1
|
Rajakumar T, Pugalendhi P. Allyl isothiocyanate regulates oxidative stress, inflammation, cell proliferation, cell cycle arrest, apoptosis, angiogenesis, invasion and metastasis via interaction with multiple cell signaling pathways. Histochem Cell Biol 2024; 161:211-221. [PMID: 38019291 DOI: 10.1007/s00418-023-02255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
Cancer growth is a molecular mechanism initiated by genetic and epigenetic modifications that are involved in cell proliferation, differentiation, apoptosis, and senescence pathways. Chemoprevention is an important strategy for cancer treatment that leads to blocking, reversing, or impeding the multistep process of tumorigenesis, including the blockage of its vital morphogenetic milestones viz. normal, preneoplasia, neoplasia, and metastasis. Naturally occurring phytochemicals are becoming ever more popular compared to synthetic drugs for many reasons, including safety, bioavailability, efficacy, and easy availability. Allyl isothiocyanate (AITC) is a natural compound present in all plants of the Cruciferae family, such as Brussels sprouts, cauliflower, mustard, cabbage, kale, horseradish, and wasabi. In vitro and in vivo studies carried out over the decades have revealed that AITC inhibits tumorigenesis without any toxicity and undesirable side effects. The bioavailability of AITC is exceedingly high, as it was reported that nearly 90% of orally administered AITC is absorbed. AITC exhibits multiple pharmacological properties among which its anticancer activity is the most significant for cancer treatment. Its anticancer activity is exerted via selective modulation of multiple cell signaling pathways related to oxidative stress, inflammation, cell proliferation, cell cycle arrest, apoptosis, angiogenesis, invasion, and metastasis. This review highlights the current knowledge on molecular targets that are involved in the anticancer effect of AITC associated with (i) inhibition of carcinogenic activation and induction of antioxidants, (ii) suppression of pro-inflammatory and cell proliferative signals, (iii) induction of cell cycle arrest and apoptosis, and (iv) inhibition of angiogenic and invasive signals related to metastasis.
Collapse
Affiliation(s)
- Thangarasu Rajakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, 608 002, Tamilnadu, India
| | - Pachaiappan Pugalendhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, 608 002, Tamilnadu, India.
| |
Collapse
|
2
|
Stanic B, Sukur N, Milošević N, Markovic Filipovic J, Pogrmic-Majkic K, Andric N. Differential eigengene network analysis reveals benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin consensus regulatory network in human liver cell line HepG2. Toxicology 2024; 502:153737. [PMID: 38311099 DOI: 10.1016/j.tox.2024.153737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
Aryl hydrocarbon receptor (AHR) is one of the main mediators of the toxic effects of benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, a vast number of BaP- and TCDD-affected genes may suggest a more complex transcriptional regulatory network driving common adverse effects of these two chemicals. Unlike TCDD, BaP is rapidly metabolized in the liver, yielding products with a questionable ability to bind and activate AHR. In this study, we used transcriptomics data from the BaP- and TCCD-exposed human liver cell line HepG2, and performed differential eigengene network analysis to understand the correlation among genes and to untangle the common regulatory mechanism in the action of BaP and TCDD. The genes were grouped into 11 meta-modules with an overall preservation of 0.72 and were also segregated into three consensus time clusters: 12, 24, and 48 h. The analysis showed that the consensus genes in each time cluster were either directly regulated by the AHR or the AHR-TF interactions. Some TFs form a direct physical interaction with AHR such as ESR1, FOXA1, and E2F1, whereas others, including CTCF, RXRA, FOXO1, CEBPA, CEBPB, and TP53 show an indirect interaction with AHR. The analysis of biological processes (BPs) identified unique and common BPs in BaP and TCDD samples, with DNA damage response detected in all three time points. In summary, we identified a consensus transcriptional regulatory network common for BaP and TCDD consisting of direct AHR targets and AHR-TF targets. This analysis sheds new light on the common mechanism of action of a genotoxic (BaP) and non-genotoxic (TCDD) chemical in liver cells.
Collapse
Affiliation(s)
- Bojana Stanic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia
| | - Nataša Sukur
- Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
| | - Nemanja Milošević
- Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
| | - Jelena Markovic Filipovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia
| | - Kristina Pogrmic-Majkic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia
| | - Nebojsa Andric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia.
| |
Collapse
|
3
|
Filipovic D, Qi W, Kana O, Marri D, LeCluyse EL, Andersen ME, Cuddapah S, Bhattacharya S. Interpretable predictive models of genome-wide aryl hydrocarbon receptor-DNA binding reveal tissue-specific binding determinants. Toxicol Sci 2023; 196:170-186. [PMID: 37707797 PMCID: PMC10682972 DOI: 10.1093/toxsci/kfad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an inducible transcription factor whose ligands include the potent environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Ligand-activated AhR binds to DNA at dioxin response elements (DREs) containing the core motif 5'-GCGTG-3'. However, AhR binding is highly tissue specific. Most DREs in accessible chromatin are not bound by TCDD-activated AhR, and DREs accessible in multiple tissues can be bound in some and unbound in others. As such, AhR functions similarly to many nuclear receptors. Given that AhR possesses a strong core motif, it is suited for a motif-centered analysis of its binding. We developed interpretable machine learning models predicting the AhR binding status of DREs in MCF-7, GM17212, and HepG2 cells, as well as primary human hepatocytes. Cross-tissue models predicting transcription factor (TF)-DNA binding generally perform poorly. However, reasons for the low performance remain unexplored. By interpreting the results of individual within-tissue models and by examining the features leading to low cross-tissue performance, we identified sequence and chromatin context patterns correlated with AhR binding. We conclude that AhR binding is driven by a complex interplay of tissue-agnostic DRE flanking DNA sequence and tissue-specific local chromatin context. Additionally, we demonstrate that interpretable machine learning models can provide novel and experimentally testable mechanistic insights into DNA binding by inducible TFs.
Collapse
Affiliation(s)
- David Filipovic
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Wenjie Qi
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Omar Kana
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Daniel Marri
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Edward L LeCluyse
- LifeSciences Division, LifeNet Health, Research Triangle Park, North Carolina 27709, USA
| | | | - Suresh Cuddapah
- Division of Environmental Medicine, Department of Medicine, New York University School of Medicine, New York, New York 10010, USA
| | - Sudin Bhattacharya
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
4
|
Alluli A, Rijnbout St James W, Eidelman DH, Baglole CJ. Dynamic relationship between the aryl hydrocarbon receptor and long noncoding RNA balances cellular and toxicological responses. Biochem Pharmacol 2023; 216:115745. [PMID: 37597813 DOI: 10.1016/j.bcp.2023.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor activated by endogenous ligands and xenobiotic chemicals. Once the AhR is activated, it translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT) and binds to xenobiotic response elements (XRE) to promote gene transcription, notably the cytochrome P450 CYP1A1. The AhR not only mediates the toxic effects of environmental chemicals, but also has numerous putative physiological functions. This dichotomy in AhR biology may be related to reciprocal regulation of long non-coding RNA (lncRNA). lncRNA are defined as transcripts more than 200 nucleotides in length that do not encode a protein but are implicated in many physiological processes such as cell differentiation, cell proliferation, and apoptosis. lncRNA are also linked to disease pathogenesis, particularly the development of cancer. Recent studies have revealed that AhR activation by environmental chemicals affects the expression and function of lncRNA. In this article, we provide an overview of AhR signaling pathways activated by diverse ligands and highlight key differences in the putative biological versus toxicological response of AhR activation. We also detail the functions of lncRNA and provide current data on their regulation by the AhR. Finally, we outline how overlap in function between AhR and lncRNA may be one way in which AhR can be both a regulator of endogenous functions but also a mediator of toxicological responses to environmental chemicals. Overall, more research is still needed to fully understand the dynamic interplay between the AhR and lncRNA.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - Willem Rijnbout St James
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Canada; Department of Medicine, McGill University, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada; Department of Medicine, McGill University, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
5
|
Stone OA, Kiefer F. Endothelial sensing of dietary metabolites supports barrier tissue homeostasis. NATURE CARDIOVASCULAR RESEARCH 2023; 2:861-863. [PMID: 39196253 DOI: 10.1038/s44161-023-00341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Oliver A Stone
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
| | - Friedemann Kiefer
- University of Münster, European Institute for Molecular Imaging, Münster, Germany.
| |
Collapse
|
6
|
Das S, Somisetty VS, Ulven SM, Matthews J. Resveratrol and 3,3'-Diindolylmethane Differentially Regulate Aryl Hydrocarbon Receptor and Estrogen Receptor Alpha Activity through Multiple Transcriptomic Targets in MCF-7 Human Breast Cancer Cells. Int J Mol Sci 2023; 24:14578. [PMID: 37834026 PMCID: PMC10572670 DOI: 10.3390/ijms241914578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Inhibitory crosstalk between estrogen receptor alpha (ERα) and aryl hydrocarbon receptor (AHR) regulates 17β-estradiol (E2)-dependent breast cancer cell signaling. ERα and AHR are transcription factors activated by E2 and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), respectively. Dietary ligands resveratrol (RES) and 3,3'diindolylmethane (DIM) also activate ERα while only DIM activates AHR and RES represses it. DIM and RES are reported to have anti-cancer and anti-inflammatory properties. Studies with genome-wide targets and AHR- and ERα-regulated genes after DIM and RES are unknown. We used chromatin immunoprecipitation with high-throughput sequencing and transcriptomics to study ERα as well as AHR coregulation in MCF-7 human breast cancer cells treated with DIM, RES, E2, or TCDD alone or E2+TCDD for 1 and 6 h, respectively. ERα bound sites after being DIM enriched for the AHR motif but not after E2 or RES while AHR bound sites after being DIM and E2+TCDD enriched for the ERE motif but not after TCDD. More than 90% of the differentially expressed genes closest to an AHR binding site after DIM or E2+TCDD also had an ERα site, and 60% of the coregulated genes between DIM and E2+TCDD were common. Collectively, our data show that RES and DIM differentially regulate multiple transcriptomic targets via ERα and ERα/AHR coactivity, respectively, which need to be considered to properly interpret their cellular and biological responses. These novel data also suggest that, when both receptors are activated, ERα dominates with preferential recruitment of AHR to ERα target genes.
