1
|
Liu X, Song Y, Hu S, Bai Y, Zhang J, Tai G, Shao C, Pan Y. Serum amyloid A contributes to radiation-induced lung injury by activating macrophages through FPR2/Rac1/NF-κB pathway. Int J Biol Sci 2024; 20:4941-4956. [PMID: 39309438 PMCID: PMC11414394 DOI: 10.7150/ijbs.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Patients who receive thoracic radiotherapy may suffer from radiation-induced lung injury, but the treatment options are limited as the underlying mechanisms are unclear. Using a mouse model of right thorax irradiation with fractionated doses of X-rays for three consecutive days (8 Gy/per day), this study found that the thoracic irradiation (Th-IR) induced tissue injury with aberrant infiltration of macrophages, and it significantly increased the secretion of TNF-α, IL-1β, IL-6, TGF-β1 and serum amyloid A (SAA) in mice. Interestingly, SAA could activate macrophages and then induce epithelial-mesenchymal transition (EMT) of lung epithelial cells and fibrosis progression in lung tissue. Mechanistically, SAA enhanced the transient binding of FPR2 to Rac1 protein and further activated NF-κB signaling pathway in macrophages. Inhibition of FPR2 significantly reduced pulmonary fibrosis induced by SAA administration in mice. In addition, cimetidine could reduce the level of SAA release after irradiation and attenuate the lung injury induced by SAA or Th-IR. In conclusion, our results demonstrated that SAA activated macrophages via FPR2/Rac1/NF-κB pathway and might contribute to the Th-IR induced lung injury, which may provide a new strategy to attenuate radiation-induced adverse effects during radiotherapy.
Collapse
Affiliation(s)
- Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Yimeng Song
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Songling Hu
- Department of Preventive Dentistry, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Shanghai Medical College, Fudan University, Shanghai 200001, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guomei Tai
- Department of Radiotherapy, Nantong Tumor Hospital and the Affiliated Tumor Hospital of Nantong University, Nantong 226631, Jiangsu Province, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Malaviya R, Laskin JD, Businaro R, Laskin DL. Targeting Tumor Necrosis Factor Alpha to Mitigate Lung Injury Induced by Mustard Vesicants and Radiation. Disaster Med Public Health Prep 2023; 17:e553. [PMID: 37848400 PMCID: PMC10841250 DOI: 10.1017/dmp.2023.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Pulmonary injury induced by mustard vesicants and radiation is characterized by DNA damage, oxidative stress, and inflammation. This is associated with increases in levels of inflammatory mediators, including tumor necrosis factor (TNF)α in the lung and upregulation of its receptor TNFR1. Dysregulated production of TNFα and TNFα signaling has been implicated in lung injury, oxidative and nitrosative stress, apoptosis, and necrosis, which contribute to tissue damage, chronic inflammation, airway hyperresponsiveness, and tissue remodeling. These findings suggest that targeting production of TNFα or TNFα activity may represent an efficacious approach to mitigating lung toxicity induced by both mustards and radiation. This review summarizes current knowledge on the role of TNFα in pathologies associated with exposure to mustard vesicants and radiation, with a focus on the therapeutic potential of TNFα-targeting agents in reducing acute injury and chronic disease pathogenesis.
Collapse
Affiliation(s)
- Rama Malaviya
- Departments of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Jeffrey D. Laskin
- Departments of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Debra L. Laskin
- Departments of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
3
|
Aryankalayil MJ, Bylicky MA, Martello S, Chopra S, Sproull M, May JM, Shankardass A, MacMillan L, Vanpouille-Box C, Eke I, Scott KMK, Dalo J, Coleman CN. Microarray analysis of hub genes, non-coding RNAs and pathways in lung after whole body irradiation in a mouse model. Int J Radiat Biol 2023; 99:1702-1715. [PMID: 37212632 PMCID: PMC10615684 DOI: 10.1080/09553002.2023.2214205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE Previous research has highlighted the impact of radiation damage, with cancer patients developing acute disorders including radiation induced pneumonitis or chronic disorders including pulmonary fibrosis months after radiation therapy ends. We sought to discover biomarkers that predict these injuries and develop treatments that mitigate this damage and improve quality of life. MATERIALS AND METHODS Six- to eight-week-old female C57BL/6 mice received 1, 2, 4, 8, 12 Gy or sham whole body irradiation. Animals were euthanized 48 h post exposure and lungs removed, snap frozen and underwent RNA isolation. Microarray analysis was performed to determine dysregulation of messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA) after radiation injury. RESULTS We observed sustained dysregulation of specific RNA markers including: mRNAs, lncRNAs, and miRNAs across all doses. We also identified significantly upregulated genes that can indicate high dose exposure, including Cpt1c, Pdk4, Gdf15, and Eda2r, which are markers of senescence and fibrosis. Only three miRNAs were significantly dysregulated across all radiation doses: miRNA-142-3p and miRNA-142-5p were downregulated and miRNA-34a-5p was upregulated. IPA analysis predicted inhibition of several molecular pathways with increasing doses of radiation, including: T cell development, Quantity of leukocytes, Quantity of lymphocytes, and Cell viability. CONCLUSIONS These RNA biomarkers might be highly relevant in the development of treatments and in predicting normal tissue injury in patients undergoing radiation treatment. We are conducting further experiments in our laboratory, which includes a human lung-on-a-chip model, to develop a decision tree model using RNA biomarkers.
Collapse
Affiliation(s)
- Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shannon Martello
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mary Sproull
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jared M May
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aman Shankardass
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin M K Scott
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Juan Dalo
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
4
|
Malaviya R, Gardner CR, Rancourt RC, Smith LC, Abramova EV, Vayas KN, Gow AJ, Laskin JD, Laskin DL. Lung injury and oxidative stress induced by inhaled chlorine in mice is associated with proinflammatory activation of macrophages and altered bioenergetics. Toxicol Appl Pharmacol 2023; 461:116388. [PMID: 36690086 PMCID: PMC9960611 DOI: 10.1016/j.taap.2023.116388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Chlorine (Cl2) gas is a highly toxic and oxidizing irritant that causes life-threatening lung injuries. Herein, we investigated the impact of Cl2-induced injury and oxidative stress on lung macrophage phenotype and function. Spontaneously breathing male C57BL/6J mice were exposed to air or Cl2 (300 ppm, 25 min) in a whole-body exposure chamber. Bronchoalveolar lavage (BAL) fluid and cells, and lung tissue were collected 24 h later and analyzed for markers of injury, oxidative stress and macrophage activation. Exposure of mice to Cl2 resulted in increases in numbers of BAL cells and levels of IgM, total protein, and fibrinogen, indicating alveolar epithelial barrier dysfunction and inflammation. BAL levels of inflammatory proteins including surfactant protein (SP)-D, soluble receptor for glycation end product (sRAGE) and matrix metalloproteinase (MMP)-9 were also increased. Cl2 inhalation resulted in upregulation of phospho-histone H2A.X, a marker of double-strand DNA breaks in the bronchiolar epithelium and alveolar cells; oxidative stress proteins, heme oxygenase (HO)-1 and catalase were also upregulated. Flow cytometric analysis of BAL cells revealed increases in proinflammatory macrophages following Cl2 exposure, whereas numbers of resident and antiinflammatory macrophages were not altered. This was associated with increases in numbers of macrophages expressing cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), markers of proinflammatory activation, with no effect on mannose receptor (MR) or Ym-1 expression, markers of antiinflammatory activation. Metabolic analysis of lung cells showed increases in glycolytic activity following Cl2 exposure in line with proinflammatory macrophage activation. Mechanistic understanding of Cl2-induced injury will be useful in the identification of efficacious countermeasures for mitigating morbidity and mortality of this highly toxic gas.
