dogs, which is probably related with higher metabolizing capabilities in this species.
Collapse
Affiliation(s)
- Norberto Ruiz-Suárez
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Cristian Rial
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Pilar F Valerón
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Maira Almeida González
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
19
|
Montrose L, Noonan CW, Cho YH, Lee J, Harley J, O'Hara T, Cahill C, Ward TJ. Evaluating the effect of ambient particulate pollution on DNA methylation in Alaskan sled dogs: potential applications for a sentinel model of human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 512-513:489-494. [PMID: 25644845 PMCID: PMC4339619 DOI: 10.1016/j.scitotenv.2014.12.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Exposure to ambient particulate matter (PM) is known to be associated with increased morbidity and mortality in human populations. During the winter months in Fairbanks, Alaska, severe temperature inversions lead to elevated concentrations of ambient PM smaller than 2.5 μm (PM2.5). Sled dogs represent an easily accessible environmentally exposed population that may yield findings informative for human health risk assessment. OBJECTIVES In this pilot study, we evaluated whether ambient PM was associated with markers of global methylation in sled dogs. METHODS Kennels were strategically recruited to provide a wide PM2.5 exposure gradient for the Fairbanks area. Continuous monitoring of ambient PM2.5 was conducted at each kennel during the winter of 2012/13 using a DustTrak 8530. Dogs received a physical examination and assessment of standard hematology and clinical chemistries. Global methylation was determined using the LUminometric Methylation Assay (LUMA) and 5-Methycytosine (5-mC) quantification. RESULTS Three sled dog kennels (n~30 dogs/kennel) were evaluated and sampled. The average PM2.5 concentrations measured for kennels A, B, and C were 90 μg/m(3), 48 μg/m(3), 16 μg/m(3) (p<0.0001), respectively. The average (standard deviation) global methylation percentage for each kennel measured by LUMA was 76.22 (1.85), 76.52 (1.82), and 76.72 (2.26), respectively. The average (standard deviation) global methylation percentage for each kennel measured by 5-mC was 0.16 (0.04), 0.15 (0.04), and 0.15 (0.05), respectively. There was no statistically significant difference between the three kennels and their average global methylation percentage either by LUMA or 5-mC. CONCLUSIONS In this study we evaluated global methylation using LUMA and 5-mC and found no differences between kennels, though exposure to ambient PM2.5 was significantly different between kennels. As more information becomes available regarding immunologically-related canine genes and functionally active promoter subunits, the utility of this surrogate could increase.
Collapse
Affiliation(s)
- Luke Montrose
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, United States.
| | - Curtis W Noonan
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, United States
| | - Yoon Hee Cho
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, United States
| | - Joongwon Lee
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, United States
| | - John Harley
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK 99775, United States
| | - Todd O'Hara
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK 99775, United States
| | - Catherine Cahill
- International Artic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, United States
| | - Tony J Ward
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, United States
| |
Collapse
|
20
|
Bai Y, Brugha RE, Jacobs L, Grigg J, Nawrot TS, Nemery B. Carbon loading in airway macrophages as a biomarker for individual exposure to particulate matter air pollution - A critical review. ENVIRONMENT INTERNATIONAL 2015; 74:32-41. [PMID: 25318022 DOI: 10.1016/j.envint.2014.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 08/07/2014] [Accepted: 09/18/2014] [Indexed: 06/04/2023]
Abstract
Exposure to particulate matter (PM) is associated with adverse health effects, including chronic lung diseases, lung cancer and cardiovascular disease. Personal exposure varies depending on the generation of particles locally, background levels, activity patterns and meteorology. Carbon loading in airway macrophages (AM) is a novel marker to assess personal exposure to combustion-derived particles. This review summarizes the published evidence and describes the validity and reliability of this marker with a focus on the technical aspects. Carbon loading in AM is reported in nine published studies assessing personal exposure to particulate air pollution. The carbon content is quantified by image analysis and is suggested to be suited to assess cumulative exposures. While there is some variation in study technique, these studies each indicate that internal AM carbon reflects either external exposure or important health effects. However, some uncertainty remains regarding potentially confounding materials within particles, the time frame of exposures that this technique reflects, and the optimal strategy to accurately quantify AM carbon. These aspects need to be clarified or optimized before applying this technique in larger populations.
Collapse
Affiliation(s)
- Yang Bai
- Department of Public Health and Primary Care, Center for Environment and Health, Katholieke Universiteit Leuven, Herestraat 49, O&N 1, Box 706, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:133-66. [DOI: 10.1016/j.mrrev.2014.09.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
|
22
|
Gas Chromatography Mass Spectrometry Identification of Labile Radicals Formed during Pyrolysis of Catechool, Hydroquinone, and Phenol through Neutral Pyrolysis Product Mass Analysis. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/930573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Catechol, hydroquinone, and phenol are known to be environmental pollutants due to their ability to generate environmentally free radicals, which cause millions of deaths worldwide. Recently, efforts have been done to precisely identify the origin and the nature of those free radicals employing EPR-LTMI technique. All the three precursors generate cyclopentadienyl radical as major pyrolysis products and phenoxyl radical as both pyrolysis and photolysis products which were obtained from phenol; ortho-semiquinone and para-semiquinone were seen, respectively, from the pyrolysis of catechol and hydroquinone. However, it has been suspected that the solely use of the EPR-LTMI did not allow the isolation of the more labile radicals that is supposedly terminated by radical-radical or radical-surface interaction. The present study reports the gas chromatography mass analysis of the pyrolysis products from catechol, hydroquinone, and phenol. Naphthalene , indene, and hydroxyindene were observed as the pyrolysis products of hydroquinone, while fluorene, 1H-indenol and its isomer 1H-inden-1-one 2,3 dihydro, acenaphthylene, benzofuran-7-methyl, and benzofuran-2-methyl were observed as pyrolysis products of catechol. Dibenzo dioxin and dibenzo furan were observed from pyrolysis of catechol and hydroquinone. Those products result from the combination of radicals such as cyclopentadienyl, para-semiquinone, ortho-semiquinone, hydroxyl-cyclohexadienyl, phenoxyl, and most importantly Hydroxycyclopentadienyl which was not identified by EPR-LTMI.
