1
|
Huang W, Hu W, Fang M, Zhang Q, Zhang Y, Wang H. Impacts of prenatal environmental exposures on fetal-placental-maternal bile acid homeostasis and long-term health in offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116929. [PMID: 39213751 DOI: 10.1016/j.ecoenv.2024.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
During pregnancy, the maternal body undergoes a series of adaptative physiological changes, leading to a slight increase in serum bile acid (BA) levels. Although the fetal liver can synthesize BAs since the first trimester through the alternative pathway, the BA metabolic system is immature in the fetus. Compared to adults, the fetus has a distinct composition of BA pool and limited expression of BA synthesis enzymes and transporters. Besides, the "enterohepatic circulation" of BAs is absent in fetus. Thus, fetal BAs need to be transported to the mother through the placenta for further metabolism and excretion, and maternal BAs can also be transported to the fetus. That is what we call the "fetal-placental-maternal BA circulation". Various BA transporters and nuclear receptors are essential for maintaining the balance of this BA circulation to ensure normal fetal development. However, prenatal adverse environments can alter fetal BA metabolism, resulting in intrauterine developmental abnormalities and susceptibility to a variety of adult chronic diseases. This review summarizes the current understanding of the fetal-placental-maternal BA circulation and discusses the effects of prenatal adverse environments on this particular BA circulation, aiming to provide a theoretical basis for exploring early prevention and treatment strategies for BA metabolism-associated adverse pregnancy outcomes and long-term impairments.
Collapse
Affiliation(s)
- Wen Huang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Hu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
2
|
Benzi JRDL, Tsang YP, Unadkat JD. The effect of pregnancy-related hormones on hepatic transporters: studies with premenopausal human hepatocytes. Front Pharmacol 2024; 15:1440010. [PMID: 39170705 PMCID: PMC11335556 DOI: 10.3389/fphar.2024.1440010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Pregnancy results in significant changes in drug pharmacokinetics (PK). While previous studies have elucidated the impact of pregnancy-related hormones (PRH) on mRNA or protein expression and activity of major hepatic metabolizing enzymes, their effect on hepatic drug transporters remains largely unexplored. Therefore, we investigated the effect of a cocktail of PRH on the mRNA expression and activity of hepatic transporters. Methods Plated human hepatocytes (PHH) from 3 premenopausal donors were incubated, in triplicate, for 72 h, with vehicle (DMSO < 0.01%), rifampin (10 μM; positive control) or a cocktail of PRH consisting of estrone, estradiol, estriol, estetrol, progesterone, cortisol, testosterone, oxytocin, and placental growth hormone. The PRH concentrations replicated 0.1×, 1×, or 10× of the plasma concentrations of these hormones observed during each of the three trimesters of pregnancy. After treatment, mRNA expression (quantified by qPCR) of hepatic influx and efflux transporters as well as the activity of influx transporters was quantified (uptake of a selective substrate ± corresponding transporter inhibitor). The data were expressed relative to that in the control (vehicle) group. Significance was evaluated by ANOVA (followed by Dunn's multiple comparisons) or unpaired t-test when the within-lot data were analyzed, or repeated measures ANOVA (followed by Dunn's multiple comparisons) or paired t-test when data from all 3 lots were analyzed (p < 0.05). Results and Discussion In general, a) PRH cocktails significantly induced transporter mRNA expression in the following order OAT2 ≈ NTCP ≈ OCT1 > OATP2B1 and repressed mRNA expression in the following order OATP1B3 > OATP1B1; b) these changes translated into significant induction of OAT2 (T1-T3) and NTCP (T2-T3, in only two lots) activity at the 1× PRH concentration. Compared with the influx transporters, the induction of mRNA expression of efflux transporters was modest, with mRNA expression of MRP2 and BSEP being induced the most. Conclusion Once these data are verified through in vivo probe drug PK studies in pregnancy, they can be populated into physiologically based pharmacokinetic (PBPK) models to predict, for all trimesters of pregnancy, transporter-mediated clearance of any drug that is a substrate of the affected transporters.
Collapse
Affiliation(s)
| | | | - Jashvant D. Unadkat
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Huang L, Li Y, Tang R, Yang P, Zhuo Y, Jiang X, Che L, Lin Y, Xu S, Li J, Fang Z, Zhao X, Li H, Yang M, Feng B, Wu D, Hua L. Bile acids metabolism in the gut-liver axis mediates liver injury during lactation. Life Sci 2024; 338:122380. [PMID: 38142738 DOI: 10.1016/j.lfs.2023.122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
AIMS The obesity epidemic, especially in pregnant women, linked to a higher risk of liver diseases. Bile acids (BAs) are known to participate in liver metabolism, but this function during obesogenic reproductive process remains largely uncertain. The study aims to identify whether a high-fat diet (HFD) during pregnancy negatively disturbs liver metabolism and the potential role of BAs and gut microbiota (GM)in a sow model. MAIN METHODS Reproductive (RP) or non-reproductive (NRP) sows were fed a 15 % HFD containing compound oil. Body condition, blood parameters, and BAs levels/profile during gestation and lactation were monitored. The tissues and colonic GM were collected after euthanasia at the end of lactation. HepG2 hepatocytes were used to test the effects of BAs on liver damage and the mechanism. KEY FINDINGS Reproductive sows fed an HFD (HF-RP) experienced increased weight loss, and elevated plasma non-esterified fatty acid (NEFA) during lactation, consistent with exacerbated lipolysis, aggravating the risk of liver damage. HF-RP sows exhibited an enlarged BAs pool size and alterations in composition (higher levels of CDCA and LCA species) along with a drastic change in the GM (increased Firmicutes/Bacteroidetes ratio and declined Lactobacillus abundance). Furthermore, the liver FXR-SHP pathway, BAs synthesis and transport underwent adaptive regulation to sustain the BAs homeostasis and hepatic lipid metabolism. CDCA alleviated endoplasmic reticulum (ER) stress induced by palmitic acid via FXR pathway, in HepG2 cells. SIGNIFICANCE Lactation BAs metabolism signal in gut-liver axis coordinated the risk of liver damage induced by exacerbated lipolysis in obesogenic pregnancy.