Collapse
Affiliation(s)
- Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Carol R Gardner
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Raymond C Rancourt
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Ley Cody Smith
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Elena V Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA.
| |
Collapse
|
5
|
Singh R, Heaps CL, Muthuchamy M, Deveau MA, Stewart RH, Laine GA, Dongaonkar RM. Dichotomous effects of in vivo and in vitro ionizing radiation exposure on lymphatic function. Am J Physiol Heart Circ Physiol 2023; 324:H155-H171. [PMID: 36459446 DOI: 10.1152/ajpheart.00387.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
On the one hand, lymphatic dysfunction induces interstitial edema and inflammation. On the other hand, the formation of edema and inflammation induce lymphatic dysfunction. However, informed by the earlier reports of undetected apoptosis of irradiated lymphatic endothelial cells (LECs) in vivo, lymphatic vessels are commonly considered inconsequential to ionizing radiation (IR)-induced inflammatory injury to normal tissues. Primarily because of the lack of understanding of the acute effects of IR exposure on lymphatic function, acute edema and inflammation, common sequelae of IR exposure, have been ascribed solely to blood vessel damage. Therefore, in the present study, the lymphatic acute responses to IR exposure were quantified to evaluate the hypothesis that IR exposure impairs lymphatic pumping. Rat mesenteric lymphatic vessels were irradiated in vivo or in vitro, and changes in pumping were quantified in isolated vessels in vitro. Compared with sham-treated vessels, pumping was lowered in lymphatic vessels irradiated in vivo but increased in vessels irradiated in vitro. Furthermore, unlike in blood vessels, the acute effects of IR exposure in lymphatic vessels were not mediated by nitric oxide-dependent pathways in either in vivo or in vitro irradiated vessels. After cyclooxygenase blockade, pumping was partially restored in lymphatic vessels irradiated in vitro but not in vessels irradiated in vivo. Taken together, these findings demonstrated that lymphatic vessels are radiosensitive and LEC apoptosis alone may not account for all the effects of IR exposure on the lymphatic system.NEW & NOTEWORTHY Earlier studies leading to the common belief that lymphatic vessels are radioresistant either did not characterize lymphatic pumping, deemed necessary for the resolution of edema and inflammation, or did it in vivo. By characterizing pumping in vitro, the present study, for the first time, demonstrated that lymphatic pumping was impaired in vessels irradiated in vivo and enhanced in vessels irradiated in vitro. Furthermore, the pathways implicated in ionizing radiation-induced blood vessel damage did not mediate lymphatic responses.
Collapse
Affiliation(s)
- Reetu Singh
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Cristine L Heaps
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | | | - Michael A Deveau
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Randolph H Stewart
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Glen A Laine
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Ranjeet M Dongaonkar
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
6
|
Xu C, Shang Z, Najafi M. Lung Pneumonitis and Fibrosis in Cancer Therapy: A Review on Cellular and Molecular Mechanisms. Curr Drug Targets 2022; 23:1505-1525. [PMID: 36082868 DOI: 10.2174/1389450123666220907144131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
Fibrosis and pneumonitis are the most important side effects of lung tissue following cancer therapy. Radiotherapy and chemotherapy by some drugs, such as bleomycin, can induce pneumonitis and fibrosis. Targeted therapy and immunotherapy also may induce pneumonitis and fibrosis to a lesser extent compared to chemotherapy and radiotherapy. Activation of lymphocytes by immunotherapy or infiltration of inflammatory cells such as macrophages, lymphocytes, neutrophils, and mast cells following chemo/radiation therapy can induce pneumonitis. Furthermore, the polarization of macrophages toward M2 cells and the release of anti-inflammatory cytokines stimulate fibrosis. Lung fibrosis and pneumonitis may also be potentiated by some other changes such as epithelial-mesenchymal transition (EMT), oxidative stress, reduction/oxidation (redox) responses, renin-angiotensin system, and the upregulation of some inflammatory mediators such as a nuclear factor of kappa B (NF-κB), inflammasome, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Damages to the lung vascular system and the induction of hypoxia also can induce pulmonary injury following chemo/radiation therapy. This review explains various mechanisms of the induction of pneumonitis and lung fibrosis following cancer therapy. Furthermore, the targets and promising agents to mitigate lung fibrosis and pneumonitis will be discussed.
Collapse
Affiliation(s)
- Chaofeng Xu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| | - Zhongtu Shang
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| | - Masoud Najafi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Discovery of the radio-protecting effect of Ecliptae Herba, its constituents and targeting p53-mediated apoptosis in vitro and in vivo. Acta Pharm Sin B 2022; 13:1216-1230. [PMID: 36970216 PMCID: PMC10031264 DOI: 10.1016/j.apsb.2022.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Radiation protection drugs are often accompanied by toxicity, even amifostine, which has been the dominant radio-protecting drug for nearly 30 years. Furthermore, there is no therapeutic drug for radiation-induced intestinal injury (RIII). This paper intends to find a safe and effective radio-protecting ingredient from natural sources. The radio-protecting effect of Ecliptae Herba (EHE) was discovered preliminarily by antioxidant experiments and the mouse survival rate after 137Cs irradiation. EHE components and blood substances in vivo were identified through UPLC‒Q-TOF. The correlation network of "natural components in EHE-constituents migrating to blood-targets-pathways" was established to predict the active components and pathways. The binding force between potential active components and targets was studied by molecular docking, and the mechanism was further analyzed by Western blotting, cellular thermal shift assay (CETSA), and ChIP. Additionally, the expression levels of Lgr5, Axin2, Ki67, lysozyme, caspase-3, caspase-8,8-OHdG, and p53 in the small intestine of mice were detected. It was found for the first time that EHE is active in radiation protection and that luteolin is the material basis of this protection. Luteolin is a promising candidate for RⅢ. Luteolin can inhibit the p53 signaling pathway and regulate the BAX/BCL2 ratio in the process of apoptosis. Luteolin could also regulate the expression of multitarget proteins related to the same cell cycle.
Collapse
|
8
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
9
|
Wang L, Jiang J, Chen Y, Jia Q, Chu Q. The roles of CC chemokines in response to radiation. Radiat Oncol 2022; 17:63. [PMID: 35365161 PMCID: PMC8974090 DOI: 10.1186/s13014-022-02038-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/20/2022] [Indexed: 01/21/2023] Open
Abstract
Radiotherapy is an effective regimen for cancer treatment alone or combined with chemotherapy or immunotherapy. The direct effect of radiotherapy involves radiation-induced DNA damage, and most studies have focused on this area to improve the efficacy of radiotherapy. Recently, the immunomodulatory effect of radiation on the tumour microenvironment has attracted much interest. Dying tumour cells can release multiple immune-related molecules, including tumour-associated antigens, chemokines, and inflammatory mediators. Then, immune cells are attracted to the irradiated site, exerting immunostimulatory or immunosuppressive effects. CC chemokines play pivotal roles in the trafficking process. The CC chemokine family includes 28 members that attract different immune subsets. Upon irradiation, tumour cells or immune cells can release different CC chemokines. Here, we mainly discuss the importance of CCL2, CCL3, CCL5, CCL8, CCL11, CCL20 and CCL22 in radiotherapy. In irradiated normal tissues, released chemokines induce epithelial to mesenchymal transition, thus promoting tissue injury. In the tumour microenvironment, released chemokines recruit cancer-associated cells, such as tumour-infiltrating lymphocytes, myeloid-derived suppressor cells and tumour-associated macrophages, to the tumour niche. Thus, CC chemokines have protumour and antitumour properties. Based on the complex roles of CC chemokines in the response to radiation, it would be promising to target specific chemokines to alleviate radiation-induced injury or promote tumour control.
