1
|
Campos J, Gleitze S, Hidalgo C, Núñez MT. IP 3R-Mediated Calcium Release Promotes Ferroptotic Death in SH-SY5Y Neuroblastoma Cells. Antioxidants (Basel) 2024; 13:196. [PMID: 38397794 PMCID: PMC10886377 DOI: 10.3390/antiox13020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Ferroptosis is an iron-dependent cell death pathway that involves the depletion of intracellular glutathione (GSH) levels and iron-mediated lipid peroxidation. Ferroptosis is experimentally caused by the inhibition of the cystine/glutamate antiporter xCT, which depletes cells of GSH, or by inhibition of glutathione peroxidase 4 (GPx4), a key regulator of lipid peroxidation. The events that occur between GPx4 inhibition and the execution of ferroptotic cell death are currently a matter of active research. Previous work has shown that calcium release from the endoplasmic reticulum (ER) mediated by ryanodine receptor (RyR) channels contributes to ferroptosis-induced cell death in primary hippocampal neurons. Here, we used SH-SY5Y neuroblastoma cells, which do not express RyR channels, to test if calcium release mediated by the inositol 1,4,5-trisphosphate receptor (IP3R) channel plays a role in this process. We show that treatment with RAS Selective Lethal Compound 3 (RSL3), a GPx4 inhibitor, enhanced reactive oxygen species (ROS) generation, increased cytoplasmic and mitochondrial calcium levels, increased lipid peroxidation, and caused cell death. The RSL3-induced calcium signals were inhibited by Xestospongin B, a specific inhibitor of the ER-resident IP3R calcium channel, by decreasing IP3R levels with carbachol and by IP3R1 knockdown, which also prevented the changes in cell morphology toward roundness induced by RSL3. Intracellular calcium chelation by incubation with BAPTA-AM inhibited RSL3-induced calcium signals, which were not affected by extracellular calcium depletion. We propose that GPx4 inhibition activates IP3R-mediated calcium release in SH-SY5Y cells, leading to increased cytoplasmic and mitochondrial calcium levels, which, in turn, stimulate ROS production and induce lipid peroxidation and cell death in a noxious positive feedback cycle.
Collapse
Affiliation(s)
- Joaquín Campos
- Chica and Heinz Schaller Foundation, Institute for Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (S.G.); (C.H.)
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (S.G.); (C.H.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Marco T. Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800024, Chile
| |
Collapse
|
2
|
Villapol S, Janatpour ZC, Affram KO, Symes AJ. The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 2023; 20:1565-1591. [PMID: 37759139 PMCID: PMC10684482 DOI: 10.1007/s13311-023-01435-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem, with limited pharmacological options available beyond symptomatic relief. The renin angiotensin system (RAS) is primarily known as a systemic endocrine regulatory system, with major roles controlling blood pressure and fluid homeostasis. Drugs that target the RAS are used to treat hypertension, heart failure and kidney disorders. They have now been used chronically by millions of people and have a favorable safety profile. In addition to the systemic RAS, it is now appreciated that many different organ systems, including the brain, have their own local RAS. The major ligand of the classic RAS, Angiotensin II (Ang II) acts predominantly through the Ang II Type 1 receptor (AT1R), leading to vasoconstriction, inflammation, and heightened oxidative stress. These processes can exacerbate brain injuries. Ang II receptor blockers (ARBs) are AT1R antagonists. They have been shown in several preclinical studies to enhance recovery from TBI in rodents through improvements in molecular, cellular and behavioral correlates of injury. ARBs are now under consideration for clinical trials in TBI. Several different RAS peptides that signal through receptors distinct from the AT1R, are also potential therapeutic targets for TBI. The counter regulatory RAS pathway has actions that oppose those stimulated by AT1R signaling. This alternative pathway has many beneficial effects on cells in the central nervous system, bringing about vasodilation, and having anti-inflammatory and anti-oxidative stress actions. Stimulation of this pathway also has potential therapeutic value for the treatment of TBI. This comprehensive review will provide an overview of the various components of the RAS, with a focus on their direct relevance to TBI pathology. It will explore different therapeutic agents that modulate this system and assess their potential efficacy in treating TBI patients.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Zachary C Janatpour
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kwame O Affram
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
3
|
Stefanizzi V, Minutolo A, Valletta E, Carlini M, Cordero FM, Ranzenigo A, Prete SP, Cicero DO, Pitti E, Petrella G, Matteucci C, Marino-Merlo F, Mastino A, Macchi B. Biological Evaluation of Triorganotin Derivatives as Potential Anticancer Agents. Molecules 2023; 28:molecules28093856. [PMID: 37175265 PMCID: PMC10180515 DOI: 10.3390/molecules28093856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Metal-derived platinum complexes are widely used to treat solid tumors. However, systemic toxicity and tumor resistance to these drugs encourage further research into similarly effective compounds. Among others, organotin compounds have been shown to inhibit cell growth and induce cell death and autophagy. Nevertheless, the impact of the ligand structure and mechanisms involved in the toxicity of organotin compounds have not been clarified. In the present study, the biological activities of commercially available bis(tributyltin) oxide and tributyltin chloride, in comparison to those of specially synthesized tributyltin trifluoroacetate (TBT-OCOCF3) and of cisplatin, were assessed using cells with different levels of tumorigenicity. The results show that tributyltins were more cytotoxic than cisplatin in all the tested cell lines. NMR revealed that this was not related to the interaction with DNA but to the inhibition of glucose uptake into the cells. Moreover, highly tumorigenic cells were less susceptible than nontumorigenic cells to the nonunique pattern of death induced by TBT-OCOCF3. Nevertheless, tumorigenic cells became sensitive when cotreated with wortmannin and TBT-OCOCF3, although no concomitant induction of autophagy by the compound was detected. Thus, TBT-OCOCF3 might be the prototype of a family of potential anticancer agents.
Collapse
Affiliation(s)
- Valeria Stefanizzi
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
- Ph.D. Course in Microbiology, Immunology, Infectious Diseases, and Transplants (MIMIT), University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Elena Valletta
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Martina Carlini
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Franca M Cordero
- Department of Chemistry Ugo Schiff, University of Florence, 50019 Florence, Italy
| | - Anna Ranzenigo
- Department of Chemistry Ugo Schiff, University of Florence, 50019 Florence, Italy
| | | | - Daniel Oscar Cicero
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Erica Pitti
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Greta Petrella
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Francesca Marino-Merlo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Antonio Mastino
- The Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
| | - Beatrice Macchi
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
4
|
Bhardwaj A, Bhardwaj R, Saini A, Dhawan DK, Kaur T. Impact of Calcium Influx on Endoplasmic Reticulum in Excitotoxic Neurons: Role of Chemical Chaperone 4-PBA. Cell Mol Neurobiol 2023; 43:1619-1635. [PMID: 36002608 PMCID: PMC11412423 DOI: 10.1007/s10571-022-01271-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022]
Abstract
Excessive activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propoinic acid (AMPA) receptors instigates excitotoxicity via enhanced calcium influx in the neurons thus inciting deleterious consequences. Additionally, Endoplasmic Reticulum (ER) is pivotal in maintaining the intracellular calcium balance. Considering this, studying the aftermath of enhanced calcium uptake by neurons and its effect on ER environment can assist in delineating the pathophysiological events incurred by excitotoxicty. The current study was premeditated to decipher the role of ER pertaining to calcium homeostasis in AMPA-induced excitotoxicity. The findings showed, increased intracellular calcium levels (measured by flowcytometry and spectroflourimeter using Fura 2AM) in AMPA excitotoxic animals (male Sprague dawely rats) (intra-hippocampal injection of 10 mM AMPA). Further, ER resident proteins like calnexin, PDI and ERp72 were found to be upregulated, which further modulated the functioning of ER membrane calcium channels viz. IP3R, RyR, and SERCA pump. Altered calcium homeostasis further led to ER stress and deranged the protein folding capacity of ER post AMPA toxicity, which was ascertained by unfolded protein response (UPR) pathway markers such as IRE1α, eIF2α, and ATF6α. Chemical chaperone, 4-phenybutric acid (4-PBA), ameliorated the protein folding capacity and subsequent UPR markers. In addition, modulation of calcium channels and calcium regulating machinery of ER post 4-PBA administration restored the calcium homeostasis. Therefore the study reinforces the significance of ER stress, a debilitating outcome of impaired calcium homeostasis, under AMPA-induced excitotoxicity. Also, employing chaperone-based therapeutic approach to curb ER stress can restore the calcium imbalance in the neuropathological diseases.