Collapse
Affiliation(s)
- Long Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yingjie Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Rui Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Pu Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xilun Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min Yang
- Pet Nutrition and Health Research Center, Chengdu Agricultural College, Chengdu 611130, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
4
|
Wang H, Zhang L, Xia Z, Cui JY. Effect of Chronic Cadmium Exposure on Brain and Liver Transporters and Drug-Metabolizing Enzymes in Male and Female Mice Genetically Predisposed to Alzheimer's Disease. Drug Metab Dispos 2022; 50:1414-1428. [PMID: 35878927 PMCID: PMC9513859 DOI: 10.1124/dmd.121.000453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Cadmium (Cd) exposure is associated with increased Alzheimer's disease (AD) risks. The human Apolipoprotein E (ApoE) gene encodes a lipid-transporting protein that is critical for brain functions. Compared with ApoE2 and E3, ApoE4 is associated with increased AD risk. Xenobiotic biotransformation-related genes have been implicated in the pathogenesis of AD. However, little is known about the effects of Cd, ApoE, and sex on drug-processing genes. We investigated the Cd-ApoE interaction on the transcriptomic changes in the brains and livers of ApoE3/ApoE4 transgenic mice. Cd disrupts the transcriptomes of transporter and drug-processing genes in brain and liver in a sex- and ApoE-genotype-specific manner. Proinflammation related genes were enriched in livers of Cd-exposed ApoE4 males, whereas circadian rhythm and lipid metabolism related genes were enriched in livers of Cd-exposed ApoE3 females. In brains, Cd up-regulated the arachidonic acid-metabolizing Cyp2j isoforms only in the brains of ApoE3 mice, whereas the dysregulation of cation transporters was male-specific. In livers, several direct target genes of the major xenobiotic-sensing nuclear receptor pregnane X receptor were uniquely upregulated in Cd-exposed ApoE4 males. There was a female-specific hepatic upregulation of the steroid hormone-metabolizing Cyp2 isoforms and the bile acid synthetic enzyme Cyp7a1 by Cd exposure. The dysregulated liver transporters were mostly involved in intermediary metabolism, with the most significant response observed in ApoE3 females. In conclusion, Cd dysregulated the brain and liver drug-processing genes in a sex- and ApoE-genotype specific manner, and this may serve as a contributing factor for the variance in the susceptibility to Cd neurotoxicity. SIGNIFICANCE STATEMENT: Xenobiotic biotransformation plays an important role in modulating the toxicity of environmental pollutants. The human ApoE4 allele is the strongest genetic risk factor for AD, and cadmium (Cd) is increasingly recognized as an environmental factor of AD. Very little is known regarding the interactions between Cd exposure, sex, and the genes involved in xenobiotic biotransformation in brain and liver. The present study has addressed this critical knowledge gap.
Collapse
Affiliation(s)
- Hao Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Liang Zhang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Zhengui Xia
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
5
|
Eke AC. An update on the physiologic changes during pregnancy and their impact on drug pharmacokinetics and pharmacogenomics. J Basic Clin Physiol Pharmacol 2021; 33:581-598. [PMID: 34881531 DOI: 10.1515/jbcpp-2021-0312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/21/2021] [Indexed: 01/23/2023]
Abstract
For many years, the medical community has relied in clinical practice on historic data about the physiological changes that occur during pregnancy. However, some newer studies have disputed a number of assumptions in these data for not being evidence-based or derived from large prospective cohort-studies. Accurate knowledge of these physiological changes is important for three reasons: Firstly, it facilitates correct diagnosis of diseases during pregnancy; secondly, it enables us to answer questions about the effects of medication during pregnancy and the ways in which pregnancy alters pharmacokinetic and drug-effects; and thirdly, it allows for proper modeling of physiologically-based pharmacokinetic models, which are increasingly used to predict gestation-specific changes and drug-drug interactions, as well as develop new knowledge on the mode-of-action of drugs, the mechanisms underlying their interactions, and any adverse effects following drug exposure. This paper reviews new evidence regarding the physiologic changes during pregnancy in relation to existing knowledge.
Collapse
Affiliation(s)
- Ahizechukwu C Eke
- Division of Maternal Fetal Medicine, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Hagenbeck C, Hamza A, Kehl S, Maul H, Lammert F, Keitel V, Hütten MC, Pecks U. Management of Intrahepatic Cholestasis of Pregnancy: Recommendations of the Working Group on Obstetrics and Prenatal Medicine - Section on Maternal Disorders. Geburtshilfe Frauenheilkd 2021; 81:922-939. [PMID: 34393256 PMCID: PMC8354365 DOI: 10.1055/a-1386-3912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disease specific to pregnancy. The cardinal symptom of pruritus and a concomitant elevated level of bile acids in the serum and/or alanine aminotransferase (ALT) are suggestive for the diagnosis. Overall, the maternal prognosis is good. The fetal outcome depends on the bile acid level. ICP is associated with increased risks for adverse perinatal outcomes, including preterm delivery, meconium-stained amniotic fluid, and stillbirth. Acute fetal asphyxia and not chronic uteroplacental dysfunction leads to stillbirth. Therefore, predictive fetal monitoring is not possible. While medication with ursodeoxycholic acid (UDCA) improves pruritus, it has not been shown to affect fetal outcome. The indication for induction of labour depends on bile acid levels and gestational age. There is a high risk of recurrence in subsequent pregnancies.