Collapse
|
10
|
Pan L, Lu Y, Li Z, Tan Y, Yang H, Ruan P, Li R. Ginkgo biloba Extract EGb761 Attenuates Bleomycin-Induced Experimental Pulmonary Fibrosis in Mice by Regulating the Balance of M1/M2 Macrophages and Nuclear Factor Kappa B (NF-κB)-Mediated Cellular Apoptosis. Med Sci Monit 2020; 26:e922634. [PMID: 32799214 PMCID: PMC7448693 DOI: 10.12659/msm.922634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The aim of this study was to show whether the standardized Ginkgo biloba extract EGb761, a traditional Chinese medicine, has a therapeutic effect on pulmonary fibrosis (PF). Material/Methods Bleomycin (BLM) was used for establishing the PF mouse model. The mice were treated with a gradient of EGb761 for 28 days to determine an appropriate drug dose. On day 28, the effect of EGb761 on lung injury and inflammation was confirmed by hematoxylin and eosin and Masson staining and evaluated by pulmonary alveolitis and Ashcroft score. The balance of M1/M2 macrophages was evaluated with the respective markers inducible nitric oxide synthase and and interleukin-10 by real-time polymerase chain reaction. Furthermore, the expressions of fibrosis-associated protein α-smooth muscle actin (SMA), related inflammatory protein transforming growth factor (TGF)-β1, the apoptosis-related proteins B-cell lymphoma-associated X protein (Bax), B-cell lymphoma (Bcl)-2, caspase-3, caspase-9, and phosphorylated nuclear factor (NF)-κB (p65) were assessed by western blot. Results On day 28, PF was induced by treating with BLM, whereas EGb761 suppressed the PF of lung tissue. The BLM-induced imbalance of M1/M2 macrophages was reduced by EGb761. Furthermore, the increasing amounts of α-SMA and TGF-β1 induced by BLM were suppressed by EGb761. In addition, the protein or messenger ribonucleic acid expression levels of phosphorylated NF-κB (p65), caspase-3, and caspase-9 were upregulated, whereas Bax and Bcl-2 were downregulated. Treatment with EGb761 restored the levels of these proteins except for caspase-9. Conclusions This study illustrated the protective effect of EGb761 on BLM-induced PF by regulating the balance of M1/M2 macrophages and NF-κB (p65)-mediated apoptosis. The results demonstrated the potential clinical therapeutic effect of EGb761, providing a novel possibility for curing PF.
Collapse
Affiliation(s)
- Ling Pan
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Yuehong Lu
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Zhanhua Li
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Yuping Tan
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Hongmei Yang
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Ping Ruan
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Ruixiang Li
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
11
|
Zhu C, Ge C, He J, Zhang X, Feng G, Fan S. Identification of Key Genes and Pathways Associated With Irradiation in Breast Cancer Tissue and Breast Cancer Cell Lines. Dose Response 2020; 18:1559325820931252. [PMID: 32684870 PMCID: PMC7346585 DOI: 10.1177/1559325820931252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is mainly a traditional treatment for breast cancer; however, the key genes and pathways in breast cancer associated with irradiation are not clear. In this study, we aimed to explore the messenger RNA expression changes between preradiation and postradiation breast cancer. The gene expression data set (GSE59733) was downloaded from Gene Expression Omnibus database. According to |log2FC (fold change) | ≥ 1 and with false discovery rate adjusted P value <.05, differentially expressed genes (DEGs) were screened and annotated by R programming software. The protein–protein interaction (PPI) network was conducted through STRING database, and subnetworks and hub genes were extracted by plug-in in Cytoscape. A total of 82 DEGs (74 upregulated and 8 downregulated genes) were identified. These DEGs mainly enriched in an intrinsic apoptotic signaling pathway and G-protein-coupled receptor binding. What’s more, tumor necrosis factor signaling pathway and interleukin 17 signaling pathway abnormally activated in postradiation tumor samples. Two characteristic subnetworks and 3 hub genes (FOS, CCL2, and CXCL12) were strongly distinguished in PPI network. Moreover, the expression level of the hub genes was confirmed in irradiated MCF-7 cell and SUM-159 cell using quantitative real-time polymerase chain reaction assay. These findings imply that these hub genes may play momentous function in breast cancer to irradiation.
Collapse
Affiliation(s)
- Changchun Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chang Ge
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junbo He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xueying Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
12
|
Farhood B, Ashrafizadeh M, Khodamoradi E, Hoseini-Ghahfarokhi M, Afrashi S, Musa AE, Najafi M. Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci 2020; 250:117570. [PMID: 32205088 DOI: 10.1016/j.lfs.2020.117570] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Accidental exposure to ionizing radiation is a serious concern to human life. Studies on the mitigation of side effects following exposure to accidental radiation events are ongoing. Recent studies have shown that radiation can activate several signaling pathways, leading to changes in the metabolism of free radicals including reactive oxygen species (ROS) and nitric oxide (NO). Cellular and molecular mechanisms show that radiation can cause disruption of normal reduction/oxidation (redox) system. Mitochondria malfunction following exposure to radiation and mutations in mitochondria DNA (mtDNA) have a key role in chronic oxidative stress. Furthermore, exposure to radiation leads to infiltration of inflammatory cells such as macrophages, lymphocytes and mast cells, which are important sources of ROS and NO. These cells generate free radicals via upregulation of some pro-oxidant enzymes such as NADPH oxidases, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Epigenetic changes also have a key role in a similar way. Other mediators such as mammalian target of rapamycin (mTOR) and peroxisome proliferator-activated receptor (PPAR), which are involved in the normal metabolism of cells have also been shown to regulate cell death following exposure to radiation. These mechanisms are tissue specific. Inhibition or activation of each of these targets can be suggested for mitigation of radiation injury in a specific tissue. In the current paper, we review the cellular and molecular changes in the metabolism of cells and ROS/NO following exposure to radiation. Furthermore, the possible strategies for mitigation of radiation injury through modulation of cellular metabolism in irradiated organs will be discussed.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Veterinary Medicine Faculty, Tabriz University, Tabriz, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Afrashi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
13
|
Beach TA, Groves AM, Williams JP, Finkelstein JN. Modeling radiation-induced lung injury: lessons learned from whole thorax irradiation. Int J Radiat Biol 2020; 96:129-144. [PMID: 30359147 PMCID: PMC6483900 DOI: 10.1080/09553002.2018.1532619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022]
Abstract
Models of thoracic irradiation have been developed as clinicians and scientists have attempted to decipher the events that led up to the pulmonary toxicity seen in human subjects following radiation treatment. The most common model is that of whole thorax irradiation (WTI), applied in a single dose. Mice, particularly the C57BL/6J strain, has been frequently used in these investigations, and has greatly informed our current understanding of the initiation and progression of radiation-induced lung injury (RILI). In this review, we highlight the sequential progression and dynamic nature of RILI, focusing primarily on the vast array of information that has been gleaned from the murine model. Ample evidence indicates a wide array of biological responses that can be seen following irradiation, including DNA damage, oxidative stress, cellular senescence and inflammation, all triggered by the initial exposure to ionizing radiation (IR) and heterogeneously maintained throughout the temporal progression of injury, which manifests as acute pneumonitis and later fibrosis. It appears that the early responses of specific cell types may promote further injury, disrupting the microenvironment and preventing a return to homeostasis, although the exact mechanisms driving these responses remains somewhat unclear. Attempts to either prevent or treat RILI in preclinical models have shown some success by targeting these disparate radiobiological processes. As our understanding of the dynamic cellular responses to radiation improves through the use of such models, so does the likelihood of preventing or treating RILI.
Collapse
Affiliation(s)
- Tyler A. Beach
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- These authors contributed equally to this publication
| | - Angela M. Groves
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- These authors contributed equally to this publication
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jacob N. Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
14
|
Radiation-Induced Normal Tissue Damage: Oxidative Stress and Epigenetic Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3010342. [PMID: 31781332 PMCID: PMC6875293 DOI: 10.1155/2019/3010342] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/23/2023]
Abstract
Radiotherapy (RT) is currently one of the leading treatments for various cancers; however, it may cause damage to healthy tissue, with both short-term and long-term side effects. Severe radiation-induced normal tissue damage (RINTD) frequently has a significant influence on the progress of RT and the survival and prognosis of patients. The redox system has been shown to play an important role in the early and late effects of RINTD. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the main sources of RINTD. The free radicals produced by irradiation can upregulate several enzymes including nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), lipoxygenases (LOXs), nitric oxide synthase (NOS), and cyclooxygenases (COXs). These enzymes are expressed in distinct ways in various cells, tissues, and organs and participate in the RINTD process through different regulatory mechanisms. In recent years, several studies have demonstrated that epigenetic modulators play an important role in the RINTD process. Epigenetic modifications primarily contain noncoding RNA regulation, histone modifications, and DNA methylation. In this article, we will review the role of oxidative stress and epigenetic mechanisms in radiation damage, and explore possible prophylactic and therapeutic strategies for RINTD.