Collapse
|
23
|
Camarinho R, Garcia PV, Rodrigues AS. Chronic exposure to volcanogenic air pollution as cause of lung injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 181:24-30. [PMID: 23800425 DOI: 10.1016/j.envpol.2013.05.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 05/24/2013] [Accepted: 05/30/2013] [Indexed: 06/02/2023]
Abstract
Few studies were made regarding the pulmonary effects of exposure to volcanogenic air pollution, representing an unrecognized health risk for humans inhabiting non-eruptive volcanically active areas (10% of world human population). We tested the hypothesis whether chronic exposure to air pollution of volcanogenic origin causes lung injury, using wild mice (Mus musculus) as model. Lung injury was determined using histological morphometric parameters, inflammatory status (InfS) and the amount of black silver deposits (BSD). Mice exposed to volcanogenic air pollution have decreased percentage of alveolar space, alveolar perimeter and lung structural functionality (LSF) ratio and, increased alveolar septal thickness, amount of BSD and InfS. For the first time it is evidenced that non-eruptive active volcanism has a high potential to cause lung injury. This study also highlights the usefulness of M. musculus as bioindicator species, and of the developed biomarker of effect LSF ratio, for future animal and/or human biomonitoring programs.
Collapse
Affiliation(s)
- Ricardo Camarinho
- CVARG, Centro de Vulcanologia e Avaliação de Riscos Geológicos, Ponta Delgada, Portugal.
| | | | | |
Collapse
|
24
|
Calderón-Garcidueñas L, Serrano-Sierra A, Torres-Jardón R, Zhu H, Yuan Y, Smith D, Delgado-Chávez R, Cross JV, Medina-Cortina H, Kavanaugh M, Guilarte TR. The impact of environmental metals in young urbanites' brains. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2013; 65:503-11. [PMID: 22436577 PMCID: PMC3383886 DOI: 10.1016/j.etp.2012.02.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/16/2012] [Accepted: 02/21/2012] [Indexed: 01/22/2023]
Abstract
Air pollution exposures are linked to cognitive and olfaction deficits, oxidative stress, neuroinflammation and neurodegeneration including frontal hyperphosphorylated tau and diffuse amyloid plaques in Mexico City children and young adults. Mexico City residents are chronically exposed to fine particulate matter (PM(2.5)) concentrations (containing toxic combustion and industrial metals) above the annual standard (15 μg/m(3)) and to contaminated water and soil. Here, we sought to address the brain-region-specific effects of metals and key neuroinflammatory and DNA repair responses in two air pollution targets: frontal lobe and olfactory bulb from 12 controls vs. 47 Mexico City children and young adults average age 33.06±4.8 SE years. Inductively coupled plasma mass spectrometry (metal analysis) and real time PCR (for COX2, IL1β and DNA repair genes) in target tissues. Mexico City residents had higher concentrations of metals associated with PM: manganese (p=0.003), nickel and chromium (p=0.02) along with higher frontal COX2 mRNA (p=0.008) and IL1β (p=0.0002) and COX2 (p=0.005) olfactory bulb indicating neuroinflammation. Frontal metals correlated with olfactory bulb DNA repair genes and with frontal and hippocampal inflammatory genes. Frontal manganese, cobalt and selenium increased with age in exposed subjects. Together, these findings suggest PM-metal neurotoxicity causes brain damage in young urbanites, the olfactory bulb is a target of air pollution and participates in the neuroinflammatory response and since metal concentrations vary significantly in Mexico City urban sub-areas, place of residency has to be integrated with the risk for CNS detrimental effects particularly in children.
Collapse
|
25
|
Stapleton PA, Minarchick VC, McCawley M, Knuckles TL, Nurkiewicz TR. Xenobiotic particle exposure and microvascular endpoints: a call to arms. Microcirculation 2012; 19:126-42. [PMID: 21951337 DOI: 10.1111/j.1549-8719.2011.00137.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xenobiotic particles can be considered in two genres: air pollution particulate matter and engineered nanoparticles. Particle exposures can occur in the greater environment, the workplace, and our homes. The majority of research in this field has, justifiably, focused on pulmonary reactions and outcomes. More recent investigations indicate that cardiovascular effects are capable of correlating with established mortality and morbidity epidemiological data following particle exposures. While the preliminary and general cardiovascular toxicology has been defined, the mechanisms behind these effects, specifically within the microcirculation, are largely unexplored. Therefore, the purpose of this review is several fold: first, a historical background on toxicological aspects of particle research is presented. Second, essential definitions, terminology, and techniques that may be unfamiliar to the microvascular scientist will be discussed. Third, the most current concepts and hypotheses driving cardiovascular research in this field will be reviewed. Lastly, potential future directions for the microvascular scientist will be suggested. Collectively speaking, microvascular research in the particle exposure field represents far more than a "niche." The immediate demand for basic, translational, and clinical studies is high and diverse. Microvascular scientists at all career stages are strongly encouraged to expand their research interests to include investigations associated with particle exposures.