Collapse
Affiliation(s)
| | - Amr Hamza
- Universitätsklinikum des Saarlandes, Klinik für Frauenheilkunde, Geburtshilfe und Reproduktionsmedizin, Homburg, Germany
- Kantonsspital Baden AG, Baden, Switzerland
| | - Sven Kehl
- Frauenklinik, Friedrich Alexander University Erlangen Nuremberg, Faculty of Medicine, Erlangen, Germany
| | - Holger Maul
- Section of Prenatal Disgnostics and Therapy, Asklepios Klinik Barmbek, Hamburg, Germany
| | - Frank Lammert
- Klinik für Innere Medizin II, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg, Germany
| | - Verena Keitel
- Universitätsklinikum Düsseldorf, Klinik für Gastroenterologie, Hepatologie und Infektiologie, Düsseldorf, Germany
| | - Matthias C. Hütten
- Clinique E2 Neonatology, Maastricht Universitair Medisch Centrum+, Maastricht, Netherlands
| | - Ulrich Pecks
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Klinik für Gynäkologie und Geburtshilfe, Kiel, Germany
| |
Collapse
|
7
|
Fang M, Zhang Q, Yu P, Ge C, Guo J, Zhang Y, Wang H. The effects, underlying mechanism and interactions of dexamethasone exposure during pregnancy on maternal bile acid metabolism. Toxicol Lett 2020; 332:97-106. [PMID: 32599024 DOI: 10.1016/j.toxlet.2020.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
As important members in steroids related signal pathways, bile acids are very important in regulating substance metabolism and immune homeostasis. However, bile acids are highly cytotoxic, and the excessive accumulation can induce several abnormalities such as cholestatic liver injury. It is known that the bile acid metabolism alters during pregnancy and mostly will not result in pathologies. However, the effect of dexamethasone exposure during pregnancy on bile acid metabolism is still unknown. In this study, pregnant Wistar rats were subcutaneously administered dexamethasone (0.2 mg/kg.d) or saline from gestation day 9-21, while virgin rats were given the same treatment for 13 days. We found that, physiological pregnancy or dexamethasone exposure during non-pregnancy did not affect maternal serum TBA level and liver function. Nevertheless, dexamethasone exposure during pregnancy increased serum TBA level and accompanied with liver injury. Furthermore, we discovered that the conservation of bile acid homeostasis under pregnancy or dexamethasone exposure was maintained through compensatory pathways. However, dexamethasone exposure during pregnancy tipped the balance of liver bile acid homeostasis by increasing classical synthesis and decreasing efflux and uptake. In addition, dexamethasone exposure during pregnancy also increased serum estrogen level and nuclear receptors mRNA expression levels. Finally, two-way ANOVA analysis showed that dexamethasone exposure during pregnancy could induce or facilitate maternal cholestasis and liver injury by up-regulating ERα and CYP7A1 expression. This study confirmed that dexamethasone exposure during pregnancy was related to maternal intrahepatic cholestasis of pregnancy and should be carefully monitored in clinical settings.
Collapse
Affiliation(s)
- Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Qi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Juanjuan Guo
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
8
|
Carrisoza-Gaytan R, Ray EC, Flores D, Marciszyn AL, Wu P, Liu L, Subramanya AR, Wang W, Sheng S, Nkashama LJ, Chen J, Jackson EK, Mutchler SM, Heja S, Kohan DE, Satlin LM, Kleyman TR. Intercalated cell BKα subunit is required for flow-induced K+ secretion. JCI Insight 2020; 5:130553. [PMID: 32255763 DOI: 10.1172/jci.insight.130553] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
BK channels are expressed in intercalated cells (ICs) and principal cells (PCs) in the cortical collecting duct (CCD) of the mammalian kidney and have been proposed to be responsible for flow-induced K+ secretion (FIKS) and K+ adaptation. To examine the IC-specific role of BK channels, we generated a mouse with targeted disruption of the pore-forming BK α subunit (BKα) in ICs (IC-BKα-KO). Whole cell charybdotoxin-sensitive (ChTX-sensitive) K+ currents were readily detected in control ICs but largely absent in ICs of IC-BKα-KO mice. When placed on a high K+ (HK) diet for 13 days, blood [K+] was significantly greater in IC-BKα-KO mice versus controls in males only, although urinary K+ excretion rates following isotonic volume expansion were similar in males and females. FIKS was present in microperfused CCDs isolated from controls but was absent in IC-BKα-KO CCDs of both sexes. Also, flow-stimulated epithelial Na+ channel-mediated (ENaC-mediated) Na+ absorption was greater in CCDs from female IC-BKα-KO mice than in CCDs from males. Our results confirm a critical role of IC BK channels in FIKS. Sex contributes to the capacity for adaptation to a HK diet in IC-BKα-KO mice.
Collapse
Affiliation(s)
| | - Evan C Ray
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Flores
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Allison L Marciszyn
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Leah Liu
- McGill University, Montreal, Quebec, Canada
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology and
| | - WenHui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Shaohu Sheng
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lubika J Nkashama
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jingxin Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephanie M Mutchler
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Szilvia Heja
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Donald E Kohan
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Abstract
Pharmacologic interventions play a major role in obstetrical care throughout pregnancy, labor and delivery and the postpartum. Traditionally, obstetrical providers have utilized standard dosing regimens developed for non-obstetrical indications based on pharmacokinetic knowledge from studies in men or non-pregnant women. With the recognition of pregnancy as a special pharmacokinetic population in the late 1990s, investigators have begun to study drug disposition in this unique patient dyad. Many of the basic physiologic changes that occur during pregnancy have significant impact on drug absorption, distribution and clearance. Activity of Phase I and Phase II drug metabolizing enzymes are differentially altered by pregnancy, resulting in drug concentrations sufficiently different for some medications that efficacy or toxicity is affected. Placental transporters play a major dynamic role in determining fetal drug exposure. In the past two decades, we have begun to expand our understanding of obstetrical pharmacology; however, to truly optimize pharmacologic care of our pregnant patients and their developing fetus, additional research is critically needed.
