1
|
Livoti LA, Sison-Young R, Reddyhoff D, Fisher CP, Gardner I, Diaz-Nieto R, Goldring CE, Copple IM. Limitations of acetaminophen as a reference hepatotoxin for the evaluation of in vitro liver models. Toxicol Sci 2025; 203:35-40. [PMID: 39509272 DOI: 10.1093/toxsci/kfae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Acetaminophen is commonly used as a reference hepatotoxin to demonstrate that in vitro human liver platforms can emulate features of clinical drug-induced liver injury. However, the induction of substantial cell death in these models typically requires acetaminophen concentrations (∼10 mM) far higher than blood concentrations of the drug associated with clinical hepatotoxicity (∼1 mM). Using the cytochrome P450 inhibitor 1-aminobenzotriazole, we show that acetaminophen toxicity in cultured human, mouse, and rat hepatocytes is not dependent on N-acetyl-p-benzoquinonimine formation, unlike the in vivo setting. This finding highlights the limitation of using acetaminophen as a reference hepatotoxin for the evaluation of in vitro liver models. Hence, we make recommendations on the selection of reference hepatotoxins for this purpose.
Collapse
Affiliation(s)
- Lucia A Livoti
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Rowena Sison-Young
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Dennis Reddyhoff
- Certara Predictive Technologies, Sheffield, S1 2BJ, United Kingdom
| | - Ciarán P Fisher
- Certara Predictive Technologies, Sheffield, S1 2BJ, United Kingdom
- GSK Research and Development Ltd, Stevenage, SG1 2NY, United Kingdom
| | - Iain Gardner
- Certara Predictive Technologies, Sheffield, S1 2BJ, United Kingdom
| | - Rafael Diaz-Nieto
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, L7 8YE, United Kingdom
| | - Christopher E Goldring
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Ian M Copple
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| |
Collapse
|
2
|
Domingos LB, Silva Júnior AFD, Diniz CRAF, Rosa J, Terzian ALB, Resstel LBM. P2X7 receptors modulate acquisition of cue fear extinction and contextual background memory generalization in male mice. Neuropharmacology 2024; 261:110177. [PMID: 39366651 DOI: 10.1016/j.neuropharm.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The purinergic P2X7 receptors (P2X7R) are activated by adenosine triphosphate (ATP) in several brain regions, particularly those involved with emotional control and the regulation of fear-related memories. Here, we investigate the role of P2X7R in fear learning memory, specifically in the acquisition and consolidation phases of the cued fear conditioning paradigm. C57Bl/6 wildtype (WT) male mice that received a single i.p. injection of the selective P2X7R antagonist A438079 prior the conditioning session showed generalization of cued fear memory and impaired fear extinction recall in the test session, while those treated prior the extinction session exhibited a similar behavior profile accompanied by resistance in the extinction learning. However, no effects were observed when this drug was administered immediately after the conditioning, extinction, or before the test session. Our results with P2X7R knockout (P2X7 KO) mice showed a behavioral profile that mirrored the collective effects observed across all pharmacological treatment conditions. This suggests that the P2X7R KO model effectively replicates the behavioral changes induced by the pharmacological interventions, demonstrating that we have successfully isolated the role of P2X7R in the fear and extinction phases of memory. These findings highlight the role of P2X7R in the acquisition and recall of extinction memory and supports P2X7R as a promising candidate for controlling abnormal fear processing, with potential applications for stress exposure-related disorders such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Luana Barreto Domingos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | | | - Cassiano Ricardo Alves Faria Diniz
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Center for Neuroscience, University of California, Davis, CA, USA
| | | | - Ana Luisa B Terzian
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
3
|
Mata-Martínez E, Ramírez-Ledesma MG, Vázquez-Victorio G, Hernández-Muñoz R, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic Signaling in Non-Parenchymal Liver Cells. Int J Mol Sci 2024; 25:9447. [PMID: 39273394 PMCID: PMC11394727 DOI: 10.3390/ijms25179447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Purinergic signaling has emerged as an important paracrine-autocrine intercellular system that regulates physiological and pathological processes in practically all organs of the body. Although this system has been thoroughly defined since the nineties, recent research has made substantial advances regarding its role in aspects of liver physiology. However, most studies have mainly targeted the entire organ, 70% of which is made up of parenchymal cells or hepatocytes. Because of its physiological role, the liver is exposed to toxic metabolites, such as xenobiotics, drugs, and fatty acids, as well as to pathogens such as viruses and bacteria. Under injury conditions, all cell types within the liver undergo adaptive changes. In this context, the concentration of extracellular ATP has the potential to increase dramatically. Indeed, this purinergic response has not been studied in sufficient detail in non-parenchymal liver cells. In the present review, we systematize the physiopathological adaptations related to the purinergic system in chronic liver diseases of non-parenchymal liver cells, such as hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, and cholangiocytes. The role played by non-parenchymal liver cells in these circumstances will undoubtedly be strategic in understanding the regenerative activities that support the viability of this organ under stressful conditions.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - María Guadalupe Ramírez-Ledesma
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| |
Collapse
|
4
|
Song S, Qiu R, Huang Y, Zhou Z, Yan J, Ou Q, Wei D, He J, Liang Y, Du X, Yao W, Lu T. Study on the mechanism of hepatotoxicity of Aucklandiae radix through liver metabolomics and network pharmacology. Toxicol Res (Camb) 2024; 13:tfae123. [PMID: 39119266 PMCID: PMC11303830 DOI: 10.1093/toxres/tfae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Background Aucklandiae Radix (CAR) and its roasted processed products (PAR) are extensively used in various Chinese patent medicines due to their diverse pharmacological activities. However, numerous side effects of CAR have been reported and the hepatotoxicity and the corresponding mechanisms have not been thoroughly investigated. Our study aims to explore the underlying mechanism of the hepatotoxic impacts of CAR. Methods In this study, metabolomic analysis was performed using liver tissue from the mice administered with different dosages of CAR/PAR extracts to examine the hepatotoxic impacts of CAR and elucidate the underlying mechanism. Network pharmacology was employed to predict the potential molecular targets and associated signaling pathways based on the distinctive compounds between CAR and PAR. A composition-target-GO-Bio process-metabolic pathway network was constructed by integrating the hepatotoxicity-related metabolic pathways. Finally, the target proteins related with the hepatotoxic effect of CAR were identified and validated in vivo. Results The metabolomics analysis revealed that 33 related metabolic pathways were significantly altered in the high-dose CAR group, four of which were associated with the hepatotoxicity and could be alleviated by PAR. The network identified NQO1 as the primary target of the hepatotoxic effect induced by CAR exposure, which was subsequently verified by Western Blotting. Further evidence in vivo demonstrated that Nrf2 and HO-1, closely related to NQO1, were also the main targets through which CAR induced the liver injury, and that oxidative stress should be the primary mechanism for the CAR-induced hepatotoxicity. Conclusions This preliminary study on the hepatic toxic injury of CAR provides a theoretical basis for the rational and safe use of CAR rationally and safely in clinical settings.
Collapse
Affiliation(s)
- Shen Song
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Rongli Qiu
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Yan Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Zhuxiu Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Jin Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Qiaochan Ou
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Donghui Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Jingxuan He
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Yi Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Xingyue Du
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Weifeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| |
Collapse
|
5
|
Yu SM, Zheng HC, Wang SC, Rong WY, Li P, Jing J, He TT, Li JH, Ding X, Wang RL. Salivary metabolites are promising noninvasive biomarkers of drug-induced liver injury. World J Gastroenterol 2024; 30:2454-2466. [PMID: 38764769 PMCID: PMC11099387 DOI: 10.3748/wjg.v30.i18.2454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/11/2024] Open
Abstract
BACKGROUND Drug-induced liver injury (DILI) is one of the most common adverse events of medication use, and its incidence is increasing. However, early detection of DILI is a crucial challenge due to a lack of biomarkers and noninvasive tests. AIM To identify salivary metabolic biomarkers of DILI for the future development of noninvasive diagnostic tools. METHODS Saliva samples from 31 DILI patients and 35 healthy controls (HCs) were subjected to untargeted metabolomics using ultrahigh-pressure liquid chromatography coupled with tandem mass spectrometry. Subsequent analyses, including partial least squares-discriminant analysis modeling, t tests and weighted metabolite coexpression network analysis (WMCNA), were conducted to identify key differentially expressed metabolites (DEMs) and metabolite sets. Furthermore, we utilized least absolute shrinkage and selection operato and random fores analyses for biomarker prediction. The use of each metabolite and metabolite set to detect DILI was evaluated with area under the receiver operating characteristic curves. RESULTS We found 247 differentially expressed salivary metabolites between the DILI group and the HC group. Using WMCNA, we identified a set of 8 DEMs closely related to liver injury for further prediction testing. Interestingly, the distinct separation of DILI patients and HCs was achieved with five metabolites, namely, 12-hydroxydodecanoic acid, 3-hydroxydecanoic acid, tetradecanedioic acid, hypoxanthine, and inosine (area under the curve: 0.733-1). CONCLUSION Salivary metabolomics revealed previously unreported metabolic alterations and diagnostic biomarkers in the saliva of DILI patients. Our study may provide a potentially feasible and noninvasive diagnostic method for DILI, but further validation is needed.