Collapse
|
15
|
Gao Y, Li X, Gao J, Zhang Z, Feng Y, Nie J, Zhu W, Zhang S, Cao J. Metabolomic Analysis of Radiation-Induced Lung Injury in Rats: The Potential Radioprotective Role of Taurine. Dose Response 2019; 17:1559325819883479. [PMID: 31700502 PMCID: PMC6823985 DOI: 10.1177/1559325819883479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
Radiation-induced lung injury is a major dose-limiting toxicity that occurs due to thoracic radiotherapy. Metabolomics is a powerful quantitative measurement of low-molecular-weight metabolites in response to environmental disturbances. However, the metabolomic profiles of radiation-induced lung injury have not been reported yet. In this study, male Sprague-Dawley rats were subjected to a single dose of 10 or 20 Gy irradiation to the right lung. One week after radiation, the obvious morphological alteration of lung tissues after radiation was observed by hematoxylin and eosin staining through a transmission electron microscope. We then analyzed the metabolites and related pathways of radiation-induced lung injury by gas chromatography-mass spectrometry, and a total of 453 metabolites were identified. Compared to the nonirradiated left lung, 19 metabolites (8 upregulated and 11 downregulated) showed a significant difference in 10 Gy irradiated lung tissues, including mucic acid, methyl-β-d-galactopyranoside, quinoline-4-carboxylic acid, and pyridoxine. There were 31 differential metabolites (16 upregulated and 15 downregulated) between 20 Gy irradiated and nonirradiated lung tissues, including taurine, piperine, 1,2,4-benzenetriol, and lactamide. The Kyoto Encyclopedia of Genes and Genomes-based pathway analysis enriched 32 metabolic pathways between the irradiated and nonirradiated lung tissues, including pyrimidine metabolism, ATP-binding cassette transporters, aminoacyl-tRNA biosynthesis, and β-alanine metabolism. Among the dysregulated metabolites, we found that taurine promoted clonogenic survival and reduced radiation-induced necrosis in human embryonic lung fibroblast (HELF) cells. This study provides evidence indicating that radiation induces metabolic alterations of the lung. These findings significantly advance our understanding of the pathophysiology of radiation-induced lung injury from the perspective of metabolism.
Collapse
Affiliation(s)
- Yiying Gao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- Sichuan Center for Disease Control and Prevention, Sichuan, China
| | - Xugang Li
- Anshan Cancer Hospital, Anshan, China
| | | | | | - Yang Feng
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jihua Nie
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shuyu Zhang
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Farhood B, Aliasgharzadeh A, Amini P, Rezaeyan A, Tavassoli A, Motevaseli E, Shabeeb D, Musa AE, Najafi M. Mitigation of Radiation-Induced Lung Pneumonitis and Fibrosis Using Metformin and Melatonin: A Histopathological Study. ACTA ACUST UNITED AC 2019; 55:medicina55080417. [PMID: 31366142 PMCID: PMC6722577 DOI: 10.3390/medicina55080417] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
Background and objectives: Pneumonitis and fibrosis are the most common consequences of lung exposure to a high dose of ionizing radiation during an accidental radiological or nuclear event, and may lead to death, after some months to years. So far, some anti-inflammatory and antioxidant agents have been used for mitigation of lung injury. In the present study, we aimed to detect possible mitigatory effects of melatonin and metformin on radiation-induced pneumonitis and lung fibrosis. Materials and methods: 40 male mice were divided into 4 groups (10 mice in each). For control group, mice did not receive radiation or drugs. In group 2, mice were irradiated to chest area with 18 Gy gamma rays. In groups 3 and 4, mice were first irradiated similar to group 2. After 24 h, treatment with melatonin as well as metformin began. Mice were sacrificed after 100 days for determination of mitigation of lung pneumonitis and fibrosis by melatonin or metformin. Results: Results showed that both melatonin and metformin are able to mitigate pneumonitis and fibrosis markers such as infiltration of inflammatory cells, edema, vascular and alveolar thickening, as well as collagen deposition. Conclusion: Melatonin and metformin may have some interesting properties for mitigation of radiation pneumonitis and fibrosis after an accidental radiation event.
Collapse
Affiliation(s)
- Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan 8715988141, Iran
| | - Akbar Aliasgharzadeh
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan 8715988141, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Abolhasan Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Alireza Tavassoli
- Department of Pathology, Fasa University of Medical Sciences, Fasa 8668874616, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan 62010, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran 1416753955, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran.
| |
Collapse
|
17
|
Gheita HA, El-Sabbagh WA, Abdelsalam RM, Attia AS, El-Ghazaly MA. Promising role of filgrastim and α-tocopherol succinate in amelioration of gastrointestinal acute radiation syndrome (GI-ARS) in mice. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1537-1550. [PMID: 31350581 DOI: 10.1007/s00210-019-01702-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
Abstract
The protective role of α-tocopherol succinate (α-TCS) and the therapeutic efficacy of filgrastim were investigated in gastrointestinal acute radiation syndrome (GI-ARS) induced following 10 Gy whole-body γ-irradiation. Mice were randomly allocated into 5 groups: [1] normal-control, [2] irradiated-control, [3] subcutaneous (s.c.) injection of filgrastim (5 μg/kg/day) for 4 consecutive days given 1 h post-irradiation, [4] s.c. injection with α-TCS (400 mg/kg) 1 day prior to irradiation, [5] s.c. injection with α-TCS (400 mg/kg) 1 day prior to irradiation and filgrastim (5 μg/kg/day) for 4 consecutive days 1 h post-irradiation. Histopathological analysis, serum citrulline level, intestinal interleukin-1β (IL-1β), reduced glutathione (GSH), and malondialdehyde (MDA) contents as well as myeloperoxidase (MPO) activity were measured. Intestinal caspase-3, p53, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) immunopositivity were examined. In irradiated-control, MDA increased (249%) and GSH decreased (25%) compared to normal and were unaffected by filgrastim. α-TCS alone significantly reduced MDA (84.5%) and normalized GSH. The combination significantly reduced MDA (59%) and dramatically increased GSH (1573%), pointing to a possible synergistic action. In irradiated-control, MPO and IL-1β significantly increased (111% and 613%, respectively) compared to normal-control and both were significantly decreased in all treated groups. Compared to normal-control, citrulline significantly declined (68%) in irradiated-control; a significant elevation was achieved by treatments with α-TCS alone or combined with filgrastim (88% and 94%, respectively). The combination therapy significantly decreased the degree of irradiation-induced injury of the epithelium and cellular infiltration and showed the lowest histopathological scoring compared to the other groups (p ≤ 0.05). In irradiated-control, immune-reactive expressions of iNOS, COX-2, caspase-3, and p53 were remarkable (18.62%, 34.27%, 31.19%, and 27.44%, respectively) and after combination therapy were reduced (1.04%, 22.39%, 8.76%, and 4.91%, respectively). The current findings represent a first-hand strategy in dealing with GI-ARS with a potential preference to using a combined therapy of filgrastim and α-TCS.
Collapse
Affiliation(s)
- Heba A Gheita
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt.
| | - Walaa A El-Sabbagh
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amina S Attia
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona A El-Ghazaly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| |
Collapse
|
18
|
Amini P, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Cheki M, Farhood B, Yahyapour R, Shirazi A, Goushbolagh NA, Najafi M. Mechanisms for Radioprotection by Melatonin; Can it be Used as a Radiation Countermeasure? Curr Mol Pharmacol 2019; 12:2-11. [PMID: 30073934 DOI: 10.2174/1874467211666180802164449] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/06/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Melatonin is a natural body product that has shown potent antioxidant property against various toxic agents. For more than two decades, the abilities of melatonin as a potent radioprotector against toxic effects of ionizing radiation (IR) have been proved. However, in the recent years, several studies have been conducted to illustrate how melatonin protects normal cells against IR. Studies proposed that melatonin is able to directly neutralize free radicals produced by IR, leading to the production of some low toxic products. DISCUSSION Moreover, melatonin affects several signaling pathways, such as inflammatory responses, antioxidant defense, DNA repair response enzymes, pro-oxidant enzymes etc. Animal studies have confirmed that melatonin is able to alleviate radiation-induced cell death via inhibiting pro-apoptosis and upregulation of anti-apoptosis genes. These properties are very interesting for clinical radiotherapy applications, as well as mitigation of radiation injury in a possible radiation disaster. An interesting property of melatonin is mitochondrial ROS targeting that has been proposed as a strategy for mitigating effects in radiosensitive organs, such as bone marrow, gastrointestinal system and lungs. However, there is a need to prove the mitigatory effects of melatonin in experimental studies. CONCLUSION In this review, we aim to clarify the molecular mechanisms of radioprotective effects of melatonin, as well as possible applications as a radiation countermeasure in accidental exposure or nuclear/radiological disasters.