Collapse
|
26
|
Abstract
Studies of the effects of environmental exposures on domestic and wild animals can corroborate or inform epidemiologic studies in humans. Animals may be sensitive indicators of environmental hazards and provide an early warning system for public health intervention, as exemplified by the iconic canary in the coal mine. This article illustrates the application of animal sentinel research to elucidate the effects of exposure to traditional and emerging contaminants on human health. Focusing on environmental issues at the forefront of current public health research, the article describes exposures to community air pollution, environmental tobacco smoke, and pesticides and associations with cancer, reproductive outcomes, and infectious diseases. Finally, it covers the role of marine mammals in monitoring the health of the oceans and humans.
Collapse
Affiliation(s)
- John S Reif
- Colorado State University, Department of Environmental and Radiological Health Sciences, Fort Collins, CO 80523, USA.
| |
Collapse
|
27
|
Calderón-Garcidueñas L, D'Angiulli A, Kulesza RJ, Torres-Jardón R, Osnaya N, Romero L, Keefe S, Herritt L, Brooks DM, Avila-Ramirez J, Delgado-Chávez R, Medina-Cortina H, González-González LO. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials. Int J Dev Neurosci 2011; 29:365-75. [PMID: 21458557 PMCID: PMC3095669 DOI: 10.1016/j.ijdevneu.2011.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 01/11/2023] Open
Abstract
We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I-III, III-V, and I-V (all t(50)>7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment.
Collapse
|
28
|
Somers CM. Ambient air pollution exposure and damage to male gametes: human studies andin situ‘sentinel’ animal experiments. Syst Biol Reprod Med 2011; 57:63-71. [DOI: 10.3109/19396368.2010.500440] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Association between environmental dust exposure and lung cancer in dogs. Vet J 2010; 186:364-9. [DOI: 10.1016/j.tvjl.2009.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/25/2009] [Accepted: 09/05/2009] [Indexed: 11/19/2022]
|
30
|
Fogarty AW, Lewis SA, McKeever TM, Lowe GDO, Clark L, Britton J. The association between blood coagulation activity and lung function: a population-based study. PLoS One 2010; 5:e15014. [PMID: 21103357 PMCID: PMC2982817 DOI: 10.1371/journal.pone.0015014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/07/2010] [Indexed: 11/18/2022] Open
Abstract
Background Increased in susceptibility to thrombotic disease may be associated with lower lung function. If causal, this association may suggest an area for development of new interventions for lung disease. The aim of this study was to investigate the association between blood coagulation activation as measured by plasma d-dimers and lung function. Methodology/Principal Findings We conducted a cross-sectional study on 2463 randomly selected adults in 1991 and followed up 1252 of these individuals in 2000. Plasma D-dimer levels, a marker of activity of blood coagulation pathways, were analysed in the baseline 1991 samples. There was an inverse cross-sectional association between plasma D-dimer and Forced Expiratory Volume in one second, with a decrease of 71 ml per µg FEU/ml increment in plasma D-dimer (95% confidence intervals CI: −135 to −6), and a decrease in Forced Vital Capacity (97 ml per µg FEU/ml increase in D-dimer, 95%CI: −170 to −24). These associations were attenuated after adjustment for serum highly sensitive CRP. No association was observed between plasma D-dimer and the decline in lung function between 1991 and 2000. Conclusions/Significance The cross-sectional findings are consistent with the hypothesis that activation of blood coagulation pathways is associated with decreased lung function, and that systemic inflammation may contribute to this relation. However, the lack of an association with decline in lung function suggests that clotting pathways that involve d-dimers may not be a promising therapeutic target for new interventions for respiratory disease.
Collapse
Affiliation(s)
- Andrew W Fogarty
- Respiratory Biomedical Research Unit, Division of Epidemiology and Public Health, University of Nottingham, Clinical Sciences Building, City Hospital, Nottingham, United Kingdom.
| | | | | | | | | | | |
Collapse
|
31
|
Villarreal-Calderon R, Torres-Jardón R, Palacios-Moreno J, Osnaya N, Pérez-Guillé B, Maronpot RR, Reed W, Zhu H, Calderón-Garcidueñas L. Urban air pollution targets the dorsal vagal complex and dark chocolate offers neuroprotection. Int J Toxicol 2010; 29:604-15. [PMID: 21030725 DOI: 10.1177/1091581810383587] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mexico City (MC) residents exposed to fine particulate matter and endotoxin exhibit inflammation of the olfactory bulb, substantia nigra, and vagus nerve. The goal of this study was to model these endpoints in mice and examine the neuroprotective effects of chocolate. Mice exposed to MC air received no treatment or oral dark chocolate and were compared to clean-air mice either untreated or treated intraperitoneally with endotoxin. Cyclooxygenase-2 (COX-2), interleukin 1 beta (IL-1β), and CD14 messenger RNA (mRNA) were quantified after 4, 8, and 16 months of exposure in target brain regions. After 16 months of exposure, the dorsal vagal complex (DVC) exhibited significant inflammation in endotoxin-treated and MC mice (COX-2 and IL-1β P<.001). Mexico City mice had olfactory bulb upregulation of CD14 (P=.002) and significant DVC imbalance in genes for antioxidant defenses, apoptosis, and neurodegeneration. These findings demonstrate sustained DVC inflammation in mice exposed to MC air, which is mitigated by chocolate administration.