Collapse
Affiliation(s)
- Ankita Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Rishi Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | | | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Hatano M, Hatamiya S, Miyara M, Kotake Y. Tributyltin activates the Keap1-Nrf2 pathway via a macroautophagy-independent reduction in Keap1. J Toxicol Sci 2023; 48:161-168. [PMID: 36858641 DOI: 10.2131/jts.48.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Tributyltin (TBT) is an environmental chemical, which was used as an antifouling agent for ships. Although its use has been banned, it is still persistently present in ocean sediments. Although TBT reportedly causes various toxicity in mammals, few studies on the mechanisms of biological response against TBT toxicity exist. The well-established Keap1-Nrf2 pathway is activated as a cytoprotective mechanism under stressful conditions. The relationship between TBT and the Keap1-Nrf2 pathway remains unclear. In the present study, we evaluated the effect of TBT on the Keap1-Nrf2 pathway. TBT reduced Keap1 protein expression in Neuro2a cells, a mouse neuroblastoma cell line, after 6 hr without altering mRNA expression levels. TBT also promoted the nuclear translocation of Nrf2, a transcription factor for antioxidant proteins, after 12 hr and augmented the expression of heme oxygenase 1, a downstream protein of Nrf2. Furthermore, TBT decreased Keap1 levels in mouse embryonic fibroblast (MEF) cells, with the knockout of Atg5, which is essential for macroautophagy, as well as in wild-type MEF cells. These results suggest that TBT activates the Keap1-Nrf2 pathway via the reduction in the Keap1 protein level in a macroautophagy-independent manner. The Keap1-Nrf2 pathway is activated by conformational changes in Keap1 induced by reactive oxygen species or electrophiles. Furthermore, any unutilized Keap1 protein is degraded by macroautophagy. Understanding the novel mechanism governing the macroautophagy-independent reduction in Keap1 by TBT may provide insights into the unresolved biological response mechanism against TBT toxicity and the activation mechanism of the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Misaki Hatano
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shunichi Hatamiya
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Masatsugu Miyara
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
6
|
Vongthip W, Sillapachaiyaporn C, Kim KW, Sukprasansap M, Tencomnao T. Thunbergia laurifolia Leaf Extract Inhibits Glutamate-Induced Neurotoxicity and Cell Death through Mitophagy Signaling. Antioxidants (Basel) 2021; 10:antiox10111678. [PMID: 34829549 PMCID: PMC8614718 DOI: 10.3390/antiox10111678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress plays a crucial role in neurodegeneration. Therefore, reducing oxidative stress in the brain is an important strategy to prevent neurodegenerative disorders. Thunbergia laurifolia (Rang-jued) is well known as an herbal tea in Thailand. Here, we aimed to determine the protective effects of T. laurifolia leaf extract (TLE) on glutamate-induced oxidative stress toxicity and mitophagy-mediated cell death in mouse hippocampal cells (HT-22). Our results reveal that TLE possesses a high level of bioactive antioxidants by LC–MS technique. We found that the pre-treatment of cells with TLE prevented glutamate-induced neuronal death in a concentration-dependent manner. TLE reduced the intracellular ROS and maintained the mitochondrial membrane potential caused by glutamate. Moreover, TLE upregulated the gene expression of antioxidant enzymes (SOD1, SOD2, CAT, and GPx). Interestingly, glutamate also induced the activation of the mitophagy process. However, TLE could reverse this activity by inhibiting autophagic protein (LC3B-II/LC3B-I) activation and increasing a specific mitochondrial protein (TOM20). Our results suggest that excessive glutamate can cause neuronal death through mitophagy-mediated cell death signaling in HT-22 cells. Our findings indicate that TLE protects cells from neuronal death by stimulating the endogenous antioxidant enzymes and inhibiting glutamate-induced oxidative toxicity via the mitophagy–autophagy pathway. TLE might have potential as an alternative or therapeutic approach in neurodegenerative diseases.
Collapse
Affiliation(s)
- Wudtipong Vongthip
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.V.); (C.S.)
| | - Chanin Sillapachaiyaporn
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.V.); (C.S.)
| | - Kyu-Won Kim
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 151-742, Korea;
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
- Correspondence: (M.S.); (T.T.); Tel.: +66-2-800-2380 (M.S.); +66-2-218-1533 (T.T.)
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (M.S.); (T.T.); Tel.: +66-2-800-2380 (M.S.); +66-2-218-1533 (T.T.)
| |
Collapse
|
7
|
17-β Estradiol Rescued Immature Rat Brain against Glutamate-Induced Oxidative Stress and Neurodegeneration via Regulating Nrf2/HO-1 and MAP-Kinase Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10060892. [PMID: 34206065 PMCID: PMC8229583 DOI: 10.3390/antiox10060892] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Dysregulated glutamate signaling, leading to neuronal excitotoxicity and death, has been associated with neurodegenerative pathologies. 17β-estradiol (E2) is a human steroid hormone having a role in reproduction, sexual maturation, brain health and biological activities. The study aimed to explain the neuroprotective role of E2 against glutamate-induced ROS production, MAP kinase-dependent neuroinflammation, synaptic dysfunction and neurodegeneration in the cortex and hippocampus of postnatal day 7 rat brain. Biochemical and immunofluorescence analyses were applied. Our results showed that a single subcutaneous injection of glutamate (10 mg/kg) induced brain oxidative stress after 4 h by disturbing the homeostasis of glutathione (GSH) and revealed an upsurge in ROS and LPO levels and downregulated the expression of Nrf2 and HO-1 antioxidant protein. The glutamate-exposed P7 pups illustrated increased phosphorylation of stress-activated c-Jun N-terminal kinase (JNK) and p38 kinase (p38) and downregulated expression of P-Erk1/2. This was accompanied by pathological neuroinflammation as revealed by enhanced gliosis with upregulated expression of GFAP and Iba-1, and the activation of proinflammatory cytokines (TNF-α) in glutamate-injected P7 pups. Moreover, exogenous glutamate also reduced the expression of synaptic markers (PSD-95, SYP) and induced apoptotic neurodegeneration in the cortical and hippocampal regions by dysregulating the expression of Bax, Bcl-2 and caspase-3 in the developing rat brain. On the contrary, co-treatment of E2 (10 mg/kg) with glutamate significantly abrogated brain neuroinflammation, neurodegeneration and synapse loss by alleviating brain oxidative stress by upregulating the Nrf2/HO-1 antioxidant pathway and by deactivating pro-apoptotic P-JNK/P-p38 and activation of pro-survival P-Erk1/2 MAP kinase pathways. In brief, the data demonstrate the neuroprotective role of E2 against glutamate excitotoxicity-induced neurodegeneration. The study also encourages future studies investigating if E2 may be a potent neuroprotective and neurotherapeutic agent in different neurodegenerative diseases.
Collapse
|
8
|
Fross S, Mansel C, McCormick M, Vohra BPS. Tributyltin Alters Calcium Levels, Mitochondrial Dynamics, and Activates Calpains Within Dorsal Root Ganglion Neurons. Toxicol Sci 2021; 180:342-355. [PMID: 33481012 DOI: 10.1093/toxsci/kfaa193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tributyltin (TBT) remains a global health concern. The primary route of human exposure to TBT is either through ingestion or skin absorption, but TBT's effects on the peripheral nervous system have still not been investigated. Therefore, we exposed in vitro sensory dorsal root ganglion (DRG) neurons to TBT at a concentration of 50-200 nM, which is similar to the observed concentrations of TBT in human blood samples. We observed that TBT causes extensive axon degeneration and neuronal death in the DRG neurons. Furthermore, we discovered that TBT causes an increase in both cytosolic and mitochondrial calcium levels, disrupts mitochondrial dynamics, decreases neuronal ATP levels, and leads to the activation of calpains. Additional experiments demonstrated that inhibition of calpain activation prevented TBT-induced fragmentation of neuronal cytoskeletal proteins and neuronal cell death. Thus, we conclude that calpain activation is the key executioner of TBT-induced peripheral neurodegeneration.
Collapse
Affiliation(s)
- Shaneann Fross
- Department of Biology, William Jewell College, Liberty, Missouri 64068, USA
| | - Clayton Mansel
- Department of Biology, William Jewell College, Liberty, Missouri 64068, USA
| | - Madison McCormick
- Department of Biology, William Jewell College, Liberty, Missouri 64068, USA
| | | |
Collapse
|
9
|
Škerlová J, Ismail A, Lindström H, Sjödin B, Mannervik B, Stenmark P. Structural and functional analysis of the inhibition of equine glutathione transferase A3-3 by organotin endocrine disrupting pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115960. [PMID: 33162212 DOI: 10.1016/j.envpol.2020.115960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/02/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Organotin compounds are highly toxic environmental pollutants with neurotoxic and endocrine-disrupting effects. They are potent inhibitors of glutathione transferases (GSTs), thus impeding their detoxication and antioxidant functions. Several GSTs, including equine GST A3-3 (EcaGST A3-3), exhibit steroid double-bond isomerase activity and are involved in the biosynthesis of testosterone and progesterone. We have performed enzyme kinetics analyses of the inhibition of EcaGST A3-3 by organotin compounds. We have also solved crystal structures of EcaGST A3-3 in complexes with glutathione, and with glutathione together with covalently bound triethyltin. Our structural data indicate that the tin atom forms strong bonds with a covalent character not only with the glutathione, but also with a tyrosyl residue of the enzyme itself, thereby preventing the release of the glutathione-organotin adduct and completely blocking the enzyme function. This work presents a structural basis for the general mechanism of GST inhibition by organotin compounds and contributes to the understanding of their neurotoxic and endocrine disrupting effects.