Collapse
Affiliation(s)
- Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanifeh Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Rasoul Yahyapour
- Department of Medical School, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Alireza Shirazi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Nouraddin Abdi Goushbolagh
- Department of medical Physics, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
19
|
Laskin DL, Malaviya R, Laskin JD. Role of Macrophages in Acute Lung Injury and Chronic Fibrosis Induced by Pulmonary Toxicants. Toxicol Sci 2019; 168:287-301. [PMID: 30590802 PMCID: PMC6432864 DOI: 10.1093/toxsci/kfy309] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A diverse group of toxicants has been identified that cause injury to the lung including gases (eg, ozone, chlorine), particulates/aerosols (eg, diesel exhaust, fly ash, other combustion products, mustards, nanomaterials, silica, asbestos), chemotherapeutics (eg, bleomycin), and radiation. The pathologic response to these toxicants depends on the dose and duration of exposure and their physical/chemical properties. A common response to pulmonary toxicant exposure is an accumulation of proinflammatory/cytotoxic M1 macrophages at sites of tissue injury, followed by the appearance of anti-inflammatory/wound repair M2 macrophages. It is thought that the outcome of the pathogenic responses to toxicants depends on the balance in the activity of these macrophage subpopulations. Overactivation of either M1 or M2 macrophages leads to injury and disease pathogenesis. Thus, the very same macrophage-derived mediators, released in controlled amounts to destroy injurious materials and pathogens (eg, reactive oxygen species, reactive nitrogen species, proteases, tumor necrosis factor α) and initiate wound repair (eg, transforming growth factor β, connective tissue growth factor, vascular endothelial growth factor), can exacerbate acute lung injury and/or induce chronic disease such as fibrosis, chronic obstructive pulmonary disease, and asthma, when released in excess. This review focuses on the role of macrophage subsets in acute lung injury and chronic fibrosis. Understanding how these pathologies develop following exposure to toxicants, and the contribution of resident and inflammatory macrophages to disease pathogenesis may lead to the development of novel approaches for treating lung diseases.
Collapse
Affiliation(s)
- Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | - Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
20
|
Tian X, Wang F, Luo Y, Ma S, Zhang N, Sun Y, You C, Tang G, Li S, Gong Y, Xie C. Protective Role of Nuclear Factor-Erythroid 2-Related Factor 2 Against Radiation-Induced Lung Injury and Inflammation. Front Oncol 2018; 8:542. [PMID: 30533397 PMCID: PMC6265406 DOI: 10.3389/fonc.2018.00542] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/05/2018] [Indexed: 01/19/2023] Open
Abstract
Radiation-induced lung injury (RILI) is one of the most common and fatal complications of thoracic radiotherapy. Inflammatory cell infiltration, imbalance of inflammatory cytokines, and oxidative damage were reported to be involved during RILI pathogenesis, especially in the early phase of RILI. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator of antioxidative cascades, and regulates life span of mice after administration of thoracic irradiation. We investigated the effects of Nrf2 on RILI and inflammation using Nrf2-knockout, Nrf2-overexpression and wild-type mice with or without 15 Gy ionizing radiation to thorax. Our results showed that Nrf2 deficiency aggravated radiation-induced histopathological changes, macrophage and neutrophil infiltration, serum levels of pro-inflammatory cytokines (IL-6, MCP-1, IFN-γ, TNF, and IL-12p70), and the levels of peroxidation products in the mouse lung. Moreover, loss of Nrf2 reduced radiation-induced serum levels of anti-inflammatory cytokine, IL-10, and antioxidative proteins. Nrf2 overexpression significantly alleviated radiation-induced histopathological changes, macrophages and neutrophils infiltration, serum levels of pro-inflammatory cytokines, and the levels of peroxidation products in lung tissues. Nrf2 overexpression also increased the serum levels of IL-10 and antioxidative proteins. These results indicated that Nrf2 had a protective role against radiation-induced acute lung injury and inflammation, and that antioxidative therapy might be a promising treatment for RILI.
Collapse
Affiliation(s)
- Xiaoli Tian
- Department of Radiation and Medical Oncology Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Wang
- Department of Radiation and Medical Oncology Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shijing Ma
- Department of Radiation and Medical Oncology Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nannan Zhang
- Department of Radiation and Medical Oncology Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingming Sun
- Department of Radiation and Medical Oncology Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengcheng You
- Department of Radiation and Medical Oncology Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guiliang Tang
- Department of Radiation and Medical Oncology Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuying Li
- Department of Radiation and Medical Oncology Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Sunil VR, Vayas KN, Cervelli JA, Ebramova EV, Gow AJ, Goedken M, Malaviya R, Laskin JD, Laskin DL. Protective Role of Surfactant Protein-D Against Lung Injury and Oxidative Stress Induced by Nitrogen Mustard. Toxicol Sci 2018; 166:108-122. [PMID: 30060251 PMCID: PMC6204765 DOI: 10.1093/toxsci/kfy188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nitrogen mustard (NM) is a vesicant known to cause acute pulmonary injury which progresses to fibrosis. Macrophages contribute to both of these pathologies. Surfactant protein (SP)-D is a pulmonary collectin that suppresses lung macrophage activity. Herein, we analyzed the effects of loss of SP-D on NM-induced macrophage activation and lung toxicity. Wild-type (WT) and SP-D-/- mice were treated intratracheally with PBS or NM (0.08 mg/kg). Bronchoalveolar lavage (BAL) fluid and tissue were collected 14 days later. In WT mice, NM caused an increase in total SP-D levels in BAL; multiple lower molecular weight forms of SP-D were also identified, consistent with lung injury and oxidative stress. Flow cytometric analysis of BAL cells from NM treated WT mice revealed the presence of proinflammatory and anti-inflammatory macrophages. Whereas loss of SP-D had no effect on numbers of these cells, their activation state, as measured by proinflammatory (iNOS, MMP-9), and anti-inflammatory (MR-1, Ym-1) protein expression, was amplified. Loss of SP-D also exacerbated NM-induced oxidative stress and alveolar epithelial injury, as reflected by increases in heme oxygenase-1 expression, and BAL cell and protein content. This was correlated with alterations in pulmonary mechanics. In NM-treated SP-D-/-, but not WT mice, there was evidence of edema, epithelial hypertrophy and hyperplasia, bronchiectasis, and fibrosis, as well as increases in BAL phospholipid content. These data demonstrate that activated lung macrophages play a role in NM-induced lung injury and oxidative stress. Elucidating mechanisms regulating macrophage activity may be important in developing therapeutics to treat mustard-induced lung injury.