Collapse
Affiliation(s)
- Rafael Villarreal-Calderon
- Davidson Honors College, University of Montana, 32 Campus Drive, 287 Skaggs Bldg, Missoula, MT 59812, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Calderón-Garcidueñas L, Mora-Tiscareño A, Gómez-Garza G, Carrasco-Portugal MDC, Pérez-Guillé B, Flores-Murrieta FJ, Pérez-Guillé G, Osnaya N, Juárez-Olguín H, Monroy ME, Monroy S, González-Maciel A, Reynoso-Robles R, Villarreal-Calderon R, Patel SA, Kumarathasan P, Vincent R, Henríquez-Roldán C, Torres-Jardón R, Maronpot RR. Effects of a cyclooxygenase-2 preferential inhibitor in young healthy dogs exposed to air pollution: a pilot study. Toxicol Pathol 2009; 37:644-60. [PMID: 19638440 DOI: 10.1177/0192623309340277] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Residency in cities with high air pollution is associated with neuroinflammation and neurodegeneration in healthy children, young adults, and dogs. Nonsteroidal anti-inflammatory drugs may offer neuroprotection. The authors measured the plasma concentrations of 3-nitrotyrosine and the cerebro-spinal-fluid concentrations of prostaglandin E2 metabolite and the oligomeric form of amyloid derived diffusible ligand; measured the mRNA expression of cyclooxygenase-2, interleukin 1beta, CD14, and Aquaporin-4 in target brain areas; and evaluated brain MRI, cognition, and neuropathology in 8 dogs treated with a preferential cyclooxygenase-2 inhibitor (Nimesulide) versus 7 untreated litter-matched Mexico City dogs. Nimesulide significantly decreased nitrotyrosine in plasma (p < .0001), frontal gray IL1beta (p = .03), and heart IL1beta (p = .02). No effect was seen in mRNA COX2, amyloid, and PGE2 in CSF or the MRI white matter lesions. All exposed dogs exhibited olfactory bulb and frontal accumulation of Abeta(42) in neurons and blood vessels and frontal vascular subcortical pathology. White matter hyperintense MRI frontal lesions were seen in 4/6 non-treated and 6/8 treated dogs. Nonsteroidal anti-inflammatory drugs may offer limited neuroprotection in the setting of severe air pollution exposures. The search for potentially beneficial drugs useful to ameliorate the brain effects of pollution represents an enormous clinical challenge.
Collapse
|
33
|
Calderón-Garcidueñas L, Franco-Lira M, Henríquez-Roldán C, Osnaya N, González-Maciel A, Reynoso-Robles R, Villarreal-Calderon R, Herritt L, Brooks D, Keefe S, Palacios-Moreno J, Villarreal-Calderon R, Torres-Jardón R, Medina-Cortina H, Delgado-Chávez R, Aiello-Mora M, Maronpot RR, Doty RL. Urban air pollution: influences on olfactory function and pathology in exposed children and young adults. ACTA ACUST UNITED AC 2009; 62:91-102. [PMID: 19297138 DOI: 10.1016/j.etp.2009.02.117] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 02/17/2009] [Indexed: 01/10/2023]
Abstract
Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8+/-8.5 years were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC/25 controls 21.2+/-2.7 years. MC subjects had significantly lower UPSIT scores: 34.24+/-0.42 versus controls 35.76+/-0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE epsilon 4 carriers failed 2.4+/-0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36+/-0.16 items, p=0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid betaA(42) (29/35) and/or alpha-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration.
Collapse
|
34
|
Huang YCT, Li Z, Harder SD, Soukup JM. Apoptotic and Inflammatory Effects Induced by Different Particles in Human Alveolar Macrophages. Inhal Toxicol 2008; 16:863-78. [PMID: 15764474 DOI: 10.1080/08958370490519480] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pollutant particles induce apoptosis and inflammation, but the relationship between these two biological processes is not entirely clear. In this study, we compared the proapoptotic and proinflammatory effects of four particles: residual oil fly ash (ROFA), St. Louis particles SRM 1648 (SL), Chapel Hill PM10 (CHP), and Mount St. Helens dust (MSH). Human alveolar macrophages (AM) were incubated with these particles at 100 microg/ml. Cell death was assessed by annexin V (AV) expression, histone release, nuclear morphology, caspase 3-like activity and release of caspase 1 for apoptosis, and propidium iodide (PI) for necrosis, and inflammation was measured by interleukin (IL)-1beta and IL-6. We found that particle effects on these cell death measurements varied, and ROFA affected most (four out of five) endpoints, including nuclear morphological changes. CHP and SL also caused necrosis. For cytokine release, the potency was CHP > SL > ROFA > MSH. The proapoptotic and proinflammatory effects induced by the whole particles were unaltered after the particles were washed with water. The water-soluble fraction was relatively inactive, as were individual soluble metals (V, Ni, Fe). ROFA-induced nuclear fragmentation was associated with upregulation and mitochondrial release of apoptosis-inducing factor (AIF), a caspase-independent chromatin condensation factor, and upregulation of DNase II, a lysosomal acid endonuclease. These results indicate that the potential for particles to induce apoptosis does not correlate with their proinflammatory properties, although active components for both processes reside in the water-insoluble core. Both apoptosis and inflammatory endpoints should be included when the toxicity of different pollutant particles is assessed.
