1
|
Gupta RC, Doss RB. Toxicity Potential of Nutraceuticals. Methods Mol Biol 2025; 2834:197-230. [PMID: 39312167 DOI: 10.1007/978-1-0716-4003-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
During the past few decades and especially during and after the COVID-19 pandemic, the use of nutraceuticals has become increasingly popular in both humans and animals due to their easy access, cost-effectiveness, and tolerability with a wide margin of safety. While some nutraceuticals are safe, others have an inherent toxic potential. For a large number of nutraceuticals, no toxicity/safety data are available due to a lack of pharmacological/toxicological studies. The safety of some nutraceuticals can be compromised via contamination with toxic plants, metals, mycotoxins, pesticides, fertilizers, drugs of abuse, etc. Knowledge of pharmacokinetic/toxicokinetic studies and biomarkers of exposure, effect, and susceptibility appears to play a pivotal role in the safety and toxicity assessment of nutraceuticals. Interaction studies are essential to determine efficacy, safety, and toxicity when nutraceuticals and therapeutic drugs are used concomitantly or when polypharmacy is involved. This chapter describes various aspects of nutraceuticals, particularly their toxic potential, and the factors that influence their safety.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA.
| | - Robin B Doss
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA
| |
Collapse
|
2
|
Voigt V, Franke H, Lachenmeier DW. Risk Assessment of Pulegone in Foods Based on Benchmark Dose-Response Modeling. Foods 2024; 13:2906. [PMID: 39335834 PMCID: PMC11430949 DOI: 10.3390/foods13182906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
This study presents a new risk assessment of pulegone, a substance classified as possibly carcinogenic to humans (Group 2B) by the WHO International Agency for Research on Cancer (IARC). The analysis used data from a two-year carcinogenicity studies in rats and mice conducted by the National Toxicology Program (NTP) in 2011. Because of the absence of a no-observed adverse effect level (NOAEL) in these studies, the benchmark dose (BMD) approach was employed as an alternative risk assessment method. The lowest BMD lower confidence level (BMDL) of 4.8 mg/kg b.w./day among the eight endpoints served as the point of departure for calculating an acceptable daily intake (ADI) of 48 μg/kg b.w./day. This new ADI is significantly lower than the previously established tolerable daily intake of 0.1 mg/kg b.w./day set in 1997. The analysis also considered various genotoxicity studies, which indicate that pulegone's effects follow a nongenotoxic, thresholded mechanism. The estimated intake levels of pulegone in the European Union and USA were below the newly calculated ADI, suggesting a low health risk based on current consumption patterns.
Collapse
Affiliation(s)
- Verena Voigt
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany; (V.V.); (H.F.)
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Heike Franke
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany; (V.V.); (H.F.)
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| |
Collapse
|
3
|
Amtaghri S, Slaoui M, Eddouks M. Mentha Pulegium: A Plant with Several Medicinal Properties. Endocr Metab Immune Disord Drug Targets 2024; 24:302-320. [PMID: 37711001 DOI: 10.2174/1871530323666230914103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/16/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The species Mentha Pulegium L. (M. pulegium L.) belongs to the family Lamiaceae, native to Europe, North Africa, and the Middle East, and the genus Mentha. It has been traditionally used in food, cosmetics, and medicines. It is a perennial, fragrant, well-liked, herbaceous plant that can grow up to half a meter tall. It is extensively used as a food flavoring, particularly for Moroccan traditional drinks. Chewing mint and M. pulegium, a relaxing and refreshing plant, can be used to treat hiccups and act as an anticonvulsant and nerve relaxant. Pennyroyal leaves that have been crushed have a pungent, spearmint-like scent. Pennyroyal is used to make herbal teas, which, while not proven to be harmful to healthy adults in small doses, are not recommended due to their liver toxicity. Infants and children can die if they consume it. Pennyroyal leaves, both fresh and dried, are particularly effective at repelling insects. Pennyroyal essential oil should never be taken internally because it is highly toxic, even in small doses, it can be fatal. This plant is used in traditional Moroccan medicine to treat a wide range of conditions, including influenza, rheumatism, migraine, infertility, ulcer, pain, gastrointestinal problems, fever, diabetes, obesity, mental and cardiac disorders, constipation, respiratory ailments, and cough. M. pulegium is a great candidate for contemporary therapeutic usage since it contains a wide variety of biologically active compounds, including terpenoids, flavonoids, alkaloids, tannins, and saponins in all its parts. Among the different parts used are the whole plant, the aerial part, the stem, and the leaves. More interestingly, the entire plant contains a variety of compounds including Pulegone, Isomenthone, Carvone, Menthofuran, Menthol, 1,8-Cineole, Piperitone, Piperitenone, Neomenthol, -humulene, and 3-octanol. Eriocitrin, Hesperidin, Narirutin, Luteolin, Isorhoifolin, Galic acid, and Rosmarinic acid are found in the leaves. p-hydroxybenzoic acid, Ferulic acid, Caffeic acid, Vanillic acid, Syringic acid, Protocatechuic acid, Cinnamic acid, Phloretic acid, o-coumaric acid, p-coumaric acid, Catechin, Epicatechin, Chrysin, Quercetin, Naringenin, Carvacrol are all found in the areal part. Alterporriol G, Atropisomer, Alterporriol H, Altersolanol K, Altersolanol L, Stemphypyrone, 6-O-methylalaternin, Macrosporin, Altersolanol A, Alterporriol E, Alterporriol D, Alterporriol A, Alterporriol B, and Altersolanol J are also found in the stem of fungus. Pulegone, Piperitone, p-Menthane-1,2,3- triol, β-elemenene, guanine (cis-), Carvacrol acetate, and Phenyl ethyl alcohol are all components of this plant's essential oils. Moreover, the study also sought to investigate and document all currently available evidence and information on the nutritional composition and therapeutic uses of this plant ornamental. Its pharmacological applications include antimicrobial, antioxidant, antihypertensive, antidiabetic, anti-inflammatory, antiproliferative, antifungal, anticancer, burn wound healing, antispasmodic, and hepatotoxicity. Finally, toxicological studies have revealed that while low doses of extracts of the plant M. pulegium are not toxic, however, its essential oils of it are extremely toxic. In order to evaluate future research needs and investigate its pharmacological applications through clinical trials, the current assessment focuses on the distribution, chemical composition, biological activities, and primary uses of the plant.