Collapse
Affiliation(s)
- Jana Škerlová
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Aram Ismail
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Helena Lindström
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Birgitta Sjödin
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden; Department of Experimental Medical Science, Lund University, SE-22100, Lund, Sweden.
| |
Collapse
|
10
|
Meta-analysis on big data of bioactive compounds from mangrove ecosystem to treat neurodegenerative disease. Scientometrics 2020. [DOI: 10.1007/s11192-020-03355-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Mihaljević I, Bašica B, Maraković N, Kovačević R, Smital T. Interaction of organotin compounds with three major glutathione S-transferases in zebrafish. Toxicol In Vitro 2019; 62:104713. [PMID: 31706034 DOI: 10.1016/j.tiv.2019.104713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
Glutathione S-transferases (GSTs) play an important role in cellular detoxification as enzymatic mediators of glutathione (GSH) conjugation with a wide range of deleterious compounds, enabling their easier extrusion out of the organism. GSTs are shown to interact with organotin compounds (OTCs), known environmental pollutants, either as substrates, serving as electrophilic targets to the nucleophilic attack of GSH, or as noncompetitive inhibitors by binding to GST active sites and disrupting their enzymatic functions. There is a wide range of deleterious biological effects caused by OTCs in low concentration range. Their environmental concentrations, further potentiated by bioaccumulation in aquatic organisms, correspond with inhibitory constants reported for Gsts in zebrafish, which implies their environmental significance. Therefore, our main goal in this study was to analyze interactions of three major zebrafish Gsts - Gstp1, Gstr1, and Gstt1a - with a series of ten environmentally relevant organotin compounds. Using previously developed Gst inhibition assay with recombinant Gst proteins and fluorescent monochlorobimane as a model substrate, we determined Gst inhibitory constants for all tested OCTs. Furthermore, in order to elucidate nature of Gst interactions with OTCs, we determined type of interactions between tested Gsts and the strongest OTC inhibitors. Our results showed that OTCs can interact with zebrafish Gsts as competitive, noncompetitive, or mixed-type inhibitors. Determined types of interactions were additionally confirmed in silico by molecular docking studies of tested OTCs with newly developed Gst models. In silico models were further used to reveal structures of tested Gsts in more detail and identify crucial amino acid residues which interact with OTCs within Gst active sites. Our results revealed more extensive involvement of Gstr1 and Gstp1 in detoxification of numerous tested OTCs, with low inhibitory constants in nanomolar to low micromolar range and different types of inhibition, whereas Gstt1a noncompetitively interacted with only two tested OTCs with significantly higher inhibitory constants.
Collapse
Affiliation(s)
- Ivan Mihaljević
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Branka Bašica
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Radmila Kovačević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
12
|
Cong C, Kluwe L, Li S, Liu X, Liu Y, Liu H, Gui W, Liu T, Xu L. Paeoniflorin inhibits tributyltin chloride-induced apoptosis in hypothalamic neurons via inhibition of MKK4-JNK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:1-8. [PMID: 30878547 DOI: 10.1016/j.jep.2019.03.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniflorin (PF) exerts a significant protective effect against neurotoxicity and mitochondrial damage in neurons. However, the mechanisms underlying PF-mediated rescue remain elusive. Therefore, we endeavored to further research the molecular mechanisms underlying PF-mediated inhibition of tributyltin chloride (TBTC)-induced apoptosis of neurons. AIM OF THE STUDY To investigate the influence and possible mechanism of action of PF in TBTC-induced neurodegenerative disease. MATERIALS AND METHODS First, primary hypothalamic neurons were treated with tributyltin chloride (150 μg/L) and PF (25, 50, and 100 μM). 17β-estradiol (1 nM) was used as a positive control. Subsequently, CCK-8 assay was performed. The level of apoptosis was examined by flow cytometry and the function of mitochondria was reflected by MMP levels. The mRNA expression levels of B-cell lymphoma-2 (Bcl-2), together with Bax, were examined using qRT-PCR. The protein levels of mitogen-activated protein kinase kinase 4 (MKK4), c-Jun N-terminal kinase (JNK), Bcl-2, Bax, and Caspase-3 were examined using western blotting. Finally, pretreatment with JNK agonist, anisomycin, was done to observe the change in expressions of MKK4 and JNK. RESULTS Paeoniflorin treatment reduced TBTC-induced damage and neuron loss in a dose-dependent manner. Decrease in mitogen-activated protein kinase (MAPK) as well as JNK levels were reversed by treatment with paeoniflorin via inhibition of JNK activation. Furthermore, ratio of levels of Bcl-2/Bax increased while the activation of caspase-3 was suppressed. In addition, pretreatment with JNK agonist, anisomycin effectively suppressed TBTC-induced cytotoxicity in hypothalamic neuron. CONCLUSIONS PF can potentially be used to prevent and/or treat neurodegenerative diseases and neural injury by inhibiting MKK4-JNK signaling pathway.
Collapse
Affiliation(s)
- Chao Cong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Lan Kluwe
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Shengnan Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Xiaofei Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Huicong Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Wenjia Gui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Te Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Lianwei Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| |
Collapse
|
13
|
Kotake Y. [Neurotoxicity Mechanism of Environmental Chemicals and Its Evaluation System]. YAKUGAKU ZASSHI 2018; 138:1227-1233. [PMID: 30270264 DOI: 10.1248/yakushi.18-00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is pivotal to assess the toxicity and safety of chemicals, including medicines, in the research field of environmental health science. Here we introduce neurotoxic mechanisms in mammals of environmental organotin and Parkinson's disease-related chemicals. We clarified that low concentrations of tributyltin decrease α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor subunit GluA2 (GluR2) expression, leading to the vulnerability of cultured neurons. That is, tributyltin reduces GluA2 prior to neuronal death. This GluA2 decrease can be used as a sensitive evaluation index of neurotoxicity, since low levels of certain chemicals, for example some agrochemicals, decrease GluA2 expression. We also elucidated the mechanisms of abnormal protein metabolism induced by low levels of two Parkinson's disease-related chemicals: 1-methyl-4-phenylpyridinium ion (MPP+) and 1,2,3,4-tetrahydroisoquinoline derivatives. It is expected that these findings will become clues in accurately evaluating the toxicity of chemicals and/or in investigating the causes of disease.
Collapse
Affiliation(s)
- Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
14
|
Prenatal exposure to oxidative phosphorylation xenobiotics and late-onset Parkinson disease. Ageing Res Rev 2018; 45:24-32. [PMID: 29689408 DOI: 10.1016/j.arr.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022]
Abstract
Late-onset Parkinson disease is a multifactorial and multietiological disorder, age being one of the factors implicated. Genetic and/or environmental factors, such as pesticides, can also be involved. Up to 80% of dopaminergic neurons of the substantia nigra are lost before motor features of the disorder begin to appear. In humans, these neurons are only formed a few weeks after fertilization. Therefore, prenatal exposure to pesticides or industrial chemicals during crucial steps of brain development might also alter their proliferation and differentiation. Oxidative phosphorylation is one of the metabolic pathways sensitive to environmental toxicants and it is crucial for neuronal differentiation. Many inhibitors of this biochemical pathway, frequently found as persistent organic pollutants, affect dopaminergic neurogenesis, promote the degeneration of these neurons and increase the risk of suffering late-onset Parkinson disease. Here, we discuss how an early, prenatal, exposure to these oxidative phosphorylation xenobiotics might trigger a late-onset, old age, Parkinson disease.
Collapse
|
15
|
Topical Curcumin Nanocarriers are Neuroprotective in Eye Disease. Sci Rep 2018; 8:11066. [PMID: 30038334 PMCID: PMC6056418 DOI: 10.1038/s41598-018-29393-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 03/14/2018] [Indexed: 11/11/2022] Open
Abstract
Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5dione) is a polyphenol extracted from turmeric that has long been advocated for the treatment of a variety of conditions including neurodegenerative and inflammatory disorders. Despite this promise, the clinical use of curcumin has been limited by the poor solubility and low bioavailability of this molecule. In this article, we describe a novel nanocarrier formulation comprising Pluronic-F127 stabilised D-α-Tocopherol polyethene glycol 1000 succinate nanoparticles, which were used to successfully solubilize high concentrations (4.3 mg/mL) of curcumin. Characterisation with x-ray diffraction and in vitro release assays localise curcumin to the nanocarrier interior, with each particle measuring <20 nm diameter. Curcumin-loaded nanocarriers (CN) were found to significantly protect against cobalt chloride induced hypoxia and glutamate induced toxicity in vitro, with CN treatment significantly increasing R28 cell viability. Using established glaucoma-related in vivo models of ocular hypertension (OHT) and partial optic nerve transection (pONT), topical application of CN twice-daily for three weeks significantly reduced retinal ganglion cell loss compared to controls. Collectively, these results suggest that our novel topical CN formulation has potential as an effective neuroprotective therapy in glaucoma and other eye diseases with neuronal pathology.