Collapse
Affiliation(s)
- Siddhartha Das
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (S.D.); (V.S.S.); (S.M.U.)
| | - Venkata S. Somisetty
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (S.D.); (V.S.S.); (S.M.U.)
| | - Stine M. Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (S.D.); (V.S.S.); (S.M.U.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (S.D.); (V.S.S.); (S.M.U.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
7
|
Silva-Parra J, Sandu C, Felder-Schmittbuhl MP, Hernández-Kelly LC, Ortega A. Aryl Hydrocarbon Receptor in Glia Cells: A Plausible Glutamatergic Neurotransmission Orchestrator. Neurotox Res 2023; 41:103-117. [PMID: 36607593 DOI: 10.1007/s12640-022-00623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
Glutamate is the major excitatory amino acid in the vertebrate brain. Glutamatergic signaling is involved in most of the central nervous system functions. Its main components, namely receptors, ion channels, and transporters, are tightly regulated at the transcriptional, translational, and post-translational levels through a diverse array of extracellular signals, such as food, light, and neuroactive molecules. An exquisite and well-coordinated glial/neuronal bidirectional communication is required for proper excitatory amino acid signal transactions. Biochemical shuttles such as the glutamate/glutamine and the astrocyte-neuronal lactate represent the fundamental involvement of glial cells in glutamatergic transmission. In fact, the disruption of any of these coordinated biochemical intercellular cascades leads to an excitotoxic insult that underlies some aspects of most of the neurodegenerative diseases characterized thus far. In this contribution, we provide a comprehensive summary of the involvement of the Aryl hydrocarbon receptor, a ligand-dependent transcription factor in the gene expression regulation of glial glutamate transporters. These receptors might serve as potential targets for the development of novel strategies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janisse Silva-Parra
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México.
| |
Collapse
|
8
|
Kurowska P, Mlyczyńska E, Dawid M, Respekta N, Pich K, Serra L, Dupont J, Rak A. Endocrine disruptor chemicals, adipokines and reproductive functions. Endocrine 2022; 78:205-218. [PMID: 35476178 DOI: 10.1007/s12020-022-03061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
Abstract
The prevalence of adult obesity has risen markedly in recent decades. The endocrine system precisely regulates energy balance, fat abundance and fat deposition. Interestingly, white adipose tissue is an endocrine gland producing adipokines, which regulate whole-body physiology, including energy balance and reproduction. Endocrine disruptor chemicals (EDCs) include natural substances or chemicals that affect the endocrine system by multiple mechanisms and increase the risk of adverse health outcomes. Numerous studies have associated exposure to EDCs with obesity, classifying them as obesogens by their ability to activate different mechanisms, including the differentiation of adipocytes, increasing the storage of triglycerides, or elevating the number of adipocytes. Moreover, in recent years, not only industrial deception and obesity have intensified but also the problem of human infertility. Reproductive functions depend on hormone interactions, the balance of which may be disrupted by various EDCs or obesity. This review gives a brief summary of common EDCs linked with obesity, the mechanisms of their action, and the effect on adipokine levels, reproduction and connected disorders, such as polycystic ovarian syndrome, decrease in sperm motility, preeclampsia, intrauterine growth restriction in females and decrease of sperm motility in males.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Loïse Serra
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | - Joëlle Dupont
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
9
|
Hilz EN, Gore AC. Sex-specific Effects of Endocrine-disrupting Chemicals on Brain Monoamines and Cognitive Behavior. Endocrinology 2022; 163:bqac128. [PMID: 35939362 PMCID: PMC9419695 DOI: 10.1210/endocr/bqac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/19/2022]
Abstract
The period of brain sexual differentiation is characterized by the development of hormone-sensitive neural circuits that govern the subsequent presentation of sexually dimorphic behavior in adulthood. Perturbations of hormones by endocrine-disrupting chemicals (EDCs) during this developmental period interfere with an organism's endocrine function and can disrupt the normative organization of male- or female-typical neural circuitry. This is well characterized for reproductive and social behaviors and their underlying circuitry in the hypothalamus and other limbic regions of the brain; however, cognitive behaviors are also sexually dimorphic, with their underlying neural circuitry potentially vulnerable to EDC exposure during critical periods of brain development. This review provides recent evidence for sex-specific changes to the brain's monoaminergic systems (dopamine, serotonin, norepinephrine) after developmental EDC exposure and relates these outcomes to sex differences in cognition such as affective, attentional, and learning/memory behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Andrea C Gore
- Correspondence: Andrea C. Gore, PhD, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St, Box C0875, Austin, TX, 78712, USA.
| |
Collapse
|
10
|
Eti NA, Flor S, Iqbal K, Scott RL, Klenov VE, Gibson-Corley KN, Soares MJ, Ludewig G, Robertson LW. PCB126 induced toxic actions on liver energy metabolism is mediated by AhR in rats. Toxicology 2022; 466:153054. [PMID: 34848246 PMCID: PMC8748418 DOI: 10.1016/j.tox.2021.153054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in the regulation of biological responses to more planar aromatic hydrocarbons, like TCDD. We previously described the sequence of events following exposure of male rats to a dioxin-like polychlorinated biphenyl (PCB) congener, 3,3',4,4',5-pentachlorobiphenyl (PCB126), that binds avidly to the AhR and causes various types of toxicity including metabolic syndrome, fatty liver, and disruption of energy homeostasis. The purpose of this study was, to investigate the role of AhR to mediate those toxic manifestations following sub-acute exposure to PCB126 and to examine possible sex differences in effects. For this goal, we created an AhR knockout (AhR-KO) model using CRISPR/Cas9. Comparison was made to the wild type (WT) male and female Holtzman Sprague Dawley rats. Rats were injected with a single IP dose of corn oil vehicle or 5 μmol/kg PCB126 in corn oil and necropsied after 28 days. PCB126 caused significant weight loss, reduced relative thymus weights, and increased relative liver weights in WT male and female rats, but not in AhR-KO rats. Similarly, significant pathologic changes were visible which included necrosis and regeneration in female rats, micro- and macro-vesicular hepatocellular vacuolation in males, and a paucity of glycogen in livers of both sexes in WT rats only. Hypoglycemia and lower IGF1, and reduced serum non-esterified fatty acids (NEFAs) were found in serum of both sexes of WT rats, low serum cholesterol levels only in the females, and no changes in AhR-KO rats. The expression of genes encoding enzymes related to xenobiotic metabolism (e.g. CYP1A1), gluconeogenesis, glycogenolysis, and fatty acid oxidation were unaffected in the AhR-KO rats following PCB126 exposure as opposed to WT rats where expression was significantly upregulated (PPARα, females only) or downregulated suggesting a disrupted energy homeostasis. Interestingly, Acox2, Hmgcs, G6Pase and Pc were affected in both sexes, the gluconeogenesis and glucose transporter genes Pck1, Glut2, Sds, and Crem only in male WT-PCB rats. These results show the essential role of the AhR in glycogenolysis, gluconeogenesis, and fatty acid oxidation, i.e. in the regulation of energy production and homeostasis, but also demonstrate a significant difference in the effects of PCB126 in males verses females, suggesting higher vulnerability of glucose homeostasis in males and more changes in fatty acid/lipid homeostasis in females. These differences in effects, which may apply to more/all AhR agonists, should be further analyzed to identify health risks to specific groups of highly exposed human populations.
Collapse
Affiliation(s)
- Nazmin Akter Eti
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States
| | - Susanne Flor
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States
| | - Khursheed Iqbal
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Regan L Scott
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Violet E Klenov
- Department of Ob/Gyn, University of Iowa, Iowa City, IA, United States
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Michael J Soares
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
11
|
Gearhart-Serna LM, Davis JB, Jolly MK, Jayasundara N, Sauer SJ, Di Giulio RT, Devi GR. A polycyclic aromatic hydrocarbon-enriched environmental chemical mixture enhances AhR, antiapoptotic signaling and a proliferative phenotype in breast cancer cells. Carcinogenesis 2020; 41:1648-1659. [PMID: 32747956 PMCID: PMC7791619 DOI: 10.1093/carcin/bgaa047] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 11/14/2022] Open
Abstract
Emerging evidence suggests the role of environmental chemicals, in particular endocrine-disrupting chemicals (EDCs), in progression of breast cancer and treatment resistance, which can impact survival outcomes. However, most research tends to focus on tumor etiology and the effect of single chemicals, offering little insight into the effects of realistic complex mixture exposures on tumor progression. Herein, we investigated the effect of a polycyclic aromatic hydrocarbon (PAH)-enriched EDC mixture in a panel of normal and breast cancer cells and in a tumor organoid model. Cells or organoids in culture were treated with EDC mixture at doses estimated from US adult intake of the top four PAH compounds within the mixture from the National Health and Nutrition Examination Survey database. We demonstrate that low-dose PAH mixture (6, 30 and 300 nM) increased aryl hydrocarbon receptor (AhR) expression and CYP activity in estrogen receptor (ER) positive but not normal mammary or ER-negative breast cancer cells, and that upregulated AhR signaling corresponded with increased cell proliferation and expression of antiapoptotic and antioxidant proteins XIAP and SOD1. We employed a mathematical model to validate PAH-mediated increases in AhR and XIAP expression in the MCF-7 ER-positive cell line. Furthermore, the PAH mixture caused significant growth increases in ER-negative breast cancer cell derived 3D tumor organoids, providing further evidence for the role of a natural-derived PAH mixture in enhancing a tumor proliferative phenotype. Together, our integrated cell signaling, computational and phenotype analysis reveals the underlying mechanisms of EDC mixtures in breast cancer progression and survival.