Collapse
Affiliation(s)
- Vasanthi R Sunil
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy
| | - Kinal N Vayas
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy
| | - Jessica A Cervelli
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy
| | - Elena V Ebramova
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy
| | - Andrew J Gow
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy
| | - Michael Goedken
- Department of Environmental and Occupational Health, Research Pathology Services
| | - Rama Malaviya
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy
| | - Jeffrey D Laskin
- School of Public Health, Rutgers University, Piscataway, New Jersey 08854
| | - Debra L Laskin
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy
| |
Collapse
|
22
|
Physiological and structural changes of the lung tissue in male albino rat exposed to immobilization stress. J Cell Physiol 2018; 234:9168-9183. [DOI: 10.1002/jcp.27594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022]
|
23
|
Groves AM, Williams JP, Hernady E, Reed C, Fenton B, Love T, Finkelstein JN, Johnston CJ. A Potential Biomarker for Predicting the Risk of Radiation-Induced Fibrosis in the Lung. Radiat Res 2018; 190:513-525. [PMID: 30117783 DOI: 10.1667/rr15122.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biomarkers could play an essential role during triage in the aftermath of a radiological event, where exposure to radiation will be heterogeneous and complicated by concurrent trauma. Used alongside biodosimetry, biomarkers can identify victims in need of treatment for acute radiation effects, and might also provide valuable information on later developing consequences that need to be addressed as part of a treatment strategy. Indeed, because the lung is particularly sensitive to radiation and resultant late effects not only affect quality of life, but can also lead to morbidity, the risk of developing downstream pulmonary complications in exposed individuals requires assessment. In this study, analyses of changes in pulmonary and circulating content of club cell secretory protein (CCSP) and surfactant protein D (SP-D), expressed by epithelial club cells and type II pneumocytes in the lung, respectively, were used to evaluate pulmonary epithelial damage in several lung injury models. Using a combined radiation exposure model, fibrosis-susceptible C57BL/6J (C57) and alveolitis-prone C3H/HeJ (C3H) mice received 5 Gy total-body irradiation plus 2.5-10 Gy whole-lung irradiation, and lung and plasma samples were collected throughout the course of the radiation response, at time points ranging from 24 h to 26 weeks postirradiation. Radiation significantly reduced bronchiole CCSP coverage in C57 mice at 26 weeks, a response that varied in extent among animals, but correlated with the severity of fibrosis in each animal. Interestingly, plasma CCSP content was elevated in C57 mice at multiple time points preceding and during the fibrotic period; this response that was not observed in C3H mice. Circulating CCSP/SP-D ratios, calculated as an index of lung integrity, were similarly increased throughout the time course in C57, but not C3H, mice. Furthermore, when the thoracic doses were reduced to subthreshold levels for fibrosis induction (2.5 or 7.5 Gy), although the CCSP/SP-D ratio in lung homogenates demonstrated dose-responsive changes, this was not reflected in the plasma ratios at acute and late time points. Importantly, plasma CCSP/SP-D ratios also were not significantly altered in C57 mice exposed to LPS, and only transiently decreased in influenza-exposed mice, demonstrating a level of specificity for radiation-induced lung injury. These results indicate that the CCSP/SP-D ratio, measured in plasma, is sensitive to individual variation in radiation sensitivity, correlates with fibrosis development, can be detected early after exposure and is specific to radiation-induced injury. This suggests that the CCSP/SP-D ratio may be useful as a biomarker of radiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Angela M Groves
- Departments of a Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York
| | - Jacqueline P Williams
- b Environmental Medicine, University of Rochester Medical Center, Rochester, New York.,c Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Eric Hernady
- b Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Christina Reed
- Departments of a Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York
| | - Bruce Fenton
- c Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Tanzy Love
- d Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York
| | - Jacob N Finkelstein
- Departments of a Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York.,b Environmental Medicine, University of Rochester Medical Center, Rochester, New York.,c Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Carl J Johnston
- Departments of a Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York.,b Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
24
|
Chen C, Yang S, Zhang M, Zhang Z, Zhang SB, Wu B, Hong J, Zhang W, Lin J, Okunieff P, Zhang L. Triptolide mitigates radiation-induced pneumonitis via inhibition of alveolar macrophages and related inflammatory molecules. Oncotarget 2018; 8:45133-45142. [PMID: 28415830 PMCID: PMC5542172 DOI: 10.18632/oncotarget.16456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/14/2017] [Indexed: 11/29/2022] Open
Abstract
Ionizing radiation-induced pulmonary injury is a major limitation of radiotherapy for thoracic tumors. We have demonstrated that triptolide (TPL) could alleviate IR-induced pneumonia and pulmonary fibrosis. In this study, we explored the underlying mechanism by which TPL mitigates the effects of radiotoxicity. The results showed that: (1) Alveolar macrophages (AMs) were the primary inflammatory cells infiltrating irradiated lung tissues and were maintained at a high level for at least 17 days, which TPL could reduce by inhibiting of the production of macrophage inflammatory protein-2 (MIP-2) and its receptor CXCR2. (2) Stimulated by the co-cultured irradiated lung epithelium, AMs produced a panel of inflammative molecules (IMs), such as cytokines (TNF-α, IL-6, IL-1α, IL-1β) and chemokines (MIP-2, MCP-1, LIX). TPL-treated AMs could reduce the production of these IMs. Meanwhile, AMs isolated from irradiated lung tissue secreted significantly high levels of IMs, which could be dramatically reduced by TPL. (3) TPL suppressed the phagocytosis of AMs as well as ROS production. Our results indicate that TPL mitigates radiation-induced pulmonary inflammation through the inhibition of the infiltration, IM secretion, and phagocytosis of AMs.
Collapse
Affiliation(s)
- Chun Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China 350122
| | - Shanmin Yang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610, USA
| | - Mei Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610, USA
| | - Zhenhuan Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610, USA
| | - Steven B Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610, USA
| | - Bing Wu
- Fujian Platform for Medical Research at First Affiliated Hospital, Fujian Key Lab of Individualized Active Immunotherapy and Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou, China 350005
| | - Jinsheng Hong
- Fujian Platform for Medical Research at First Affiliated Hospital, Fujian Key Lab of Individualized Active Immunotherapy and Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou, China 350005
| | - Weijian Zhang
- Fujian Platform for Medical Research at First Affiliated Hospital, Fujian Key Lab of Individualized Active Immunotherapy and Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou, China 350005
| | - Jianhua Lin
- Fujian Platform for Medical Research at First Affiliated Hospital, Fujian Key Lab of Individualized Active Immunotherapy and Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou, China 350005
| | - Paul Okunieff
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610, USA
| | - Lurong Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610, USA.,Fujian Platform for Medical Research at First Affiliated Hospital, Fujian Key Lab of Individualized Active Immunotherapy and Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou, China 350005
| |
Collapse
|
25
|
Cebpd Is Essential for Gamma-Tocotrienol Mediated Protection against Radiation-Induced Hematopoietic and Intestinal Injury. Antioxidants (Basel) 2018; 7:antiox7040055. [PMID: 29642403 PMCID: PMC5946121 DOI: 10.3390/antiox7040055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
Gamma-tocotrienol (GT3) confers protection against ionizing radiation (IR)-induced injury. However, the molecular targets that underlie the protective functions of GT3 are not yet known. We have reported that mice lacking CCAAT enhancer binding protein delta (Cebpd−/−) display increased mortality to IR due to injury to the hematopoietic and intestinal tissues and that Cebpd protects from IR-induced oxidative stress and cell death. The purpose of this study was to investigate whether Cebpd mediates the radio protective functions of GT3. We found that GT3-treated Cebpd−/− mice showed partial recovery of white blood cells compared to GT3-treated Cebpd+/+ mice at 2 weeks post-IR. GT3-treated Cebpd−/− mice showed an increased loss of intestinal crypt colonies, which correlated with increased expression of inflammatory cytokines and chemokines, increased levels of oxidized glutathione (GSSG), S-nitrosoglutathione (GSNO) and 3-nitrotyrosine (3-NT) after exposure to IR compared to GT3-treated Cebpd+/+ mice. Cebpd is induced by IR as well as a combination of IR and GT3 in the intestine. Studies have shown that granulocyte-colony stimulating factor (G-CSF), mediates the radioprotective functions of GT3. Interestingly, we found that IR alone as well as the combination of IR and GT3 caused robust augmentation of plasma G-CSF in both Cebpd+/+ and Cebpd−/− mice. These results identify a novel role for Cebpd in GT3-mediated protection against IR-induced injury, in part via modulation of IR-induced inflammation and oxidative/nitrosative stress, which is independent of G-CSF.