Collapse
Affiliation(s)
- Yuh-Chin T Huang
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Chapel Hill, North Carolina, USA.
| | | | | | | |
Collapse
|
35
|
Calderón-Garcidueñas L, Villarreal-Calderon R, Valencia-Salazar G, Henríquez-Roldán C, Gutiérrez-Castrellón P, Torres-Jardón R, Osnaya-Brizuela N, Romero L, Torres-Jardón R, Solt A, Reed W. Systemic Inflammation, Endothelial Dysfunction, and Activation in Clinically Healthy Children Exposed to Air Pollutants. Inhal Toxicol 2008; 20:499-506. [DOI: 10.1080/08958370701864797] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Calderón-Garcidueñas L, Solt AC, Henríquez-Roldán C, Torres-Jardón R, Nuse B, Herritt L, Villarreal-Calderón R, Osnaya N, Stone I, García R, Brooks DM, González-Maciel A, Reynoso-Robles R, Delgado-Chávez R, Reed W. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol Pathol 2008; 36:289-310. [PMID: 18349428 DOI: 10.1177/0192623307313011] [Citation(s) in RCA: 620] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Air pollution is a serious environmental problem. We investigated whether residency in cities with high air pollution is associated with neuroinflammation/neurodegeneration in healthy children and young adults who died suddenly. We measured mRNA cyclooxygenase-2, interleukin-1beta, and CD14 in target brain regions from low (n = 12) or highly exposed residents (n = 35) aged 25.1 +/- 1.5 years. Upregulation of cyclooxygenase-2, interleukin-1beta, and CD14 in olfactory bulb, frontal cortex, substantia nigrae and vagus nerves; disruption of the blood-brain barrier; endothelial activation, oxidative stress, and inflammatory cell trafficking were seen in highly exposed subjects. Amyloid beta42 (Abeta42) immunoreactivity was observed in 58.8% of apolipoprotein E (APOE) 3/3 < 25 y, and 100% of the APOE 4 subjects, whereas alpha-synuclein was seen in 23.5% of < 25 y subjects. Particulate material (PM) was seen in olfactory bulb neurons, and PM < 100 nm were observed in intraluminal erythrocytes from lung, frontal, and trigeminal ganglia capillaries. Exposure to air pollution causes neuroinflammation, an altered brain innate immune response, and accumulation of Abeta42 and alpha-synuclein starting in childhood. Exposure to air pollution should be considered a risk factor for Alzheimer's and Parkinson's diseases, and carriers of the APOE 4 allele could have a higher risk of developing Alzheimer's disease if they reside in a polluted environment.
Collapse
|
37
|
Calderón-Garcidueñas L, Vincent R, Mora-Tiscareño A, Franco-Lira M, Henríquez-Roldán C, Barragán-Mejía G, Garrido-García L, Camacho-Reyes L, Valencia-Salazar G, Paredes R, Romero L, Osnaya H, Villarreal-Calderón R, Torres-Jardón R, Hazucha MJ, Reed W. Elevated plasma endothelin-1 and pulmonary arterial pressure in children exposed to air pollution. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:1248-53. [PMID: 17687455 PMCID: PMC1940106 DOI: 10.1289/ehp.9641] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 04/27/2007] [Indexed: 05/16/2023]
Abstract
BACKGROUND Controlled exposures of animals and humans to particulate matter (PM) or ozone air pollution cause an increase in plasma levels of endothelin-1, a potent vasoconstrictor that regulates pulmonary arterial pressure. OBJECTIVES The primary objective of this field study was to determine whether Mexico City children, who are chronically exposed to levels of PM and O(3) that exceed the United States air quality standards, have elevated plasma endothelin-1 levels and pulmonary arterial pressures. METHODS We conducted a study of 81 children, 7.9 +/- 1.3 years of age, lifelong residents of either northeast (n = 19) or southwest (n = 40) Mexico City or Polotitlán (n = 22), a control city with PM and O(3) levels below the U.S. air quality standards. Clinical histories, physical examinations, and complete blood counts were done. Plasma endothelin-1 concentrations were determined by immunoassay, and pulmonary arterial pressures were measured by Doppler echocardiography. RESULTS Mexico City children had higher plasma endothelin-1 concentrations compared with controls (p < 0.001). Mean pulmonary arterial pressure was elevated in children from both northeast (p < 0.001) and southwest (p < 0.05) Mexico City compared with controls. Endothelin-1 levels in Mexico City children were positively correlated with daily outdoor hours (p = 0.012), and 7-day cumulative levels of PM air pollution < 2.5 mum in aerodynamic diameter (PM(2.5)) before endothelin-1 measurement (p = 0.03). CONCLUSIONS Chronic exposure of children to PM(2.5) is associated with increased levels of circulating endothelin-1 and elevated mean pulmonary arterial pressure.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Instituto Nacional de Pediatría, Mexico City, Mexico
- The Center for Structural and Functional Neurosciences, University of Montana, Missoula, Montanta, USA
| | - Renaud Vincent
- Inhalation Toxicology and Aerobiology Section, Safe Environments Programme, Health Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | - Lina Romero
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Hector Osnaya
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Milan J. Hazucha
- Department of Medicine
- Center for Environmental Medicine, Asthma and Lung Biology and
| | - William Reed
- Center for Environmental Medicine, Asthma and Lung Biology and
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Address correspondence to W. Reed, CB# 7310, 104 Mason Farm Rd., Chapel Hill, NC 27599-7310 USA. Telephone: (919) 966-0669. Fax: (919) 966-9863. E-mail:
| |
Collapse
|
38
|
Waldman WJ, Kristovich R, Knight DA, Dutta PK. Inflammatory Properties of Iron-Containing Carbon Nanoparticles. Chem Res Toxicol 2007; 20:1149-54. [PMID: 17672513 DOI: 10.1021/tx700008n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inflammatory responses following exposure of carbon nanoparticles to human macrophage and endothelial cells were employed as indicators of particulate biological activity. Hundred nanometer carbon particles (nC) with and without nonextractable surface-bound iron were synthesized using a templating approach, and human monocyte-derived macrophages (MDM) were exposed to various concentrations of these particulates. Supernatants recovered from MDM 24 h postexposure were assayed for the inflammatory cytokine tumor necrosis factor-alpha (TNFalpha) by a quantitative ELISA and tested for their ability to induce expression of intercellular adhesion molecule-1 (ICAM-1) on human endothelial cells (EC) by immunofluorescence flow cytometry. Data generated by these experiments demonstrated that nC-Fe was far more biologically active than nC. In addition, the chemical reactivity of nC-Fe toward decomposition of hydrogen peroxide to form hydroxyl radicals was significantly higher than that of nC and correlated well with the increase in the strength of the inflammatory response, though a direct proof of creation of hydroxyl radicals in the biological system is not provided. Comparison with micrometer-sized carbon and carbon-iron particles suggests that the chemical and biological reactivity is correlated with surface area.