Collapse
|
10
|
Clerbaux LA, Paini A, Lumen A, Osman-Ponchet H, Worth AP, Fardel O. Membrane transporter data to support kinetically-informed chemical risk assessment using non-animal methods: Scientific and regulatory perspectives. ENVIRONMENT INTERNATIONAL 2019; 126:659-671. [PMID: 30856453 PMCID: PMC6441651 DOI: 10.1016/j.envint.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/10/2019] [Accepted: 03/01/2019] [Indexed: 06/01/2023]
Abstract
Humans are continuously exposed to low levels of thousands of industrial chemicals, most of which are poorly characterised in terms of their potential toxicity. The new paradigm in chemical risk assessment (CRA) aims to rely on animal-free testing, with kinetics being a key determinant of toxicity when moving from traditional animal studies to integrated in vitro-in silico approaches. In a kinetically informed CRA, membrane transporters, which have been intensively studied during drug development, are an essential piece of information. However, how existing knowledge on transporters gained in the drug field can be applied to CRA is not yet fully understood. This review outlines the opportunities, challenges and existing tools for investigating chemical-transporter interactions in kinetically informed CRA without animal studies. Various environmental chemicals acting as substrates, inhibitors or modulators of transporter activity or expression have been shown to impact TK, just as drugs do. However, because pollutant concentrations are often lower in humans than drugs and because exposure levels and internal chemical doses are not usually known in contrast to drugs, new approaches are required to translate transporter data and reasoning from the drug sector to CRA. Here, the generation of in vitro chemical-transporter interaction data and the development of transporter databases and classification systems trained on chemical datasets (and not only drugs) are proposed. Furtheremore, improving the use of human biomonitoring data to evaluate the in vitro-in silico transporter-related predicted values and developing means to assess uncertainties could also lead to increase confidence of scientists and regulators in animal-free CRA. Finally, a systematic characterisation of the transportome (quantitative monitoring of transporter abundance, activity and maintenance over time) would reinforce confidence in the use of experimental transporter/barrier systems as well as in established cell-based toxicological assays currently used for CRA.
Collapse
Affiliation(s)
| | - Alicia Paini
- European Commission, Joint Research Centre, Ispra, Italy.
| | - Annie Lumen
- National Center for Toxicological Research, US Food and Drug Administration (FDA), Jefferson, AR, USA
| | | | - Andrew P Worth
- European Commission, Joint Research Centre, Ispra, Italy
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environment et travail), UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
11
|
Clerbaux LA, Coecke S, Lumen A, Kliment T, Worth AP, Paini A. Capturing the applicability of in vitro-in silico membrane transporter data in chemical risk assessment and biomedical research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:97-108. [PMID: 30015123 PMCID: PMC6162338 DOI: 10.1016/j.scitotenv.2018.07.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/01/2023]
Abstract
Costs, scientific and ethical concerns related to animal tests for regulatory decision-making have stimulated the development of alternative methods. When applying alternative approaches, kinetics have been identified as a key element to consider. Membrane transporters affect the kinetic processes of absorption, distribution, metabolism and excretion (ADME) of various compounds, such as drugs or environmental chemicals. Therefore, pharmaceutical scientists have intensively studied transporters impacting drug efficacy and safety. Besides pharmacokinetics, transporters are considered as major determinant of toxicokinetics, potentially representing an essential piece of information in chemical risk assessment. To capture the applicability of transporter data for kinetic-based risk assessment in non-pharmaceutical sectors, the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) created a survey with a view of identifying the improvements needed when using in vitro and in silico methods. Seventy-three participants, from different sectors and with various kinds of expertise, completed the survey. The results revealed that transporters are investigated mainly during drug development, but also for risk assessment purposes of food and feed contaminants, industrial chemicals, cosmetics, nanomaterials and in the context of environmental toxicology, by applying both in vitro and in silico tools. However, to rely only on alternative methods for chemical risk assessment, it is critical that the data generated by in vitro and in silico methods are scientific integer, reproducible and of high quality so that they are trusted by decision makers and used by industry. In line, the respondents identified various challenges related to the interpretation and use of transporter data from non-animal methods. Overall, it was determined that a combined mechanistically-anchored in vitro-in silico approach, validated against available human data, would gain confidence in using transporter data within an animal-free risk assessment paradigm. Finally, respondents involved primarily in fundamental research expressed lower confidence in non-animal studies to unravel complex transporter mechanisms.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy.
| | - Sandra Coecke
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy
| | - Annie Lumen
- National Center for Toxicological Research, US Food and Drug Administration (FDA), Jefferson, AR, USA
| | | | - Andrew P Worth
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy
| | - Alicia Paini
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy
| |
Collapse
|
12
|
Liao MZ, Gao C, Bhatt DK, Prasad B, Mao Q. Quantitative Proteomics Reveals Changes in Transporter Protein Abundance in Liver, Kidney and Brain of Mice by Pregnancy. Drug Metab Lett 2018; 12:145-152. [PMID: 29938623 PMCID: PMC6350206 DOI: 10.2174/1872312812666180625122810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Background: Few studies have systematically investigated pregnancy-induced changes in protein abundance of drug transporters in organs important for drug/xenobiotic disposition. Objective: The goal of this study was to compare protein abundance of important drug/xenobiotic trans-porters including Abcb1a, Abcg2, Abcc2, and Slco1b2 in the liver, kidney and brain of pregnant mice on gestation day 15 to that of non-pregnant mice. Methods: The mass spectrometry-based proteomics was used to quantify changes in protein abundance of transporters in tissues from pregnant and non-pregnant mice. Results: The protein levels of hepatic Abcc2, Abcc3, and Slco1a4 per µg of total membrane proteins were significantly decreased by pregnancy by 24%, 72%, and 70%, respectively. The protein levels of Abcg2, Abcc2, and Slco2b1 per µg of total membrane proteins in the kidney were significantly decreased by pregnancy by 43%, 50%, and 46%, respectively. After scaling to the whole liver with consideration of increase in liver weight in pregnant mice, the protein abundance of Abcb1a, Abcg2, Abcc2, Abcb11, Abcc4, Slco1a1, and Slco1b2 in the liver was ~50-100% higher in pregnant mice, while those of Abcc3 and Slco1a4 were ~40% lower. After scaling to the whole kidney, none of the transporters examined were significantly changed by pregnancy. Only Abcg2 and Abcb1a were quantifiable in the brain and their abundance in the brain was not influenced by pregnancy. Conclusion: Protein abundance of drug transporters can be significantly changed particularly in the liver by pregnancy. These results will be helpful to understand pregnancy-induced changes in drug/xenobiotic disposition in the mouse model.