Collapse
Affiliation(s)
- Larisa M Gearhart-Serna
- Department of Surgery, Division of Surgical Sciences, Durham, NC, USA
- Department of Pathology, Durham, NC, USA
- Nicholas School of the Environment, Durham, NC, USA
| | - John B Davis
- Department of Biology, Trinity School of Arts and Sciences, Duke University, Durham, NC, USA
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Nishad Jayasundara
- Nicholas School of the Environment, Durham, NC, USA
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Scott J Sauer
- Department of Surgery, Division of Surgical Sciences, Durham, NC, USA
| | | | - Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences, Durham, NC, USA
- Department of Pathology, Durham, NC, USA
- Women’s Cancer Program, Duke Cancer Institute, Duke University, Durham, NC, USA
| |
Collapse
|
12
|
Teino I, Matvere A, Pook M, Varik I, Pajusaar L, Uudeküll K, Vaher H, Trei A, Kristjuhan A, Org T, Maimets T. Impact of AHR Ligand TCDD on Human Embryonic Stem Cells and Early Differentiation. Int J Mol Sci 2020; 21:E9052. [PMID: 33260776 PMCID: PMC7731104 DOI: 10.3390/ijms21239052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which mediates the effects of a variety of environmental stimuli in multiple tissues. Recent advances in AHR biology have underlined its importance in cells with high developmental potency, including pluripotent stem cells. Nonetheless, there is little data on AHR expression and its role during the initial stages of stem cell differentiation. The purpose of this study was to investigate the temporal pattern of AHR expression during directed differentiation of human embryonic stem cells (hESC) into neural progenitor, early mesoderm and definitive endoderm cells. Additionally, we investigated the effect of the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the gene expression profile in hESCs and differentiated cells by RNA-seq, accompanied by identification of AHR binding sites by ChIP-seq and epigenetic landscape analysis by ATAC-seq. We showed that AHR is differentially regulated in distinct lineages. We provided evidence that TCDD alters gene expression patterns in hESCs and during early differentiation. Additionally, we identified novel potential AHR target genes, which expand our understanding on the role of this protein in different cell types.
Collapse
Affiliation(s)
- Indrek Teino
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Antti Matvere
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Martin Pook
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Inge Varik
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Laura Pajusaar
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Keyt Uudeküll
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Helen Vaher
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Annika Trei
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Arnold Kristjuhan
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| | - Tõnis Org
- Chair of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia;
- Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia
| | - Toivo Maimets
- Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (A.M.); (M.P.); (I.V.); (L.P.); (K.U.); (H.V.); (A.T.); (A.K.); (T.M.)
| |
Collapse
|
13
|
Sarin H. Pressure regulated basis for gene transcription by delta-cell micro-compliance modeled in silico: Biphenyl, bisphenol and small molecule ligand models of cell contraction-expansion. PLoS One 2020; 15:e0236446. [PMID: 33021979 PMCID: PMC7537880 DOI: 10.1371/journal.pone.0236446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Molecular diameter, lipophilicity and hydrophilicity exclusion affinity limits exist for small molecule carrier-mediated diffusion or transport through channel pores or interaction with the cell surface glycocalyx. The molecular structure lipophilicity limit for non-specific carrier-mediated transmembrane diffusion through polarity-selective transport channels of the cell membrane is Lexternal structure ∙ Hpolar group-1 of ≥ 1.07. The cell membrane channel pore size is > 0.752 and < 0.758 nm based on a 3-D ellipsoid model (biphenyl), and within the molecular diameter size range 0.744 and 0.762 nm based on a 2-D elliptical model (alkanol). The adjusted van der Waals diameter (vdWD, adj; nm) for the subset of halogenated vapors is predictive of the required MAC for anesthetic potency at an initial (-) Δ Cmicro effect. The molecular structure L ∙ Hpolar group-1 for Neu5Ac is 0.080, and the L ∙ Hpolar group-1 interval range for the cell surface glycocalyx hydrophilicity barrier interaction is 0.101 (Saxitoxin, Stx; Linternal structure ∙ Hpolar group-1) - 0.092 (m-xylenediamine, Lexternal structure · Hpolar group). Differential predictive effective pressure mapping of gene activation or repression reveals that p-dioxin exposure results in activation of AhR-Erβ (Arnt)/Nrf-2, Pparδ, Errγ (LxRα), Dio3 (Dio2) and Trα limbs, and due to high affinity Dio2 and Dio3 (OH-TriCDD, Lext · H-1: 1.91–4.31) exothermy-antagonism (Δ contraction) with high affinity T4/rT3-TRα-mediated agonism (Δ expansion). co-planar PCB metabolite exposure (Lext · H-1: 1.95–3.91) results in activation of AhR (Erα/β)/Nrf2, Rev-Erbβ, Errα, Dio3 (Dio2) and Trα limbs with a Δ Cmicro contraction of 0.89 and Δ Cmicro expansion of 1.05 as compared to p-dioxin. co-, ortho-planar PCB metabolite exposure results in activation of Car/PxR, Pparα (Srebf1,—Lxrβ), Arnt (AhR-Erβ), AR, Dio1 (Dio2) and Trβ limbs with a Δ Cmicro contraction of 0.73 and Δ Cmicro expansion of 1.18 (as compared to p-dioxin). Bisphenol A exposure (Lext struct ∙ H-1: 1.08–1.12, BPA–BPE, Errγ; BPAF, Lext struct ∙ H-1: 1.23, CM Erα, β) results in increased duration at Peff for Timm8b (Peff 0.247) transcription and in indirect activation of the AhR/Nrf-2 hybrid pathway with decreased duration at Peff 0.200 (Nrf1) and increased duration at Peff 0.257 (Dffa). The Bpa/Bpaf convergent pathway Cmicro contraction-expansion response increase in the lower Peff interval is 0.040; in comparison, small molecule hormone Δ Cmicro contraction-expansion response increases in the lower Peff intervals for gene expression ≤ 0.168 (Dex· GR) ≥ 0.156 (Dht · AR), with grade of duration at Peff (min·count) of 1.33x105 (Dex/Cort) and 1.8–2.53x105 (Dht/R1881) as compared to the (-) coupled (+) Δ CmicroPeff to 0.136 (Wnt5a, Esr2) with applied DES (1.86x106). The subtype of trans-differentiated cell as a result of an applied toxin or toxicant is predictable by delta-Cmicro determined by Peff mapping. Study findings offer additional perspective on the basis for pressure regulated gene transcription by alterations in cell micro-compliance (Δ contraction-expansion, Cmicro), and are applicable for the further predictive modeling of gene to gene transcription interactions, and small molecule modulation of cell effective pressure (Peff) and its potential.
Collapse
Affiliation(s)
- Hemant Sarin
- Freelance Investigator in Translational Science and Medicine, Charleston, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
14
|
Che X, Dai W. Aryl Hydrocarbon Receptor: Its Regulation and Roles in Transformation and Tumorigenesis. Curr Drug Targets 2020; 20:625-634. [PMID: 30411679 DOI: 10.2174/1389450120666181109092225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023]
Abstract
AhR is an environmental response gene that mediates cellular responses to a variety of xenobiotic compounds that frequently function as AhR ligands. Many AhR ligands are classified as carcinogens or pro-carcinogens. Thus, AhR itself acts as a major mediator of the carcinogenic effect of many xenobiotics in vivo. In this concise review, mechanisms by which AhR trans-activates downstream target gene expression, modulates immune responses, and mediates malignant transformation and tumor development are discussed. Moreover, activation of AhR by post-translational modifications and crosstalk with other transcription factors or signaling pathways are also summarized.
Collapse
Affiliation(s)
- Xun Che
- Department of Environmental Medicine, New York University Langone Health, New York, NY 10010, United States
| | - Wei Dai
- Department of Environmental Medicine, New York University Langone Health, New York, NY 10010, United States
| |
Collapse
|
15
|
Does NLRP3 Inflammasome and Aryl Hydrocarbon Receptor Play an Interlinked Role in Bowel Inflammation and Colitis-Associated Colorectal Cancer? Molecules 2020; 25:molecules25102427. [PMID: 32456012 PMCID: PMC7287590 DOI: 10.3390/molecules25102427] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
Inflammation is a hallmark in many forms of cancer; with colitis-associated colorectal cancer (CAC) being a progressive intestinal inflammation due to inflammatory bowel disease (IBD). While this is an exemplification of the negatives of inflammation, it is just as crucial to have some degree of the inflammatory process to maintain a healthy immune system. A pivotal component in the maintenance of such intestinal homeostasis is the innate immunity component, inflammasomes. Inflammasomes are large, cytosolic protein complexes formed following stimulation of microbial and stress signals that lead to the expression of pro-inflammatory cytokines. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome has been extensively studied in part due to its strong association with colitis and CAC. The aryl hydrocarbon receptor (AhR) has recently been acknowledged for its connection to the immune system aside from its role as an environmental sensor. AhR has been described to play a role in the inhibition of the NLRP3 inflammasome activation pathway. This review will summarise the signalling pathways of both the NLRP3 inflammasome and AhR; as well as new-found links between these two signalling pathways in intestinal immunity and some potential therapeutic agents that have been found to take advantage of this link in the treatment of colitis and CAC.
Collapse
|
16
|
The Multifarious Link between Cytochrome P450s and Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3028387. [PMID: 31998435 PMCID: PMC6964729 DOI: 10.1155/2020/3028387] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/08/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide. Cytochrome P450s (P450s) play an important role in the metabolism of endogenous as well as exogenous substances, especially drugs. Moreover, many P450s can serve as targets for disease therapy. Increasing reports of epidemiological, diagnostic, and clinical research indicate that P450s are enzymes that play a major part in the formation of cancer, prevention, and metastasis. The purposes of this review are to shed light on the current state of knowledge about the cancer molecular mechanism involving P450s and to summarize the link between the cancer effects and the participation of P450s.