Collapse
Affiliation(s)
- W James Waldman
- Department of Pathology, The Ohio State University College of Medicine, 4160 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
39
|
Villalobos-Pietrini R, Hernández-Mena L, Amador-Muñoz O, Munive-Colín Z, Bravo-Cabrera JL, Gómez-Arroyo S, Frías-Villegas A, Waliszewski S, Ramírez-Pulido J, Ortiz-Muñiz R. Biodirected mutagenic chemical assay of PM(10) extractable organic matter in Southwest Mexico City. Mutat Res 2007; 634:192-204. [PMID: 17720617 DOI: 10.1016/j.mrgentox.2007.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
The concentration of breathable particles (PM(10)) in urban areas has been associated with increases in morbidity and mortality of the exposed populations, therein the importance of this study. Organic compounds adsorbed to PM(10) are related to the increased risk to human health. Although some studies have shown the lack of correlation between specific mutagenic compounds in an organic complex mixture (OCM) and the mutagenic response in several bioassays, the same organic compounds selectively separated in less complex groups can show higher or lower mutagenic responses than in the OCM. In this study, we fractionated the OCM, from the PM(10) in four organic fractions of increasing polarity (F1-F4). The Salmonella bioassay with plate incorporation was applied for each one using TA98, with and without S9 (mammalian metabolic activation), and YG1021 (without S9) strains. The most polar fraction (F4) contained the greatest mass followed by F1 (non-polar), F2 and F3 (moderately polar). The concentrations of the OCM as well as the F4 were the only variables correlated with PM(10), atmospheric thermal inversions, fire-prone area, NO(2), SO(2), CO, rain and relative humidity. This indicated that polar organic compounds were originated in gas precursors formed during the atmospheric thermal inversions as well as the product of the incomplete combustion of vehicular exhausts and of burned vegetation. The percentages of the total PAH, and the individual PAH with molecular weight > or = 228 g mol(-1) (except retene) correlated with the percentages of indirect-acting mutagenicity in TA98+S9. The percentages of the total nitro-PAH and most of the analyzed individual nitro-PAH correlated with percentages of the direct-acting mutagenicity in both TA98-S9 and YG1021, the latter being more sensitive. In general, the highest mutagenic activity (indirect and direct) was found in F3 (moderately polar) and in F4 (polar). The non-polar fraction (F1) did not exhibit any kind of mutagenicity. In 77% of the cases, mutagenic activity was higher in the sum fractions with respect to their OCM. The combinations between F1, F2 and F4, with F3 under different or equal proportions suggested that mutagenicity reduction, in the combined matter of January (with TA98+S9 and YG1021) and of May (with YG1021), was due to concentrations of mutagens and non-mutagens in each fraction, and not to an antimutagenic effect. The organic compounds present in the non-polar fractions showed no antagonism, inhibition or reduction in the most mutagenic fractions in both indirect- and direct-acting mutagenicity, and the less polar organic compounds in F3 reduced mutagenicity in F4, in both months.
Collapse
Affiliation(s)
- Rafael Villalobos-Pietrini
- Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, México DF, Mexico.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Green FHY, Vallyathan V, Hahn FF. Comparative pathology of environmental lung disease: an overview. Toxicol Pathol 2007; 35:136-47. [PMID: 17325982 DOI: 10.1080/01926230601132055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Environmental factors play a major role in a majority of lung diseases. Asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and many interstitial lung diseases are influenced or caused by environmental factors. Animals and humans may respond differently to the same agent, and a study of the comparative pathology between the two is useful for optimizing animal models of environmental lung disease and for evaluating their predictive value in carcinogenicity studies. This overview describes the most common nonneoplastic pathologic pulmonary responses to inhaled environmental agents in the human and contrasts them with the responses observed in rats exposed to the same agents. We show both similarities and difference in response to the same agents; furthermore, both species have unique responses to some agents (for example, progressive massive fibrosis in the human and proliferative squamous lesions in the rat). Quantitative analysis of the grades of response to three environmental particulate dusts revealed differences between the 2 species at the cellular level. Specifically, acute intra-alveolar inflammation, alveolar epithelial hyperplasia, and alveolar lipoproteinosis were all greater in rats than in humans exposed to the same agents. These differences may account for differences between the 2 species in carcinogenic response to nonfibrous particulates.