Collapse
Affiliation(s)
- Smail Amtaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000, Morocco
- Energy, Materials and Sustainable Development (EMDD) Team, Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University, Rabat, Morocco
| | - Miloudia Slaoui
- Energy, Materials and Sustainable Development (EMDD) Team, Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University, Rabat, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000, Morocco
| |
Collapse
|
4
|
Lima TRR, Kohori NA, de Camargo JLV, da Silva CA, Pereira LC. Diuron and its metabolites induce mitochondrial dysfunction-mediated cytotoxicity in urothelial cells. Toxicol Mech Methods 2024; 34:32-45. [PMID: 37664877 DOI: 10.1080/15376516.2023.2250430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
In the environment, or during mammalian metabolism, the diuron herbicide (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is transformed mainly into 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU) and 3,4-dichloroaniline (DCA). Previous research suggests that such substances are toxic to the urothelium of Wistar rats where, under specific exposure conditions, they may induce urothelial cell degeneration, necrosis, hyperplasia, and eventually tumors. However, the intimate mechanisms of action associated with such chemical toxicity are not fully understood. In this context, the purpose of the current in vitro study was to analyze the underlying mechanisms involved in the urothelial toxicity of those chemicals, addressing cell death and the possible role of mitochondrial dysfunction. Thus, human 1T1 urothelial cells were exposed to six different concentrations of diuron, DCA, and DCPMU, ranging from 0.5 to 500 µM. The results showed that tested chemicals induced oxidative stress and mitochondrial damage, cell cycle instability, and cell death, which were more expressive at the higher concentrations of the metabolites. These data corroborate previous studies from this laboratory and, collectively, suggest mitochondrial dysfunction as an initiating event triggering urothelial cell degeneration and death.
Collapse
Affiliation(s)
- Thania Rios Rossi Lima
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), UNESP, Medical School, Botucatu, Brazil
| | - Natalia Akemi Kohori
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), UNESP, Medical School, Botucatu, Brazil
| | - João Lauro Viana de Camargo
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), UNESP, Medical School, Botucatu, Brazil
| | - Carla Adriene da Silva
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), UNESP, Medical School, Botucatu, Brazil
| | - Lilian Cristina Pereira
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), UNESP, Medical School, Botucatu, Brazil
- São Paulo State University (UNESP), School of Agriculture, Botucatu, Brazil
| |
Collapse
|
5
|
Johnson W, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Fiume M, Heldreth B. Amended Safety Assessment of Mentha piperita (Peppermint)-Derived Ingredients as Used in Cosmetics. Int J Toxicol 2023; 42:117S-143S. [PMID: 37800357 DOI: 10.1177/10915818231205837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of M piperita (peppermint)-derived ingredients. The Panel reviewed data relevant to the safety of these ingredients. Because final product formulations may contain multiple botanicals, each containing the same constituent(s) of concern, formulators are advised to be aware of these constituents and avoid reaching levels that may be hazardous to consumers. Industry should continue to use good manufacturing practices to limit impurities that could be present in botanical ingredients. The Panel concluded that M piperita (Peppermint) Oil, Extract, Leaf, and leaf-derived ingredients are safe in cosmetics in the present practices of use and concentration when formulated to be non-sensitizing, and that the available data are insufficient for determining that M piperita (Peppermint) Flower/Leaf/Stem Extract, M piperita (Peppermint) Flower/Leaf/Stem Water, and M piperita (Peppermint) Meristem Cell Culture are safe under the intended conditions of use in cosmetic formulations.