Collapse
|
17
|
Hýžd'alová M, Pivnicka J, Zapletal O, Vázquez-Gómez G, Matthews J, Neca J, Pencíková K, Machala M, Vondrácek J. Aryl Hydrocarbon Receptor-Dependent Metabolism Plays a Significant Role in Estrogen-Like Effects of Polycyclic Aromatic Hydrocarbons on Cell Proliferation. Toxicol Sci 2019; 165:447-461. [PMID: 30137621 DOI: 10.1093/toxsci/kfy153] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants that interact in a complex manner with both the aryl hydrocarbon receptor (AhR) and estrogen receptors (ER). Their potential endocrine-disrupting activities may depend on both inhibitory AhR-ER cross-talk and on AhR-dependent metabolic production of estrogenic PAH metabolites. Here, we analyzed the impact of AhR on estrogen-like effects of PAHs, such as benzo[a]pyrene (BaP), in particular, on control of cell cycle progression/cell proliferation. Using AhR knockout variant of estrogen-sensitive human breast cancer MCF-7 cells (MCF-7 AhRKO cells), we observed that the AhR-dependent control of cytochrome P450 family 1 (CYP1) expression played a major role in formation of estrogenic BaP metabolites, most notably 3-OH-BaP, which contributed to the ER-dependent induction of cell cycle progression/cell proliferation. Both BaP metabolism and the BaP-induced S-phase transition/cell proliferation were inhibited in MCF-7 AhRKO cells, whereas these cells remained sensitive towards both endogenous estrogen 17β-estradiol or hydroxylated BaP metabolites. BaP was found to increase the activity of ER-dependent luciferase reporter gene in wild-type MCF-7 cells; however, unlike its hydroxylated metabolite, BaP failed to stimulate luciferase activity in MCF-7 AhRKO cells. Similarly, estrogen-like effects of other known estrogenic PAHs, such as benz[a]anthracene or 3-methylcholanthrene, were diminished in MCF-7 AhRKO cells. Ectopic expression of human CYP1A1 and CYP1B1 enzymes partly restored both BaP metabolism and its effects on cell proliferation. Taken together, our data suggest that the AhR-dependent metabolism of PAHs contributes significantly to the impact of PAHs on cell proliferation in estrogen-sensitive cells.
Collapse
Affiliation(s)
- Martina Hýžd'alová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic.,Department of Chemistry and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Jakub Pivnicka
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Ondrej Zapletal
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Gerardo Vázquez-Gómez
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic.,Genomic Medicine and Environmental Toxicology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México C.U, 04510 Mexico City, Mexico
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Jirí Neca
- Department of Chemistry and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Katerina Pencíková
- Department of Chemistry and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Jan Vondrácek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| |
Collapse
|
18
|
Drwal E, Rak A, Gregoraszczuk EL. Differential effects of ambient PAH mixtures on cellular and steroidogenic properties of placental JEG-3 and BeWo cells. Reprod Toxicol 2019; 86:14-22. [DOI: 10.1016/j.reprotox.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/29/2022]
|
19
|
Tischkau SA. Mechanisms of circadian clock interactions with aryl hydrocarbon receptor signalling. Eur J Neurosci 2019; 51:379-395. [DOI: 10.1111/ejn.14361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Shelley A. Tischkau
- Department of PharmacologySouthern Illinois University School of Medicine Springfield Illinois
| |
Collapse
|
20
|
Tarnow P, Tralau T, Luch A. Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opin Drug Metab Toxicol 2019; 15:219-229. [PMID: 30644759 DOI: 10.1080/17425255.2019.1569627] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Estrogen receptors (ERs) and the arylhydrocarbon receptor (AHR) are ligand-activated transcription factors that regulate the expression of genes involved in many physiological processes. With both receptors binding a broad range of natural and anthropogenic ligands, they are molecular targets for many substances, raising concerns for possible health effects. Areas covered: This review shall give a brief overview on the physiological functions of both receptors including their underlying molecular mechanisms. It summarizes the interaction of the respective signaling pathways including impacts on metabolism of endogenous estrogens, transcriptional interference, inhibitory crosstalk, and proteasomal degradation. Also addressed are the AHR dependent formation of estrogenic metabolites from polycyclic aromatic hydrocarbons and the possible impact of the ER/AHR crosstalk in the context of drug metabolism. Expert opinion: Despite decade-long research, the physiological role of the AHR and ER as well as the implications of their complex mutual crosstalk remain to be determined as do resulting potential impacts on human health. With more and more endogenous AHR ligands being discovered, future research should hence systematically address the potential impact of such substances on estrogen signaling. The intimate link between these two pathways and the genes regulated therein bears the potential for impacts on drug metabolism and human health.
Collapse
Affiliation(s)
- Patrick Tarnow
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Tewes Tralau
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Andreas Luch
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| |
Collapse
|
21
|
Guerrina N, Traboulsi H, Eidelman DH, Baglole CJ. The Aryl Hydrocarbon Receptor and the Maintenance of Lung Health. Int J Mol Sci 2018; 19:E3882. [PMID: 30563036 PMCID: PMC6320801 DOI: 10.3390/ijms19123882] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023] Open
Abstract
Much of what is known about the Aryl Hydrocarbon Receptor (AhR) centers on its ability to mediate the deleterious effects of the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin). However, the AhR is both ubiquitously-expressed and evolutionarily-conserved, suggesting that it evolved for purposes beyond strictly mediating responses to man-made environmental toxicants. There is growing evidence that the AhR is required for the maintenance of health, as it is implicated in physiological processes such as xenobiotic metabolism, organ development and immunity. Dysregulation of AhR expression and activity is also associated with a variety of disease states, particularly those at barrier organs such as the skin, gut and lungs. The lungs are particularly vulnerable to inhaled toxicants such as cigarette smoke. However, the role of the AhR in diseases such as chronic obstructive pulmonary disease (COPD)-a respiratory illness caused predominately by cigarette smoking-and lung cancer remains largely unexplored. This review will discuss the growing body of literature that provides evidence that the AhR protects the lungs against the damaging effects of cigarette smoke.
Collapse
Affiliation(s)
- Necola Guerrina
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
22
|
Safe S, Han H, Goldsby J, Mohankumar K, Chapkin RS. Aryl Hydrocarbon Receptor (AhR) Ligands as Selective AhR Modulators: Genomic Studies. CURRENT OPINION IN TOXICOLOGY 2018; 11-12:10-20. [PMID: 31453421 DOI: 10.1016/j.cotox.2018.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aryl hydrocarbon receptor (AhR) binds structurally diverse ligands that vary from the environmental toxicant 2,3,7,8-tetrachlorodibenzo-B-dioxin (TCDD) to AhR- active pharmaceuticals and health-promoting phytochemicals. There are remarkable differences in the toxicity of TCDD and related halogenated aromatics (HAs) vs. health promoting AhR ligands, and genomic analysis shows that even among the toxic HAs, there are differences in their regulation of genes and pathways. Thus, like ligands for other receptors, AhR ligands are selective AhR modulators (SAhRMs) which exhibit variable tissue-, organ- and species-specific genomic and functional activities.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology
| | - Huajun Han
- Department of Biochemistry & Biophysics
- Department of Nutrition & Food Science
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, USA
| | - Jennifer Goldsby
- Department of Nutrition & Food Science
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, USA
| | | | - Robert S Chapkin
- Department of Biochemistry & Biophysics
- Department of Nutrition & Food Science
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, USA
| |
Collapse
|
23
|
Donovan MG, Selmin OI, Romagnolo DF. Aryl Hydrocarbon Receptor Diet and Breast Cancer Risk. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2018; 91:105-127. [PMID: 29962921 PMCID: PMC6020732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Breast cancer is the most common type of cancer and leading cause of cancer mortality among women worldwide. However, the majority of breast malignancies are of sporadic etiology. Therefore, identifying risk-mitigating factors may significantly decrease the burden of breast cancer. Diet can have both a predisposing and protective role in breast tumorigenesis. However, establishing efficacy of dietary constituents for cancer prevention has been limited by suboptimal dietary assessment. There is a need to acquire new experimental evidence that can be used to discriminate beneficial from harmful dietary constituents. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is recognized as the mediator of halogenated and polycyclic aromatic hydrocarbon toxicities. Importantly, evidence points to a breast tumor-promoting role for the AhR. Preclinical and clinical studies suggest that the AhR is overexpressed in advanced and triple negative breast cancers. Several dietary constituents, namely flavonoid compounds, have demonstrated inhibitory effects on AhR activation. Given this background, in this paper we elaborate on the working hypothesis that a diet rich in AhR food agonists favors breast tumor development, whereas a diet rich in AhR food antagonists is protective. As an initial approach to developing an AhR diet hypothesis, we conducted a review of published studies reporting on the association between intake of AhR inhibitory foods and risk of breast cancer. To assist the reader with interpretation of the concepts leading to the AhR diet hypothesis, we have preceded this review with an overview of AhR biology and its role in breast cancer development.