Collapse
Affiliation(s)
- Si-Miao Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hao-Cheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Si-Ci Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen-Ya Rong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ping Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Jing
- Department of Hepatology of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ting-Ting He
- Department of Hepatology of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Jia-Hui Li
- The First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui-Lin Wang
- Department of Hepatology of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
6
|
Kara A, Ozkanlar S. Blockade of P2X7 receptor-mediated purinergic signaling with A438079 protects against LPS-induced liver injury in rats. J Biochem Mol Toxicol 2023; 37:e23443. [PMID: 37365769 DOI: 10.1002/jbt.23443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/05/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
The study aimed to investigate the hepatoprotective effects of purinergic receptor (P2X7R) antagonism by A438079 in liver damage. An experimental model of inflammation was performed by intraperitoneal (i.p.) lipopolysaccharide (LPS) administration in the rat. The groups were Control, A438079, dimethyl sulfoxide (DMSO), LPS, LPS + DMSO, and LPS + A438079. Following LPS (8 mg/kg) injection, A438079 (15 mg/kg) and DMSO (0.1 mL) were administrated (i.p) in the study groups. The blood and the liver tissues were removed for histological, biochemical, and western blot analyses. In the biochemical analysis, serum aspartate transaminase (AST) and alanine transaminase (ALT) concentrations, the tissue glutathione (GSH) level, and superoxide dismutase (SOD) activity dramatically decreased and malondialdehyde (MDA) level increased in the LPS and LPS + DMSO groups compared to the LPS + A438079 group. In the histological analysis, severe sinusoidal dilatation, necrotic hepatocytes, and inflammatory cell infiltration were observed in the LPS and LPS + DMSO groups while these effects were lessened in the LPS + A438079 group. The relative protein expression levels of P2X7R, Nf-kB-p65, IL-6, and Caspase-3 were significantly higher in the LPS and the LPS + DMSO groups than in the LPS + A438079 group. On the other hand, these protein expressions were considerably lower in the Control, A438079, and DMSO groups compared to the LPS + A438079 group. In addition, Bcl-2 protein expression was significantly lower in the LPS and the LPS + DMSO groups and higher in the LPS + A438079 group compared to the other groups. The protective effect of A438079 against LPS-induced hepatic inflammation may be related to P2X7R antagonism, inflammatory mediators, and apoptotic cell death.
Collapse
Affiliation(s)
- Adem Kara
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Seckin Ozkanlar
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
7
|
Che H, Wang Y, Lao J, Deng Y, Xu C, Yin H, Tang Z, Huang Y, Xu H. Role of purinergic signalling in obesity-associated end-organ damage: focus on the effects of natural plant extracts. Front Endocrinol (Lausanne) 2023; 14:1181948. [PMID: 37476493 PMCID: PMC10354445 DOI: 10.3389/fendo.2023.1181948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Obesity has become one of the major public health problems in both the developing and developed countries. Recent studies have suggested that the purinergic signalling is involved in obesity-associated end-organ damage through purine P1 and P2 receptors. In the search for new components for the treatments of obesity, we and other researchers have found much evidence that natural plant extracts may be promising novel therapeutic approaches by modulating purinergic signalling. In this review, we summarize a critical role of purinergic signalling in modulating obesity-associated end-organ damage, such as overhigh appetite, myocardial ischemia, inflammation, atherosclerosis, non-alcoholic fatty liver disease (NAFLD), hepatic steatosis and renal inflammation. Moreover, we focus on the potential roles of several natural plant extracts, including quercetin, resveratrol/trans-resveratrol, caffeine, evodiamine and puerarin, in alleviating obesity-associated end-organ damage via purinergic signalling. We hope that the current knowledge of the potential roles of natural plant extracts in regulating purinergic signalling would provide new ideas for the treatment of obesity and obesity-associated end-organ damage.
Collapse
Affiliation(s)
- Hangxiu Che
- Department of Physiology, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
- Joint Program of Nanchang University and Queen Mary University of London, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yaqun Wang
- Department of Physiology, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jinhui Lao
- Department of Physiology, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yixin Deng
- Basic Medicine, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Chirui Xu
- Huankui Academy, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hanxiao Yin
- Huankui Academy, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Zheng Tang
- The Second Clinical Medicine, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yonghong Huang
- Department of Pathophysiology, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hong Xu
- Department of Physiology, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Yang T, Wang H, Wang X, Li J, Jiang L. The Dual Role of Innate Immune Response in Acetaminophen-Induced Liver Injury. BIOLOGY 2022; 11:biology11071057. [PMID: 36101435 PMCID: PMC9312699 DOI: 10.3390/biology11071057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 05/27/2023]
Abstract
Acetyl-para-aminophenol (APAP), a commonly used antipyretic analgesic, is becoming increasingly toxic to the liver, resulting in a high rate of acute hepatic failure in Europe and the United States. Excessive APAP metabolism in the liver develops an APAP-protein adduct, which causes oxidative stress, MPTP opening, and hepatic necrosis. HMGB-1, HSP, nDNA, mtDNA, uric acid, and ATP are DMAPs released during hepatic necrosis. DMAPs attach to TLR4-expressing immune cells such KCs, macrophages, and NK cells, activating them and causing them to secrete cytokines. Immune cells and their secreted cytokines have been demonstrated to have a dual function in acetaminophen-induced liver injury (AILI), with a role in either proinflammation or pro-regeneration, resulting in contradicting findings and some research confusion. Neutrophils, KCs, MoMFs, NK/NKT cells, γδT cells, DCs, and inflammasomes have pivotal roles in AILI. In this review, we summarize the dual role of innate immune cells involved in AILI and illustrate how these cells initiate innate immune responses that lead to persistent inflammation and liver damage. We also discuss the contradictory findings in the literature and possible protocols for better understanding the molecular regulatory mechanisms of AILI.
Collapse
Affiliation(s)
- Tao Yang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Jiangsu University, The Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang 212001, China
| | - Han Wang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| | - Xiao Wang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| | - Longfeng Jiang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| |
Collapse
|
9
|
Batista Simões JL, Sobierai LD, Pereira SM, Rodrigues Dos Santos MV, Bagatini MD. Therapeutic potential of P2X7 purinergic receptor modulation in the main organs affected by the COVID-19 cytokine storm. Curr Pharm Des 2022; 28:1798-1814. [PMID: 35838210 DOI: 10.2174/1381612828666220713115906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/31/2022] [Indexed: 01/08/2023]
Abstract
Defined by the World Health Organization as a global public health pandemic, coronavirus 2019 (COVID-19) has a global impact and the death of thousands of people. The "severe acute respiratory syndrome coronavirus 2" virus (SARS-CoV-2) is the etiologic agent of this disease, which uses the angiotensin-converting enzyme receptor 2 (ACE2) to infect the body, so any organ that expresses the gene ACE2 is a possible target for the new coronavirus. In addition, in severe cases of COVID-19, a cytokine storm occurs, which triggers widespread systemic inflammation due to the uncontrolled release of proinflammatory cytokines. In this perspective, the modulation of purinergic receptors are highlighted in the literature as a possible therapy, considering its application in other viral infections and systemic inflammation. Therefore, the objective of this review is to gather information on the modulation of the P2X7 receptor in the main organs directly affected by the virus and by the cytokine storm: heart, brain, lung, liver and kidneys. Thus, demonstrating possible therapies for reducing inflammation, as well as reducing the level of morbidity and mortality of COVID-19.
Collapse
|
10
|
Wang J, Zhang L, Shi Q, Yang B, He Q, Wang J, Weng Q. Targeting innate immune responses to attenuate acetaminophen-induced hepatotoxicity. Biochem Pharmacol 2022; 202:115142. [PMID: 35700755 DOI: 10.1016/j.bcp.2022.115142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is an important cause of acute liver failure, resulting in massive deaths in many developed countries. Currently, the metabolic process of APAP in the body has been well studied. However, the underlying mechanism of APAP-induced liver injury remains elusive. Increasing clinical and experimental evidences indicate that the innate immune responses are involved in the pathogenesis of APAP-induced acute liver injury (AILI), in which immune cells have dual roles of inducing inflammation to exacerbate hepatotoxicity and removing dead cells and debris to help liver regeneration. In this review, we summarize the latest findings of innate immune cells involved in AILI, particularly emphasizing the activation of innate immune cells and their different roles during the injury and repair phases. Moreover, current available treatments are discussed according to the different roles of innate immune cells in the development of AILI. This review aims to update the knowledge about innate immune responses in the pathogenesis of AILI, and provide potential therapeutic interventions for AILI.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lulu Zhang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Shi
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
11
|
Huang FR, Fang WT, Cheng ZP, Shen Y, Wang DJ, Wang YQ, Sun LN. Imatinib-induced hepatotoxicity via oxidative stress and activation of NLRP3 inflammasome: an in vitro and in vivo study. Arch Toxicol 2022; 96:1075-1087. [PMID: 35190838 DOI: 10.1007/s00204-022-03245-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Imatinib (IM), a milestone drug used in the field of molecular targeted therapy, has been reported to cause serious adverse liver effects, including liver failure and even death. Immune-mediated injury and mitochondrial dysfunction are involved in drug-induced liver injury. However, the mechanism of IM-induced hepatotoxicity remains unclear and warrants further study. In our study, Sprague Dawley rats were administered IM by gavage with 50 mg/kg body weight (BW) once daily for 10 days. Drug-induced liver injury accompanied by inflammatory infiltration was observed in rats following IM exposure, and the expression of NOD-like receptor protein 3 (NLRP3) inflammasome-related proteins was significantly increased compared with that of the control. HepG2 cells were exposed to 0-100 μM IM for 24 h. The results showed that IM decreased cell viability in a dose-dependent manner. Moreover, IM induced a state of obvious oxidative stress and activation of nuclear factor kappa B (NF-κB) in cells, which resulted in the activation of NLRP3 inflammasomes, including caspase 1 cleavage and IL-1β release. These results were significantly reduced after the use of the antioxidants N-acetyl-l-cysteine or the NF-κB inhibitor pyrrolidine di-thio-carbamate. Furthermore, NLRP3 knockdown significantly reduced the release of inflammatory cytokines and improved cell viability. In summary, our data demonstrated that oxidative stress and NLRP3 inflammasome activation are involved in the process of IM-induced hepatotoxicity. The results of this study provide a reference for the prevention and treatment of IM-induced hepatotoxicity.