Collapse
Affiliation(s)
- Wilbur Johnson
- Cosmetic Ingredient Review Former Senior Scientific Analyst/Writer
| | | | | | - Ronald A Hill
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | - James G Marks
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | - Ronald C Shank
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | | | | |
Collapse
|
6
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
7
|
Ghavam M. In vitro biological potential of the essential oil of some aromatic species used in Iranian traditional medicine. Inflammopharmacology 2022; 30:855-874. [PMID: 35322321 DOI: 10.1007/s10787-022-00934-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/05/2022] [Indexed: 12/11/2022]
Abstract
The goal of this study is to evaluate the chemical compounds, the anti-bacterial/fungal activity, and the cytotoxicity of the essential oil of three species of lamiaceae in Iran. After the extraction of the essential oil implementing the hydrodistillation method, the analysis and identification of the compounds were carried out with a chromatograph coupled with a mass spectrometer. For the evaluation of the anti-bacterial/fungal activity of the essential oils, the measurement of the diameter of inhibition halo, the minimum inhibitory concentration (MIC), bactericidal and fungicidal concentrations (MBC/MFC) were utilized; and for the evaluation of the cytotoxic activity of the essential oils, the 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) method was used. The results show that the dominant compounds in the Perovskia abrotanoides Kar essential oil were camphor (21.68%), 1,8-cineole (14.26%), and α-pinene (7.23%); moreover, the dominant compounds in the Salvia reuteriana Boiss. Essential oil were benzyl benzoate (27.10%), linalool (13.27%), and sclareol (7.75%); in addition, the dominant compounds in the Ziziphora clinopodioides subsp. rigida (Boiss.) Rech.f. were cyclofenchene (25.29%), pulegone (14.14%), and menthol (7.70%). The largest halo diameter of inhibition halo (~ 22 mm) was against Streptococcus pyogenes and the strongest inhibiting and killing activity was against Candida albicans (MIC and MFC = 125 μg/mL) shown by the S. reuteriana essential oil which, respectively, matched the control antibiotics rifampin and nystatin. The analysis of the MTT test results showed that the Z. clinopodioides subsp. rigida essential oil (with IC50 value of ~ 144.2500) had the strongest cytotoxic activity against human ovarian cancer cells (OVCAR-3). On the whole, the results show that the essential oil of the Lamiaceae family plants is a source for various compounds with potential biological activities which can serve as a possible alternative to produce herbal medicine which are effective on some microorganisms and cancer cell lines.
Collapse
Affiliation(s)
- Mansureh Ghavam
- Department of Range and Watershed Management, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran.
| |
Collapse
|
8
|
Krishan M, Navarro L, Beck B, Carvajal R, Dourson M. A regulatory relic: After 60 years of research on cancer risk, the Delaney Clause continues to keep us in the past. Toxicol Appl Pharmacol 2021; 433:115779. [PMID: 34737146 DOI: 10.1016/j.taap.2021.115779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
The Delaney Clause of the Federal Food, Drug, and Cosmetic Act became law in 1958 because of concerns that potentially harmful chemicals were finding their way into foods and causing cancer. It states, "[n]o additive shall be deemed to be safe if it is found to induce cancer when ingested by man or animal, or if it is found, after tests which are appropriate for the evaluation of the safety of food additives, to induce cancer in man or animal." The United States Food and Drug Administration (US FDA) and United States Environmental Protection Agency (US EPA, prior to implementation of the Food Quality Protection Act) were charged with implementing this clause. Over 60 years, advances in cancer research have elucidated how chemicals induce cancer. Significant advancements in analytical methodologies have allowed for accurate and progressively lower detection limits, resulting in detection of trace amounts. Based on current scientific knowledge, there is a need to revisit the Delaney Clause's utility. The lack of scientific merit to the Delaney Clause was very apparent when recently the US FDA had to revoke the food additive approvals of 6 synthetic flavoring substances because high dose testing in animals demonstrated a carcinogenic response. However, US FDA determined that these 6 synthetic flavoring substances do not pose a risk to public health under the conditions of intended use. The 7th substance, styrene, was de-listed because it is no longer used by industry. The scientific community is committed to improving public health by promoting relevant science in risk assessment and regulatory decision making, and this was discussed in scientific sessions at the American Association for the Advancement of Science (AAAS) 2020 Annual Meeting and the Society of Toxicology (SOT) 2019 Annual Meeting. Expert presentations included advances in cancer research since the 1950s; the role of the Delaney Clause in the current regulatory paradigm with a focus on synthetic food additives; and the impact of the clause on scientific advances and regulatory decision making. The sessions concluded with panel discussions on making the clause more relevant based on 21st-century science.