Collapse
Affiliation(s)
- Francis H Y Green
- Respiratory Research Group, Faculty of Medicine, University of Calgary, Alberta, Canada.
| | | | | |
Collapse
|
41
|
Peters A, Veronesi B, Calderón-Garcidueñas L, Gehr P, Chen LC, Geiser M, Reed W, Rothen-Rutishauser B, Schürch S, Schulz H. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol 2006; 3:13. [PMID: 16961926 PMCID: PMC1570474 DOI: 10.1186/1743-8977-3-13] [Citation(s) in RCA: 345] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 09/08/2006] [Indexed: 12/03/2022] Open
Abstract
Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects. Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be detected under controlled experimental conditions. Transgenic mice (Apo E -/-), known to have high base line levels of oxidative stress, were exposed by inhalation to well characterized, concentrated ambient air pollution. Morphometric analysis of the CNS indicated unequivocally that the brain is a critical target for PM exposure and implicated oxidative stress as a predisposing factor that links PM exposure and susceptibility to neurodegeneration. Together, these data present evidence for potential translocation of ambient particles on organs distant from the lung and the neurodegenerative consequences of exposure to air pollutants.
Collapse
Affiliation(s)
- Annette Peters
- Institute of Epidemiology, GSF-National Research Center for Environment and Health, Neuherberg, Germany
- Focus Network of Aerosols and Health, GSF-National Research Center for Environment and Health, Neuherberg, Germany
| | - Bellina Veronesi
- National Health and Environmental Effects Research Laboratory, Neurotoxicology Division, US Environmental Protection Agency, RTP, NC, USA
| | - Lilian Calderón-Garcidueñas
- Instituto Nacional de Pediatría, Mexico City 14410, Mexico
- The Center for Structural and Functional Neurosciences, University of Montana, Missoula, MT 59812, USA
| | - Peter Gehr
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Lung Chi Chen
- New York University School of Medicine, Department of Environmental Medicine, Tuxedo, NY, USA
| | - Marianne Geiser
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - William Reed
- Department of Pediatrics and Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, 27599-7310, USA
| | | | - Samuel Schürch
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department of Physiology and Biophysics, University of Calgary, Canada
| | - Holger Schulz
- Focus Network of Aerosols and Health, GSF-National Research Center for Environment and Health, Neuherberg, Germany
- Institute for Inhalation Biology, GSF-National Research Center for Environment and Health, Neuherberg, Germany
| |
Collapse
|
42
|
Calderón-Garcidueñas L, Mora-Tiscareño A, Fordham LA, Chung CJ, Valencia-Salazar G, Flores-Gómez S, Solt AC, Campo AGD, Jardón-Torres R, Henríquez-Roldán C, Hazucha MJ, Reed W. Lung radiology and pulmonary function of children chronically exposed to air pollution. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1432-7. [PMID: 16966101 PMCID: PMC1570091 DOI: 10.1289/ehp.8377] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We analyzed the chest radiographs (CXRs) of 249 clinically healthy children, 230 from southwest Mexico City and 19 from Tlaxcala. In contrast to children from Tlaxcala, children from southwest Mexico City were chronically exposed to ozone levels exceeding the U.S. National Ambient Air Quality Standards for an average of 4.7 hr/day and to concentrations of particulate matter (PM) with aerodynamic diameters </= 2.5 microm (PM2.5) above the annual standard. CXRs of Mexico City children demonstrated bilateral hyperinflation (151 of 230) and increased linear markings (121 of 230) . Hyperinflation and interstitial markings were significantly more common in Mexico City children (p < 0.0002 and 0.00006 respectively) . Mexico City boys had a higher probability of developing interstitial markings with age (p = 0.004) . Computed tomography (CT) scans were obtained in 25 selected Mexico City children with abnormal CXRs. Mild bronchial wall thickening was seen in 10 of 25, prominent central airways in 4 of 25, air trapping in 8 of 21, and pulmonary nodules in 2 of 21. Only 7.8% of Mexico City children had abnormal lung function tests based on predicted values. These findings are consistent with bronchiolar, peribronchiolar, and/or alveolar duct inflammation, possibly caused by ozone, PM, and lipopolysaccharide exposure. The epidemiologic implications of these findings are important for children residing in polluted environments, because bronchiolar disease could lead to chronic pulmonary disease later in life.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Instituto Nacional de Pediatría, Mexico City, Mexico
- College of Health Professions and Biomedical Sciences, University of Montana, Missoula, Montana, USA
| | | | - Lynn A. Fordham
- Pediatric Imaging Section, Department of Radiology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
| | - Charles J. Chung
- Western New York Radiology, Buffalo General Hospital, Buffalo, New York, USA
| | | | | | - Anna C. Solt
- Instituto Nacional de Pediatría, Mexico City, Mexico
- Harvard South Shore Psychiatry Program, Brockton, Massachusetts, USA
| | | | - Ricardo Jardón-Torres
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Milan J. Hazucha
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
| | - William Reed
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
- Address correspondence to W. Reed, Department of Pediatrics and Center for Environmental Medicine, Asthma and Lung Biology, CB#7310, 104 Mason Farm Rd., Chapel Hill, NC 27599-7310, USA. Telephone: (919) 966-0669. Fax: (919) 966-9863. E-mail:
| |
Collapse
|
43
|
Becker S, Dailey LA, Soukup JM, Grambow SC, Devlin RB, Huang YCT. Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:1032-8. [PMID: 16079075 PMCID: PMC1280345 DOI: 10.1289/ehp.7996] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Health effects associated with particulate matter (PM) show seasonal variations. We hypothesized that these heterogeneous effects may be attributed partly to the differences in the elemental composition of PM. Normal human bronchial epithelial (NHBE) cells and alveolar macrophages (AMs) were exposed to equal mass of coarse [PM with aerodynamic diameter of 2.5-10 microm (PM(2.5-10)], fine (PM(2.5)), and ultrafine (PM(<0.1)) ambient PM from Chapel Hill, North Carolina, during October 2001 (fall) and January (winter), April (spring), and July (summer) 2002. Production of interleukin (IL)-8, IL-6, and reactive oxygen species (ROS) was measured. Coarse PM was more potent in inducing cytokines, but not ROSs, than was fine or ultrafine PM. In AMs, the October coarse PM was the most potent stimulator for IL-6 release, whereas the July PM consistently stimulated the highest ROS production measured by dichlorofluorescein acetate and dihydrorhodamine 123 (DHR). In NHBE cells, the January and the October PM were consistently the strongest stimulators for IL-8 and ROS, respectively. The July PM increased only ROS measured by DHR. PM had minimal effects on chemiluminescence. Principal-component analysis on elemental constituents of PM of all size fractions identified two factors, Cr/Al/Si/Ti/Fe/Cu and Zn/As/V/Ni/Pb/Se, with only the first factor correlating with IL-6/IL-8 release. Among the elements in the first factor, Fe and Si correlated with IL-6 release, whereas Cr correlated with IL-8 release. These positive correlations were confirmed in additional experiments with PM from all 12 months. These results indicate that elemental constituents of PM may in part account for the seasonal variations in PM-induced adverse health effects related to lung inflammation.