Collapse
Affiliation(s)
- Michael Z Liao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington DC, 98195, United States
| | - Chunying Gao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington DC, 98195, United States
| | - Deepak Kumar Bhatt
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington DC, 98195, United States
| | - Bhagwat Prasad
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington DC, 98195, United States
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington DC, 98195, United States
| |
Collapse
|
13
|
miR-148a-mediated estrogen-induced cholestasis in intrahepatic cholestasis of pregnancy: Role of PXR/MRP3. PLoS One 2017; 12:e0178702. [PMID: 28575098 PMCID: PMC5457162 DOI: 10.1371/journal.pone.0178702] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/17/2017] [Indexed: 01/09/2023] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is an idiopathic liver disease while the biochemical characteristic is the elevated level of total bile acid (TBA). The present study investigated whether miR-148a mediates the induced effect of estrogen on the development of ICP and the proper mechanism: PXR/MRP3 signal pathway. mRNA expression was detected by qPCR, protein expression was detected by western blotting, the concentration of estrogen and TBA were detected by reagent kit respectively. In the cinical research, it was found that miR-148a expression was positive related with the concentration of TBA in the serum of ICP patients. In in vitro research, estradiol (500 nmol/L, 12 h) significantly upregulated miR-148a expression and LV-148a-siRNA inhibited the function of estradiol (500 nmol/L, 48 h) on TBA secretion. In addition, gene silence of miR-148a upregulated PXR expression which was inhibited by estradiol in LO2 cells. Pretreatment of rifampin (10 μmol/L), the agonist of PXR alleviated the TBA secretion induced by estradiol (500 nmol/L, 48 h). miR-148a-siRNA and PXR had a synergistic action on TBA secretion of LO2. Both of miR-148a-siRNA and rifampin (10 μmol/L) inhibited the upregulated effect of estradiol on MRP3 expression. This research has demonstrated that miR-148a may be involved in the induction of estrogen on ICP via PXR signal pathway, and MRP3 may be involved.
Collapse
|
14
|
McIlvride S, Dixon PH, Williamson C. Bile acids and gestation. Mol Aspects Med 2017; 56:90-100. [PMID: 28506676 DOI: 10.1016/j.mam.2017.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/27/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
There are numerous profound maternal physiological changes that occur from conception onwards and adapt throughout gestation in order to support a healthy pregnancy. By the time of late gestation, when circulating pregnancy hormones are at their highest concentrations, maternal adaptations include relative hyperlipidemia, hypercholanemia and insulin resistance. Bile acids have now been established as key regulators of metabolism, and their role in gestational changes in metabolism is becoming apparent. Bile acid homeostasis is tightly regulated by the nuclear receptor FXR, which has been shown to have reduced activity during pregnancy. This review focuses on the gestational alterations in bile acid homeostasis that occur in normal pregnancy, which in some women can become pathological, leading to the development of intrahepatic cholestasis of pregnancy. As well as their important role in maternal metabolic health, we will review bile acid metabolism in the feto-placental unit.
Collapse
Affiliation(s)
- Saraid McIlvride
- Division of Women's Health, King's College London, Guy's Campus, Hodgkin Building, SE1 1UL, London, United Kingdom
| | - Peter H Dixon
- Division of Women's Health, King's College London, Guy's Campus, Hodgkin Building, SE1 1UL, London, United Kingdom
| | - Catherine Williamson
- Division of Women's Health, King's College London, Guy's Campus, Hodgkin Building, SE1 1UL, London, United Kingdom.
| |
Collapse
|
15
|
Yu AM, Ingelman-Sundberg M, Cherrington NJ, Aleksunes LM, Zanger UM, Xie W, Jeong H, Morgan ET, Turnbaugh PJ, Klaassen CD, Bhatt AP, Redinbo MR, Hao P, Waxman DJ, Wang L, Zhong XB. Regulation of drug metabolism and toxicity by multiple factors of genetics, epigenetics, lncRNAs, gut microbiota, and diseases: a meeting report of the 21 st International Symposium on Microsomes and Drug Oxidations (MDO). Acta Pharm Sin B 2017; 7:241-248. [PMID: 28388695 PMCID: PMC5343155 DOI: 10.1016/j.apsb.2016.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 01/16/2023] Open
Abstract
Variations in drug metabolism may alter drug efficacy and cause toxicity; better understanding of the mechanisms and risks shall help to practice precision medicine. At the 21st International Symposium on Microsomes and Drug Oxidations held in Davis, California, USA, in October 2-6, 2016, a number of speakers reported some new findings and ongoing studies on the regulation mechanisms behind variable drug metabolism and toxicity, and discussed potential implications to personalized medications. A considerably insightful overview was provided on genetic and epigenetic regulation of gene expression involved in drug absorption, distribution, metabolism, and excretion (ADME) and drug response. Altered drug metabolism and disposition as well as molecular mechanisms among diseased and special populations were presented. In addition, the roles of gut microbiota in drug metabolism and toxicology as well as long non-coding RNAs in liver functions and diseases were discussed. These findings may offer new insights into improved understanding of ADME regulatory mechanisms and advance drug metabolism research.
Collapse
|
16
|
Moscovitz JE, Yarmush G, Herrera-Garcia G, Guo GL, Aleksunes LM. Differential regulation of intestinal efflux transporters by pregnancy in mice. Xenobiotica 2017; 47:989-997. [PMID: 28043194 DOI: 10.1080/00498254.2016.1250292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. In the intestines, the nuclear receptors farnesoid X receptor (Fxr) and pregnane X receptor (Pxr) regulate the transcription of metabolizing enzymes and transporters that dictate the absorption of nutrients and xenobiotics. 2. Here, we sought to determine whether Fxr and Pxr signaling pathways are disrupted in response to high-circulating concentrations of steroid hormones late in pregnancy leading to altered transporter expression. To test this, ileum were collected from virgin and pregnant C57BL/6 mice on gestation days 14, 17 and 19. 3. Ileum from pregnant mice exhibited suppression of Fgf15 and Cyp3a11 mRNAs, which are the prototypical target genes for Fxr and Pxr, respectively. An overall reduction in the expression of apical efflux transporters, including Mdr1, Mrp2 and Bcrp, was observed in pregnant mice. To assess the ability of steroid hormones to alter intestinal nuclear receptor signaling, transporter mRNA expression was quantified in human intestinal LS174T adenocarcinoma cells. In vitro data demonstrated that progestins reduced CYP3A4, MDR1 and MRP2 mRNA expression by 30-40%. 4. These data suggest that progesterone may act as a mediator to negatively regulate efflux transporter expression in the mouse ileum during pregnancy possibly by reducing PXR/Pxr signaling. This may affect drug absorption and disposition during pregnancy.