Collapse
Affiliation(s)
- Micah G. Donovan
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Ornella I. Selmin
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ,Department of Nutritional Sciences, University of Arizona, Tucson, AZ
| | - Donato F. Romagnolo
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ,Department of Nutritional Sciences, University of Arizona, Tucson, AZ,To whom all correspondence should be addressed: Donato F. Romagnolo, The University of Arizona Cancer Center, Room 3999A, The University of Arizona, Tucson, AZ, USA; Tel: 520-626-9751; Fax: 520-621-9446.
| |
Collapse
|
24
|
The aryl hydrocarbon receptor regulates the expression of TIPARP and its cis long non-coding RNA, TIPARP-AS1. Biochem Biophys Res Commun 2018; 495:2356-2362. [DOI: 10.1016/j.bbrc.2017.12.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
|
25
|
Brown SM, Heguy A, Zappile P, Chen H, Goradia A, Wang Y, Hao Y, Roy NK, Vitale K, Chambers RC, Wirgin I. A Dramatic Difference in Global Gene Expression between TCDD-Treated Atlantic Tomcod Larvae from the Resistant Hudson River and a Nearby Sensitive Population. Genome Biol Evol 2017. [PMCID: PMC5604119 DOI: 10.1093/gbe/evx159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Atlantic tomcod in the Hudson River Estuary bioaccumulate high hepatic burdens of
environmental toxicants. Previously, we demonstrated that Hudson River tomcod developed
resistance to TCDD and PCB toxicity probably through strong natural selection during their
early life-stages for a variant of the Aryl Hydrocarbon Receptor2 (AHR2). Here, we
evaluated the genomic consequences of the resistant genotype by comparing global gene
expression in larval tomcod from the Hudson River with expression in larvae from a nearby
sensitive population (Shinnecock Bay). We developed an annotated draft tomcod genome to
explore the effects of multigenerational exposure to toxicants and a functionally impaired
AHR2 on the transcriptome. We used the tomcod genome as a reference in RNA-Seq to compare
global gene expression in tomcod larvae from the Hudson River and Shinnecock Bay after
experimental exposure of larvae to graded doses of TCDD. We found dramatic differences
between offspring from the two populations in the number of genes that were differentially
expressed at all doses (0.01, 0.1, and 1 ppb) and even in the vehicle controls. At the two
lowest TCDD doses, 250 and 1,141 genes were differentially expressed in Shinnecock Bay
larvae compared with 14 and 12, respectively, in Hudson River larvae. At the highest dose
(1.0 ppb), 934 genes were differentially expressed in Shinnecock Bay larvae and 173 in
Hudson River larvae, but only 28 (16%) of affected genes were shared among both
populations. Given the large difference between the two populations in the number and
identity of differentially expressed genes, it is likely that the AHR2 pathway interacts
directly or indirectly with many genes beyond those known in the AHR2 battery and that
other regulatory systems may also respond to TCDD exposure. The effects of chronic
multi-generational exposure to environmental toxicants on the genome of Hudson River
tomcod are much greater than previously expected.
Collapse
Affiliation(s)
- Stuart M Brown
- Department of Cell Biology, NYU School of Medicine
- Center for Health Informatics and Bioinformatics, NYU School of
Medicine
| | - Adriana Heguy
- Genome Technology Center, NYU School of Medicine
- Department of Pathology, NYU School of Medicine
| | - Paul Zappile
- Genome Technology Center, NYU School of Medicine
- Department of Pathology, NYU School of Medicine
| | - Hao Chen
- Department of Cell Biology, NYU School of Medicine
| | | | - Yilan Wang
- Department of Cell Biology, NYU School of Medicine
| | - Yuhan Hao
- Department of Cell Biology, NYU School of Medicine
- Center for Health Informatics and Bioinformatics, NYU School of
Medicine
| | - Nirmal K Roy
- Department of Environmental Medicine, NYU School of Medicine
| | - Kristy Vitale
- Department of Environmental Medicine, NYU School of Medicine
| | - R Christopher Chambers
- Howard Marine Sciences Laboratory, Northeast Fisheries Science Center,
National Marine Fisheries Service, National Oceanographic and Atmospheric Administration,
Highlands, New Jersey
| | - Isaac Wirgin
- Department of Environmental Medicine, NYU School of Medicine
- Corresponding author: E-mail:
| |
Collapse
|
26
|
Ponce-Ruiz N, Murillo-González FE, Rojas-García AE, Mackness M, Bernal-Hernández YY, Barrón-Vivanco BS, González-Arias CA, Medina-Díaz IM. Transcriptional regulation of human Paraoxonase 1 by nuclear receptors. Chem Biol Interact 2017; 268:77-84. [PMID: 28223025 DOI: 10.1016/j.cbi.2017.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/10/2017] [Indexed: 01/08/2023]
Abstract
Paraoxonase 1 (PON1) is a calcium-dependent lactonase synthesized primarily in the liver and secreted into the plasma, where it is associates with high density lipoproteins (HDL). PON1 acts as antioxidant preventing low-density lipoprotein (LDL) oxidation, a process considered critical in the initiation and progression of atherosclerosis. Additionally, PON1 hydrolyzes and detoxifies some toxic metabolites of organophosphorus compounds (OPs). Thus, PON1 activity and expression levels are important for determining susceptibility to OPs intoxication and risk of developing diseases related to inflammation and oxidative stress. Increasing evidence has demonstrated the modulation of PON1 expression by many factors is due to interaction with nuclear receptors (NRs). Here, we briefly review the studies in this area and discuss the role of nuclear receptors in the regulation of PON1 expression, as well as how understanding these mechanisms may allow us to manipulate PON1 levels to improve drug efficacy and treat disease.
Collapse
Affiliation(s)
- N Ponce-Ruiz
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico; Posgrado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico.
| | - F E Murillo-González
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico; Posgrado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico.
| | - A E Rojas-García
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| | - Mike Mackness
- Institute of Cardiovascular Sciences, Manchester, United Kingdom.
| | - Y Y Bernal-Hernández
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| | - B S Barrón-Vivanco
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| | - C A González-Arias
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| | - I M Medina-Díaz
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| |
Collapse
|
27
|
Cheng R, Mantovani A, Frazzoli C. Analysis of Food Safety and Security Challenges in Emerging African Food Producing Areas through a One Health Lens: The Dairy Chains in Mali. J Food Prot 2017; 80:57-67. [PMID: 28221872 DOI: 10.4315/0362-028x.jfp-15-561] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Challenges posed by changes in livestock production in emerging food producing areas and demographic development and climate change require new approaches and responsibilities in the management of food chains. The increasingly recognized role of primary food producers requires the support of the scientific community to instruct effective approaches based on scientific data, tools, and expertise. Mali is an emerging food producing area, and this review covers (i) the dairy farming scenario and its environment, (ii) the role of dairy production in food security, including the greatly different animal rearing systems in the Sahel and tropical regions, (iii) risk management pillars as modern infrastructures, effective farmer organizations, and institutional systems to guarantee animal health and safety of products, and (iv) feasible interventions based on good practices and risk assessment at the farm level (e.g., sustainable use of fertilizers, feeds, veterinary drugs, and pesticides) to protect consumers from food safety hazards. Social innovation based on the empowerment of the primary food producers emerges as crucial for sustainable and safe food production. Sustainable policies should be supported by the mobilization of stakeholders of One Health, which is a science-based approach to linking human health and nutrition with the health and management of food producing animals and environmental safety. In the context of the complex, multifaceted scenario of Mali dairy production, this article presents how a cost-effective animal health and food safety scheme could be established in the dairy production chain. Because milk is a major commodity in this country, benefits could be derived in food security, public health, the resilience of the farming system, animal husbandry, and international trade.
Collapse
Affiliation(s)
- Rachel Cheng
- External Relations Office, Istituto Superiore di Sanità, via Giano della Bella 34, 00162 Rome, Italy.,Department of Agriculture, Forestry, Nature and Energy, Università degli Studi della Tuscia, 01100 Viterbo, Italy
| | - Alberto Mantovani
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Chiara Frazzoli
- External Relations Office, Istituto Superiore di Sanità, via Giano della Bella 34, 00162 Rome, Italy
| |
Collapse
|
28
|
Gong P, Madak-Erdogan Z, Flaws JA, Shapiro DJ, Katzenellenbogen JA, Katzenellenbogen BS. Estrogen receptor-α and aryl hydrocarbon receptor involvement in the actions of botanical estrogens in target cells. Mol Cell Endocrinol 2016; 437:190-200. [PMID: 27543265 PMCID: PMC5873581 DOI: 10.1016/j.mce.2016.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/15/2016] [Accepted: 08/14/2016] [Indexed: 11/19/2022]
Abstract
Botanical estrogen (BE) dietary supplements are consumed by women as substitutes for loss of endogenous estrogens at menopause. To examine the roles of estrogen receptor α (ERα) and aryl hydrocarbon receptor (AhR) and their crosstalk in the actions of BEs, we studied gene regulation and proliferation responses to four widely used BEs, genistein, daidzein, and S-equol from soy, and liquiritigen from licorice root in breast cancer and liver cells. BEs and estradiol (E2), acting through ERα, stimulated proliferation, ERα chromatin binding and target-gene expression. BEs but not E2, acting through AhR, bound to xenobiotic response element-containing chromatin sites and enhanced AhR target-gene expression (CYP1A1, CYP1B1). While E2 and TCDD acted quite selectively through their respective receptors, BEs acted via both receptors, with their AhR activity moderated by negative crosstalk through ERα. Both ERα and AhR should be considered as mediators of the biology and pharmacology of BEs.
Collapse
Affiliation(s)
- Ping Gong
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zeynep Madak-Erdogan
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David J Shapiro
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
29
|
Ebert B, Kisiela M, Maser E. Transcriptional regulation of human and murine short-chain dehydrogenase/reductases (SDRs) – an in silico approach. Drug Metab Rev 2016; 48:183-217. [DOI: 10.3109/03602532.2016.1167902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bettina Ebert
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Michael Kisiela
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
30
|
Tarnow P, Hutzler C, Grabiger S, Schön K, Tralau T, Luch A. Estrogenic Activity of Mineral Oil Aromatic Hydrocarbons Used in Printing Inks. PLoS One 2016; 11:e0147239. [PMID: 26771904 PMCID: PMC4714758 DOI: 10.1371/journal.pone.0147239] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/30/2015] [Indexed: 11/19/2022] Open
Abstract
The majority of printing inks are based on mineral oils (MOs) which contain complex mixtures of saturated and aromatic hydrocarbons. Consumer exposure to these oils occurs either through direct skin contacts or, more frequently, as a result of MO migration into the contents of food packaging that was made from recycled newspaper. Despite this ubiquitous and frequent exposure little is known about the potential toxicological effects, particularly with regard to the aromatic MO fractions. From a toxicological point of view the huge amount of alkylated and unsubstituted compounds therein is reason for concern as they can harbor genotoxicants as well as potential endocrine disruptors. The aim of this study was to assess both the genotoxic and estrogenic potential of MOs used in printing inks. Mineral oils with various aromatic hydrocarbon contents were tested using a battery of in vitro assays selected to address various endpoints such as estrogen-dependent cell proliferation, activation of estrogen receptor α or transcriptional induction of estrogenic target genes. In addition, the comet assay has been applied to test for genotoxicity. Out of 15 MOs tested, 10 were found to potentially act as xenoestrogens. For most of the oils the effects were clearly triggered by constituents of the aromatic hydrocarbon fraction. From 5 oils tested in the comet assay, 2 showed slight genotoxicity. Altogether it appears that MOs used in printing inks are potential endocrine disruptors and should thus be assessed carefully to what extent they might contribute to the total estrogenic burden in humans.