Collapse
Affiliation(s)
- Feng-Ru Huang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China.,School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wen-Tong Fang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China
| | - Zi-Ping Cheng
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China
| | - Ye Shen
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China
| | - Dun-Jian Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China. .,School of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China. .,School of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
An Q, Yue G, Yang X, Lou J, Shan W, Ding J, Jin Z, Hu Y, Du Q, Liao Q, Xie R, Xu J. Pathophysiological Role of Purinergic P2X Receptors in Digestive System Diseases. Front Physiol 2022; 12:781069. [PMID: 35002763 PMCID: PMC8740087 DOI: 10.3389/fphys.2021.781069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
P2X receptors (P2XRs) are trimeric, non-selective cation channels activated by extracellular ATP and widely distributed in the digestive system. P2XRs have an important role in the physiological function of the digestive system, such as neurotransmission, ion transports, proliferation and apoptosis, muscle contraction, and relaxation. P2XRs can be involved in pain mechanisms both centrally and in the periphery and confirmed the association of P2XRs with visceral pain. In the periphery, ATP can be released as a result of tissue injury, visceral distension, or sympathetic activation and can excite nociceptive primary afferents by acting at homomeric P2X(3)R or heteromeric P2X(2/3)R. Thus, peripheral P2XRs, and homomeric P2X(3) and/or heteromeric P2X(2/3)R in particular, constitute attractive targets for analgesic drugs. Recently studies have shown that P2XRs have made significant advances in inflammation and cancer. P2X7R mediates NLRP3 inflammasome activation, cytokine and chemokine release, T lymphocyte survival and differentiation, transcription factor activation, and cell death. The P2X7R is a potent stimulant of inflammation and immunity and a promoter of cancer cell growth. This makes P2X7R an appealing target for anti-inflammatory and anti-cancer therapy. It is believed that with the further study of P2XRs and its subtypes, P2XRs and its specific antagonists will be expected to be widely used in the treatment of human digestive diseases in the future.
Collapse
Affiliation(s)
- Qimin An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Gengyu Yue
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Xiaoxu Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Weixi Shan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jianhong Ding
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yanxia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
13
|
|
14
|
Bhushan B, Apte U. Acetaminophen Test Battery (ATB): A Comprehensive Method to Study Acetaminophen-Induced Acute Liver Injury. Gene Expr 2020; 20:125-138. [PMID: 32443984 PMCID: PMC7650012 DOI: 10.3727/105221620x15901763757677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) overdose is the major cause of acute liver failure (ALF) in the Western world. Extensive research is ongoing to identify the mechanisms of APAP-induced ALF. APAP-induced acute liver injury is also one of the most commonly studied drug-induced liver injury models in the field of hepatotoxicity. APAP toxicity is triphasic and includes three mechanistically interlinked but temporally distinct phases of initiation, progression, and recovery/regeneration. Despite how commonly it is studied, the methods to study APAP toxicity differ significantly, often leading to confusing and contradictory data. There are number of reviews on mechanisms of APAP toxicity, but a detailed mechanism-based comprehensive method and list of assays that covers all phases of APAP hepatotoxicity are missing. The goal of this review is to provide a standard protocol and guidelines to study APAP toxicity in mice including a test battery that can help investigators to comprehensively analyze APAP toxicity in the specific context of their hypothesis. Further, we will identify the major roadblocks and common technical problems that can significantly affect the results. This acetaminophen test battery (ATB) will be an excellent guide for scientists studying this most common and clinically relevant drug-induced liver injury and will also be helpful as a roadmap for hypothesis development to study novel mechanisms.
Collapse
Affiliation(s)
- Bharat Bhushan
- *Department of Pathology and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Udayan Apte
- †Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
15
|
Ecto-Nucleotide Triphosphate Diphosphohydrolase-2 (NTPDase2) Deletion Increases Acetaminophen-Induced Hepatotoxicity. Int J Mol Sci 2020; 21:ijms21175998. [PMID: 32825435 PMCID: PMC7504458 DOI: 10.3390/ijms21175998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Ecto-nucleotidase triphosphate diphosphohydrolase-2 (NTPDase2) is an ecto-enzyme that is expressed on portal fibroblasts in the liver that modulates P2 receptor signaling by regulating local concentrations of extracellular ATP and ADP. NTPDase2 has protective properties in liver fibrosis and may impact bile duct epithelial turnover. Here, we study the role of NTPDase2 in acute liver injury using an experimental model of acetaminophen (APAP) intoxication in mice with global deletion of NTPDase2. Acute liver toxicity was caused by administration of acetaminophen in wild type (WT) and NTPDase2-deficient (Entpd2 null) mice. The extent of liver injury was compared by histology and serum alanine transaminase (ALT). Markers of inflammation, regeneration and fibrosis were determined by qPCR). We found that Entpd2 expression is significantly upregulated after acetaminophen-induced hepatotoxicity. Entpd2 null mice showed significantly more necrosis and higher serum ALT compared to WT. Hepatic expression of IL-6 and PDGF-B are higher in Entpd2 null mice. Our data suggest inducible and protective roles of portal fibroblast-expressed NTPDase2 in acute necrotizing liver injury. Further studies should investigate the relevance of these purinergic pathways in hepatic periportal and sinusoidal biology as such advances in understanding might provide possible therapeutic targets.
Collapse
|
16
|
Wang P, Jia J, Zhang D. Purinergic signalling in liver diseases: Pathological functions and therapeutic opportunities. JHEP Rep 2020; 2:100165. [PMID: 33103092 PMCID: PMC7575885 DOI: 10.1016/j.jhepr.2020.100165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular nucleotides, including ATP, are essential regulators of liver function and serve as danger signals that trigger inflammation upon injury. Ectonucleotidases, which are expressed by liver-resident cells and recruited immune cells sequentially hydrolyse nucleotides to adenosine. The nucleotide/nucleoside balance orchestrates liver homeostasis, tissue repair, and functional restoration by regulating the crosstalk between liver-resident cells and recruited immune cells. In this review, we discuss our current knowledge on the role of purinergic signals in liver homeostasis, restriction of inflammation, stimulation of liver regeneration, modulation of fibrogenesis, and regulation of carcinogenesis. Moreover, we discuss potential targeted therapeutic strategies for liver diseases based on purinergic signals involving blockade of nucleotide receptors, enhancement of ectonucleoside triphosphate diphosphohydrolase activity, and activation of adenosine receptors.
Collapse
Key Words
- A1, adenosine receptor A1
- A2A, adenosine receptor A2A
- A2B, adenosine receptor A2B
- A3, adenosine receptor A3
- AIH, autoimmune hepatitis
- ALT, alanine aminotransferase
- APAP, acetaminophen
- APCP, α,β-methylene ADP
- Adenosine receptors
- BDL, bile duct ligation
- CCl4, carbon tetrachloride
- CD73, ecto-5ʹ-nucleotidase
- ConA, concanavalin A
- DCs, dendritic cells
- DMN, dimethylnitrosamine
- Ecto-5ʹ-nucleotidase
- Ectonucleoside triphosphate diphosphohydrolases 1
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HGF, hepatocyte growth factor
- HSCs, hepatic stellate cells
- IFN, interferon
- IL-, interleukin-
- IPC, ischaemic preconditioning
- IR, ischaemia-reperfusion
- Liver
- MAPK, mitogen-activating protein kinase
- MCDD, methionine- and choline-deficient diet
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK, natural killer
- NKT, natural killer T
- NTPDases, ectonucleoside triphosphate diphosphohydrolases
- Nucleotide receptors
- P1, purinergic type 1
- P2, purinergic type 2
- PBC, primary biliary cholangitis
- PH, partial hepatectomy
- PKA, protein kinase A
- PPADS, pyridoxal-phosphate-6-azophenyl-2′,4′-disulphonate
- Purinergic signals
- ROS, reactive oxygen species
- TAA, thioacetamide
- TNF, tumour necrosis factor
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
17
|
Jaeschke H, Ramachandran A. Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food Chem Toxicol 2020; 138:111240. [PMID: 32145352 DOI: 10.1016/j.fct.2020.111240] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) is a widely used analgesic drug, which can cause severe liver injury after an overdose. The intracellular signaling mechanisms of APAP-induced cell death such as reactive metabolite formation, mitochondrial dysfunction and nuclear DNA fragmentation have been extensively studied. Hepatocyte necrosis releases damage-associated molecular patterns (DAMPs) which activate cytokine and chemokine formation in macrophages. These signals activate and recruit neutrophils, monocytes and other leukocytes into the liver. While this sterile inflammatory response removes necrotic cell debris and promotes tissue repair, the capability of leukocytes to also cause tissue injury makes this a controversial topic. This review summarizes the literature on the role of various DAMPs, cytokines and chemokines, and the pathophysiological function of Kupffer cells, neutrophils, monocytes and monocyte-derived macrophages, and NK and NKT cells during APAP hepatotoxicity. Careful evaluation of results and experimental designs of studies dealing with the inflammatory response after APAP toxicity provide very limited evidence for aggravation of liver injury but support of the hypothesis that these leukocytes promote tissue repair. In addition, many cytokines and chemokines modulate tissue injury by affecting the intracellular signaling events of cell death rather than toxicity of leukocytes. Reasons for the controversial results in this area are also discussed.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
18
|
Velázquez-Miranda E, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic signaling in hepatic disease. Purinergic Signal 2019; 15:477-489. [PMID: 31576486 DOI: 10.1007/s11302-019-09680-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular purines (ATP and adenosine) are ubiquitous intercellular messengers. During tissular damage, they function as damage-associated molecular patterns (DAMPs). In this context, purines announce tissue alterations to initiate a reparative response that involve the formation of the inflammasome complex and the recruitment of specialized cells of the immune system. The present review focuses on the role of the purinergic system in liver damage, mainly during the onset and development of fibrosis. After hepatocellular injury, extracellular ATP promotes a signaling cascade that ameliorates tissue alterations to restore the hepatic function. However, if cellular damage becomes chronic, ATP orchestrates an aberrant reparative process that results in severe liver diseases such as fibrosis and cirrhosis. ATP and adenosine, their receptors, and extracellular ectonucleotidases are mediators of unique processes that will be reviewed in detail.