Collapse
|
16
|
Bo E, Farinetti A, Marraudino M, Sterchele D, Eva C, Gotti S, Panzica G. Adult exposure to tributyltin affects hypothalamic neuropeptide Y, Y1 receptor distribution, and circulating leptin in mice. Andrology 2016; 4:723-34. [PMID: 27310180 DOI: 10.1111/andr.12222] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/29/2016] [Accepted: 04/15/2016] [Indexed: 12/25/2022]
Abstract
Tributyltin (TBT), a pesticide used in antifouling paints, is toxic for aquatic invertebrates. In vertebrates, TBT may act in obesogen- inducing adipogenetic gene transcription for adipocyte differentiation. In a previous study, we demonstrated that acute administration of TBT induces c-fos expression in the arcuate nucleus. Therefore, in this study, we tested the hypothesis that adult exposure to TBT may alter a part of the nervous pathways controlling animal food intake. In particular, we investigated the expression of neuropeptide Y (NPY) immunoreactivity. This neuropeptide forms neural circuits dedicated to food assumption and its action is mediated by Y1 receptors that are widely expressed in the hypothalamic nuclei responsible for the regulation of food intake and energy homeostasis. To this purpose, TBT was orally administered at a dose of 0.025 mg/kg/day/body weight to adult animals [male and female C57BL/6 (Y1-LacZ transgenic mice] for 4 weeks. No differences were found in body weight and fat deposition, but we observed a significant increase in feed efficiency in TBT-treated male mice and a significant decrease in circulating leptin in both sexes. Computerized quantitative analysis of NPY immunoreactivity and Y1-related β-galactosidase activity demonstrated a statistically significant reduction in NPY and Y1 transgene expression in the hypothalamic circuit controlling food intake of treated male mice in comparison with controls. In conclusion, the present results indicate that adult exposure to TBT is profoundly interfering with the nervous circuits involved in the stimulation of food intake.
Collapse
Affiliation(s)
- E Bo
- Department Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Torino, Italy
| | - A Farinetti
- Department Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Torino, Italy
| | - M Marraudino
- Department Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Torino, Italy
| | - D Sterchele
- Department Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Torino, Italy
| | - C Eva
- Department Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Torino, Italy
| | - S Gotti
- Department Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Torino, Italy
| | - G Panzica
- Department Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Torino, Italy
| |
Collapse
|
17
|
Perfluorooctane sulfonate induces neuronal vulnerability by decreasing GluR2 expression. Arch Toxicol 2016; 91:885-895. [PMID: 27155986 DOI: 10.1007/s00204-016-1731-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent environmental contaminant. Although studies have described PFOS-induced neurotoxicity in animal brains and neuronal cells, the molecular mechanisms of PFOS-induced neurotoxicity based on the distribution properties, especially during developmental periods, have not been clarified. To clarify the mechanisms of PFOS-induced neuronal vulnerability during developmental periods, we examined changes in glutamate receptor 2 (GluR2) expression and related neurotoxicity in PFOS-treated primary cortical neurons and neonatal rat brains. Exposure of cortical neurons to 1 μM PFOS for 9 days resulted in decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR2 expression, which subsequently enhanced vulnerability to glutamate by increasing intracellular Ca2+ concentrations. The brain-plasma ratio of PFOS in pups was approximately five times higher than that in dams, although there were no differences in liver-plasma ratio between dams and pups. GluR2 expression in pup cerebral cortex decreased after exposure to 2.0 mg/kg PFOS, and kainic acid induced histopathological abnormalities in PFOS-exposed pups. Our findings suggest that decreased neuronal GluR2 expression is involved in PFOS-induced neurotoxicity, especially during the fetal and neonatal periods.
Collapse
|
18
|
Umeda K, Kotake Y, Miyara M, Ishida K, Sanoh S, Ohta S. Methoxychlor and fenvalerate induce neuronal death by reducing GluR2 expression. J Toxicol Sci 2016; 41:255-64. [DOI: 10.2131/jts.41.255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Kanae Umeda
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Masatsugu Miyara
- Graduate School of Biomedical and Health Sciences, Hiroshima University
- Research Fellow of the Japan Society for the Promotion of Science
| | - Keishi Ishida
- Graduate School of Biomedical and Health Sciences, Hiroshima University
- Research Fellow of the Japan Society for the Promotion of Science
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
19
|
Mitra S, Siddiqui WA, Khandelwal S. Differential susceptibility of brain regions to tributyltin chloride toxicity. ENVIRONMENTAL TOXICOLOGY 2015; 30:1393-1405. [PMID: 24895210 DOI: 10.1002/tox.22009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
Tributyltin (TBT), a well-known endocrine disruptor, is an omnipresent environmental pollutant and is explicitly used in many industrial applications. Previously we have shown its neurotoxic potential on cerebral cortex of male Wistar rats. As the effect of TBT on other brain regions is not known, we planned this study to evaluate its effect on four brain regions (cerebellum, hippocampus, hypothalamus, and striatum). Four-week-old male Wistar rats were gavaged with a single dose of TBT-chloride (TBTC) (10, 20, and 30 mg/kg) and sacrificed on days 3 and 7, respectively. Effect of TBTC on blood-brain barrier (BBB) permeability and tin (Sn) accumulation were measured. Oxidative stress indexes such as reactive oxygen species (ROS), reduced and oxidized glutathione (GSH/GSSG) ratio, lipid peroxidation, and protein carbonylation were analyzed as they play an imperative role in various neuropathological conditions. Since metal catalyzed reactions are a major source of oxidant generation, levels of essential metals like iron (Fe), zinc (Zn), and calcium (Ca) were estimated. We found that TBTC disrupted BBB and increased Sn accumulation, both of which appear significantly correlated. Altered metal homeostasis and ROS generation accompanied by elevated lipid peroxidation and protein carbonylation indicated oxidative damage which appeared more pronounced in the striatum than in cerebellum, hippocampus, and hypothalamus. This could be associated to the depleted GSH levels in striatum. These results suggest that striatum is more susceptible to TBTC induced oxidative damage as compared with other brain regions under study.
Collapse
Affiliation(s)
- Sumonto Mitra
- Immunotoxicology Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Department of Biochemistry, Jamia Hamdard, Hamdard University, New Delhi, India
| | - Waseem A Siddiqui
- Department of Biochemistry, Jamia Hamdard, Hamdard University, New Delhi, India
| | - Shashi Khandelwal
- Immunotoxicology Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| |
Collapse
|
20
|
Mitra S, Siddiqui WA, Khandelwal S. C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: A comparative efficacy evaluation with N-acetyl cysteine in adult rat brain. Chem Biol Interact 2015; 238:138-50. [DOI: 10.1016/j.cbi.2015.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/11/2015] [Accepted: 06/08/2015] [Indexed: 12/28/2022]
|
21
|
Protective actions of 17β-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:343706. [PMID: 25815107 PMCID: PMC4359856 DOI: 10.1155/2015/343706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/06/2015] [Indexed: 01/10/2023]
Abstract
Steroid hormones synthesized in and secreted from peripheral endocrine glands pass through the blood-brain barrier and play a role in the central nervous system. In addition, the brain possesses an inherent endocrine system and synthesizes steroid hormones known as neurosteroids. Increasing evidence shows that neuroactive steroids protect the central nervous system from various harmful stimuli. Reports show that the neuroprotective actions of steroid hormones attenuate oxidative stress. In this review, we summarize the antioxidative effects of neuroactive steroids, especially 17β-estradiol and progesterone, on neuronal injury in the central nervous system under various pathological conditions, and then describe our recent findings concerning the neuroprotective actions of 17β-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds, tributyltin, and methylmercury.
Collapse
|
22
|
Sugiyama C, Kotake Y, Yamaguchi M, Umeda K, Tsuyama Y, Sanoh S, Okuda K, Ohta S. Development of a simple measurement method for GluR2 protein expression as an index of neuronal vulnerability. Toxicol Rep 2015; 2:450-460. [PMID: 28962381 PMCID: PMC5598506 DOI: 10.1016/j.toxrep.2014.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/20/2014] [Accepted: 12/20/2014] [Indexed: 11/28/2022] Open
Abstract
In vitro estimating strategies for potential neurotoxicity are required to screen multiple substances. In a previous study, we showed that exposure to low-concentrations of some chemicals, such as organotin, decreased the expression of GluR2 protein, which is a subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors, and led to neuronal vulnerability. This result suggested that GluR2 decreases as an index of neuronal cell sensitivity and vulnerability to various toxic insults. Accordingly, we developed a versatile method that is a large scale determination of GluR2 protein expression in the presence of environmental chemicals by means of AlphaLISA technology. Various analytical conditions were optimized, and then GluR2 protein amount was measured by the method using AlphaLISA. The GluR2 amounts were strongly correlated with that of measured by western blotting, which is currently used to determine GluR2 expression. An ideal standard curve could be written with the authentic GluR2 protein from 0 ng to 100 ng. Subsequently, twenty environmental chemicals were screened and nitenpyram was identified as a chemical which lead to decrease in GluR2 protein expression. This assay may provide a tool for detecting neurotoxic chemicals according to decreases in GluR2 protein expression.