Collapse
|
9
|
Cohen JM, Beck BD, Rhomberg LR. Historical perspective on the role of cell proliferation in carcinogenesis for DNA-reactive and non-DNA-reactive carcinogens: Arsenic as an example. Toxicology 2021; 456:152783. [PMID: 33872731 DOI: 10.1016/j.tox.2021.152783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
Our understanding of the etiology of cancer has developed significantly over the past fifty years, beginning with a single-hit linear no-threshold (LNT) conceptual model based on early studies conducted in Drosophila. Over the past several decades, multiple lines of evidence have accumulated to support a contemporary model of chemical carcinogenesis: a multi-hit model involving a prolonged stress environment that over time may drive the mutation of multiple cells into an injured state that ultimately could lead to uncontrolled proliferation via clonal expansion of mutation-carrying daughter cells. Arsenic carcinogenicity offers a useful case study for further exploration of advanced conceptual models for chemical carcinogenesis. A threshold for arsenic carcinogenicity is supported by its mode of action, characterized by repeating cycles of cytotoxicity and cellular regeneration. Furthermore, preliminary meta-analyses of epidemiology dose-response data for inorganic arsenic (iAs) and bladder cancer, correlated to dose-response data measured in vitro, support a threshold of effect in humans on the order of 50-100 μg/L in drinking water. In light of recent developments in our understanding of cancer etiology, we urge strong consideration of the existing mode-of-action evidence supporting a threshold of effect for arsenic carcinogenicity, as well as consideration of the potential methodological pitfalls in evaluating epidemiology dose-response data that could potentially bias in the direction of low-dose linearity.
Collapse
|
10
|
Caputo L, Cornara L, Raimondo FM, De Feo V, Vanin S, Denaro M, Trombetta D, Smeriglio A. Mentha pulegium L.: A Plant Underestimated for Its Toxicity to Be Recovered from the Perspective of the Circular Economy. Molecules 2021; 26:molecules26082154. [PMID: 33918091 PMCID: PMC8069592 DOI: 10.3390/molecules26082154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to investigate the micromorphology of Mentha pulegium leaves and flowers harvested in three different Sicilian (Italy) areas with peculiar pedo-climatic conditions, and to characterize the phytochemical profile, the phytotoxic activity, and the eco-compatibility of their essential oils (EOs) for potential use as safe bioherbicides. Light microscopy (LM) and scanning electron microscopy (SEM) highlighted that M. pulegium indumentum consists of non-glandular and glandular trichomes of different types. Peltate trichomes of plants from the different sites showed few significant differences in dimension and abundance, but they were characterized by a surprisingly high number of secretory cells both in leaves and flowers. Phytochemical analyses showed that oxygenated monoterpenes were the most abundant class in all the EOs investigated (92.2-97.7%), but two different chemotypes, pulegone/isomenthone and piperitone/isomenthone, were found. The complex of morphological and phytochemical data indicates that soil salinity strongly affects the expression of the toxic metabolite pulegone, rather than the EO yield. Phytotoxicity tests showed a moderate activity of EOs against the selected species as confirmed by α-amylase assay. Moreover, the low toxicity on brine shrimp provided a rationale for the possible use of investigated EOs as eco-friendly herbicides.
Collapse
Affiliation(s)
- Lucia Caputo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; (L.C.); (V.D.F.)
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa, 26, 16132 Genova, Italy; (L.C.); (S.V.)
| | - Francesco Maria Raimondo
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio, 28, 90123 Palermo, Italy;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; (L.C.); (V.D.F.)
| | - Stefano Vanin
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa, 26, 16132 Genova, Italy; (L.C.); (S.V.)
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (M.D.); (A.S.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (M.D.); (A.S.)
- Correspondence: ; Tel.: +39-090-676-6458
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (M.D.); (A.S.)
| |
Collapse
|
11
|
Perrino EV, Valerio F, Gannouchi A, Trani A, Mezzapesa G. Ecological and Plant Community Implication on Essential Oils Composition in Useful Wild Officinal Species: A Pilot Case Study in Apulia (Italy). PLANTS (BASEL, SWITZERLAND) 2021; 10:574. [PMID: 33803659 PMCID: PMC8002985 DOI: 10.3390/plants10030574] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/01/2022]
Abstract
The study focused on the effects of ecology (plant communities and topographical data) on composition of essential oils (EOs) of some officinal wild plant species (Lamiales): Clinopodium suaveolens, Salvia fruticosa subsp. thomasii, Satureja montana subsp. montana, and Thymbra capitata, in different environments of Apulia (Italy). C. suaveolens and S. fruticosa subsp. thomasii are rare species of conservation interest, while S. montana subsp. montana and T. capitata, have a wide distribution and are used in traditional medicine or as spices. Results showed that the ecological context (phytosociological and ecological features) may influence the composition of EOs of the studied species. High differences in the compound composition have been found in S. montana subsp. montana, whereas minor effects were observed in C. suaveolens, S. fruticosa subsp. thomasii, and T. capitata accessions. The understanding of such aspects is necessary for providing optimal conditions to produce EOs rich in compounds known for their biological activities. The results are of great interest also for EOs producers and at the same time to improve our knowledge and valorize wild officinal plants.