Collapse
Affiliation(s)
- E Velázquez-Miranda
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México.
| |
Collapse
|
19
|
Cui BW, Bai T, Yang Y, Zhang Y, Jiang M, Yang HX, Wu M, Liu J, Qiao CY, Zhan ZY, Wu YL, Kang DZ, Lian LH, Nan JX. Thymoquinone Attenuates Acetaminophen Overdose-Induced Acute Liver Injury and Inflammation Via Regulation of JNK and AMPK Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:577-594. [PMID: 30974967 DOI: 10.1142/s0192415x19500307] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thymoquinone (TQ) is a main aromatic component of Nigella sativa L. seeds or Agastache rugosa (Fisch. & C.A.Mey.) Kuntze. The protective mechanism of TQ against acute liver injury induced by acetaminophen (APAP), however, remains unclear. We aimed to investigated the hepato-protective mechanism of TQ on the development of APAP-induced acute liver injury. Male kunming mice were pretreated with TQ or N-acetylcysteine (NAC) before a single APAP injection. Human Chang liver cells were incubated with TQ, SP600125 or AICAR in presence of APAP for 24 h. TQ pretreatment reduced levels of serum aminotransferases and increased hepatic glutathione and glutathione peroxidase activities via inhibiting CYP2E1 expression. TQ inhibited JNK, ERK and P38 phosphorylation induced by APAP. Meanwhile, TQ inhibited PI3K/mTOR signaling activation and activated AMPK phosphorylation. Moreover, TQ prevented APAP-induced hepatocytes apoptosis regulated by Bcl-2 and Bax. Furthermore, TQ inhibited STAT3 phosphorylation on APAP-induced acute liver injury. In addition, TQ significantly inhibited P2X7R protein expression and IL-1 β release. APAP-enhanced JNK phosphorylation and APAP-suppressed AMPK phosphorylation were also observed in Chang liver cells, and these changes were recovered by pretreatment with TQ, SP600125 and AICAR. Our findings suggest that TQ may actively prevent APAP-induced acute liver injury, and the effect may be mediated by JNK and AMPK signaling pathways.
Collapse
Affiliation(s)
- Ben-Wen Cui
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Ting Bai
- † Medical College of Dalian University, Dalian 251122, Liaoning Province, China
| | - Yong Yang
- † Medical College of Dalian University, Dalian 251122, Liaoning Province, China
| | - Yu Zhang
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Min Jiang
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Hong-Xu Yang
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Mei Wu
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Jian Liu
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Chun-Ying Qiao
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Zi-Ying Zhan
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Yan-Ling Wu
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Dong-Zhou Kang
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Li-Hua Lian
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Ji-Xing Nan
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| |
Collapse
|
20
|
Gilman KE, Camden JM, Klein RR, Zhang Q, Weisman GA, Limesand KH. P2X7 receptor deletion suppresses γ-radiation-induced hyposalivation. Am J Physiol Regul Integr Comp Physiol 2019; 316:R687-R696. [PMID: 30892913 DOI: 10.1152/ajpregu.00192.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Head and neck cancer treatments typically involve a combination of surgery and radiotherapy, often leading to collateral damage to nearby tissues causing unwanted side effects. Radiation damage to salivary glands frequently leads to irreversible dysfunction by poorly understood mechanisms. The P2X7 receptor (P2X7R) is a ligand-gated ion channel activated by extracellular ATP released from damaged cells as "danger signals." P2X7R activation initiates apoptosis and is involved in numerous inflammatory disorders. In this study, we utilized P2X7R knockout (P2X7R-/-) mice to determine the role of the receptor in radiation-induced salivary gland damage. Results indicate a dose-dependent increase in γ-radiation-induced ATP release from primary parotid gland cells of wild-type but not P2X7R-/- mice. Despite these differences, apoptosis levels are similar in parotid glands of wild-type and P2X7R-/- mice 24-72 h after radiation. However, γ-radiation caused elevated prostaglandin E2 (PGE2) release from primary parotid cells of wild-type but not P2X7R-/- mice. To attempt to uncover the mechanism underlying differential PGE2 release, we evaluated the expression and activities of cyclooxygenase and PGE synthase isoforms. There were no consistent trends in these mediators following radiation that could explain the reduction in PGE2 release in P2X7R-/- mice. Irradiated P2X7R-/- mice have stimulated salivary flow rates similar to unirradiated controls, whereas irradiated wild-type mice have significantly decreased salivary flow rates compared with unirradiated controls. Notably, treatment with the P2X7R antagonist A438079 preserves stimulated salivary flow rates in wild-type mice following γ-radiation. These data suggest that P2X7R antagonism is a promising approach for preventing γ-radiation-induced hyposalivation.
Collapse
Affiliation(s)
- Kristy E Gilman
- Department of Nutritional Sciences, The University of Arizona , Tucson, Arizona
| | - Jean M Camden
- Christopher S. Bond Life Sciences Center, Department of Biochemistry, The University of Missouri , Columbia, Missouri
| | - Rob R Klein
- Department of Pathology, The University of Arizona , Tucson, Arizona
| | - Qionghui Zhang
- Department of Nutritional Sciences, The University of Arizona , Tucson, Arizona
| | - Gary A Weisman
- Christopher S. Bond Life Sciences Center, Department of Biochemistry, The University of Missouri , Columbia, Missouri
| | - Kirsten H Limesand
- Department of Nutritional Sciences, The University of Arizona , Tucson, Arizona
| |
Collapse
|
21
|
McGill MR, Jaeschke H. Animal models of drug-induced liver injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1031-1039. [PMID: 31007174 DOI: 10.1016/j.bbadis.2018.08.037] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/18/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023]
Abstract
Drug-induced liver injury (DILI) presents unique challenges for consumers, clinicians, and regulators. It is the most common cause of acute liver failure in the US. It is also one of the most common reasons for termination of new drugs during pre-clinical testing and withdrawal of new drugs post-marketing. DILI is generally divided into two forms: intrinsic and idiosyncratic. Many of the challenges with DILI are due in large part to poor understanding of the mechanisms of toxicity. Although useful models of intrinsic DILI are available, they are frequently misused. Modeling idiosyncratic DILI presents greater challenges, but promising new models have recently been developed. The purpose of this manuscript is to provide a critical review of the most popular animal models of DILI, and to discuss the future of DILI research.
Collapse
Affiliation(s)
- Mitchell R McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hartmut Jaeschke
- Dept. of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
22
|
Diezmos EF, Markus I, Perera DS, Gan S, Zhang L, Sandow SL, Bertrand PP, Liu L. Blockade of Pannexin-1 Channels and Purinergic P2X7 Receptors Shows Protective Effects Against Cytokines-Induced Colitis of Human Colonic Mucosa. Front Pharmacol 2018; 9:865. [PMID: 30127744 PMCID: PMC6087744 DOI: 10.3389/fphar.2018.00865] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022] Open
Abstract
Introduction: The pannexin-1 (Panx1) channels are found in many cell types, and ATP released from these channels can act on nearby cells activating purinergic P2X7 receptors (P2X7R) which lead to inflammation. Although Panx1 and P2X7R are implicated in the process of inflammation and cell death, few studies have looked at the role they play in inflammatory bowel disease in human. Hence, the aim of the present study was to investigate the function of Panx1 and P2X7R in an ex vivo colitis model developed from human colonic mucosal explants. Materials and Methods: Healthy human colonic mucosal strips (4 × 10 mm) were incubated in carbogenated culture medium at 37°C for 16 h. Proinflammatory cytokines TNFα and IL-1β (each 10 ng/mL) were used to induce colitis in mucosal strips, and the effects of Panx1 and P2X7R on cytokines-induced tissue damage were determined in the presence of the Panx1 channel blocker 10Panx1 (100 μM) and P2X7R antagonist A438079 (100 μM). The effects of 10Panx1 and A438079 on cytokines-enhanced epithelial permeability were also studied using Caco-2 cells. Results: Histological staining showed that the mucosal strips had severe structural damage in the cytokines-only group but not in the incubation-control group (P < 0.01). Compared to the cytokines-only group, crypt damage was significantly decreased in groups receiving cytokines with inhibitors (10Panx1, A438079, or 10Panx1 + A438079, P < 0.05). The immunoreactive signals of tight junction protein zonula occludens-1 (ZO-1) were abundant in all control tissues but were significantly disrupted and lost in the cytokines-only group (P < 0.01). The diminished ZO-1 immunoreactivity induced by cytokines was prevented in the presence of 10Panx1 (P = 0.04). Likewise, 10Panx1 significantly attenuated the cytokines-evoked increase in paracellular permeability of Caco-2 cells. Although the inhibition of P2X7R activity by A438079 diminished cytokines-induced crypt damage, its effect on the maintenance of ZO-1 immunoreactivity and Caco-2 epithelial cell integrity was less evident. Conclusion: The blockade of Panx1 and P2X7R reduced the inflammatory cytokines-induced crypt damage, loss of tight junctions and increase in cell permeability. Thus, Panx1 and P2X7R may have roles in causing mucosal damage, a common clinical feature of inflammatory bowel disease.