Collapse
Key Words
- AMPA receptor
- AMPA receptor, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor
- AlphaLISA
- Cell-based assay
- DMEM, Dulbecco's modified Eagle's medium
- DMSO, dimethyl sulfoxide
- EDTA, ethylenediaminetetraacetic acid
- FCS, fetal calf serum
- Glu, glutamate
- GluR2
- HS, horse serum
- MAP2, microtubule-associated protein 2
- NAS, 1-naphthylacetylspermine
- Neurotoxicity
- Nitenpyram
- PBS, phosphate-buffered saline
- TBT, tributyltin
- WST-1, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium
Collapse
Affiliation(s)
- Chihiro Sugiyama
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Masafumi Yamaguchi
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Kure, Hiroshima 737-0112, Japan
| | - Kanae Umeda
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yumi Tsuyama
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Katsuhiro Okuda
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
23
|
Yamada S, Kotake Y, Demizu Y, Kurihara M, Sekino Y, Kanda Y. NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells. Sci Rep 2014; 4:5952. [PMID: 25092173 PMCID: PMC4121607 DOI: 10.1038/srep05952] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/15/2014] [Indexed: 11/20/2022] Open
Abstract
Tributyltin (TBT) is known to cause developmental defects as endocrine disruptive chemicals (EDCs). At nanomoler concentrations, TBT actions were mediated by genomic pathways via PPAR/RXR. However, non-genomic target of TBT has not been elucidated. To investigate non-genomic TBT targets, we performed comprehensive metabolomic analyses using human embryonic carcinoma NT2/D1 cells. We found that 100 nM TBT reduced the amounts of α-ketoglutarate, succinate and malate. We further found that TBT decreased the activity of NAD-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the conversion of isocitrate to α-ketoglutarate in the TCA cycle. In addition, TBT inhibited cell growth and enhanced neuronal differentiation through NAD-IDH inhibition. Furthermore, studies using bacterially expressed human NAD-IDH and in silico simulations suggest that TBT inhibits NAD-IDH due to a possible interaction. These results suggest that NAD-IDH is a novel non-genomic target of TBT at nanomolar levels. Thus, a metabolomic approach may provide new insights into the mechanism of EDC action.
Collapse
Affiliation(s)
- Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan
| | - Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, Tokyo, Japan
| | - Masaaki Kurihara
- Division of Organic Chemistry, National Institute of Health Sciences, Tokyo, Japan
| | - Yuko Sekino
- Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan
| |
Collapse
|
24
|
Wang Y, Wang S, Luo X, Yang Y, Jian F, Wang X, Xie L. The roles of DNA damage-dependent signals and MAPK cascades in tributyltin-induced germline apoptosis in Caenorhabditis elegans. CHEMOSPHERE 2014; 108:231-238. [PMID: 24534158 DOI: 10.1016/j.chemosphere.2014.01.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/23/2013] [Accepted: 01/11/2014] [Indexed: 06/03/2023]
Abstract
The induction of apoptosis is recognized to be a major mechanism of tributyltin (TBT) toxicity. However, the underlying signaling pathways for TBT-induced apoptosis remain unclear. In this study, using the nematode Caenorhabditis elegans, we examined whether DNA damage response (DDR) pathway and mitogen-activated protein kinase (MAPK) signaling cascades are involved in TBT-induced germline apoptosis and cell cycle arrest. Our results demonstrated that exposing worms to TBT at the dose of 10nM for 6h significantly increased germline apoptosis in N2 strain. Germline apoptosis was absent in strains that carried ced-3 or ced-4 loss-of-function alleles, indicating that both caspase protein CED-3 and Apaf-1 protein CED-4 were required for TBT-induced apoptosis. TBT-induced apoptosis was blocked in the Bcl-2 gain-of-function strain ced-9(n1950), whereas TBT induced a minor increase in the BH3-only protein EGL-1 mutated strain egl-1(n1084n3082). Checkpoint proteins HUS-1 and CLK-2 exerted proapoptotic effects, and the null mutation of cep-1, the homologue of tumor suppressor gene p53, significantly inhibited TBT-induced apoptosis. Apoptosis in the loss-of-function strains of ERK, JNK and p38 MAPK signaling pathways were completely or mildly suppressed under TBT stress. These results were supported by the results of mRNA expression levels of corresponding genes. The present study indicated that TBT-induced apoptosis required the core apoptotic machinery, and that DDR genes and MAPK pathways played essential roles in signaling the processes.
Collapse
Affiliation(s)
- Yun Wang
- Department of Life Sciences, Huainan Normal University, Huainan, Anhui 232001, PR China.
| | - Shunchang Wang
- Department of Life Sciences, Huainan Normal University, Huainan, Anhui 232001, PR China
| | - Xun Luo
- Department of Life Sciences, Huainan Normal University, Huainan, Anhui 232001, PR China
| | - Yanan Yang
- Department of Life Sciences, Huainan Normal University, Huainan, Anhui 232001, PR China
| | - Fenglei Jian
- Department of Life Sciences, Huainan Normal University, Huainan, Anhui 232001, PR China
| | - Xuemin Wang
- Department of Life Sciences, Huainan Normal University, Huainan, Anhui 232001, PR China
| | - Lucheng Xie
- Department of Life Sciences, Huainan Normal University, Huainan, Anhui 232001, PR China
| |
Collapse
|
25
|
Mitra S, Siddiqui WA, Khandelwal S. Early cellular responses against tributyltin chloride exposure in primary cultures derived from various brain regions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1048-1059. [PMID: 24762416 DOI: 10.1016/j.etap.2014.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/24/2014] [Accepted: 03/30/2014] [Indexed: 06/03/2023]
Abstract
Tributyltin (TBT) is a potent biocide and commonly used in various industrial sectors. Humans are mainly exposed through the food chain. We have previously demonstrated tin accumulation in brain following TBT-chloride (TBTC) exposure. In this study, effect of TBTC on dissociated cells from different brain regions was evaluated. Cytotoxicity assay (MTT), mode of cell death (Annexin V/PI assay), oxidative stress parameters (ROS and lipid peroxidation), reducing power of the cell (GSH), mitochondrial membrane potential (MMP) and intracellular Ca(2+) were evaluated to ascertain the effect of TBTC. Expression of glial fibrillary acidic protein (GFAP) was measured to understand the effect on astroglial cells. TBTC as low as 30 nM was found to reduce GSH levels, whereas higher doses of 300 and 3000 nM induced ROS generation and marked loss in cell viability mainly through apoptosis. Striatum showed higher susceptibility than other regions, which may have further implications on various neurological aspects.
Collapse
Affiliation(s)
- Sumonto Mitra
- Immunotoxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Department of Biochemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India.
| | - Waseem A Siddiqui
- Department of Biochemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Shashi Khandelwal
- Immunotoxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.
| |
Collapse
|
26
|
Sharma N, Kumar A. Mechanism of immunotoxicological effects of tributyltin chloride on murine thymocytes. Cell Biol Toxicol 2014; 30:101-12. [PMID: 24573671 DOI: 10.1007/s10565-014-9272-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/14/2014] [Indexed: 12/26/2022]
|
27
|
Zhang Y, Chen Y, Sun L, Liang J, Guo Z, Xu L. Protein phosphatases 2A as well as reactive oxygen species involved in tributyltin-induced apoptosis in mouse livers. ENVIRONMENTAL TOXICOLOGY 2014; 29:234-242. [PMID: 22223438 DOI: 10.1002/tox.21751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/25/2011] [Indexed: 05/31/2023]
Abstract
Tributyltin (TBT), a highly toxic environmental contaminant, has been shown to induce caspase-3-dependent apoptosis in human amniotic cells through protein phosphatase 2A (PP2A) inhibition and consequent JNK activation. This in vivo study was undertaken to further verify the results derived from our previous in vitro study. Mice were orally dosed with 0, 10, 20, and 60 mg/kg of body weight TBT, and levels of PP2A, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), Bax/Bcl-2, and caspase-3 were detected in the mouse livers. Apoptosis was also evaluated using the TUNEL assay. The results showed that PP2A activity was inhibited, ROS levels were elevated, and MAPKs including ERK, JNK, and p38 were activated in mouse livers treated with the highest dose of TBT. Additionally, the ratio of Bax/Bcl-2 was increased, caspase-3 was activated, and apoptosis in mouse livers could be detected in the highest dose group. Therefore, a possible signaling pathway in TBT-induced apoptosis in mouse livers involves PP2A inhibition and ROS elevation serving a pivotal function as upstream activators of MAPKs; activation of MAPKs in turn leads to an increase in the Bax/Bcl-2 ratio, ultimately leading to the activation of caspase-3. The results give a comprehensive and novel description of the mechanism of TBT-induced toxicity.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Biochemistry and Genetics, School of medicine, Zhejiang University, 866th Yu Hang Tang Road, 310058, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
28
|
Isomura M, Kotake Y, Masuda K, Miyara M, Okuda K, Samizo S, Sanoh S, Hosoi T, Ozawa K, Ohta S. Tributyltin-induced endoplasmic reticulum stress and its Ca2+-mediated mechanism. Toxicol Appl Pharmacol 2013; 272:137-46. [DOI: 10.1016/j.taap.2013.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 05/15/2013] [Accepted: 05/24/2013] [Indexed: 11/16/2022]
|
29
|
Ishihara Y, Kawami T, Ishida A, Yamazaki T. Allopregnanolone-mediated protective effects of progesterone on tributyltin-induced neuronal injury in rat hippocampal slices. J Steroid Biochem Mol Biol 2013; 135:1-6. [PMID: 23280249 DOI: 10.1016/j.jsbmb.2012.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 01/12/2023]
Abstract
Increasing evidence shows that progesterone, a neuroactive steroid, has protective actions in central nervous system, but there is little evidence to show the protective mechanism of progesterone on neurotoxicity induced by environmental chemicals. In this study, we examined the effects of progesterone on neuronal injury induced by tributyltin (TBT) in rat hippocampal slices. Treatment with progesterone dose-dependently suppressed hippocampal neuronal injury induced by TBT. The neuroprotective action of progesterone was completely canceled with pretreatment by finasteride, a 5α-reductase inhibitor, but it was not affected by mifepristone, a progesterone receptor antagonist, or by SU-10603, a cytochrome P450 17α inhibitor. The content of allopregnanolone in the slices was significantly increased by treatment with progesterone, and this increment was greatly suppressed with a pretreatment of finasteride. Treatment with allopregnanolone attenuated neuronal injury induced by TBT in a dose-dependent manner. The neuroprotective effects not only of progesterone but also of allopregnanolone were canceled by bicuculline, a potent gamma-aminobutyric acid A (GABAA) receptor antagonist. Pretreatment with muscimol, a GABAA receptor agonist, attenuated hippocampal neuronal injury elicited by TBT. Taken together, allopregnanolone converted from progesterone in hippocampal slices could protect neurons from TBT-induced neurotoxicity due to a GABAA receptor-dependent mechanism. One of the physiological roles of neuroactive steroids might be neuroprotection from environmental chemicals.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | | | | | | |
Collapse
|
30
|
Kotake Y. Molecular mechanisms of environmental organotin toxicity in mammals. Biol Pharm Bull 2013; 35:1876-80. [PMID: 23123459 DOI: 10.1248/bpb.b212017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Organotins such as tributyltin are suspected of having multiple toxic effects in mammals, in addition to their endocrine-disrupting function. Endogenous organotin concentrations in human blood range from a few to a few hundred nM. In this review, we summarize recent findings on the mechanisms of toxicity of environmental organotins such as tributyltin (TBT) and triphenyltin (TPT) in mammals. TBT and TPT are potent inhibitors of mitochondrial ATP synthase, and a recent study suggests that TBT binds directly to ATP synthase. Organotins disturb steroid biosynthesis and degradation. TBT and TPT are dual agonists of retinoid X receptor (RXR) and peroxisome proliferator-activated receptor γ (PPARγ); they also induce the differentiation of adipocytes in vitro and in vivo, probably through PPARγ activation, suggesting that they may work as obesogens. Environmental organotins are also neurotoxic; they induce behavioral abnormality and are toxic to the developing central nervous system. In vitro studies have shown that organotins induce intracellular Ca(2+) elevation and glutamate excitotoxicity. Recently, it was reported that endogenous levels of TBT decrease expression of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA) receptor subunit GluR2, leading to neuronal vulnerability. Most of the experimental studies have employed organotins at concentrations of µM order, and it remains important to clarify the molecular mechanisms of events induced by endogenous levels of environmental organotins.