Collapse
Affiliation(s)
- Patrick Tarnow
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany, Max-Dohrn-Strasse 8–10, 10598, Berlin, Germany
- * E-mail:
| | - Christoph Hutzler
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany, Max-Dohrn-Strasse 8–10, 10598, Berlin, Germany
| | - Stefan Grabiger
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany, Max-Dohrn-Strasse 8–10, 10598, Berlin, Germany
| | - Karsten Schön
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany, Max-Dohrn-Strasse 8–10, 10598, Berlin, Germany
| | - Tewes Tralau
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany, Max-Dohrn-Strasse 8–10, 10598, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany, Max-Dohrn-Strasse 8–10, 10598, Berlin, Germany
| |
Collapse
|
31
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
32
|
Caruso JA, Campana R, Wei C, Su CH, Hanks AM, Bornmann WG, Keyomarsi K. Indole-3-carbinol and its N-alkoxy derivatives preferentially target ERα-positive breast cancer cells. Cell Cycle 2015; 13:2587-99. [PMID: 25486199 DOI: 10.4161/15384101.2015.942210] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Indole-3-carbinol (I3C) is a natural anti-carcinogenic compound found at high concentrations in Brassica vegetables. I3C was recently reported to inhibit neutrophil elastase (NE) activity, while consequently limiting the proteolytic processing of full length cyclin E into pro-tumorigenic low molecular weight cyclin E (LMW-E). In this study, we hypothesized that inhibition of NE activity and resultant LMW-E generation is critical to the anti-tumor effects of I3C. LMW-E was predominately expressed by ERα-negative breast cancer cell lines. However, ERα-positive cell lines demonstrated the greatest sensitivity to the anti-tumor effects of I3C and its more potent N-alkoxy derivatives. We found that I3C was incapable of inhibiting NE activity or the generation of LMW-E. Therefore, this pathway did not contribute to the anti-tumor activity of I3C. Gene expression analyzes identified ligand-activated aryl hydrocarbon receptor (AhR), which mediated sensitivity to the anti-tumor effects of I3C in ERα-positive MCF-7 cells. In this model system, the reactive oxygen species (ROS)-induced upregulation of ATF-3 and pro-apoptotic BH3-only proteins (e.g. NOXA) contributed to the sensitivity of ERα-positive breast cancer cells to the anti-tumor effects of I3C. Overexpression of ERα in MDA-MB-231 cells, which normally lack ERα expression, increased sensitivity to the anti-tumor effects of I3C, demonstrating a direct role for ERα in mediating the sensitivity of breast cancer cell lines to I3C. Our results suggest that ERα signaling amplified the pro-apoptotic effect of I3C-induced AhR signaling in luminal breast cancer cell lines, which was mediated in part through oxidative stress induced upregulation of ATF-3 and downstream BH3-only proteins.
Collapse
Key Words
- AhR, aryl hydrocarbon receptor
- CYP, cytochrome p450 oxidases
- DIM, 3,3-diindoylmethane
- ERα, estrogen receptor α
- HMECs, human mammary epithelial cells
- I3C, indole-3-carbinol
- LMW-E, low molecular weight cyclin E
- NE, neutrophil elastase
- ROS, reactive oxygen species
- RPPA, reverse phase protein array
- TNBC, triple-receptor negative breast cancer
- aryl hydrocarbon receptor
- estrogen receptor α
- indole-3-carbinol
- neutrophil elastase
Collapse
Affiliation(s)
- Joseph A Caruso
- a Department of Experimental Radiation Oncology ; University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Sofo V, Götte M, Laganà AS, Salmeri FM, Triolo O, Sturlese E, Retto G, Alfa M, Granese R, Abrão MS. Correlation between dioxin and endometriosis: an epigenetic route to unravel the pathogenesis of the disease. Arch Gynecol Obstet 2015; 292:973-86. [DOI: 10.1007/s00404-015-3739-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
34
|
Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol 2014; 32:403-32. [PMID: 24655296 DOI: 10.1146/annurev-immunol-032713-120245] [Citation(s) in RCA: 648] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR), for many years almost exclusively studied by the pharmacology/toxicology field for its role in mediating the toxicity of xenobiotics such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has more recently attracted the attention of immunologists. The evolutionary conservation of this transcription factor and its widespread expression in the immune system point to important physiological functions that are slowly being unraveled. In particular, the emphasis is now shifting from the role of AhR in the xenobiotic pathway toward its mode of action in response to physiological ligands. In this article, we review the current understanding of the molecular interactions and functions of AhR in the immune system in steady state and in the presence of infection and inflammation, with a focus on barrier organs such as the skin, the gut, and the lung.
Collapse
Affiliation(s)
- Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom; , , ,
| | | | | | | |
Collapse
|
35
|
MacPherson L, Ahmed S, Tamblyn L, Krutmann J, Förster I, Weighardt H, Matthews J. Aryl hydrocarbon receptor repressor and TiPARP (ARTD14) use similar, but also distinct mechanisms to repress aryl hydrocarbon receptor signaling. Int J Mol Sci 2014; 15:7939-57. [PMID: 24806346 PMCID: PMC4057711 DOI: 10.3390/ijms15057939] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/23/2014] [Indexed: 12/16/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) regulates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The AHR repressor (AHRR) is an AHR target gene and functions as a ligand-induced repressor of AHR; however, its mechanism of inhibition is controversial. Recently, we reported that TCDD-inducible poly (ADP-ribose) polymerase (TiPARP; ARTD14) also acts as a repressor of AHR, representing a new player in the mechanism of AHR action. Here we compared the ability of AHRR- and TiPARP-mediated inhibition of AHR activity. TCDD increased AHRR mRNA levels and recruitment of AHRR to cytochrome P450 1A1 (CYP1A1) in MCF7 cells. Knockdown of TiPARP, but not AHRR, increased TCDD-induced CYP1A1 mRNA and AHR protein levels. Similarly, immortalized TiPARP−/− mouse embryonic fibroblasts (MEFs) and AHRR−/− MEFs exhibited enhanced AHR transactivation. However, unlike TiPARP−/− MEFs, AHRR−/− MEFs did not exhibit increased AHR protein levels. Overexpression of TiPARP in AHRR−/− MEFs or AHRRΔ8, the active isoform of AHRR, in TiPARP−/− MEFs reduced TCDD-induced CYP1A1 mRNA levels, suggesting that they independently repress AHR. GFP-AHRRΔ8 and GFP-TiPARP expressed as small diffuse nuclear foci in MCF7 and HuH7 cells. GFP-AHRRΔ8_Δ1-49, which lacks its putative nuclear localization signal, localized to both the nucleus and the cytoplasm, while the GFP-AHRRΔ8_Δ1-100 mutant localized predominantly in large cytoplasmic foci. Neither GFP-AHRRΔ8_Δ1-49 nor GFP-AHRRΔ8_Δ1-100 repressed AHR. Taken together, AHRR and TiPARP repress AHR transactivation by similar, but also different mechanisms.
Collapse
Affiliation(s)
- Laura MacPherson
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Shaimaa Ahmed
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Laura Tamblyn
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straβe 31, 53115 Bonn, Germany.
| | - Heike Weighardt
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
36
|
Ahmed S, Wang A, Celius T, Matthews J. Zinc finger nuclease-mediated knockout of AHR or ARNT in human breast cancer cells abolishes basal and ligand-dependent regulation of CYP1B1 and differentially affects estrogen receptor α transactivation. Toxicol Sci 2013; 138:89-103. [PMID: 24299737 DOI: 10.1093/toxsci/kft274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In this study, we used zinc finger nuclease-mediated knockout of the aryl hydrocarbon receptor (AHR) or AHR nuclear translocator (ARNT) in MCF7 and AHR knockout in MDA-MB-231 human breast cancer cells to investigate cross talk among AHR, ARNT, and estrogen receptor α (ERα). Knockout of AHR or ARNT prevented the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-dependent induction of all AHR target genes examined. Knockout of AHR or ARNT also significantly reduced basal cytochrome P4501B1 (CYP1B1) expression levels, which were restored with overexpression of either protein but not with a DNA binding-deficient AHR mutant. Basal and TCDD-, 17β-estradiol (E2)-, or TCDD + E2-dependent recruitment of AHR, ARNT, ERα, NCoA3, and RNA polymerase II to CYP1B1 as well as CYP1B1 mRNA levels were abolished in MCF7-AHR((ko)) and MDA-MB-231 AHR(ko) cells. However, reduced but significant E2-dependent recruitment of ERα, NCoA3, and RNA polymerase II to CYP1B1 and weak increases in CYP1B1 mRNA levels were observed in MCF7 ARNT((ko)) cells. Interestingly, E2-dependent increases in trefoil factor 1, but not growth regulation by estrogen in breast cancer 1 (GREB1) mRNA levels, were dependent on ARNT expression. Moreover, the TCDD-dependent increases in the proteolytic degradation of ERα were prevented by the loss of AHR or ARNT. Our data show that AHR and ARNT play critical roles in the basal, TCDD, and E2-induced regulation of CYP1B1 but also reveal distinct roles for both proteins in ERα transactivation.