Collapse
Affiliation(s)
- Enrico V. Perrino
- CIHEAM, Mediterranean Agronomic Institute of Bari, Via Ceglie 9, 70010 Valenzano, Italy; (A.G.); (A.T.); (G.M.)
| | - Francesca Valerio
- Institute of Sciences of Food Production (ISPA), National Research Council, Via Amendola 122/O, 70126 Bari, Italy;
| | - Ahmed Gannouchi
- CIHEAM, Mediterranean Agronomic Institute of Bari, Via Ceglie 9, 70010 Valenzano, Italy; (A.G.); (A.T.); (G.M.)
| | - Antonio Trani
- CIHEAM, Mediterranean Agronomic Institute of Bari, Via Ceglie 9, 70010 Valenzano, Italy; (A.G.); (A.T.); (G.M.)
| | - Giuseppe Mezzapesa
- CIHEAM, Mediterranean Agronomic Institute of Bari, Via Ceglie 9, 70010 Valenzano, Italy; (A.G.); (A.T.); (G.M.)
| |
Collapse
|
12
|
Leherbauer I, Stappen I. Selected essential oils and their mechanisms for therapeutic use against public health disorders. An overview. Z NATURFORSCH C 2020; 75:205-223. [PMID: 32623381 DOI: 10.1515/znc-2020-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/04/2020] [Indexed: 12/27/2022]
Abstract
Today, the numbers of people suffering from lifestyle diseases like diabetes, obesity, allergies and depression increases mainly in industrialised states. That does not only lower patients' quality of life but also severely stresses the health care systems of these countries. Essential oils (EO) have been in use as therapeutic remedies for centuries against various complaints, but still their effectiveness is being underestimated. In the last decades, a great number of controlled studies have supported efficacy of these volatile secondary plant metabolites for various therapeutic indications. Besides others, EO has antidepressant, anti-obesity, antidiabetic, antifirogenic and antiallergic effects. In this review the pharmacological mechanisms for selected EO are summarised and discussed with the main attention on their impact against public health disorders. Additionally, toxicity of these oils as well as possible drug interactions is presented.
Collapse
Affiliation(s)
- Ingrid Leherbauer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Iris Stappen
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Potential Toxicity of the Essential Oil from Minthostachys mollis: A Medicinal Plant Commonly Used in the Traditional Andean Medicine in Peru. J Toxicol 2019; 2019:1987935. [PMID: 31929789 PMCID: PMC6942890 DOI: 10.1155/2019/1987935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
Medicinal plants are used throughout the world and the World Health Organization supports its use by recommending quality, safety and efficacy. Minthostachys mollis is distributed in the Andes of South America and is used by the population for various diseases. While studies have shown their pharmacological properties, the information about their safety is very limited. Then, the goal of this research was to determine the acute oral toxicity and in repeated doses during 28 days of Minthostachys mollis essential oil (Mm-EO) in rats. For the acute toxicity test two groups of rats, of three animals each, were used. Each group received Mm-EO in a single dose of 2000 or 300 mg/kg of body weight. For the repeated dose toxicity test, four groups of 10 rats each were used. Doses of 100, 250 and 500 mg/kg/day were used, one group was control. With the single dose of Mm-EO of 2000 mg/kg of body weight, the three rats in the group showed immediate signs of toxicity and died between 36 and 72 hours. In the lung, inflammatory infiltrate was observed, predominantly lymphocytic with severe hemorrhage and presence of macrophages with hemosiderin. In the repeated dose study, male rats (5/5) and female rats (2/5) died at the dose of 500 mg/kg/day. The body weight of both male and female rats decreased significantly with doses of 250 and 500 mg/kg/day. The serum levels of AST and ALT increased significantly and the histopathological study revealed chronic and acute inflammatory infiltrate in the lung; while in the liver was observed in 80% of the cases (24/30) mild chronic inflammatory infiltrate and in some of those cases there was vascular congestion and in one case cytoplasmic vacuolization. The Mm-EO presented moderate acute oral toxicity, while with repeated doses for 28 days; there was evidence of toxicity, in a dose-dependent manner, mainly at the hepatic level.
Collapse
|
14
|
Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Bastaki M, Davidsen JM, Harman CL, McGowen MM, Taylor SV. FEMA GRAS assessment of natural flavor complexes: Mint, buchu, dill and caraway derived flavoring ingredients. Food Chem Toxicol 2019; 135:110870. [PMID: 31604112 DOI: 10.1016/j.fct.2019.110870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/18/2019] [Accepted: 10/02/2019] [Indexed: 02/08/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. NFC flavor materials include a variety of essential oils and botanical extracts. The re-evaluation of NFCs is conducted based on a constituent-based procedure outlined in 2005 and updated in 2018 that evaluates the safety of NFCs for their intended use as flavor ingredients. This procedure is applied in the re-evaluation of the generally recognized as safe (GRAS) status of NFCs with constituent profiles that are dominated by alicyclic ketones such as menthone and carvone, secondary alcohols such as menthol and carveol, and related compounds. The FEMA Expert Panel affirmed the GRAS status of Peppermint Oil (FEMA 2848), Spearmint Oil (FEMA 3032), Spearmint Extract (FEMA 3031), Cornmint Oil (FEMA 4219), Erospicata Oil (FEMA 4777), Curly Mint Oil (FEMA 4778), Pennyroyal Oil (FEMA 2839), Buchu Leaves Oil (FEMA 2169), Caraway Oil (FEMA 2238) and Dill Oil (FEMA 2383) and determined FEMA GRAS status for Buchu Leaves Extract (FEMA 4923), Peppermint Oil, Terpeneless (FEMA 4924) and Spearmint Oil, Terpeneless (FEMA 4925).