Collapse
Affiliation(s)
- Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
31
|
Yamada S, Kotake Y, Sekino Y, Kanda Y. AMP-activated protein kinase-mediated glucose transport as a novel target of tributyltin in human embryonic carcinoma cells. Metallomics 2013; 5:484-91. [DOI: 10.1039/c3mt20268b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Abstract
The study explored a modified primary culture system for fetal rat cortical neurons. Day E18 embryos from pregnant Sprague Dawley rats were microdissected under a stereoscope. To minimize enzymatic damage to the cultured neurons, we applied a sequential digestion protocol using papain and Dnase I. The resulting sifted cell suspension was seeded at a density of 50,000 cells per cm2 onto 0.1 mg/mL L-PLL-covered vessels. After a four-hour incubation in high-glucose Dulbecco's Modified Eagle's Medium (HG-DMEM) to allow the neurons to adhere, the media was changed to neurobasal medium that was refreshed by changing half of the volume after three days followed by a complete medium change every week. The cells displayed progressively robust neurite extension, and nonneuronal-like cells could barely be detected by five days in vitro (DIV); cell growth was still substantial at 14 DIV. Neurons were identified by β-tubulin III immunofluorescence, and neuronal purity within the cultures was assessed at over 95% by both flow cytometry and by dark-field counting of β-tubulin III-positive cells. These results suggest that the protocol was successful and that the high purity of neurons in this system could be used as the basis for generating various cell models of neurological disease.
Collapse
|
33
|
Drug discovery models and toxicity testing using embryonic and induced pluripotent stem-cell-derived cardiac and neuronal cells. Stem Cells Int 2012; 2012:379569. [PMID: 22654918 PMCID: PMC3357635 DOI: 10.1155/2012/379569] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/07/2012] [Accepted: 02/16/2012] [Indexed: 12/12/2022] Open
Abstract
Development of induced pluripotent stem cells (iPSCs) using forced expression of specific sets of transcription factors has changed the field of stem cell research extensively. Two important limitations for research application of embryonic stem cells (ESCs), namely, ethical and immunological issues, can be circumvented using iPSCs. Since the development of first iPSCs, tremendous effort has been directed to the development of methods to increase the efficiency of the process and to reduce the extent of genomic modifications associated with the reprogramming procedure. The established lineage-specific differentiation protocols developed for ESCs are being applied to iPSCs, as they have great potential in regenerative medicine for cell therapy, disease modeling either for drug development or for fundamental science, and, last but not least, toxicity testing. This paper reviews efforts aimed at practical development of iPSC differentiation to neural/cardiac lineages and further the use of these iPSCs-derived cells for drug development and toxicity testing.
Collapse
|
34
|
Ishihara Y, Kawami T, Ishida A, Yamazaki T. Tributyltin induces oxidative stress and neuronal injury by inhibiting glutathione S-transferase in rat organotypic hippocampal slice cultures. Neurochem Int 2012; 60:782-90. [PMID: 22449404 DOI: 10.1016/j.neuint.2012.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/03/2012] [Accepted: 03/08/2012] [Indexed: 11/19/2022]
Abstract
Tributyltin (TBT) has been used as a heat stabilizer, agricultural pesticide and antifouling agents on ships, boats and fish-farming nets; however, the neurotoxicity of TBT has recently become a concern. TBT is suggested to stimulate the generation of reactive oxygen species (ROS) inside cells. The aim of this study was to determine the mechanism of neuronal oxidative injury induced by TBT using rat organotypic hippocampal slice cultures. The treatment of rat hippocampal slices with TBT induced ROS production, lipid peroxidation and cell death. Pretreatment with antioxidants such as superoxide dismutase, catalase or trolox, suppressed the above phenomena induced by TBT, indicating that TBT elicits oxidative stress in hippocampal slices, which causes neuronal cell death. TBT dose-dependently inhibited glutathione S-transferase (GST), but not glutathione peroxidase or glutathione reductase in the cytosol of rat hippocampus. The treatment of hippocampal slices with TBT decreased the GST activity. Pretreatment with reduced glutathione attenuated the reduction of GST activity and cell death induced by TBT, indicating that the decrease in GST activity by TBT is involved in hippocampal cell death. When hippocampal slices were treated with sulforaphane, the expression and activity of GST were increased. Notably, TBT-induced oxidative stress and cell death were significantly suppressed by pretreatment with sulforaphane. These results indicate that GST inhibition could contribute, at least in part, to the neuronal cell death induced by TBT in hippocampal slices. This study is the first report to show the link between neuronal oxidative injury and the GST inhibition elicited by TBT.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan.
| | | | | | | |
Collapse
|
35
|
Bo E, Viglietti-Panzica C, Panzica GC. Acute exposure to tributyltin induces c-fos activation in the hypothalamic arcuate nucleus of adult male mice. Neurotoxicology 2010; 32:277-80. [PMID: 21185327 DOI: 10.1016/j.neuro.2010.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 12/16/2010] [Indexed: 11/28/2022]
Abstract
Tributyltin (TBT) is a largely diffused environmental pollutant, banned from paints in the European Union from 2003. However, the level of TBT (and other organotins) in food, particularly fish and shellfish, remains still high. Several studies demonstrated that TBT is involved in the development of obesity, via peripheral action, but currently, there are only a few data illustrating effects of TBT on the nervous system. In the present study, we tested the hypothesis that acute exposure to TBT may directly activate brain cells in particular, in those hypothalamic nuclei regulating the food intake. To this purpose, TBT was orally administered at a single dose (10 mg/kg/body weight) to two groups of adult male mice: regularly fed or fasted for 24 h. Mice were sacrificed 90 min after the TBT administration and perfused by 4% paraformaldehyde. Brains were quickly dissected, frozen and sectioned for immunocytochemical detection of c-fos, a common marker of cell activation. In both, fed or fasted mice, exposure to TBT induced a significant increase of c-fos expression in the arcuate nucleus in comparison to control mice. The other nuclei involved in the control of feeding behavior did not show any significant increase. These data are the first in vivo demonstration that TBT has not only peripheral effects, but also may activate elements in the brain, in particular in a crucial region for the regulation of food intake like the arcuate nucleus.