Collapse
Affiliation(s)
- Susanne Becker
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
44
|
Kulkarni NS, Prudon B, Panditi SL, Abebe Y, Grigg J. Carbon loading of alveolar macrophages in adults and children exposed to biomass smoke particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2005; 345:23-30. [PMID: 15919524 DOI: 10.1016/j.scitotenv.2004.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 10/15/2004] [Indexed: 05/02/2023]
Abstract
Exposure to carbonaceous particles from biomass burning is associated with increased respiratory morbidity in both women and children in the developing world. However, the amount of carbon reaching lower airway cells has not been determined in these populations. Alveolar macrophages (AM) remove inhaled particulate matter (PM), and are implicated in the pathogenesis of PM-induced lung disease. In this study, we aimed to compare AM carbon loading in women and children exposed to biomass PM in Gondar, Ethiopia, with individuals exposed to fossil-fuel PM in the developed world (Leicester, UK). To achieve these aims, we sampled AM from Ethiopian mothers and children, and from UK adults and children using induced sputum (IS). AM were imaged under light microscopy, and the total two-dimensional surface area of carbon within each AM determined by image analysis. AM containing carbon were detected in all subjects. The total surface area of carbon per AM was higher in Ethiopian women (n=10) compared with UK adults (n=10, median 9.19 vs. 0.71 microm2/AM, p=0.0002). Similarly, the total surface area of carbon per AM was higher in Ethiopian children (n=10) compared with UK children (n=10, 3.32 vs. 0.44 microm2/AM, p=0.0002). However, loading in Ethiopian children was lower than paired maternal levels (3.32 vs. 9.19 microm2/AM, p=0.011). We conclude that analysis of AM obtained by induced sputum is a practical way of quantifying natural exposure of the lower airway to carbonaceous particles from the burning of biomass fuels.
Collapse
Affiliation(s)
- Neeta S Kulkarni
- Division of Child Health, Department of Infection, Immunity and Inflammation, University of Leicester, PO Box 65, Leicester, LE2 7LX, UK
| | | | | | | | | |
Collapse
|
45
|
Calderón-Garcidueñas L, Mora-Tiscareño A, Fordham LA, Valencia-Salazar G, Chung CJ, Rodriguez-Alcaraz A, Paredes R, Variakojis D, Villarreal-Calderón A, Flores-Camacho L, Antunez-Solis A, Henríquez-Roldán C, Hazucha MJ. Respiratory damage in children exposed to urban pollution. Pediatr Pulmonol 2003; 36:148-61. [PMID: 12833495 DOI: 10.1002/ppul.10338] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Southwest Metropolitan Mexico City (SWMMC) children are chronically exposed to complex mixtures of air pollutants. In a cross-sectional arm of our study, we investigated the association between exposure to SWMMC atmosphere and nasal abnormalities, hyperinflation, and interstitial markings assessed by chest X-rays, lung function changes, several serum cytokines, and endothelin-1 in 174 children aged 5-17 years vs. 27 control children residents in low-polluted areas. Control children had no nasal lesions, and only one child showed an abnormal chest X-ray. SWMMC children exhibited nasal abnormalities (22%), hyperinflation (67%), interstitial markings (49%), and a mild restrictive pattern by spirometry (10%). Interstitial markings were associated with a decrease in predicted values of FEF(25-75), FEF(75), and the FEV(1)/FVC ratio. Boys had a higher probability of developing interstitial markings with age (P = 0.004). Blood smear findings included toxic granulations in neutrophils and schistocytes. SWMMC children had more serum IL10 and IL6 and less IL8 than controls. In a longitudinal arm of our study, we found a significant seasonal drop in FVC and FEV(1) associated with a 6-month period of high ozone and PM(10) levels. Our data strongly suggest that a lifelong exposure to urban air pollution causes respiratory damage in children. Moreover, a cytokine network becomes imbalanced, with a shift towards upregulation of anti-inflammatory cytokines. Consequently, these children are potentially at risk for developing chronic lung disease and other systemic effects later in life.
Collapse
|
46
|
Calderón-Garcidueñas L, Azzarelli B, Acuna H, Garcia R, Gambling TM, Osnaya N, Monroy S, DEL Tizapantzi MR, Carson JL, Villarreal-Calderon A, Rewcastle B. Air pollution and brain damage. Toxicol Pathol 2002; 30:373-89. [PMID: 12051555 DOI: 10.1080/01926230252929954] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.
Collapse
|