Collapse
Affiliation(s)
- Jamie E Moscovitz
- a Department of Pharmacology and Toxicology , Rutgers University Ernest Mario School of Pharmacy , Piscataway , NJ , USA
| | - Gabriel Yarmush
- a Department of Pharmacology and Toxicology , Rutgers University Ernest Mario School of Pharmacy , Piscataway , NJ , USA
| | - Guadalupe Herrera-Garcia
- b Department of Obstetrics and Gynecology , Rutgers-Robert Wood Johnson Medical School , New Brunswick , NJ , USA , and
| | - Grace L Guo
- a Department of Pharmacology and Toxicology , Rutgers University Ernest Mario School of Pharmacy , Piscataway , NJ , USA.,c Environmental and Occupational Health Sciences Institute , Piscataway , NJ , USA
| | - Lauren M Aleksunes
- a Department of Pharmacology and Toxicology , Rutgers University Ernest Mario School of Pharmacy , Piscataway , NJ , USA.,c Environmental and Occupational Health Sciences Institute , Piscataway , NJ , USA
| |
Collapse
|
17
|
Moscovitz JE, Kong B, Buckley K, Buckley B, Guo GL, Aleksunes LM. Restoration of enterohepatic bile acid pathways in pregnant mice following short term activation of Fxr by GW4064. Toxicol Appl Pharmacol 2016; 310:60-67. [PMID: 27609522 DOI: 10.1016/j.taap.2016.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022]
Abstract
The farnesoid X receptor (Fxr) controls bile acid homeostasis by coordinately regulating the expression of synthesizing enzymes (Cyp7a1, Cyp8b1), conjugating enzymes (Bal, Baat) and transporters in the ileum (Asbt, Ostα/β) and liver (Ntcp, Bsep, Ostβ). Transcriptional regulation by Fxr can be direct, or through the ileal Fgf15/FGF19 and hepatic Shp pathways. Circulating bile acids are increased during pregnancy due to hormone-mediated disruption of Fxr signaling. While this adaptation enhances lipid absorption, elevated bile acids may predispose women to develop maternal cholestasis. The objective of this study was to determine whether short-term treatment of pregnant mice with GW4064 (a potent FXR agonist) restores Fxr signaling to the level observed in virgin mice. Plasma, liver and ilea were collected from virgin and pregnant mice administered vehicle or GW4064 by oral gavage. Treatment of pregnant mice with GW4064 induced ileal Fgf15, Shp and Ostα/β mRNAs, and restored hepatic Shp, Bal, Ntcp, and Bsep back to vehicle-treated virgin levels. Pregnant mice exhibited 2.5-fold increase in Cyp7a1 mRNA compared to virgin controls, which was reduced by GW4064. Similarly treatment of mouse primary hepatocytes with plasma isolated from pregnant mice induced Cyp7a1 mRNA by nearly 3-fold as compared to virgin plasma, which could be attenuated by co-treatment with either GW4064 or recombinant FGF19 protein. Collectively, these data reveal that repressed activity of intestinal and hepatic Fxr in pregnancy, as previously demonstrated, may be restored by pharmacological activation. This study provides the basis for a novel approach to restore bile acid homeostasis in patients with maternal cholestasis.
Collapse
Affiliation(s)
- Jamie E Moscovitz
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Kyle Buckley
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA.
| |
Collapse
|
18
|
Bright AS, Herrera-Garcia G, Moscovitz JE, You D, Guo GL, Aleksunes LM. Regulation of Drug Disposition Gene Expression in Pregnant Mice with Car Receptor Activation. NUCLEAR RECEPTOR RESEARCH 2016; 3. [PMID: 27818994 DOI: 10.11131/2016/101193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
More than half of pregnant women use prescription medications in order to maintain both maternal and fetal health. The constitutive androstane receptor (Car) critically affects the disposition of chemicals by regulating the transcription of genes encoding metabolic enzymes and transporters. However, the effects of Car activation on chemical disposition during pregnancy are unclear. This study aims to determine the degree to which pregnancy alters the expression of drug metabolizing enzymes and transporters in response to the pharmacological activation of Car. To test this, pregnant C57BL/6 mice were administered IP doses of vehicle, or a potent Car agonist, TCPOBOP, on gestation days 14, 15 and 16. Hepatic mRNA and protein expression of Car target genes (phase I, II and transporters) were quantified on gestation day 17. Pregnancy-related changes, such as induction of Cyp2b10, Ugt1a1 and Sult1a1 and repression of Ugt1a6, Gsta1, Gsta2 and Mrp6, were observed. Interestingly, the induction of Cyp2b10, Gsta1, Gsta2 and Mrp2-4 mRNAs by TCPOBOP was attenuated in maternal livers suggesting that Car activation is impeded by the biochemical and/or physiological changes that occur during gestation. Taken together, these findings suggest that pregnancy and pharmacological activation of Car can differentially regulate the expression of drug metabolism and transport genes.