Collapse
Affiliation(s)
- E Bo
- Laboratory of Neuroendocrinology, Neuroscience Institute of Torino (NIT), National Institute of Neuroscience (INN, Torino), Dept. Anatomy, Pharmacology and Forensic Medicine, University of Torino, corso M. D'Azeglio 52, 10126 Torino, Italy
| | | | | |
Collapse
|
36
|
Zhong Z, Wang Y, Guo H, Sagare A, Fernández JA, Bell RD, Barrett TM, Griffin JH, Freeman RS, Zlokovic BV. Protein S protects neurons from excitotoxic injury by activating the TAM receptor Tyro3-phosphatidylinositol 3-kinase-Akt pathway through its sex hormone-binding globulin-like region. J Neurosci 2010; 30:15521-34. [PMID: 21084607 PMCID: PMC3012432 DOI: 10.1523/jneurosci.4437-10.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/15/2010] [Indexed: 11/21/2022] Open
Abstract
The anticoagulant factor protein S (PS) protects neurons from hypoxic/ischemic injury. However, molecular mechanisms mediating PS protection in injured neurons remain unknown. Here, we show mouse recombinant PS protects dose-dependently mouse cortical neurons from excitotoxic NMDA-mediated neuritic bead formation and apoptosis by activating the phosphatidylinositol 3-kinase (PI3K)-Akt pathway (EC(50) = 26 ± 4 nm). PS stimulated phosphorylation of Bad and Mdm2, two downstream targets of Akt, which in neurons subjected to pathological overstimulation of NMDA receptors (NMDARs) increased the antiapoptotic Bcl-2 and Bcl-X(L) levels and reduced the proapoptotic p53 and Bax levels. Adenoviral transduction with a kinase-deficient Akt mutant (Ad.Akt(K179A)) resulted in loss of PS-mediated neuronal protection, Akt activation, and Bad and Mdm2 phosphorylation. Using the TAM receptors tyrosine kinases Tyro3-, Axl-, and Mer-deficient neurons, we showed that PS protected neurons lacking Axl and Mer, but not Tyro3, suggesting a requirement of Tyro3 for PS-mediated protection. Consistent with these results, PS dose-dependently phosphorylated Tyro3 on neurons (EC(50) = 25 ± 3 nm). In an in vivo model of NMDA-induced excitotoxic lesions in the striatum, PS dose-dependently reduced the lesion volume in control mice (EC(50) = 22 ± 2 nm) and protected Axl(-/-) and Mer(-/-) transgenic mice, but not Tyro3(-/-) transgenic mice. Using different structural PS analogs, we demonstrated that the C terminus sex hormone-binding globulin-like (SHBG) domain of PS is critical for neuronal protection in vitro and in vivo. Thus, our data show that PS protects neurons by activating the Tyro3-PI3K-Akt pathway via its SHGB domain, suggesting potentially a novel neuroprotective approach for acute brain injury and chronic neurodegenerative disorders associated with excessive activation of NMDARs.
Collapse
Affiliation(s)
- Zhihui Zhong
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - Yaoming Wang
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - Huang Guo
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - Abhay Sagare
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - José A. Fernández
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Robert D. Bell
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - Theresa M. Barrett
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - John H. Griffin
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Robert S. Freeman
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Berislav V. Zlokovic
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| |
Collapse
|
37
|
Li B, Wang C, Yu A, Chen Y, Zuo Z. Identification of differentially expressed genes in the brain of Sebastiscus marmoratus in response to tributyltin exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 99:248-255. [PMID: 20617544 DOI: 10.1016/j.aquatox.2010.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Tributyltin (TBT), a ubiquitous marine environmental contaminant, has been reported to affect functioning of the central nervous system. However, the mechanism of its neurotoxicity remains unknown. In this study, an Anneal Control Primer-differential display Reverse Transcription-PCR method was employed to investigate differentially expressed genes in the brain of Sebastiscus marmoratus in response to acute TBT exposure. A total of 18 gene sequences were identified as having the potential for being differentially expressed, of which 9 could be identified with homologous database sequences. The expression profiles of 4 genes, namely cytochrome c oxidase subunit II, GRB2-associated binding protein 2, adaptor-related protein complex 2, and guanine nucleotide exchange factor p532, were analyzed in the brain using real time fluorescence quantitative PCR after treatment with 10, 100 and 1000 ng/L of TBT for 50 days. The results showed that chronic exposure to TBT induced down-regulation of these genes in a dose dependent manner. The present study provided a basis for studying the response of fish to TBT exposure and allowed the characterization of new potential neurotoxic biomarkers of TBT contamination in seawater.
Collapse
Affiliation(s)
- Bowen Li
- Key Laboratory of the Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | | | | | | | | |
Collapse
|
38
|
Nakatsu Y, Kotake Y, Takai N, Ohta S. Involvement of autophagy via mammalian target of rapamycin (mTOR) inhibition in tributyltin-induced neuronal cell death. J Toxicol Sci 2010; 35:245-51. [PMID: 20371977 DOI: 10.2131/jts.35.245] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tributyltin chloride (TBT) is a neurotoxic environmental pollutant that inhibits mitochondrial adenosine triphosphate (ATP) synthase. Autophagy is one of the major protein degradation systems induced by a decrease of intracellular ATP following activation of AMP-activated protein kinase (AMPK). Because we previously found that TBT induces activation of AMPK, here we examined whether TBT induces autophagic neuronal death. Exposure of cortical neurons to 500 nM TBT reduced the phosphorylation of mammalian target of rapamycin (mTOR), a regulator of autophagy. An autophagy inhibitor, 3-methyladenine (3-MA), markedly decreased TBT-induced neuronal death. TBT also induced the formation of LC3-II, an autophagy marker. These results suggest that TBT-induced neuronal death is at least partly autophagic.
Collapse
|
39
|
Ueno S, Kashimoto T, Susa N, Asai T, Kawaguchi S, Takeda-Homma S, Terada Y, Sugiyama M. Reduction in peripheral lymphocytes and thymus atrophy induced by organotin compounds in vivo. J Vet Med Sci 2010; 71:1041-8. [PMID: 19721355 DOI: 10.1292/jvms.71.1041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To clarify the involvement of apoptosis in the immunotoxicity of organotin compounds, we examined the induction of apoptosis in the peripheral lymphocytes and thymus of mice treated with triphenyltin (TPT), tributyltin (TBT) or dexamethasone (Dex). Application of TPT or TBT and Dex resulted in a transient reduction in peripheral lymphocytes at 3 to 6 hr, and thymus atrophy was observed at 6 and 24 hr after administration. Lymphocyte subpopulation analysis showed that TPT and TBT induced a greater reduction in B cells than in T cells. The maximum levels of organotin in the blood were about 450 ng TPT/ml in the TPT-treated mice, and 170 ng TBT/ml in the TBT-treated mice. When the isolated peripheral lymphocytes were incubated with the organotins at 500 ng/ml, TPT and TBT induced necrosis in over 70% of cells, while both organotins caused lower percentages of apoptosis as well as necrosis after 3 hr at 100 ng/ml. In the thymus, although in vivo treatment of mice with Dex caused apoptosis, neither apoptotic nor necrotic thymocytes were observed in the TPT- and TBT-treated mice, indicating that the thymus atrophy might be caused by the antiproliferative effects of these organotin compounds. Thus, our results did not support the idea that apoptosis played a decisive part in the immunotoxicity of the organotin compounds in vivo.
Collapse
Affiliation(s)
- Shunji Ueno
- School of Veterinary Medicine, Kitasato University, Aomori, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Jia X, Zhang Z, Wang G, Zou Z, Wang S, Huang B, Wang Y. Expressed sequence tag analysis for identification and characterization of genes related to Tributyltin (TBT) exposure in the abalone Haliotis diversicolor supertexta. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2009; 4:255-262. [DOI: 10.1016/j.cbd.2009.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/11/2009] [Accepted: 06/11/2009] [Indexed: 12/11/2022]
|
41
|
Nakatsu Y, Kotake Y, Takishita T, Ohta S. Long-term exposure to endogenous levels of tributyltin decreases GluR2 expression and increases neuronal vulnerability to glutamate. Toxicol Appl Pharmacol 2009; 240:292-8. [DOI: 10.1016/j.taap.2009.06.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 11/29/2022]
|
42
|
Urushibara N, Mitsuhashi S, Sasaki T, Kasai H, Yoshimizu M, Fujita H, Oda A. JNK and p38 MAPK are independently involved in tributyltin-mediated cell death in rainbow trout (Oncorhynchus mykiss) RTG-2 cells. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:468-75. [PMID: 19026764 DOI: 10.1016/j.cbpc.2008.10.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/29/2008] [Accepted: 10/29/2008] [Indexed: 11/23/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are a family of Ser/Thr protein kinases that transmit various extracellular signals to the nucleus inducing gene expression, cell proliferation, and apoptosis. Recent studies have revealed that organotin compounds induce apoptosis and MAPK phosphorylation/activation in mammal cells. In this study, we elucidated the cytotoxic mechanism of tributyltin (TBT), a representative organotin compound, in rainbow trout (Oncorhynchus mykiss) RTG-2 cells. TBT treatment resulted in significant caspase activation, characteristic morphological changes, DNA fragmentation, and consequent apoptotic cell death in RTG-2 cells. TBT exposure induced the rapid and sustained accumulation of phosphorylated MAPKs, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAP kinase (p38 MAPK). Further analysis using pharmacological inhibitors against caspases and MAPKs showed that TBT also induced cell death in a caspase-independent manner and that p38 MAPK is involved in TBT-induced caspase-independent cell death, whereas JNK is involved in the caspase-dependent apoptotic pathway. Thus, TBT employs at least two independent signaling cascades to mediate cell death in RTG-2 cells. To our knowledge, this is the first study revealing the relationship between MAPK activation and TBT cytotoxicity in RTG-2 cells.