Collapse
Affiliation(s)
- Samuel M Cohen
- Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- Food Chemistry & Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Nigel J Gooderham
- Dept. of Metabolism, Digestion, and Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - F Peter Guengerich
- Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, University of Minnesota, MMC 806, 420 Delaware St., S.E., Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE, Wageningen, the Netherlands
| | - Maria Bastaki
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Margaret M McGowen
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Sean V Taylor
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA.
| |
Collapse
|
15
|
Malekmohammad K, Rafieian-Kopaei M, Sardari S, Sewell RDE. Toxicological effects ofMentha x piperita(peppermint): a review. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1647545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Khojasteh Malekmohammad
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sardari
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
16
|
Cohen SM. Screening for human urinary bladder carcinogens: two-year bioassay is unnecessary. Toxicol Res (Camb) 2018; 7:565-575. [PMID: 30090607 PMCID: PMC6061447 DOI: 10.1039/c7tx00294g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/22/2018] [Indexed: 11/21/2022] Open
Abstract
Screening for carcinogens in general, and for the urinary bladder specifically, traditionally involves a two-year bioassay in rodents, the results of which often do not have direct relevance to humans with respect to mode of action (MOA) and/or dose response. My proposal describes a multi-step short-term (90 day) screening process that characterizes known human urinary bladder carcinogens, and identifies those reported in rodent two-year bioassays. The initial step is screening for urothelial proliferation, by microscopy or by increased Ki-67 labeling index. If these are negative, the agent is not a urinary bladder carcinogen. If either of these is positive, an MOA and dose response analysis are performed. DNA reactivity is evaluated. If the chemical is non-DNA reactive, evaluation for cytotoxicity is performed. This involves examination of the urothelium and urine, the latter to identify the generation of urinary solids (e.g. calculi). If urinary solids are the cause of cytotoxicity, the MOA is not relevant to human cancer, but dose response becomes essential for evaluating potential toxicity to humans. If cytotoxicity occurs but no urinary solids are detected, urinary concentrations of the chemical and its metabolites are evaluated, and compared to in vitro cytotoxicity against rodent and human immortalized urothelial cell lines. Based on this process, a screen for urinary bladder carcinogenicity is reliable, and more importantly, can be based on MOA and dose response analyses useful in the overall risk assessment for possible human bladder cancer. The proposed procedure is shorter, less expensive and more relevant than the two-year bioassay.
Collapse
Affiliation(s)
- Samuel M Cohen
- Havlik-Wall Professor of Oncology , Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE 68198-3135 , USA .
| |
Collapse
|
17
|
Souldouzi R, Razi M, Shalizar Jalali A, Jalilzadeh-Amin G, Amani S. Effect of (R)-(+) Pulegone on Ovarian Tissue; Correlation with Expression of Aromatase Cyp19 and Ovarian Selected Genes in Mice. CELL JOURNAL 2018; 20:231-243. [PMID: 29633601 PMCID: PMC5893295 DOI: 10.22074/cellj.2018.4798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/03/2017] [Indexed: 12/26/2022]
Abstract
Objective Pulegone (PGN) is a monoterpene ketone, whose metabolites exert several cytotoxic effects in
various tissues. The present study was conducted in order to evaluate the (R)-(+) PGN-induced alterations in
ovarian aromatization, proto-oncogenes and estrogen receptorα (ERα) and ERβ receptors expressions.
Materials and Methods In this experimental study, mature albino mice were divided into experimental (received
25 mg/kg, 50 mg/kg and 100 mg/kg PGN, orally for 35 days) and control (received 2% solution of Tween 80
as a PGN solvent, orally) groups. The mRNA levels of Erα, Erβ, p53, Bcl-2, and cytochrome p450 (Cyp19)
as well as ovarian angiogenesis were analyzed through reverse transcription polymerase chain reaction and
immunohistochemical techniques, respectively. Moreover, apoptosis of follicular cells, serum estrogen and
progesterone levels and mRNA damage were investigated via using terminal transferase and biotin-16-dUTP
staining, electrochemilunescence and fluorescent microscopy methods, respectively.
Results The PGN reduced Erα, Erβ and Cyp19 expression at 50 mg/kg and 100 mg/kg doses, while significantly
elevating p53 and reducing Bcl-2 expression. Finally, PGN impaired ovarian angiogenesis, increased apoptosis,
elevated follicular atresia and reduced serum levels of estrogen and progesterone.
Conclusion Chronic exposure to PGN (50 mg/kg and 100 mg/kg), severely affects ovarian aromatization, proto-
oncogenes mRNA levels and expression of ERs.