Collapse
Affiliation(s)
- Erica F Diezmos
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Irit Markus
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - D S Perera
- Sydney Colorectal Associates, Hurstville, NSW, Australia
| | - Steven Gan
- Sydney Colorectal Associates, Hurstville, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Shaun L Sandow
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Inflammation and Healing Cluster, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Paul P Bertrand
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Lu Liu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
23
|
Zhao DS, Jiang LL, Wang LL, Wu ZT, Li ZQ, Shi W, Li P, Jiang Y, Li HJ. Integrated Metabolomics and Proteomics Approach To Identify Metabolic Abnormalities in Rats with Dioscorea bulbifera Rhizome-Induced Hepatotoxicity. Chem Res Toxicol 2018; 31:843-851. [DOI: 10.1021/acs.chemrestox.8b00066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dong-Sheng Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Li-Long Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ling-Li Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zi-Tian Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zhuo-Qing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Wei Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yan Jiang
- Nanjing Forestry University, Nanjing 210037, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
24
|
Burnstock G, Knight GE. The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal 2018; 14:1-18. [PMID: 29164451 PMCID: PMC5842154 DOI: 10.1007/s11302-017-9593-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
Seven P2X ion channel nucleotide receptor subtypes have been cloned and characterised. P2X7 receptors (P2X7R) are unusual in that there are extra amino acids in the intracellular C terminus. Low concentrations of ATP open cation channels sometimes leading to cell proliferation, whereas high concentrations of ATP open large pores that release inflammatory cytokines and can lead to apoptotic cell death. Since many diseases involve inflammation and immune responses, and the P2X7R regulates inflammation, there has been recent interest in the pathophysiological roles of P2X7R and the potential of P2X7R antagonists to treat a variety of diseases. These include neurodegenerative diseases, psychiatric disorders, epilepsy and a number of diseases of peripheral organs, including the cardiovascular, airways, kidney, liver, bladder, skin and musculoskeletal. The potential of P2X7R drugs to treat tumour progression is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK.
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia.
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia.
| | - Gillian E Knight
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
25
|
Papackova Z, Heczkova M, Dankova H, Sticova E, Lodererova A, Bartonova L, Poruba M, Cahova M. Silymarin prevents acetaminophen-induced hepatotoxicity in mice. PLoS One 2018; 13:e0191353. [PMID: 29342206 PMCID: PMC5771617 DOI: 10.1371/journal.pone.0191353] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Acetaminophen or paracetamol (APAP) overdose is a common cause of liver injury. Silymarin (SLM) is a hepatoprotective agent widely used for treating liver injury of different origin. In order to evaluate the possible beneficial effects of SLM, Balb/c mice were pretreated with SLM (100 mg/kg b.wt. per os) once daily for three days. Two hours after the last SLM dose, the mice were administered APAP (300 mg/kg b.wt. i.p.) and killed 6 (T6), 12 (T12) and 24 (T24) hours later. SLM-treated mice exhibited a significant reduction in APAP-induced liver injury, assessed according to AST and ALT release and histological examination. SLM treatment significantly reduced superoxide production, as indicated by lower GSSG content, lower HO-1 induction, alleviated nitrosative stress, decreased p-JNK activation and direct measurement of mitochondrial superoxide production in vitro. SLM did not affect the APAP-induced decrease in CYP2E1 activity and expression during the first 12 hrs. Neutrophil infiltration and enhanced expression of inflammatory markers were first detected at T12 in both groups. Inflammation progressed in the APAP group at T24 but became attenuated in SLM-treated animals. Histological examination suggests that necrosis the dominant cell death pathway in APAP intoxication, which is partially preventable by SLM pretreatment. We demonstrate that SLM significantly protects against APAP-induced liver damage through the scavenger activity of SLM and the reduction of superoxide and peroxynitrite content. Neutrophil-induced damage is probably secondary to necrosis development.
Collapse
Affiliation(s)
- Zuzana Papackova
- Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Veterinary Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- * E-mail:
| | - Marie Heczkova
- Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Helena Dankova
- Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Eva Sticova
- Clinical and Transplant Pathology Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alena Lodererova
- Clinical and Transplant Pathology Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lenka Bartonova
- Clinical and Transplant Pathology Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Poruba
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Monika Cahova
- Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
26
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
27
|
Zhang C, Feng J, Du J, Zhuo Z, Yang S, Zhang W, Wang W, Zhang S, Iwakura Y, Meng G, Fu YX, Hou B, Tang H. Macrophage-derived IL-1α promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol Immunol 2017; 15:973-982. [PMID: 28504245 DOI: 10.1038/cmi.2017.22] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 01/08/2023] Open
Abstract
The metabolic intermediate of acetaminophen (APAP) can cause severe hepatocyte necrosis, which triggers aberrant immune activation of liver non-parenchymal cells (NPC). Overzealous hepatic inflammation determines the morbidity and mortality of APAP-induced liver injury (AILI). Interleukin-1 receptor (IL-1R) signaling has been shown to play a critical role in various inflammatory conditions, but its precise role and underlying mechanism in AILI remain debatable. Herein, we show that NLRP3 inflammasome activation of IL-1β is dispensable to AILI, whereas IL-1α, the other ligand of IL-1R1, accounts for hepatic injury by a lethal dose of APAP. Furthermore, Kupffer cells function as a major source of activated IL-1α in the liver, which is activated by damaged hepatocytes through TLR4/MyD88 signaling. Finally, IL-1α is able to chemoattract and activate CD11b+Gr-1+ myeloid cells, mostly neutrophils and inflammatory monocytes, to amplify deteriorated inflammation in the lesion. Therefore, this work identifies that MyD88-dependent activation of IL-1α in Kupffer cells plays a central role in the immunopathogenesis of AILI and implicates that IL-1α is a promising therapeutic target for AILI treatment.
Collapse
Affiliation(s)
- Chao Zhang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jin Feng
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jun Du
- The Institute of Biotechnology, Shanxi University, 030006, Taiyuan, China
| | - Zhiyong Zhuo
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shuo Yang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Weihong Zhang
- The Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Weihong Wang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shengyuan Zhang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, 278-0022, Chiba, Japan
| | - Guangxun Meng
- The Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yang-Xin Fu
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,Department of Pathology, The University of Chicago, 60637, Chicago, USA, IL
| | - Baidong Hou
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hong Tang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China. .,The Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
28
|
Abdelaziz HA, Shaker ME, Hamed MF, Gameil NM. Repression of acetaminophen-induced hepatotoxicity by a combination of celastrol and brilliant blue G. Toxicol Lett 2017; 275:6-18. [PMID: 28435131 DOI: 10.1016/j.toxlet.2017.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 01/20/2023]
Abstract
The sterile inflammatory response is an eminent contributor to acetaminophen (APAP)-hepatotoxicity in humans. Recent advances unraveled an axial role of the NLRP3-inflammasome in APAP-post injury inflammation. Nevertheless, the role of signaling events preceded the NLRP3-inflammasome activation, like the transcription factor NF-κB and the purinergic receptor P2X7, is still unclear and needs further elucidation. Here, we investigated the pharmacological inhibition of these upstream signaling molecules by celastrol and brilliant blue G (BBG) (separately or simultaneously) in APAP-hepatotoxicity in mice. The results indicated that both celastrol and BBG pretreatments, especially when combined together, curbed APAP-induced hepatocellular injury (ALT, AST and LDH) and death (necrosis and apoptosis). The underlying mechanisms of protection of such combination against APAP-challenge were attributed to their efficient cooperation in: i) preventing the consumption of hepatic antioxidants (reduced glutathione and superoxide dismutase); ii) limiting the overproduction of lipid peroxidation aldehydes (malondialdehyde and 4-hydroxynonenal) and total nitrate/nitrite products; iii) attenuating the inflammatory cells accumulation in the liver, as evidenced by reducing the number of F4/80 positive cells/field in immunostaining and myeloperoxidase activity; iv) reversing the dysregulation in production of pro-inflammatory (TNF-α, IL-17A and IL-23) and anti-inflammatory (IL-10) cytokines; and v) enhancing the reparative capacity of injured hepatocytes, as demonstrated by increasing the percentage of PCNA positive hepatocytes per field of immunostaining. In conclusion, this murine study elicits a potential clinical applicability and therapeutic utility of celastrol and BBG combination in human cases of APAP-overdose hepatotoxicity.
Collapse
Affiliation(s)
- Heba A Abdelaziz
- Pharmacology and Toxicology Dept., Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Pharmacology and Biochemistry Dept., Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mohamed E Shaker
- Pharmacology and Toxicology Dept., Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Mohamed F Hamed
- Pathology Dept., Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Nariman M Gameil
- Pharmacology and Toxicology Dept., Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
29
|
Woolbright BL, Jaeschke H. Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure. J Hepatol 2017; 66:836-848. [PMID: 27913221 PMCID: PMC5362341 DOI: 10.1016/j.jhep.2016.11.017] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 12/19/2022]
Abstract
Drug-induced acute liver failure carries a high morbidity and mortality rate. Acetaminophen overdose is the number one cause of acute liver failure and remains a major problem in Western medicine. Administration of N-acetyl cysteine is an effective antidote when given before the initial rise in toxicity; however, many patients present to the hospital after this stage occurs. As such, treatments which can alleviate late-stage acetaminophen-induced acute liver failure are imperative. While the initial mechanisms of toxicity are well described, a debate has recently occurred in the literature over whether there is a second phase of injury, mediated by inflammatory processes. Critical to this potential inflammatory process is the activation of caspase-1 and interleukin-1β by a molecular complex known as the inflammasome. Several different stimuli for the formation of multiple different inflammasome complexes have been identified. Formation of the NACHT, leucine-rich repeat (LRR) and pyrin (PYD) domains-containing protein 3 (Nalp3) inflammasome in particular, has directly been attributed to late-stage acetaminophen toxicity. In this review, we will discuss the mechanisms of acetaminophen-induced liver injury in mice and man with a particular focus on the role of inflammation and the inflammasome.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
30
|
Abstract
BACKGROUND The liver has a number of functions in innate immunity. These functions predispose the liver to innate immune-mediated liver injury when inflammation goes unchecked. Significant progress has been made in the last 25 years on sterile inflammatory liver injury in a number of models; however, a great deal of controversy and many questions about the nature of sterile inflammation still exist. AIM The goal of this article is to review sterile inflammatory liver injury using both a basic approach to what constitutes the inflammatory injury, and through examination of current models of liver injury and inflammation. This information will be tied to human patient conditions when appropriate. RELEVANCE FOR PATIENTS Inflammation is one of the most critical factors for managing in-patient liver disease in a number of scenarios. More information is needed for both scientists and clinicians to develop rational treatments.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
31
|
Ramachandran A, Jaeschke H. Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology. J Clin Transl Res 2017; 3:157-169. [PMID: 28670625 PMCID: PMC5489132 DOI: 10.18053/jctres.03.2017s1.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/15/2022] Open
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the United States and mechanisms of liver injury induced by APAP overdose have been the focus of extensive investigation. Studies in the mouse model, which closely reproduces the human condition, have shown that hepatotoxicity is initiated by formation of a reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI), which depletes cellular glutathione and forms protein adducts on mitochondrial proteins. This leads to mitochondrial oxidative and nitrosative stress, accompanied by activation of c-jun N-terminal kinase (JNK) and its translocation to the mitochondria. This then amplifies the mitochondrial oxidant stress, resulting in translocation of Bax and dynamin related protein 1 (Drp1) to the mitochondria, which induces mitochondrial fission, and ultimately induction of the mitochondrial membrane permeability transition (MPT). The induction of MPT triggers release of intermembrane proteins such as apoptosis inducing factor (AIF) and endonuclease G into the cytosol and their translocation to the nucleus, causing nuclear DNA fragmentation and activation of regulated necrosis. Though these cascades of events were primarily identified in the mouse model, studies on human hepatocytes and analysis of circulating biomarkers from patients after APAP overdose, indicate that a number of mechanistic events are identical in mice and humans. Circulating biomarkers also seem to be useful in predicting the course of liver injury after APAP overdose in humans and hold promise for significant clinical use in the near future.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
32
|
Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury. Sci Rep 2016; 6:38499. [PMID: 27929040 PMCID: PMC5144087 DOI: 10.1038/srep38499] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022] Open
Abstract
Axonal injury is a common feature of central nervous system insults that culminates with the death of the affected neurons, and an irreversible loss of function. Inflammation is an important component of the neurodegenerative process, where the microglia plays an important role by releasing proinflammatory factors as well as clearing the death neurons by phagocytosis. Here we have identified the purinergic signaling through the P2X7 receptor as an important component for the neuronal death in a model of optic nerve axotomy. We have found that in P2X7 receptor deficient mice there is a delayed loss of retinal ganglion cells and a decrease of phagocytic microglia at early times points after axotomy. In contralateral to the axotomy retinas, P2X7 receptor controlled the numbers of phagocytic microglia, suggesting that extracellular ATP could act as a danger signal activating the P2X7 receptor in mediating the loss of neurons in contralateral retinas. Finally, we show that intravitreal administration of the selective P2X7 receptor antagonist A438079 also delays axotomy-induced retinal ganglion cell death in retinas from wild type mice. Thus, our work demonstrates that P2X7 receptor signaling is involved in neuronal cell death after axonal injury, being P2X7 receptor antagonism a potential therapeutic strategy.