Collapse
Affiliation(s)
- Noriko Urushibara
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Zuo Z, Cai J, Wang X, Li B, Wang C, Chen Y. Acute administration of tributyltin and trimethyltin modulate glutamate and N-methyl-D-aspartate receptor signaling pathway in Sebastiscus marmoratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 92:44-49. [PMID: 19223082 DOI: 10.1016/j.aquatox.2009.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/11/2009] [Accepted: 01/16/2009] [Indexed: 05/27/2023]
Abstract
Tributyltin (TBT), widely used as an antifouling biocide, is the most abundant pesticide in coastal environments. Trimethyltin (TMT) is a potent neurotoxicant of a mechanism of action yet to be uncovered. The neurotoxicity of TBT and TMT on the brain of marine fish Sebastiscus marmoratus was investigated in this study. The results showed that TBT and TMT can modulate amino acid neurotransmitters and N-methyl-D-aspartate receptor (NMDAR) signaling pathway in the brain of marine fish in a different manner. TBT did not increase the content of the amino acid neurotransmitters except gamma-aminobutyricd acid (GABA). TMT increased the content of aspartate (Asp), glutamate (Glu) and GABA in a dose-dependent manner. The expression of NADAR and components on its signaling pathway, such as calmodulin, calmodulin-dependent kinase II (CaMKII) and cAMP-response element-binding (CREB) protein was significantly decreased in a dose-dependent manner after TBT exposure. However, the low dose of TMT exposure up-regulate rather than down-regulate the expression of NMDAR and other genes of its pathway. It is suggested that the Glu-NMDAR pathway plays a role in the mechanism for the brain injury in marine fish after TBT or TMT exposure. The alteration of expression of glutamatergic receptor NMDAR and components on its signaling pathway accompanied with the change of total brain transmitter level indicated the importance of glutamatergic system in organotin toxicity.
Collapse
Affiliation(s)
- Zhenghong Zuo
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Siming South Road, Xiamen City 361005, PR China.
| | | | | | | | | | | |
Collapse
|
44
|
Shi G, Chen D, Zhai G, Chen MS, Cui QC, Zhou Q, He B, Dou QP, Jiang G. The proteasome is a molecular target of environmental toxic organotins. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:379-386. [PMID: 19337512 PMCID: PMC2661907 DOI: 10.1289/ehp.11865] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 10/23/2008] [Indexed: 05/27/2023]
Abstract
BACKGROUND Because of the vital importance of the proteasome pathway, chemicals affecting proteasome activity could disrupt essential cellular processes. Although the toxicity of organotins to both invertebrates and vertebrates is well known, the essential cellular target of organotins has not been well identified. We hypothesize that the proteasome is a molecular target of environmental toxic organotins. OBJECTIVES Our goal was to test the above hypothesis by investigating whether organotins could inhibit the activity of purified and cellular proteasomes and, if so, the involved molecular mechanisms and downstream events. RESULTS We found that some toxic organotins [e.g., triphenyltin (TPT)] can potently and preferentially inhibit the chymotrypsin-like activity of purified 20S proteasomes and human breast cancer cellular 26S proteasomes. Direct binding of tin atoms to cellular proteasomes is responsible for the observed irreversible inhibition. Inhibition of cellular proteasomes by TPT in several human cell lines results in the accumulation of ubiquitinated proteins and natural proteasome target proteins, accompanied by induction of cell death. CONCLUSIONS The proteasome is one of the molecular targets of environmental toxic organotins in human cells, and proteasome inhibition by organotins contributes to their cellular toxicity.
Collapse
Affiliation(s)
- Guoqing Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
- School of Applied Science, University of Science and Technology Beijing, Beijing, People’s Republic of China
| | - Di Chen
- Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Guangshu Zhai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Marina S. Chen
- Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Qiuzhi Cindy Cui
- Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Q. Ping Dou
- Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
45
|
Inageda K, Matsuoka M. Induction of GADD153 expression by tributyltin in SH-SY5Y human neuroblastoma cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 27:158-160. [PMID: 21783934 DOI: 10.1016/j.etap.2008.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/11/2008] [Accepted: 09/14/2008] [Indexed: 05/31/2023]
Abstract
The effects of tributyltin (TBT) exposure on the expression of growth arrest- and DNA damage-inducible gene 153 (GADD153), also called C/EBP homologous protein (CHOP), were examined in SH-SY5Y human neuroblastoma cells. In response to TBT exposure, the levels of both GADD153 mRNA and GADD153 protein increased significantly. This effect was preceded by phosphorylation of c-Jun NH(2)-terminal kinase (JNK). Treatment with the JNK inhibitor, SP600125, markedly suppressed TBT-induced GADD153 expression. TBT may induce the expression of GADD153, a gene highly responsive to endoplasmic reticulum (ER) stress, in a manner at least partially dependent upon the JNK pathway in SH-SY5Y cells.
Collapse
Affiliation(s)
- Kiyoshi Inageda
- Department of Hygiene and Public Health I, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | |
Collapse
|
46
|
Shuto M, Seko K, Kuramoto N, Sugiyama C, Kawada K, Yoneyama M, Nagashima R, Ogita K. Activation of c-Jun N-Terminal Kinase Cascades Is Involved in Part of the Neuronal Degeneration Induced by Trimethyltin in Cortical Neurons of Mice. J Pharmacol Sci 2009; 109:60-70. [DOI: 10.1254/jphs.08211fp] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
47
|
Yemenicioglu S, de Mora S. Occurrence and seasonal variation of butyltin species along the mediterranean coast of Turkey. MARINE POLLUTION BULLETIN 2009; 58:163-166. [PMID: 18954881 DOI: 10.1016/j.marpolbul.2008.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 09/09/2008] [Accepted: 09/16/2008] [Indexed: 05/27/2023]
Affiliation(s)
- Semal Yemenicioglu
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, Turkey.
| | | |
Collapse
|
48
|
Nakatsu Y, Kotake Y, Hino A, Ohta S. Activation of AMP-activated protein kinase by tributyltin induces neuronal cell death. Toxicol Appl Pharmacol 2008; 230:358-63. [PMID: 18511093 DOI: 10.1016/j.taap.2008.03.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 02/29/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
Abstract
AMP-activated protein kinase (AMPK), a member of the metabolite-sensing protein kinase family, is activated by energy deficiency and is abundantly expressed in neurons. The environmental pollutant, tributyltin chloride (TBT), is a neurotoxin, and has been reported to decrease cellular ATP in some types of cells. Therefore, we investigated whether TBT activates AMPK, and whether its activation contributes to neuronal cell death, using primary cultures of cortical neurons. Cellular ATP levels were decreased 0.5 h after exposure to 500 nM TBT, and the reduction was time-dependent. It was confirmed that most neurons in our culture system express AMPK, and that TBT induced phosphorylation of AMPK. Compound C, an AMPK inhibitor, reduced the neurotoxicity of TBT, suggesting that AMPK is involved in TBT-induced cell death. Next, the downstream target of AMPK activation was investigated. Nitric oxide synthase, p38 phosphorylation and Akt dephosphorylation were not downstream of TBT-induced AMPK activation because these factors were not affected by compound C, but glutamate release was suggested to be controlled by AMPK. Our results suggest that activation of AMPK by TBT causes neuronal death through mediating glutamate release.
Collapse
Affiliation(s)
- Yusuke Nakatsu
- Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | |
Collapse
|
49
|
Glutamate-Dependent Transcriptional Regulation in Bergmann Glia Cells: Involvement of p38 MAP Kinase. Neurochem Res 2008; 33:1277-85. [DOI: 10.1007/s11064-007-9580-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 12/26/2007] [Indexed: 11/25/2022]
|
50
|
Woehrling EK, Hill EJ, Coleman MD. Development of a neurotoxicity test-system, using human post-mitotic, astrocytic and neuronal cell lines in co-culture. Toxicol In Vitro 2007; 21:1241-6. [PMID: 17566694 DOI: 10.1016/j.tiv.2007.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 03/26/2007] [Accepted: 04/16/2007] [Indexed: 12/22/2022]
Abstract
Astrocytes are essential for neuronal function and survival, so both cell types were included in a human neurotoxicity test-system to assess the protective effects of astrocytes on neurons, compared with a culture of neurons alone. The human NT2.D1 cell line was differentiated to form either a co-culture of post-mitotic NT2.N neuronal (TUJ1, NF68 and NSE positive) and NT2.A astrocytic (GFAP positive) cells (approximately 2:1 NT2.A:NT2.N), or an NT2.N mono-culture. Cultures were exposed to human toxins, for 4h at sub-cytotoxic concentrations, in order to compare levels of compromised cell function and thus evidence of an astrocytic protective effect. Functional endpoints examined included assays for cellular energy (ATP) and glutathione (GSH) levels, generation of hydrogen peroxide (H(2)O(2)) and caspase-3 activation. Generally, the NT2.N/A co-culture was more resistant to toxicity, maintaining superior ATP and GSH levels and sustaining smaller significant increases in H(2)O(2) levels compared with neurons alone. However, the pure neuronal culture showed a significantly lower level of caspase activation. These data suggest that besides their support for neurons through maintenance of ATP and GSH and control of H(2)O(2) levels, following exposure to some substances, astrocytes may promote an apoptotic mode of cell death. Thus, it appears the use of astrocytes in an in vitro predictive neurotoxicity test-system may be more relevant to human CNS structure and function than neuronal cells alone.
Collapse
Affiliation(s)
- E K Woehrling
- School of Life and Health Sciences, Aston University, Aston Street, Birmingham, B4 7ET, UK.
| | | | | |
Collapse
|