Collapse
Affiliation(s)
- Rohiyeh Souldouzi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ali Shalizar Jalali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Ghader Jalilzadeh-Amin
- Department of Veterinary Internal Medicine, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Saeedeh Amani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
18
|
Cheraghali Z, Mohammadi R, Jalilzadeh-Amin G. Planimetric and Biomechanical Study of Local Effect of Pulegone on Full Thickness Wound Healing in Rat. Malays J Med Sci 2018; 24:52-61. [PMID: 29386972 DOI: 10.21315/mjms2017.24.5.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/22/2017] [Indexed: 10/18/2022] Open
Abstract
Background Pulegone as principal component of essential oil, reported to have anti-bacterial, antioxidant and anti-inflammatory properties. The present study was aimed to evaluate wound healing activity of pulegone in a rat model. Method Forty rats were used for excisional and incisional wound healing models. For each model twenty male white Wistar rats were randomly divided into five groups (n = 4) of control (CG), Sham surgery, E1, E2 and E3. Wound size, hydroxyproline content of wound and biomechanical testing were assessed. Result In E2 animals, the wound size was reduced earlier than in E1 and E2 groups (P = 0.035). However, time had significant effect on wound contraction of all wounds. Hydroxyproline contents in the groups CG, sham surgery, E1, E2 and E3 were found to be 51.25 ± 3.40, 58.41 ± 4.62, 68.59 ± 3.53, 86.32 ± 3.18, and 74.26 ± 4.73 mg g-1, respectively. Hydroxyproline contents were increased significantly in E2 compared to E1 and E3 which implied more collagen deposition compared to other experimental groups (P = 0.001). The biomechanical indices, maximum stored energy, stiffness, ultimate strength and yield strength obtained for E2 group were significantly higher than those obtained for E1 and E2 groups (P = 0.002). Conclusion The pulegone showed a reproducible wound healing potential in rats.
Collapse
Affiliation(s)
- Zahra Cheraghali
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ghader Jalilzadeh-Amin
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
19
|
Alshishani AA, Saad B, Semail NF, Mohamad Salhimi S, Talib MKM. Salting-out assisted liquid-liquid extraction method coupled to gas chromatography for the simultaneous determination of thujones and pulegone in beverages. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1373665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Bahruddin Saad
- Fundamental & Applied Science Dept., Universiti Teknologi Petronas, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | | | | | - Mohd Khairuddin Mohd Talib
- Surveillance & Research Section, Food Safety and Quality, Kedah State Health Department, Ministry of Health, Malaysia
| |
Collapse
|
20
|
Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today's society. Food Chem Toxicol 2017; 110:165-188. [DOI: 10.1016/j.fct.2017.10.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
|
21
|
Özdemir A, Yildiz M, Senol FS, Şimay YD, Ibişoglu B, Gokbulut A, Orhan IE, Ark M. Promising anticancer activity of Cyclotrichium niveum L. extracts through induction of both apoptosis and necrosis. Food Chem Toxicol 2017; 109:898-909. [DOI: 10.1016/j.fct.2017.03.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/23/2022]
|
22
|
Silano V, Bolognesi C, Castle L, Cravedi JP, Engel KH, Fowler P, Franz R, Grob K, Gürtler R, Husøy T, Kärenlampi S, Milana MR, Penninks A, Tavares Poças MDF, Smith A, Tlustos C, Wölfle D, Zorn H, Zugravu CA, Beckman Sundh U, Brimer L, Mulder G, Marcon F, Anastassiadou M, Carfí M, Mennes W. Scientific Opinion on Flavouring Group Evaluation 57, Revision 1 (FGE.57Rev1): consideration of isopulegone and three flavouring substances evaluated by JECFA (55th meeting). EFSA J 2017; 15:e04727. [PMID: 32625436 PMCID: PMC7009820 DOI: 10.2903/j.efsa.2017.4727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), and to decide whether further evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present consideration concerns a group of four flavouring substances consisting of isopulegone and three other substances evaluated by JECFA at the 55th meeting. This revision is made due to additional toxicity data available for (1R,2S,5R)‐isopulegol [FL‐no: 02.067]. The substances were evaluated through a stepwise approach that integrates information on structure–activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. p‐Mentha‐1,4(8)‐dien‐3‐one [FL‐no: 07.127] is no longer supported by the flavour industry and was not evaluated. In agreement with JECFA, the Panel evaluated the candidate substances in this Flavouring Group Evaluation (FGE) via the B‐side of the Procedure. Based on a no observed adverse effect level (NOAEL) from a 90‐day oral toxicity study on [FL‐no: 02.067], adequate margins of safety for the three candidate substances could be calculated. Therefore, the Panel agrees with the JECFA conclusion, ‘No safety concern at estimated levels of intake as flavouring substances’ based on the maximised survey‐derived daily intake (MSDI) approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered and found adequate. For the three substances evaluated in this FGE, use levels have become available and the modified theoretical added maximum daily intakes (mTAMDIs) were estimated. For [FL‐no: 02.067 and 07.067], the mTAMDI exceeds the toxicological threshold of concern for their structural classes and need more refined exposure assessment to finalise the evaluation.