Collapse
|
33
|
Du K, Ramachandran A, Weemhoff JL, Chavan H, Xie Y, Krishnamurthy P, Jaeschke H. Editor's Highlight: Metformin Protects Against Acetaminophen Hepatotoxicity by Attenuation of Mitochondrial Oxidant Stress and Dysfunction. Toxicol Sci 2016; 154:214-226. [PMID: 27562556 DOI: 10.1093/toxsci/kfw158] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Overdose of acetaminophen (APAP) causes severe liver injury and even acute liver failure in both mice and human. A recent study by Kim et al. (2015, Metformin ameliorates acetaminophen hepatotoxicity via Gadd45β-dependent regulation of JNK signaling in mice. J. Hepatol. 63, 75-82) showed that metformin, a first-line drug to treat type 2 diabetes mellitus, protected against APAP hepatotoxicity in mice. However, its exact protective mechanism has not been well clarified. To investigate this, C57BL/6J mice were treated with 400 mg/kg APAP and 350 mg/kg metformin was given 0.5 h pre- or 2 h post-APAP. Our data showed that pretreatment with metformin protected against APAP hepatotoxicity, as indicated by the over 80% reduction in plasma alanine aminotransferase (ALT) activities and significant decrease in centrilobular necrosis. Metabolic activation of APAP, as indicated by glutathione depletion and APAP-protein adducts formation, was also slightly inhibited. However, 2 h post-treatment with metformin still reduced liver injury by 50%, without inhibition of adduct formation. Interestingly, neither pre- nor post-treatment of metformin inhibited c-jun N-terminal kinase (JNK) activation or its mitochondrial translocation. In contrast, APAP-induced mitochondrial oxidant stress and dysfunction were greatly attenuated in these mice. In addition, mice with 2 h post-treatment with metformin also showed significant inhibition of complex I activity, which may contribute to the decreased mitochondrial oxidant stress. Furthermore, the protection was reproduced in JNK activation-absent HepaRG cells treated with 20 mM APAP followed by 0.5 or 1 mM metformin 6 h later, confirming JNK-independent protection mechanisms. Thus, metformin protects against APAP hepatotoxicity by attenuating the mitochondrial oxidant stress and subsequent mitochondrial dysfunction, and may be a potential therapeutic option for APAP overdose patients.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - James L Weemhoff
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hemantkumar Chavan
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Yuchao Xie
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Partha Krishnamurthy
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
34
|
Du K, Jaeschke H. Liuweiwuling tablets protect against acetaminophen hepatotoxicity: What is the protective mechanism? World J Gastroenterol 2016; 22:3302-3304. [PMID: 27004010 PMCID: PMC4790008 DOI: 10.3748/wjg.v22.i11.3302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/24/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Study of the effects of natural products, including traditional Chinese Medicines, on acetaminophen hepatotoxicity has gained considerable popularity in recent years, and some of them showed positive results and even promising therapeutic potentials. A recent report suggested that Liuweiwuling tablets protect against acetaminophen hepatotoxicity and promote liver regeneration in a rodent model through alleviating the inflammatory response. However, several concerns exist regarding the limitations of the experimental design and interpretation of the data presented in this manuscript.
Collapse
|
35
|
He P, Zeng B, Zhang XL, Fang DL, Zhou XQ, Wan KQ, Tian WG. Protective effect of apoptosis signal-regulating kinase 1 inhibitor against mice liver injury. ASIAN PAC J TROP MED 2016; 9:283-7. [DOI: 10.1016/j.apjtm.2016.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 12/20/2015] [Accepted: 12/30/2015] [Indexed: 11/15/2022] Open
|
36
|
Du K, McGill MR, Xie Y, Jaeschke H. Benzyl alcohol protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes but causes mitochondrial dysfunction and cell death at higher doses. Food Chem Toxicol 2015; 86:253-61. [PMID: 26522885 DOI: 10.1016/j.fct.2015.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is a serious public health problem in western countries. Current treatment options for APAP poisoning are limited and novel therapeutic intervention strategies are needed. A recent publication suggested that benzyl alcohol (BA) protects against APAP hepatotoxicity and could serve as a promising antidote for APAP poisoning. To assess the protective mechanisms of BA, C56Bl/6J mice were treated with 400 mg/kg APAP and/or 270 mg/kg BA. APAP alone caused extensive liver injury at 6 h and 24 h post-APAP. This injury was attenuated by BA co-treatment. Assessment of protein adduct formation demonstrated that BA inhibits APAP metabolic activation. In support of this, in vitro experiments also showed that BA dose-dependently inhibits cytochrome P450 activities. Correlating with the hepatoprotection of BA, APAP-induced oxidant stress and mitochondrial dysfunction were reduced. Similar results were obtained in primary mouse hepatocytes. Interestingly, BA alone caused mitochondrial membrane potential loss and cell toxicity at high doses, and its protective effect could not be reproduced in primary human hepatocytes (PHH). We conclude that BA protects against APAP hepatotoxicity mainly by inhibiting cytochrome P450 enzymes in mice. Considering its toxic effect and the loss of protection in PHH, BA is not a clinically useful treatment option for APAP overdose patient.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Yuchao Xie
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
37
|
Mitochondrial protein adducts formation and mitochondrial dysfunction during N-acetyl-m-aminophenol (AMAP)-induced hepatotoxicity in primary human hepatocytes. Toxicol Appl Pharmacol 2015; 289:213-22. [PMID: 26431796 DOI: 10.1016/j.taap.2015.09.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022]
Abstract
3'-Hydroxyacetanilide orN-acetyl-meta-aminophenol (AMAP) is generally regarded as a non-hepatotoxic analog of acetaminophen (APAP). Previous studies demonstrated the absence of toxicity after AMAP in mice, hamsters, primary mouse hepatocytes and several cell lines. In contrast, experiments with liver slices suggested that it may be toxic to human hepatocytes; however, the mechanism of toxicity is unclear. To explore this,we treated primary human hepatocytes (PHH) with AMAP or APAP for up to 48 h and measured several parameters to assess metabolism and injury. Although less toxic than APAP, AMAP dose-dependently triggered cell death in PHH as indicated by alanine aminotransferase (ALT) release and propidium iodide (PI) staining. Similar to APAP, AMAP also significantly depleted glutathione (GSH) in PHH and caused mitochondrial damage as indicated by glutamate dehydrogenase (GDH) release and the JC-1 assay. However, unlike APAP, AMAP treatment did not cause relevant c-jun-N-terminal kinase (JNK) activation in the cytosol or phospho-JNK translocation to mitochondria. To compare, AMAP toxicity was assessed in primary mouse hepatocytes (PMH). No cytotoxicity was observed as indicated by the lack of lactate dehydrogenase release and no PI staining. Furthermore, there was no GSH depletion or mitochondrial dysfunction after AMAP treatment in PMH. Immunoblotting for arylated proteins suggested that AMAP treatment caused extensive mitochondrial protein adduct formation in PHH but not in PMH. In conclusion, AMAP is hepatotoxic in PHH and the mechanism involves the formation of mitochondrial protein adducts and mitochondrial dysfunction.