Collapse
|
26
|
Transplantation of Bone Marrow Mesenchymal Stem Cells Prevents Radiation-Induced Artery Injury by Suppressing Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5942916. [PMID: 29682160 PMCID: PMC5851295 DOI: 10.1155/2018/5942916] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/16/2017] [Accepted: 12/16/2017] [Indexed: 12/26/2022]
Abstract
The present study aims to explore the protective effect of human bone marrow mesenchymal stem cells (hBMSCs) on radiation-induced aortic injury (RIAI). hBMSCs were isolated and cultured from human bone marrow. Male C57/BL mice were irradiated with a dose of 18-Gy 6MV X-ray and randomly treated with either vehicle or hBMSCs through tail vein injection with a dose of 103 or 104 cells/g of body weight (low or high dose of hBMSCs) within 24 h. Aortic inflammation, oxidative stress, and vascular remodeling were assessed by immunohistochemical staining at 3, 7, 14, 28, and 84 days after irradiation. The results revealed irradiation caused aortic cell apoptosis and fibrotic remodeling indicated by aortic thickening, collagen accumulation, and increased expression of profibrotic cytokines (CTGF and TGF-β). Further investigation showed that irradiation resulted in elevated expression of inflammation-related molecules (TNF-α and ICAM-1) and oxidative stress indicators (4-HNE and 3-NT). Both of the low and high doses of hBMSCs alleviated the above irradiation-induced pathological changes and elevated the antioxidant enzyme expression of HO-1 and catalase in the aorta. The high dose even showed a better protective effect. In conclusion, hBMSCs provide significant protection against RIAI possibly through inhibition of aortic oxidative stress and inflammation. Therefore, hBMSCs can be used as a potential therapy to treat RIAI.
Collapse
|
27
|
|
28
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
29
|
Situmorang JH, Lin HH, Lo H, Lai CC. Role of neuronal nitric oxide synthase (nNOS) at medulla in tachycardia induced by repeated administration of ethanol in conscious rats. J Biomed Sci 2018; 25:8. [PMID: 29382335 PMCID: PMC5791364 DOI: 10.1186/s12929-018-0409-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/15/2018] [Indexed: 01/14/2023] Open
Abstract
Background Intake of ethanol (alcohol) has been shown to influence cardiovascular function; the underlying brain mechanism remains unclear. Noting that nitric oxide (NO) system in the CNS is involved in the regulation of cardiovascular function, the present study examined the role of NO in medulla in ethanol-induced cardiovascular changes. Methods Ethanol was administered by oral gavage at dose of 3.2 g/kg once every day for 8 consecutive days. Changes in blood pressure (BP) and heart rate (HR) in response to ethanol were measured by radiotelemetry method in freely moving female Sprague-Dawley rats. NO modulators were applied by intracerebroventricular (ICV) injection. The protein levels of nitric oxide synthase (NOS) and NO content in rostroventral medulla were measured by Western blot and nitrate/nitrite colorimetric assay kit, respectively. Results Ethanol intake had little effects on basal BP and HR following 8 consecutive day treatments. A significant increase in HR but not BP following ethanol intake was observed at 6th and 8th, but not at 1st and 4th day treatments as compared with saline group. A decrease in the protein expression of neuronal NOS (nNOS) but not inducible NOS or endothelial NOS and a decline in the level of NO in the medulla 30 min after ethanol administration was observed at 8th day treatment. ICV treatment with NO donors attenuated ethanol-induced tachycardia effects at 8th day treatment. Ethanol produced significantly tachycardia responses when ICV nNOS inhibitors were given at 1st day treatment. Conclusion Our results suggest that medulla nNOS/NO pathways play an important role in ethanol regulation of HR.
Collapse
Affiliation(s)
- Jiro Hasegawa Situmorang
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsun-Hsun Lin
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsuan Lo
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Chia Lai
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan. .,Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
30
|
Yahyapour R, Motevaseli E, Rezaeyan A, Abdollahi H, Farhood B, Cheki M, Rezapoor S, Shabeeb D, Musa AE, Najafi M, Villa V. Reduction–oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clin Transl Oncol 2018; 20:975-988. [DOI: 10.1007/s12094-017-1828-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
|
31
|
Meyerholz DK, Sieren JC, Beck AP, Flaherty HA. Approaches to Evaluate Lung Inflammation in Translational Research. Vet Pathol 2017; 55:42-52. [PMID: 28812529 DOI: 10.1177/0300985817726117] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation is a common feature in several types of lung disease and is a frequent end point to validate lung disease models, evaluate genetic or environmental impact on disease severity, or test the efficacy of new therapies. Questions relevant to a study should be defined during experimental design and techniques selected to specifically address these scientific queries. In this review, the authors focus primarily on the breadth of techniques to evaluate lung inflammation that have both clinical and preclinical applications. Stratification of approaches to assess lung inflammation can diminish weaknesses inherent to each technique, provide data validation, and increase the reproducibility of a study. Specialized techniques (eg, imaging, pathology) often require experienced personnel to collect, evaluate, and interpret the data; these experts should be active contributors to the research team through reporting of the data. Scoring of tissue lesions is a useful method to transform observational pathologic data into semiquantitative or quantitative data for statistical analysis and enhanced rigor. Each technique to evaluate lung inflammation has advantages and limitations; understanding these parameters can help identify approaches that best complement one another to increase the rigor and translational significance of data.
Collapse
Affiliation(s)
- David K Meyerholz
- 1 Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jessica C Sieren
- 2 Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,3 Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amanda P Beck
- 4 Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Heather A Flaherty
- 5 Department of Veterinary Pathology, Iowa State University, Ames, IA, USA
| |
Collapse
|
32
|
Hall A, Troupin A, Londono-Renteria B, Colpitts TM. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection. Viruses 2017. [PMID: 28644404 PMCID: PMC5537651 DOI: 10.3390/v9070159] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development.
Collapse
Affiliation(s)
- Alex Hall
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| | - Andrea Troupin
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| | - Berlin Londono-Renteria
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Tonya M Colpitts
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| |
Collapse
|
33
|
Zhao J, Li X, Zhao X, Wang J, Xi Q, Hu G. Study on the correlation of serum amyloid A level with overall survival and radiation pneumonitis in non-small cell lung cancer patients receiving thoracic radiotherapy. PRECISION RADIATION ONCOLOGY 2017. [DOI: 10.1002/pro6.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jing Zhao
- Department of Oncology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Xiaoyu Li
- Department of Oncology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Xueqi Zhao
- Department of Oncology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Jianhua Wang
- Department of Oncology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Qingsong Xi
- Department of Oncology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Guangyuan Hu
- Department of Oncology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| |
Collapse
|
34
|
Cong X, Hubmayr RD, Li C, Zhao X. Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L371-L391. [PMID: 28062486 PMCID: PMC5374305 DOI: 10.1152/ajplung.00486.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Rolf D Hubmayr
- Emerius, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota; and
| | - Changgong Li
- Department of Pediatrics, University of Southern California, Los Angeles, California
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia;
| |
Collapse
|
35
|
Liu J, Li G, Li L, Liu Z, Zhou Q, Wang G, Chen D. Surfactant protein-D (SP-D) gene polymorphisms and serum level as predictors of susceptibility and prognosis of acute kidney injury in the Chinese population. BMC Nephrol 2017; 18:67. [PMID: 28212617 PMCID: PMC5316147 DOI: 10.1186/s12882-017-0485-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/09/2017] [Indexed: 01/05/2023] Open
Abstract
Background Injury to the kidney epithelial barrier is a characteristic feature of acute kidney injury (AKI). Serum surfactant protein-D (SP-D), a known biomarker of damaged alveolar epithelium, is also secreted by renal tubular epithelial cells. Therefore, the aim of this study was to examine the possible association of SP-D with AKI susceptibility and prognosis. Methods In this study, 159 AKI patients and 120 healthy individuals were included. SP-D polymorphisms Thr11Met and Thr160Ala, AKI patient serum SP-D levels at days 1, 3 and 7 and urine KIM-1 levels in both AKI patients and controls were examined. The obtained results were correlated with the AKI stage, duration of renal replacement therapy (RRT) and prognosis. Results Serum SP-D level in AKI patients was higher than controls (p < 0.01). SP-D 11Thr/Thr genotype was more frequent in AKI patients than in controls (p < 0.01). Furthermore, AKI patients with SP-D 11Thr/Thr genotype had significantly higher serum SP-D levels (p < 0.05) compared to other genotypes. Serum SP-D levels corrected to the progression of AKI with a peak at day 3. Furthermore, the SP-D 11Thr/Thr genotype frequency and baseline serum SP-D level were higher in patients who subsequently died. Baseline serum SP-D levels positively correlated with the urine KIM-1 levels, AKI stage and RRT duration. Conclusion In our study, elevated serum SP-D was associated with worse AKI clinical outcomes and patients with SP-D 11Thr/Thr genotype were more susceptible to AKI. Collectively, these findings suggest that SP-D may be useful as a biomarker of AKI susceptibility and prognosis.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Lianghai Li
- Department of Critical Care Medicine, Jingzhou Central Hospital, Jingzhou, Hubei, 434020, China
| | - Zhiyong Liu
- Department of Internal medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Qingshan Zhou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Dechang Chen
- Department of Critical Care Medicine, Shanghai Ruijin Hospital Affiliated with Jiaotong University, Shanghai, China.