Collapse
Affiliation(s)
- Amanda S Bright
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Guadalupe Herrera-Garcia
- Department of Obstetrics and Gynecology, Rutgers-Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, New Brunswick, NJ 08901, USA
| | - Jamie E Moscovitz
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Dahea You
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
19
|
Sun Y, Haapanen K, Li B, Zhang W, Van de Water J, Gershwin ME. Women and primary biliary cirrhosis. Clin Rev Allergy Immunol 2016; 48:285-300. [PMID: 25241227 DOI: 10.1007/s12016-014-8449-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Primary biliary cirrhosis occurs more frequently in women, and previous studies indicated that the average age of primary biliary cirrhosis (PBC) onset makes pregnancy in PBC patients uncommon. However, more recently, improved diagnostic testing has enabled detection of PBC in younger women, including those of childbearing age. This has led investigators to become increasingly interested in the relationship between the ontogeny of PBC and pregnancy. Published cases indicate that the typical age for pregnant women to be diagnosed with PBC is in the early 30s, and that during gestation, pruritus and jaundice are the most common symptoms. During gestation, susceptible women may experience onset of PBC resulting from the drastic changes in female hormones; this would include not only the mitochondrial damage due to accumulation of bile acids but also changes in the immune response during the different stages of pregnancy that might play an important role in the breakdown of self-tolerance. The mechanisms underlying the potential relationship between PBC and pregnancy warrant further investigation. For women first diagnosed with PBC during gestation, or those for whom first appearance of a flare up occurs during and postpartum, investigation of the immune response throughout gestation could provide new avenues for immunologic therapeutic intervention and the discovery of new treatment strategies for PBC.
Collapse
Affiliation(s)
- Ying Sun
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| | | | | | | | | | | |
Collapse
|
20
|
Song X, Vasilenko A, Chen Y, Valanejad L, Verma R, Yan B, Deng R. Transcriptional dynamics of bile salt export pump during pregnancy: mechanisms and implications in intrahepatic cholestasis of pregnancy. Hepatology 2014; 60:1993-2007. [PMID: 24729004 PMCID: PMC4194188 DOI: 10.1002/hep.27171] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Bile salt export pump (BSEP) is responsible for biliary secretion of bile acids, a rate-limiting step in the enterohepatic circulation of bile acids and transactivated by nuclear receptor farnesoid X receptor (FXR). Intrahepatic cholestasis of pregnancy (ICP) is the most prevalent disorder among diseases unique to pregnancy and primarily occurs in the third trimester of pregnancy, with a hallmark of elevated serum bile acids. Currently, the transcriptional regulation of BSEP during pregnancy and its underlying mechanisms and involvement in ICP are not fully understood. In this study the dynamics of BSEP transcription in vivo in the same group of pregnant mice before, during, and after gestation were established with an in vivo imaging system (IVIS). BSEP transcription was markedly repressed in the later stages of pregnancy and immediately recovered after parturition, resembling the clinical course of ICP in human. The transcriptional dynamics of BSEP was inversely correlated with serum 17β-estradiol (E2) levels before, during, and after gestation. Further studies showed that E2 repressed BSEP expression in human primary hepatocytes, Huh 7 cells, and in vivo in mice. Such transrepression of BSEP by E2 in vitro and in vivo required estrogen receptor α (ERα). Mechanistic studies with chromatin immunoprecipitation (ChIP), protein coimmunoprecipitation (Co-IP), and bimolecular fluorescence complementation (BiFC) assays demonstrated that ERα directly interacted with FXR in living cells and in vivo in mice. CONCLUSION BSEP expression was repressed by E2 in the late stages of pregnancy through a nonclassical E2/ERα transrepressive pathway, directly interacting with FXR. E2-mediated repression of BSEP expression represents an etiological contributing factor to ICP and therapies targeting the ERα/FXR interaction may be developed for prevention and treatment of ICP.
Collapse
Affiliation(s)
| | | | - Yuan Chen
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Leila Valanejad
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Ruchi Verma
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Bingfang Yan
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Ruitang Deng
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| |
Collapse
|
21
|
Rai MF, Patra D, Sandell LJ, Brophy RH. Transcriptome analysis of injured human meniscus reveals a distinct phenotype of meniscus degeneration with aging. ACTA ACUST UNITED AC 2013; 65:2090-101. [PMID: 23658108 DOI: 10.1002/art.37984] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/16/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Meniscus tears are associated with a heightened risk of osteoarthritis. This study aimed to advance our understanding of the metabolic state of injured human meniscus at the time of arthroscopic partial meniscectomy through transcriptome-wide analysis of gene expression in relation to the patient's age and degree of cartilage chondrosis. METHODS The degree of chondrosis of knee cartilage was recorded at the time of meniscectomy in symptomatic patients without radiographic osteoarthritis. RNA preparations from resected menisci (n = 12) were subjected to transcriptome-wide microarray and QuantiGene Plex analyses. Variations in the relative changes in gene expression with age and chondrosis were analyzed, and integrated biologic processes were investigated computationally. RESULTS We identified a set of genes in torn menisci that were differentially expressed with age and chondrosis. There were 866 genes that were differentially regulated (≥1.5-fold difference and P < 0.05) with age and 49 with chondrosis. In older patients, genes associated with cartilage and skeletal development and extracellular matrix synthesis were repressed, while those involved in immune response, inflammation, cell cycle, and cellular proliferation were stimulated. With chondrosis, genes representing cell catabolism (cAMP catabolic process) and tissue and endothelial cell development were repressed, and those involved in T cell differentiation and apoptosis were elevated. CONCLUSION Differences in age-related gene expression suggest that in older adults, meniscal cells might dedifferentiate and initiate a proliferative phenotype. Conversely, meniscal cells in younger patients appear to respond to injury, but they maintain the differentiated phenotype. Definitive molecular signatures identified in damaged meniscus could be segregated largely with age and, to a lesser extent, with chondrosis.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63017, USA
| | | | | | | |
Collapse
|
22
|
Zhu QN, Xie HM, Zhang D, Liu J, Lu YF. Hepatic bile acids and bile acid-related gene expression in pregnant and lactating rats. PeerJ 2013; 1:e143. [PMID: 24010021 PMCID: PMC3757468 DOI: 10.7717/peerj.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/05/2013] [Indexed: 01/28/2023] Open
Abstract
Background. Significant physiological changes occur during pregnancy and lactation. Intrahepatic cholestasis of pregnancy (ICP) is a liver disease closely related to disruption of bile acid homeostasis. The objective of this study was to examine the regulation of bile acid synthesis and transport in normal pregnant and lactating rats. Materials and Methods. Livers from timed pregnant SD rats were collected on gestational days (GD) 10, 14 and 19, and postnatal days (PND) 1, 7, 14 and 21. Total bile acids were determined by the enzymatic method, total RNA was isolated and subjected to real time RT-PCR analysis. Liver protein was extracted for western-blot analysis. Results. Under physiological conditions hepatic bile acids were not elevated during pregnancy but increased during lactation in rats. Bile acid synthesis rate-limiting enzyme Cyp7a1 was unchanged on gestational days, but increased on PND14 and 21 at mRNA and protein levels. Expression of Cyp8b1, Cyp27a1 and Cyp7b1 was also higher during lactation. The mRNA levels of small heterodimer partner (SHP) and protein levels of farnesoid X receptor (FXR) were increased during pregnancy and lactation. Bile acid transporters Ntcp, Bsep, Mrp3 and Mrp4 were lower at gestation, but increased during lactation. Hepatic Oatp transporters were decreased during pregnancy and lactation. Conclusion. Hepatic bile acid homeostasis is maintained during normal pregnancy in rats, probably through the FXR-SHP regulation. The expression of bile acid synthesis genes and liver bile acid accumulation were increased during lactation, together with increased expression of bile acid efflux transporter Bsep, Mrp3 and Mrp4.