Collapse
|
38
|
Xie Y, Woolbright BL, Kos M, McGill MR, Dorko K, Kumer SC, Schmitt TM, Jaeschke H. Lack of direct cytotoxicity of extracellular ATP against hepatocytes: role in the mechanism of acetaminophen hepatotoxicity. J Clin Transl Res 2015; 1:1-7. [PMID: 30873447 PMCID: PMC6410627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/15/2015] [Accepted: 09/10/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Acetaminophen (APAP) hepatotoxicity is a major cause of acute liver failure in many countries. Mechanistic studies in mice and humans have implicated formation of a reactive metabolite, mitochondrial dysfunction and oxidant stress as critical events in the pathophysiology of APAP-induced liver cell death. It was recently suggested that ATP released from necrotic cells can directly cause cell death in mouse hepatocytes and in a hepatoma cell line (HepG2). AIM To assess if ATP can directly cause cell toxicity in hepatocytes and evaluate their relevance in the human system. METHODS Primary mouse hepatocytes, human HepG2 cells, the metabolically competent human HepaRG cell line and freshly isolated primary human hepatocytes were exposed to 10-100 µM ATP or ATγPin the presence or absence of 5-10 mM APAP for 9-24 h. RESULTS ATP or ATγP was unable to directly cause cell toxicity in all 4 types of hepatocytes. In addition, ATP did not enhance APAP-induced cell death observed in primary mouse or human hepatocytes, or in HepaRG cells as measured by LDH release and by propidium iodide staining in primary mouse hepatocytes. Furthermore, addition of ATP did not cause mitochondrial dysfunction or enhance APAP-induced mitochondrial dysfunction in primary murine hepatocytes, although ATP did cause cell death in murine RAW macrophages. CONCLUSIONS It is unlikely that ATP released from necrotic cells can significantly affect cell death in human or mouse liver during APAP hepatotoxicity. RELEVANCE FOR PATIENTS Understanding the mechanisms of APAP-induced cell injury is critical for identifying novel therapeutic targets to prevent liver injury and acute liver failure in APAP overdose patients.
Collapse
Affiliation(s)
- Yuchao Xie
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | - Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | - Milan Kos
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | - Sean C Kumer
- Department of Surgery, University of Kansas Medical Center, Kansas City, United States
| | - Timothy M Schmitt
- Department of Surgery, University of Kansas Medical Center, Kansas City, United States
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| |
Collapse
|
39
|
Xie Y, Woolbright BL, Kos M, McGill MR, Dorko K, Kumer SC, Schmitt TM, Jaeschke H. Lack of Direct Cytotoxicity of Extracellular ATP against Hepatocytes: Role in the Mechanism of Acetaminophen Hepatotoxicity. J Clin Transl Res 2015; 1:100-106. [PMID: 26722668 PMCID: PMC4694640 DOI: 10.18053/jctres.201502.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Acetaminophen (APAP) hepatotoxicity is a major cause of acute liver failure in many countries. Mechanistic studies in mice and humans have implicated formation of a reactive metabolite, mitochondrial dysfunction and oxidant stress as critical events in the pathophysiology of APAP-induced liver cell death. It was recently suggested that ATP released from necrotic cells can directly cause cell death in mouse hepatocytes and in a hepatoma cell line (HepG2). AIM To assess if ATP can directly cause cell toxicity in hepatocytes and evaluate their relevance in the human system. METHODS Primary mouse hepatocytes, human HepG2 cells, the metabolically competent human HepaRG cell line and freshly isolated primary human hepatocytes were exposed to 10-100 μM ATP or ATγP in the presence or absence of 5-10 mM APAP for 9-24 h. RESULTS ATP or ATγP was unable to directly cause cell toxicity in all 4 types of hepatocytes. In addition, ATP did not enhance APAP-induced cell death observed in primary mouse or human hepatocytes, or in HepaRG cells as measured by LDH release and by propidium iodide staining in primary mouse hepatocytes. Furthermore, addition of ATP did not cause mitochondrial dysfunction or enhance APAP-induced mitochondrial dysfunction in primary murine hepatocytes, although ATP did cause cell death in murine RAW macrophages. CONCLUSIONS It is unlikely that ATP released from necrotic cells can significantly affect cell death in human or mouse liver during APAP hepatotoxicity. RELEVANCE FOR PATIENTS Understanding the mechanisms of APAP-induced cell injury is critical for identifying novel therapeutic targets to prevent liver injury and acute liver failure in APAP overdose patients.
Collapse
Affiliation(s)
- Yuchao Xie
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Benjamin L. Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Milan Kos
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mitchell R. McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sean C. Kumer
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Timothy M. Schmitt
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
40
|
Woolbright BL, Jaeschke H. Xenobiotic and Endobiotic Mediated Interactions Between the Cytochrome P450 System and the Inflammatory Response in the Liver. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:131-61. [PMID: 26233906 DOI: 10.1016/bs.apha.2015.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The liver is a unique organ in the body as it has significant roles in both metabolism and innate immune clearance. Hepatocytes in the liver carry a nearly complete complement of drug metabolizing enzymes, including numerous cytochrome P450s. While a majority of these enzymes effectively detoxify xenobiotics, or metabolize endobiotics, a subportion of these reactions result in accumulation of metabolites that can cause either direct liver injury or indirect liver injury through activation of inflammation. The liver also contains multiple populations of innate immune cells including the resident macrophages (Kupffer cells), a relatively large number of natural killer cells, and blood-derived neutrophils. While these cells are primarily responsible for clearance of pathogens, activation of these immune cells can result in significant tissue injury during periods of inflammation. When activated chronically, these inflammatory bouts can lead to fibrosis, cirrhosis, cancer, or death. This chapter will focus on interactions between how the liver processes xenobiotic and endobiotic compounds through the cytochrome P450 system, and how these processes can result in a response from the innate immune cells of the liver. A number of different clinically relevant diseases, as well as experimental models, are currently available to study mechanisms related to the interplay of innate immunity and cytochrome P450-mediated metabolism. A major focus of the chapter will be to evaluate currently understood mechanisms in the context of these diseases, as a way of outlining mechanisms that dictate the interactions between the P450 system and innate immunity.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
41
|
Ramachandran A, Lebofsky M, Yan HM, Weinman SA, Jaeschke H. Hepatitis C virus structural proteins can exacerbate or ameliorate acetaminophen-induced liver injury in mice. Arch Toxicol 2015; 89:773-83. [PMID: 25743375 PMCID: PMC4398656 DOI: 10.1007/s00204-015-1498-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/26/2015] [Indexed: 12/11/2022]
Abstract
Chronic hepatitis C virus (HCV) infection predisposes patients to develop liver failure after acetaminophen (APAP) overdose. Mechanisms involved in this were explored using transgenic mice expressing the HCV structural proteins core, E1 and E2. Treatment of C57BL/6J mice with 200 mg/kg body weight APAP resulted in significant liver injury at 6 h as indicated by elevated ALT levels, focal centrilobular necrosis and nuclear DNA fragmentation. HCV transgenic mice showed a variable response, with approximately half the animals showing exacerbation of all parameters of liver injury, while the other half was protected. HCV transgenic mice with higher liver injury had lower liver glutathione levels, elevated mitochondrial oxidative stress and enhanced release of apoptosis-inducing factor (AIF) from the mitochondria. This was accompanied by induction of a higher ER stress response and induction of autophagy. Transgenic animals showing protection against liver injury had a robust recovery of liver glutathione content at 6 h when compared to wild-type animals, accompanied by reduction in mitochondrial oxidative stress and AIF release. This was accompanied by an elevation in glutathione S-transferase mRNA levels and activity, which suggests that an efficient clearance of the reactive intermediate may contribute to the protection against APAP hepatotoxicity in these mice. These results demonstrate that while HCV infection could exacerbate APAP-induced liver injury due to induction and amplification of mitochondrial oxidant stress, it could also protect against injury by activation of APAP scavenging mechanisms.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Hui-Min Yan
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Steven A. Weinman
- Departments of Internal Medicine and Microbiology & Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
42
|
McGill MR, Du K, Xie Y, Bajt ML, Ding WX, Jaeschke H. The role of the c-Jun N-terminal kinases 1/2 and receptor-interacting protein kinase 3 in furosemide-induced liver injury. Xenobiotica 2015; 45:442-9. [PMID: 25423287 PMCID: PMC4442771 DOI: 10.3109/00498254.2014.986250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. The mechanisms of furosemide (FS) hepatotoxicity were explored in mice. Specifically, C57Bl/6 J mice were treated with 500 mg FS/kg bodyweight, and c-Jun N-terminal kinase (JNK) activation and receptor-interacting protein kinase 3 (RIP3) expression were measured by western blotting. Co-treatment with FS and the JNK inhibitor SP600125 was also performed, and FS-induced liver injury was compared in wild-type and RIP3 knockout (KO) mice. 2. JNK phosphorylation and RIP3 expression were increased in livers from the FS-treated mice as early as 6 h after treatment and persisted until at least 24 h. JNK phosphorylation was also observed in primary mouse hepatocytes and human HepaRG cells treated with FS. 3. Phosphorylated JNK translocated into mitochondria in livers, but no evidence of mitochondrial damage was observed. 4. SP600125-treated mice, SP600125 co-treated primary mouse hepatocytes and RIP3 KO mice were not protected against FS hepatotoxicity. These data show that, although JNK activation and RIP3 expression are induced by FS, neither contributes to the liver injury.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center , Kansas City, KS , USA
| | | | | | | | | | | |
Collapse
|
43
|
Wang S, Zhao J, Wang H, Liang Y, Yang N, Huang Y. Blockage of P2X7 attenuates acute lung injury in mice by inhibiting NLRP3 inflammasome. Int Immunopharmacol 2015; 27:38-45. [PMID: 25937482 PMCID: PMC7185518 DOI: 10.1016/j.intimp.2015.04.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/19/2022]
Abstract
NLRP3 inflammasome is engaged in the inflammatory response during acute lung injury (ALI). Purinergic receptor P2X7 has been reported to be upstream of NLRP3 activation. However, the therapeutic implication of P2X7 in ALI remains to be explored. The present study used lipopolysaccharide (LPS)-induced mouse model to investigate the therapeutic potential of P2X7 blockage in ALI. Our results showed that P2X7/NLRP3 inflammasome pathway was significantly upregulated in the lungs of ALI mice as compared with control mice. P2X7 antagonist A438079 suppressed NLRP3/ASC/caspase 1 activation, production of IL-1β, IL-17A and IFN-γ and neutrophil infiltration but not the production of IL-10, resulting in a significant amelioration of lung injury. Moreover, blockage of P2X7 significantly inhibited NLRP3 inflammasome activation and IL-1β production in bone marrow derived macrophages. Similar results were obtained using another P2X7 inhibitor brilliant blue G (BBG) in vivo. Thus, pharmacological blockage of P2X7/NLRP3 pathway can be considered as a potential therapeutic strategy in patients with ALI.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Jijun Zhao
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Hongyue Wang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Yingjie Liang
- Department of Pathology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Niansheng Yang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Yuefang Huang
- Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China.