Collapse
Affiliation(s)
- Shaimaa Ahmed
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
37
|
Budinsky RA, Schrenk D, Simon T, Van den Berg M, Reichard JF, Silkworth JB, Aylward LL, Brix A, Gasiewicz T, Kaminski N, Perdew G, Starr TB, Walker NJ, Rowlands JC. Mode of action and dose–response framework analysis for receptor-mediated toxicity: The aryl hydrocarbon receptor as a case study. Crit Rev Toxicol 2013; 44:83-119. [DOI: 10.3109/10408444.2013.835787] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Safe S, Lee SO, Jin UH. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicol Sci 2013; 135:1-16. [PMID: 23771949 PMCID: PMC3748760 DOI: 10.1093/toxsci/kft128] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/03/2013] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is highly expressed in multiple organs and tissues, and there is increasing evidence that the AHR plays an important role in cellular homeostasis and disease. The AHR is expressed in multiple tumor types, in cancer cell lines, and in tumors from animal models, and the function of the AHR has been determined by RNA interference, overexpression, and inhibition studies. With few exceptions, knockdown of the AHR resulted in decreased proliferation and/or invasion and migration of cancer cell lines, and in vivo studies in mice overexpressing the constitutively active AHR exhibited enhanced stomach and liver cancers, suggesting a pro-oncogenic role for the AHR. In contrast, loss of the AHR in transgenic mice that spontaneously develop colonic tumors and in carcinogen-induced liver tumors resulted in increased carcinogenesis, suggesting that the receptor may exhibit antitumorigenic activity prior to tumor formation. AHR ligands also either enhanced or inhibited tumorigenesis, and these effects were highly tumor specific, demonstrating that selective AHR modulators that exhibit agonist or antagonist activities represent an important new class of anticancer agents that can be directed against multiple tumors.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA.
| | | | | |
Collapse
|
39
|
Wang K, Li Y, Jiang YZ, Dai CF, Patankar MS, Song JS, Zheng J. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells. Cancer Lett 2013; 340:63-71. [PMID: 23851185 DOI: 10.1016/j.canlet.2013.06.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/20/2013] [Accepted: 06/23/2013] [Indexed: 11/28/2022]
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer.
Collapse
Affiliation(s)
- Kai Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, PR China.,Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Yi-Zhou Jiang
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Cai-Feng Dai
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States.,Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Jia-Sheng Song
- AhR Pharmaceuticals, Inc., Madison, WI 53719, United States
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States.,Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong, PR China
| |
Collapse
|
40
|
The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells. Toxicol Appl Pharmacol 2013; 270:139-48. [DOI: 10.1016/j.taap.2013.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 12/15/2022]
|
41
|
Epigenetically mediated pathogenic effects of phenanthrene on regulatory T cells. J Toxicol 2013; 2013:967029. [PMID: 23533402 PMCID: PMC3606805 DOI: 10.1155/2013/967029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 12/22/2022] Open
Abstract
Phenanthrene (Phe), a polycyclic aromatic hydrocarbon (PAH), is a major constituent of urban air pollution. There have been conflicting results regarding the role of other AhR ligands 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD) and 6-formylindolo [3,2-b]carbazole (FICZ) in modifying regulatory T cell populations (Treg) or T helper (Th)17 differentiation, and the effects of Phe have been understudied. We hypothesized that different chemical entities of PAH induce Treg to become either Th2 or Th17 effector T cells through epigenetic modification of FOXP3. To determine specific effects on T cell populations by phenanthrene, primary human Treg were treated with Phe, TCDD, or FICZ and assessed for function, gene expression, and phenotype. Methylation of CpG sites within the FOXP3 locus reduced FOXP3 expression, leading to impaired Treg function and conversion of Treg into a CD4+CD25lo Th2 phenotype in Phe-treated cells. Conversely, TCDD treatment led to epigenetic modification of IL-17A and conversion of Treg to Th17 T cells. These findings present a mechanism by which exposure to AhR-ligands mediates human T cell responses and begins to elucidate the relationship between environmental exposures, immune modulation, and initiation of human disease.
Collapse
|
42
|
MacPherson L, Tamblyn L, Rajendra S, Bralha F, McPherson JP, Matthews J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation. Nucleic Acids Res 2012; 41:1604-21. [PMID: 23275542 PMCID: PMC3562000 DOI: 10.1093/nar/gks1337] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP-ribose) polymerase (TiPARP/ARTD14) is a member of the PARP family and is regulated by the aryl hydrocarbon receptor (AHR); however, little is known about TiPARP function. In this study, we examined the catalytic function of TiPARP and determined its role in AHR transactivation. We observed that TiPARP exhibited auto-mono-ADP-ribosyltransferase activity and ribosylated core histones. RNAi-mediated knockdown of TiPARP in T-47D breast cancer and HuH-7 hepatoma cells increased TCDD-dependent cytochrome P450 1A1 (CYP1A1) and CYP1B1 messenger RNA (mRNA) expression levels and recruitment of AHR to both genes. Overexpression of TiPARP reduced AHR-dependent increases in CYP1A1-reporter gene activity, which was restored by overexpression of AHR, but not aryl hydrocarbon receptor nuclear translocator. Deletion and mutagenesis studies showed that TiPARP-mediated inhibition of AHR required the zinc-finger and catalytic domains. TiPARP and AHR co-localized in the nucleus, directly interacted and both were recruited to CYP1A1 in response to TCDD. Overexpression of Tiparp enhanced, whereas RNAi-mediated knockdown of TiPARP reduced TCDD-dependent AHR proteolytic degradation. TCDD-dependent induction of AHR target genes was enhanced in Tiparp−/− mouse embryonic fibroblasts compared with wildtype controls. Our findings show that TiPARP is a mono-ADP-ribosyltransferase and a transcriptional repressor of AHR, revealing a novel negative feedback loop in AHR signalling.
Collapse
Affiliation(s)
- Laura MacPherson
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Gjernes MH, Schlenk D, Arukwe A. Estrogen receptor-hijacking by dioxin-like 3,3'4,4',5-pentachlorobiphenyl (PCB126) in salmon hepatocytes involves both receptor activation and receptor protein stability. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 124-125:197-208. [PMID: 22982498 DOI: 10.1016/j.aquatox.2012.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 05/20/2023]
Abstract
Several hypotheses have been proposed explaining the interactions between estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) signaling pathways in both fish and mammalian systems. In both piscine and mammalian systems, ligand-activated AhR may recruit basal ER (i.e. hijack) in the absence of ER ligand and bind to the estrogen responsive elements (ERE) to activate ER-responsive genes. We have evaluated, the roles of receptor activation and receptor-protein stability on dioxin-like [3,3'4,4',5-pentachlorobiphenyl: PCB 126] mediated ER-hijacking in a salmon in vitro system. Primary salmon hepatocytes were exposed to PCB126 (1, 10 and 50 nM) with or without an ER-antagonist (ICI), putative AhR inhibitor (3',4'-dimethoxyflavone; DMF) or protein synthesis inhibitor (cycloheximide; CHX). Hepatocytes were exposed for 6, 12 and 24h. The expression of genes and proteins involved in ER (ERα, ERβ and vitellogenin) and AhR (CYP1A1, AhR-repressor, AhR2-isotypes and cofactors) pathways were analysed using qPCR and immunochemical methods. PCB126 induced transcripts of ER and AhR signalling pathways that were variably influenced by protein synthesis and receptor inhibitors. CHX stimulated a coordinated recruitment of the proteasome complex, resulting in the ubiquitination and degradation of ER and AhR isoforms and downstream protein products. Interestingly, DMF produced differential effects on the AhR signalling pathway, in the presence or absence of PCB126. Overall, ER-hijacking by dioxin-like compounds and subsequent activation of ER responsive genes involves both receptor activation/deactivation and receptor-protein degradation/destabilization (stability). Given that the Per-AhR/Arnt-Sim homology sequence of transcription factors usually associate with each other to form heterodimers and bind the XRE or ERE sequences in the promoter regions of target genes to regulate their expression, the complete mechanism of interactions between dioxin-like and estrogenic compounds in vertebrate systems may require additional characterization.
Collapse
Affiliation(s)
- Martine H Gjernes
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | |
Collapse
|
44
|
Wu AML, Dalvi P, Lu X, Yang M, Riddick DS, Matthews J, Clevenger CV, Ross DD, Harper PA, Ito S. Induction of multidrug resistance transporter ABCG2 by prolactin in human breast cancer cells. Mol Pharmacol 2012; 83:377-88. [PMID: 23150485 DOI: 10.1124/mol.112.082362] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The multidrug transporter, breast cancer resistance protein, ABCG2, is up-regulated in certain chemoresistant cancer cells and in the mammary gland during lactation. We investigated the role of the lactogenic hormone prolactin (PRL) in the regulation of ABCG2. PRL dose-dependently induced ABCG2 expression in T-47D human breast cancer cells. This induction was significantly reduced by short-interfering RNA-mediated knockdown of Janus kinase 2 (JAK2). Knockdown or pharmacologic inhibition of the down-stream signal transducer and activator of transcription-5 (STAT5) also blunted the induction of ABCG2 by PRL, suggesting a role for the JAK2/STAT5 pathway in PRL-induced ABCG2 expression. Corroborating these findings, we observed PRL-stimulated STAT5 recruitment to a region containing a putative γ-interferon activation sequence (GAS) element at -434 base pairs upstream of the ABCG2 transcription start site. Introduction of a single mutation to the -434 GAS element significantly attenuated PRL-stimulated activity of a luciferase reporter driven by the ABCG2 gene promoter and 5'-flanking region containing the -434 GAS motif. In addition, this GAS element showed strong copy number dependency in its response to PRL treatment. Interestingly, inhibitors against the mitogen-activated protein kinase and phosphoinositide-3-kinase signaling pathways significantly decreased the induction of ABCG2 by PRL without altering STAT5 recruitment to the GAS element. We conclude that the JAK2/STAT5 pathway is required but not sufficient for the induction of ABCG2 by PRL.