Collapse
|
23
|
Cohen SM, Arnold LL. Critical role of toxicologic pathology in a short-term screen for carcinogenicity. J Toxicol Pathol 2016; 29:215-227. [PMID: 27821906 PMCID: PMC5097964 DOI: 10.1293/tox.2016-0036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 12/28/2022] Open
Abstract
Carcinogenic potential of chemicals is currently evaluated using a two year bioassay in rodents. Numerous difficulties are known for this assay, most notably, the lack of information regarding detailed dose response and human relevance of any positive findings. A screen for carcinogenic activity has been proposed based on a 90 day screening assay. Chemicals are first evaluated for proliferative activity in various tissues. If negative, lack of carcinogenic activity can be concluded. If positive, additional evaluation for DNA reactivity, immunosuppression, and estrogenic activity are evaluated. If these are negative, additional efforts are made to determine specific modes of action in the animal model, with a detailed evaluation of the potential relevance to humans. Applications of this approach are presented for liver and urinary bladder. Toxicologic pathology is critical for all of these evaluations, including a detailed histopathologic evaluation of the 90 day assay, immunohistochemical analyses for labeling index, and involvement in a detailed mode of action analysis. Additionally, the toxicologic pathologist needs to be involved with molecular evaluations and evaluations of new molecularly developed animal models. The toxicologic pathologist is uniquely qualified to provide the expertise needed for these evaluations.
Collapse
Affiliation(s)
- Samuel M. Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Omaha, NE 68198-3135, USA
| | - Lora L. Arnold
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Omaha, NE 68198-3135, USA
| |
Collapse
|
24
|
Kristanc L, Kreft S. European medicinal and edible plants associated with subacute and chronic toxicity part I: Plants with carcinogenic, teratogenic and endocrine-disrupting effects. Food Chem Toxicol 2016; 92:150-64. [PMID: 27090581 DOI: 10.1016/j.fct.2016.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 12/14/2022]
Abstract
In recent decades, the use of herbal medicines and food products has been widely embraced in many developed countries. These products are generally highly accepted by consumers who often believe that "natural" equals "safe". This is, however, an oversimplification because several botanicals have been found to contain toxic compounds in concentrations harmful to human health. Acutely toxic plants are in most cases already recognised as dangerous as a result of their traditional use, but plants with subacute and chronic toxicity are difficult or even impossible to detect by traditional use or by clinical research studies. In this review, we systematically address major issues including the carcinogenicity, teratogenicity and endocrine-disrupting effects associated with the use of herbal preparations with a strong focus on plant species that either grow natively or are cultivated in Europe. The basic information regarding the molecular mechanisms of the individual subtypes of plant-induced non-acute toxicity is given, which is followed by a discussion of the pathophysiological and clinical characteristics. We describe the genotoxic and carcinogenic effects of alkenylbenzenes, pyrrolizidine alkaloids and bracken fern ptaquiloside, the teratogenicity issues regarding anthraquinone glycosides and specific alkaloids, and discuss the human health concerns regarding the phytoestrogens and licorice consumption in detail.
Collapse
Affiliation(s)
- Luka Kristanc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia; Primary Healthcare of Gorenjska, ZD Kranj, Gosposvetska Ulica 10, 4000 Kranj, Slovenia.
| | - Samo Kreft
- Faculty of Pharmacy, University of Ljubljana, Tržaška Cesta 32, 1000 Ljubljana, Slovenia
| |
Collapse
|
25
|
Da Rocha MS, Arnold LL, De Oliveira MLCS, Catalano SMI, Cardoso APF, Pontes MGN, Ferrucio B, Dodmane PR, Cohen SM, De Camargo JLV. Diuron-induced rat urinary bladder carcinogenesis: Mode of action and human relevance evaluations using the International Programme on Chemical Safety framework. Crit Rev Toxicol 2014; 44:393-406. [DOI: 10.3109/10408444.2013.877870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Cytotoxicity and gene expression changes induced by inorganic and organic trivalent arsenicals in human cells. Toxicology 2013; 312:18-29. [PMID: 23876855 DOI: 10.1016/j.tox.2013.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 02/03/2023]
Abstract
Inorganic arsenic (iAs) is a human urinary bladder, skin and lung carcinogen. iAs is metabolized to methylated arsenicals, with trivalent arsenicals more cytotoxic than pentavalent forms in vitro. In this study, cytotoxicity and gene expression changes for arsenite (iAs(III)), monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)) were evaluated in three human cell types, urothelial (1T1), keratinocyte (HEK001) and bronchial epithelial (HBE) cells, corresponding to target organs for iAs-induced cancer. Cells were exposed to arsenicals to determine cytotoxicity and to study gene expression changes. Affymetrix chips were used to determine differentially expressed genes (DEGs) by statistical analysis. Lethal concentrations (LC50) for trivalent arsenicals in all cells ranged from 1.6 to 10μM. MMA(III) and DMA(III) had 4-12-fold greater potency compared to iAs. Increasing concentrations of iAs(III) induced more genes and additional signaling pathways in HBE cells. At equivalent cytotoxic concentrations, greater numbers of DEGs were induced in 1T1 cells compared to the other cells. Each arsenical altered slightly different signaling pathways within and between cell types, but when altered pathways from all three arsenicals were combined, they were similar between cell types. The major signaling pathways altered included NRF2-mediated stress response, interferon, p53, cell cycle regulation and lipid peroxidation. These results show a similar process qualitatively and quantitatively for all three cell types, and support a mode of action involving cytotoxicity and regenerative proliferation.
Collapse
|