| |
Collapse
|
44
|
Resveratrol prevents protein nitration and release of endonucleases from mitochondria during acetaminophen hepatotoxicity. Food Chem Toxicol 2015; 81:62-70. [PMID: 25865938 DOI: 10.1016/j.fct.2015.04.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 12/22/2022]
Abstract
Overdose of acetaminophen (APAP) is a common cause of acute liver injury and liver failure. The mechanism involves formation of a reactive metabolite, protein binding, oxidative stress and activation of c-Jun N-terminal kinase (JNK), mitochondrial dysfunction, and nuclear DNA fragmentation caused by endonucleases released from damaged mitochondria. Previous work has shown that the natural product resveratrol (RSV) can protect against APAP hepatotoxicity in mice through prevention of lipid peroxidation and anti-inflammatory effects. However, these earlier studies did not take into consideration several fundamental aspects of the pathophysiology. To address this, we treated C57Bl/6 mice with 300 mg/kg APAP followed by 50 mg/kg RSV 1.5 h later. Our results confirmed that RSV reduced liver injury after APAP overdose in mice. Importantly, RSV did not inhibit reactive metabolite formation and protein bindings, nor did it reduce activation of JNK. However, RSV decreased protein nitration after APAP treatment, possibly through direct scavenging of peroxynitrite. Interestingly, RSV also inhibited release of apoptosis-inducing factor and endonuclease G from mitochondria independent of Bax pore formation and prevented the downstream nuclear DNA fragmentation. Our data show that RSV protects against APAP hepatotoxicity both through antioxidant effects and by preventing mitochondrial release of endonucleases and nuclear DNA damage.
Collapse
|
45
|
Xie Y, Ramachandran A, Breckenridge DG, Liles JT, Lebofsky M, Farhood A, Jaeschke H. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury. Toxicol Appl Pharmacol 2015; 286:1-9. [PMID: 25818599 DOI: 10.1016/j.taap.2015.03.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 02/08/2023]
Abstract
Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients.
Collapse
Affiliation(s)
- Yuchao Xie
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - John T Liles
- Department of Biology, Gilead Sciences, Inc., Foster City, CA, USA
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, TX 78756, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
46
|
Bartlett R, Stokes L, Sluyter R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev 2015; 66:638-75. [PMID: 24928329 DOI: 10.1124/pr.113.008003] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The P2X7 receptor is a trimeric ATP-gated cation channel found predominantly, but not exclusively, on immune cells. P2X7 activation results in a number of downstream events, including the release of proinflammatory mediators and cell death and proliferation. As such, P2X7 plays important roles in various inflammatory, immune, neurologic and musculoskeletal disorders. This review focuses on the use of P2X7 antagonists in rodent models of neurologic disease and injury, inflammation, and musculoskeletal and other disorders. The cloning and characterization of human, rat, mouse, guinea pig, dog, and Rhesus macaque P2X7, as well as recent observations regarding the gating and permeability of P2X7, are discussed. Furthermore, this review discusses polymorphic and splice variants of P2X7, as well as the generation and use of P2X7 knockout mice. Recent evidence for emerging signaling pathways downstream of P2X7 activation and the growing list of negative and positive modulators of P2X7 activation and expression are also described. In addition, the use of P2X7 antagonists in numerous rodent models of disease is extensively summarized. Finally, the use of P2X7 antagonists in clinical trials in humans and future directions exploring P2X7 as a therapeutic target are described.
Collapse
Affiliation(s)
- Rachael Bartlett
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Leanne Stokes
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Ronald Sluyter
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| |
Collapse
|
47
|
Abstract
Inflammation during liver injury normally serves as a mechanism for cleaning up debris and as a stimulant for regeneration. However, aberrant levels of inflammation can provoke further liver injury and inhibit regeneration through the release of damaging reactive oxygen species. Considerable effort has gone into understanding the mechanisms that control the switch between healthy and pathological inflammation. The identification of a receptor system that detects damage-associated molecular patterns and stimulates inflammation has led to the idea of sterile inflammation. This article will focus on the role of sterile inflammation during liver injury in three models where sterile inflammation has been presumed to mediate a portion of the injury mechanism and its potential relevance for the human pathophysiology.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
48
|
Du K, Williams CD, McGill MR, Jaeschke H. Lower susceptibility of female mice to acetaminophen hepatotoxicity: Role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase. Toxicol Appl Pharmacol 2014; 281:58-66. [PMID: 25218290 DOI: 10.1016/j.taap.2014.09.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/18/2014] [Accepted: 09/02/2014] [Indexed: 12/23/2022]
Abstract
UNLABELLED Acetaminophen (APAP) overdose causes severe hepatotoxicity in animals and humans. However, the mechanisms underlying the gender differences in susceptibility to APAP overdose in mice have not been clarified. In our study, APAP (300mg/kg) caused severe liver injury in male mice but 69-77% lower injury in females. No gender difference in metabolic activation of APAP was found. Hepatic glutathione (GSH) was rapidly depleted in both genders, while GSH recovery in female mice was 2.6 fold higher in the mitochondria at 4h, and 2.5 and 3.3 fold higher in the total liver at 4h and 6h, respectively. This faster recovery of GSH, which correlated with greater induction of glutamate-cysteine ligase, attenuated mitochondrial oxidative stress in female mice, as suggested by a lower GSSG/GSH ratio at 6h (3.8% in males vs. 1.4% in females) and minimal centrilobular nitrotyrosine staining. While c-jun N-terminal kinase (JNK) activation was similar at 2 and 4h post-APAP, it was 3.1 fold lower at 6h in female mice. However, female mice were still protected by the JNK inhibitor SP600125. 17β-Estradiol pretreatment moderately decreased liver injury and oxidative stress in male mice without affecting GSH recovery. CONCLUSION The lower susceptibility of female mice is achieved by the improved detoxification of reactive oxygen due to accelerated recovery of mitochondrial GSH levels, which attenuates late JNK activation and liver injury. However, even the reduced injury in female mice was still dependent on JNK. While 17β-estradiol partially protects male mice, it does not affect hepatic GSH recovery.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - C David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
49
|
Xie Y, McGill MR, Dorko K, Kumer SC, Schmitt TM, Forster J, Jaeschke H. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicol Appl Pharmacol 2014; 279:266-274. [PMID: 24905542 DOI: 10.1016/j.taap.2014.05.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED Acetaminophen (APAP) overdose is the most prevalent cause of drug-induced liver injury in western countries. Numerous studies have been conducted to investigate the mechanisms of injury after APAP overdose in various animal models; however, the importance of these mechanisms for humans remains unclear. Here we investigated APAP hepatotoxicity using freshly isolated primary human hepatocytes (PHH) from either donor livers or liver resections. PHH were exposed to 5mM, 10mM or 20mM APAP over a period of 48 h and multiple parameters were assessed. APAP dose-dependently induced significant hepatocyte necrosis starting from 24h, which correlated with the clinical onset of human liver injury after APAP overdose. Interestingly, cellular glutathione was depleted rapidly during the first 3h. APAP also resulted in early formation of APAP-protein adducts (measured in whole cell lysate and in mitochondria) and mitochondrial dysfunction, indicated by the loss of mitochondrial membrane potential after 12h. Furthermore, APAP time-dependently triggered c-Jun N-terminal kinase (JNK) activation in the cytosol and translocation of phospho-JNK to the mitochondria. Both co-treatment and post-treatment (3h) with the JNK inhibitor SP600125 reduced JNK activation and significantly attenuated cell death at 24h and 48h after APAP. The clinical antidote N-acetylcysteine offered almost complete protection even if administered 6h after APAP and a partial protection when given at 15 h. CONCLUSION These data highlight important mechanistic events in APAP toxicity in PHH and indicate a critical role of JNK in the progression of injury after APAP in humans. The JNK pathway may represent a therapeutic target in the clinic.
Collapse
Affiliation(s)
- Yuchao Xie
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sean C Kumer
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Timothy M Schmitt
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jameson Forster
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
50
|
Burnstock G, Vaughn B, Robson SC. Purinergic signalling in the liver in health and disease. Purinergic Signal 2014; 10:51-70. [PMID: 24271096 PMCID: PMC3944046 DOI: 10.1007/s11302-013-9398-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
Purinergic signalling is involved in both the physiology and pathophysiology of the liver. Hepatocytes, Kupffer cells, vascular endothelial cells and smooth muscle cells, stellate cells and cholangiocytes all express purinoceptor subtypes activated by adenosine, adenosine 5'-triphosphate, adenosine diphosphate, uridine 5'-triphosphate or UDP. Purinoceptors mediate bile secretion, glycogen and lipid metabolism and indirectly release of insulin. Mechanical stress results in release of ATP from hepatocytes and Kupffer cells and ATP is also released as a cotransmitter with noradrenaline from sympathetic nerves supplying the liver. Ecto-nucleotidases play important roles in the signalling process. Changes in purinergic signalling occur in vascular injury, inflammation, insulin resistance, hepatic fibrosis, cirrhosis, diabetes, hepatitis, liver regeneration following injury or transplantation and cancer. Purinergic therapeutic strategies for the treatment of these pathologies are being explored.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|