Collapse
Affiliation(s)
- Alex Man Lai Wu
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hao N, Lee KL, Furness SGB, Bosdotter C, Poellinger L, Whitelaw ML. Xenobiotics and loss of cell adhesion drive distinct transcriptional outcomes by aryl hydrocarbon receptor signaling. Mol Pharmacol 2012; 82:1082-93. [PMID: 22936816 DOI: 10.1124/mol.112.078873] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a signal-regulated transcription factor, which is canonically activated by the direct binding of xenobiotics. In addition, switching cells from adherent to suspension culture also activates the AhR, representing a nonxenobiotic, physiological activation of AhR signaling. Here, we show that the AhR is recruited to target gene enhancers in both ligand [isopropyl-2-(1,3-dithietane-2-ylidene)-2-[N-(4-methylthiazol-2-yl)carbamoyl]acetate (YH439)]-treated and suspension cells, suggesting a common mechanism of target gene induction between these two routes of AhR activation. However, gene expression profiles critically differ between xenobiotic- and suspension-activated AhR signaling. Por and Cldnd1 were regulated predominantly by ligand treatments, whereas, in contrast, ApoER2 and Ganc were regulated predominantly by the suspension condition. Classic xenobiotic-metabolizing AhR targets such as Cyp1a1, Cyp1b1, and Nqo1 were regulated by both ligand and suspension conditions. Temporal expression patterns of AhR target genes were also found to vary, with examples of transient activation, transient repression, or sustained alterations in expression. Furthermore, sequence analysis coupled with chromatin immunoprecipitation assays and reporter gene analysis identified a functional xenobiotic response element (XRE) in the intron 1 of the mouse Tiparp gene, which was also bound by hypoxia-inducible factor-1α during hypoxia and features a concatemer of four XRE cores (GCGTG). Our data suggest that this XRE concatemer site concurrently regulates the expression of both the Tiparp gene and its cis antisense noncoding RNA after ligand- or suspension-induced AhR activation. This work provides novel insights into how AhR signaling drives different transcriptional programs via the ligand versus suspension modes of activation.
Collapse
Affiliation(s)
- Nan Hao
- School of Molecular and Biomedical Science (Biochemistry) and Australian Research Council Special Research Centre for the Molecular Genetics of Development, the University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Lo R, Matthews J. High-resolution genome-wide mapping of AHR and ARNT binding sites by ChIP-Seq. Toxicol Sci 2012; 130:349-61. [PMID: 22903824 DOI: 10.1093/toxsci/kfs253] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) activated complex regulates genes in response to the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). AHR has also emerged as a potential therapeutic target for the treatment of human diseases and different cancers, including breast cancer. To better understand AHR and ARNT signaling in breast cancer cells, we used chromatin immunoprecipitation linked to high-throughput sequencing to identify AHR- and ARNT-binding sites across the genome in TCDD-treated MCF-7 cells. We identified 2594 AHR-bound, 1352 ARNT-bound, and 882 AHR/ARNT cobound regions. No significant differences in the genomic distribution of AHR and ARNT were observed. Approximately 60% of the cobound regions contained at least one core an aryl hydrocarbon response element (AHRE), 5'-GCGTG-3'. AHR/ARNT peak density was the highest within 1 kb of transcription start sites (TSS); however, a number of AHR/ARNT cobound regions were located as far as 100 kb from TSS. De novo motif discovery identified a symmetrical variation of the AHRE (5'-GTGCGTG-3'), as well as FOXA1 and SP1 binding motifs. Microarray analysis identified 104 TCDD-responsive genes where 98 genes were upregulated by TCDD. Of the 104 regulated genes, 69 (66.3%) were associated with an AHR- or ARNT-bound region within 100 kb of their TSS. Overall our study identified AHR/ARNT cobound regions across the genome, revealed the importance but not absolute requirement for an AHRE in AHR/ARNT interactions with DNA, and identified a modified AHRE motif, thereby increasing our understanding of AHR/ARNT signaling pathway.
Collapse
Affiliation(s)
- Raymond Lo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
47
|
Ahmed S, Al-Saigh S, Matthews J. FOXA1 Is Essential for Aryl Hydrocarbon Receptor–Dependent Regulation of Cyclin G2. Mol Cancer Res 2012; 10:636-48. [DOI: 10.1158/1541-7786.mcr-11-0502] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Narayanan GA, Murray IA, Krishnegowda G, Amin S, Perdew GH. Selective aryl hydrocarbon receptor modulator-mediated repression of CD55 expression induced by cytokine exposure. J Pharmacol Exp Ther 2012; 342:345-55. [PMID: 22553215 DOI: 10.1124/jpet.112.193482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Modulation of aryl hydrocarbon receptor (AHR) activity by a class of ligands termed selective AHR modulators (SAhRMs) has been demonstrated to attenuate proinflammatory gene expression and signaling, including repression of cytokine-mediated induction of acute-phase genes (e.g., Saa1). These effects are observed to occur through an AHR-dependent mechanism that does not require canonical signaling through dioxin response elements. Previously, we have demonstrated that the SAhRM 3',4'-dimethoxy-α-naphthoflavone (DiMNF) can repress the cytokine-mediated induction of complement factor genes. Here, we report that the activation of the AHR with DiMNF can suppress cytokine-mediated induction of the membrane complement regulatory protein CD55. When CD55 is expressed on host cells, it facilitates the decay of the complement component 3 (C3) convertase, thereby protecting the cell from complement-mediated lysis. Tumor cells often exhibit elevated CD55 expression on the cell surface in the inflammatory microenvironment of the tumor, and such enhanced expression could represent a means of escaping immune surveillance. DiMNF can repress the cytokine-mediated induction of CD55 mRNA and protein. Luciferase reporter analysis has identified possible response elements on the CD55 promoter, which may be targets for this repression. A C3 deposition assay with [(125)I]C3 revealed that repression of cytokine-mediated CD55 expression by DiMNF led to an increase of C3 deposition on the surface of Huh7 cells, which would likely stimulate the formation of the membrane attack complex. These results suggest that SAhRMs such as DiMNF have therapeutic potential in regulating the immune response to tumor formation.
Collapse
Affiliation(s)
- Gitanjali A Narayanan
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary Sciences, Pennsylvania State University, 309A Life Sciences Building, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
49
|
Madak-Erdogan Z, Katzenellenbogen BS. Aryl hydrocarbon receptor modulation of estrogen receptor α-mediated gene regulation by a multimeric chromatin complex involving the two receptors and the coregulator RIP140. Toxicol Sci 2011; 125:401-11. [PMID: 22071320 DOI: 10.1093/toxsci/kfr300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although crosstalk between aryl hydrocarbon receptor (AhR) and estrogen receptor α (ERα) is well established, the mechanistic basis and involvement of other proteins in this process are not known. Because we observed an enrichment of AhR-binding motifs in ERα-binding sites of many estradiol (E2)-regulated genes, we investigated how AhR might modulate ERα-mediated gene transcription in breast cancer cells. Gene regulations were categorized based on their pattern of stimulation by E2 and/or dioxin and were denoted E2-responsive, dioxin-responsive, or responsive to either ligand. ERα, AhR, aryl hydrocarbon receptor translocator, and receptor interacting protein 140 (RIP140) were recruited to gene regulatory regions in a gene-specific and E2/dioxin ligand-specific manner. Knockdown of AhR markedly increased the expression of ERα-mediated genes upon E2 treatment. This was not attributable to a change in ERα level, or recruitment of ERα, phosphoSer5-RNA Pol II, or several coregulators but rather was associated with greatly diminished recruitment of the coregulator RIP140 to gene regulatory sites. Changing the cellular level of RIP140 revealed coactivator or corepressor roles for this coregulator in E2- and dioxin-mediated gene regulation, the choice of which was determined by the presence or absence of ERα at gene regulatory sites. Coimmunoprecipitation and chromatin immunoprecipitation (ChIP)-reChIP studies documented that E2- or dioxin-promoted formation of a multimeric complex of ERα, AhR, and RIP140 at ERα-binding sites of genes regulated by either E2 or dioxin. Our findings highlight the importance of cross-regulation between AhR and ERα and a novel mechanism by which AhR controls, through modulating the recruitment of RIP140 to ERα-binding sites, the kinetics and magnitude of ERα-mediated gene stimulation.
Collapse
Affiliation(s)
- Zeynep Madak-Erdogan
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
50
|
Zhang S, Kim K, Jin UH, Pfent C, Cao H, Amendt B, Liu X, Wilson-Robles H, Safe S. Aryl hydrocarbon receptor agonists induce microRNA-335 expression and inhibit lung metastasis of estrogen receptor negative breast cancer cells. Mol Cancer Ther 2011; 11:108-18. [PMID: 22034498 DOI: 10.1158/1535-7163.mct-11-0548] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aryl hydrocarbon receptor (AHR) was initially identified as a receptor that bound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related environmental toxicants; however, there is increasing evidence that the AHR is an important new drug target for treating multiple diseases including breast cancer. Treatment of estrogen receptor (ER)-negative MDA-MB-231 and BT474 breast cancer cells with TCDD or the selective AHR modulator 6-methyl-1,3,-trichlorodibenzofuran (MCDF) inhibited breast cancer cell invasion in a Boyden chamber assay. These results were similar to those previously reported for the antimetastic microRNA-335 (miR-335). Both TCDD and MCDF induced miR-335 in MDA-MB-231 and BT474 cells and this was accompanied by downregulation of SOX4, a miR-335-regulated (inhibited) gene. The effects of TCDD and MCDF on miR-335 and SOX4 expression and interactions of miR-335 with the 3'-UTR target sequence in the SOX4 gene were all inhibited in cells transfected with an oligonucleotide (iAHR) that knocks down the AHR, thus confirming AHR-miR-335 interactions. MCDF (40 mg/kg/d) also inhibited lung metastasis of MDA-MB-231 cells in a tail vein injection model, showing that the AHR is a potential new target for treating patients with ER-negative breast cancer, a disease where treatment options and their effectiveness are limited.
Collapse
Affiliation(s)
- Shu Zhang
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|