Collapse
Affiliation(s)
- Qiong N Zhu
- Department of Pharmacology and Key Lab of Basic Pharmacology of Guizhou, Zunyi Medical College , Zunyi , China
| | | | | | | | | |
Collapse
|
23
|
Lake AD, Novak P, Shipkova P, Aranibar N, Robertson D, Reily MD, Lu Z, Lehman-McKeeman LD, Cherrington NJ. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease. Toxicol Appl Pharmacol 2013; 268:132-40. [PMID: 23391614 PMCID: PMC3627549 DOI: 10.1016/j.taap.2013.01.022] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/13/2013] [Accepted: 01/21/2013] [Indexed: 12/19/2022]
Abstract
Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the 'classical' (neutral) and 'alternative' (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH.
Collapse
Affiliation(s)
- April D. Lake
- University of Arizona, Department of Pharmacology and Toxicology, Tucson, Arizona 85721
| | - Petr Novak
- Biology Centre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic 37001
| | - Petia Shipkova
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543
| | - Nelly Aranibar
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543
| | - Donald Robertson
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543
| | - Michael D. Reily
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543
| | - Zhenqiang Lu
- The Arizona Statistical Consulting Laboratory, University of Arizona, Tucson, Arizona 85721
| | | | - Nathan J. Cherrington
- University of Arizona, Department of Pharmacology and Toxicology, Tucson, Arizona 85721
| |
Collapse
|
24
|
Aleksunes LM, Xu J, Lin E, Wen X, Goedken MJ, Slitt AL. Pregnancy represses induction of efflux transporters in livers of type I diabetic mice. Pharm Res 2013; 30:2209-20. [PMID: 23319174 DOI: 10.1007/s11095-013-0981-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 01/07/2013] [Indexed: 01/13/2023]
Abstract
PURPOSE To determine whether down-regulation of transcription factor signaling during pregnancy disrupts the induction of efflux transporters in type I diabetic mice. METHODS Type I diabetes was induced in female C57BL/6 mice with multiple low dose intraperitoneal injections of streptozotocin (STZ) at least 2 weeks prior to mating with normoglycemic male mice. On gestation day 14, livers were collected from vehicle- and STZ-treated non-pregnant and pregnant mice for quantification of efflux transporter and transcription factor signaling. RESULTS STZ treatment up-regulated expression of Mrp1-5, Mdr1, Abcg5, Abcg8, Bcrp, and Bsep mRNA and/or protein in the livers of non-pregnant mice. Interestingly, little to no change in transporter expression was observed in STZ-treated pregnant mice compared to vehicle- and STZ-treated non-pregnant mice. CONCLUSIONS This study demonstrates the opposing regulation of hepatobiliary efflux transporters in response to diabetes and pregnancy and points to PPARγ, Nrf2, and FXR as candidate pathways underlying the differential expression of transporters.
Collapse
Affiliation(s)
- Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Shuster DL, Bammler TK, Beyer RP, Macdonald JW, Tsai JM, Farin FM, Hebert MF, Thummel KE, Mao Q. Gestational age-dependent changes in gene expression of metabolic enzymes and transporters in pregnant mice. Drug Metab Dispos 2012; 41:332-42. [PMID: 23175668 DOI: 10.1124/dmd.112.049718] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pregnancy-induced changes in drug pharmacokinetics can be explained by changes in expression of drug-metabolizing enzymes and transporters and/or normal physiology. In this study, we determined gestational age-dependent expression profiles for all metabolic enzyme and transporter genes in the maternal liver, kidney, small intestine, and placenta of pregnant mice by microarray analysis. We specifically examined the expression of genes important for xenobiotic, bile acid, and steroid hormone metabolism and disposition, namely, cytochrome P450s (Cyp), UDP-glucuronosyltranserases (Ugt), sulfotransferases (Sult), and ATP-binding cassette (Abc), solute carrier (Slc), and solute carrier organic anion (Slco) transporters. Few Ugt and Sult genes were affected by pregnancy. Cyp17a1 expression in the maternal liver increased 3- to 10-fold during pregnancy, which was the largest observed change in the maternal tissues. Cyp1a2, most Cyp2 isoforms, Cyp3a11, and Cyp3a13 expression in the liver decreased on gestation days (gd) 15 and 19 compared with nonpregnant controls (gd 0). In contrast, Cyp2d40, Cyp3a16, Cyp3a41a, Cyp3a41b, and Cyp3a44 in the liver were induced throughout pregnancy. In the placenta, Cyp expression on gd 10 and 15 was upregulated compared with gd 19. Notable changes were also observed in Abc and Slc transporters. Abcc3 expression in the liver and Abcb1a, Abcc4, and Slco4c1 expression in the kidney were downregulated on gd 15 and 19. In the placenta, Slc22a3 (Oct3) expression on gd 10 was 90% lower than that on gd 15 and 19. This study demonstrates important gestational age-dependent expression of metabolic enzyme and transporter genes, which may have mechanistic relevance to drug disposition in human pregnancy.
Collapse
Affiliation(s)
- Diana L Shuster
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195-7610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|