| |
Collapse
|
36
|
Francis M, Sun R, Cervelli JA, Choi H, Mandal M, Abramova EV, Gow AJ, Laskin JD, Laskin DL. Editor's Highlight: Role of Spleen-Derived Macrophages in Ozone-Induced Lung Inflammation and Injury. Toxicol Sci 2016; 155:182-195. [PMID: 27708193 DOI: 10.1093/toxsci/kfw192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Macrophages and inflammatory mediators have been implicated in ozone toxicity. In these studies, we used splenectomized (SPX) mice to assess the contribution of splenic monocytes to pulmonary inflammation and injury induced by ozone. Cells and tissue were collected 24-72 h after exposure of mice to air or ozone (0.8 ppm, 3 h). Following ozone exposure, increased numbers of pro-inflammatory CD11b + Ly6CHi and anti-inflammatory CD11b + Ly6CLo monocytes were observed in spleens of control (CTL) mice. CD11b + Ly6CHi and MMP-9+ pro-inflammatory macrophages were also observed in lungs of CTL mice after ozone, along with CD11b + Ly6CLo and mannose receptor (MR)+ anti-inflammatory macrophages. This was accompanied by increased lung expression of proteins involved in monocyte/macrophage trafficking including CCL3, CCL4, CCR1, and AT1R. Splenectomy resulted in decreases in pro-inflammatory macrophages in the lung and down regulation of CCR2, CCL2, and CCL4, but increases in CD11b + Ly6CLo anti-inflammatory macrophages. CD11b+Ly6G+Ly6C+ granulocytic (G)- and monocytic (M)-myeloid derived suppressor cells (MDSC)s were also detected in the lungs and spleens of CTL mice; these increased after ozone exposure. Splenectomy was associated with a decrease in G-MDSCs in the lung, with no effect on M-MDSCs. Changes in lung macrophage subpopulations and MDSCs in SPX mice were correlated with reduced ozone toxicity, as measured by decreases in bronchoalveolar lavage protein content and reduced 4-hydroxynonenal expression in the lung. These data suggest that the spleen is a source of pro-inflammatory/cytotoxic macrophages that contribute to ozone-induced lung injury, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Mary Francis
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey
| | - Richard Sun
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey
| | - Jessica A Cervelli
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey
| | - Hyejeong Choi
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey
| | - Mili Mandal
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey
| | - Elena V Abramova
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, New Jersey
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey;
| |
Collapse
|
37
|
Effect of irradiation/bone marrow transplantation on alveolar epithelial type II cells is aggravated in surfactant protein D deficient mice. Histochem Cell Biol 2016; 147:49-61. [PMID: 27565967 DOI: 10.1007/s00418-016-1479-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
Abstract
Irradiation followed by bone marrow transplantation (BM-Tx) is a frequent therapeutic intervention causing pathology to the lung. Although alveolar epithelial type II (AE2) cells are essential for lung function and are damaged by irradiation, the long-term consequences of irradiation and BM-Tx are not well characterized. In addition, it is unknown whether surfactant protein D (SP-D) influences the response of AE2 cells to the injurious events. Therefore, wildtype (WT) and SP-D-/- mice were subjected to a myeloablative whole body irradiation dose of 8 Gy and subsequent BM-Tx and compared with age- and sex-matched untreated controls. AE2 cell changes were investigated quantitatively by design-based stereology. Compared with WT, untreated SP-D-/- mice showed a higher number of larger sized AE2 cells and a greater amount of surfactant-storing lamellar bodies. Irradiation and BM-Tx induced hyperplasia and hypertrophy in WT and SP-D-/- mice as well as the formation of giant lamellar bodies. The experimentally induced alterations were more severe in the SP-D-/- than in the WT mice, particularly with respect to the surfactant-storing lamellar bodies which were sometimes extremely enlarged in SP-D-/- mice. In conclusion, irradiation and BM-Tx have profound long-term effects on AE2 cells and their lamellar bodies. These data may explain some of the clinical pulmonary consequences of this procedure. The data should also be taken into account when BM-Tx is used as an experimental procedure to investigate the impact of bone marrow-derived cells for the phenotype of a specific genotype in the mouse.
Collapse
|
38
|
Sarenac Vulovic TS, Pavlovic SM, Jakovljevic VL, Janicijevic KB, Zdravkovic NS. Nitric oxide and tumour necrosis factor alpha in the process of pseudoexfoliation glaucoma. Int J Ophthalmol 2016; 9:1138-42. [PMID: 27588268 DOI: 10.18240/ijo.2016.08.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/30/2015] [Indexed: 11/23/2022] Open
Abstract
AIM To establish the role of nitric oxide (NO), ascorbic acid and tumour necrosis factor-α (TNF-α) in the pathogenesis of pseudoexfoliation glaucoma (XFG). METHODS Our study included 120 patients who were referred for cataract surgery. All patients were divided into four groups according to clinical findings: XFG, early and late pseudoexfoliation syndrome (XFS), and cataract (without pseudoexfoliation). Serum and aqueous humour levels of the ascorbic acid, NO and TNF-α were measured. The concentrations of the ascorbic acid and NO were measured by an appropriate spectrophotometric method. Enzyme-linked immunosorbent assay (ELISA) was used to determine TNF-α level. RESULTS Aqueous humour concentration of ascorbic acid was significantly lower in patients with late XFS (0.61±0.11 mmol/L) and XFG (0.48±0.15 mmol/L) compared to patients with early XFS (0.9±0.15 mmol/L) and cataract (1.16±0.22 mmol/L), while there was no difference in serum concentration in all examined groups. Aqueous humour concentration of NO was significantly higher in patients with XFG (77.7±11.4 µmol/L) compared to patients with early XFS (50.27±9.34 µmol/L) and cataract (49.77±7.1 µmol/L), while serum concentration was increased in the early stage of XFS (73.26±8.29 µmol/L). Aqueous humour level of proinflammatory cytokine TNF-α was increased in patients with XFS (early 460.04±18.32 pg/mL; late 502.42±53.23 pg/mL) and XFG (510.34±43.07 pg/mL), while there was no difference in serum level in all examined groups of patients. CONCLUSION Reduced ascorbic acid and elevated NO and inflammation related cytokine TNF-α level in aqueous humour of the patients with developed XFG suggest that oxidative stress induces local inflammation.
Collapse
Affiliation(s)
| | - Sladjana M Pavlovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Vladimir Lj Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia
| | - Katarina B Janicijevic
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia
| | - Nemanja S Zdravkovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| |
Collapse
|
39
|
Liu Y, Tan D, Tong C, Zhang Y, Xu Y, Liu X, Gao Y, Hou M. Blueberry anthocyanins ameliorate radiation-induced lung injury through the protein kinase RNA-activated pathway. Chem Biol Interact 2015; 242:363-71. [DOI: 10.1016/j.cbi.2015.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/26/2015] [Accepted: 11/03/2015] [Indexed: 01/25/2023]
|