1
|
Lin K, Wallis C, Wong EM, Edwards P, Cole A, Van Winkle L, Wexler AS. Heterogeneous deposition of regular and mentholated little cigar smoke in the lungs of Sprague-Dawley rats. Part Fibre Toxicol 2023; 20:42. [PMID: 37932763 PMCID: PMC10626780 DOI: 10.1186/s12989-023-00554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Quantifying the dose and distribution of tobacco smoke in the respiratory system is critical for understanding its toxicity, addiction potential, and health impacts. Epidemiologic studies indicate that the incidence of lung tumors varies across different lung regions, suggesting there may be a heterogeneous deposition of smoke particles leading to greater health risks in specific regions. Despite this, few studies have examined the lobar spatial distribution of inhaled particles from tobacco smoke. This gap in knowledge, coupled with the growing popularity of little cigars among youth, underscores the need for additional research with little cigars. RESULTS In our study, we analyzed the lobar deposition in rat lungs of smoke particles from combusted regular and mentholated Swisher Sweets little cigars. Twelve-week-old male and female Sprague-Dawley rats were exposed to smoke particles at a concentration of 84 ± 5 mg/m3 for 2 h, after which individual lung lobes were examined. We utilized Inductively Coupled Plasma Mass Spectrometry to quantify lobar chromium concentrations, serving as a smoke particle tracer. Our findings demonstrated an overall higher particle deposition from regular little cigars than from the mentholated ones. Higher particle deposition fraction was observed in the left and caudal lobes than other lobes. We also observed sex-based differences in the normalized deposition fractions among lobes. Animal study results were compared with the multi-path particle dosimetry (MPPD) model predictions, which showed that the model overestimated particle deposition in certain lung regions. CONCLUSIONS Our findings revealed that the particle deposition varied between different little cigar products. The results demonstrated a heterogenous deposition pattern, with higher particle deposition observed in the left and caudal lobes, especially with the mentholated little cigars. Additionally, we identified disparities between our measurements and the MPPD model. This discrepancy highlights the need to enhance the accuracy of models before extrapolating animal study results to human lung deposition. Overall, our study provides valuable insights for estimating the dose of little cigars during smoking for toxicity research.
Collapse
Affiliation(s)
- Kaisen Lin
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Air Quality Research Center, University of California, Davis, Davis, CA, 95616, USA.
| | - Christopher Wallis
- Air Quality Research Center, University of California, Davis, Davis, CA, 95616, USA
| | - Emily M Wong
- Air Quality Research Center, University of California, Davis, Davis, CA, 95616, USA
| | - Patricia Edwards
- Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA
| | - Austin Cole
- UC Davis Interdisciplinary Center for Plasma Mass Spectrometry, University of California, Davis, Davis, CA, 95616, USA
| | - Laura Van Winkle
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, 95616, USA
- Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA
| | - Anthony S Wexler
- Air Quality Research Center, University of California, Davis, Davis, CA, 95616, USA
- Department of Mechanical and Aerospace Engineering, University of California, Davis, Davis, CA, 95616, USA
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA, 95616, USA
- Department of Land, Air, and Water Resources, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
2
|
Jeon S, Lee WS, Song KS, Jeong J, Lee S, Kim S, Kim G, Kim JS, Jeong J, Cho WS. Differential particle and ion kinetics of silver nanoparticles in the lungs and biotransformation to insoluble silver sulfide. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131223. [PMID: 36948120 DOI: 10.1016/j.jhazmat.2023.131223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
The measurement of nanoparticles (NPs) in a biological matrix is essential in various toxicity studies. However, the current knowledge has limitations in differentiating particulate and ionic forms and further identification of their biotransformation. Herein, we evaluate the biotransformation and differential lung clearance kinetics of particulate and ionic forms using PEGylated silver NPs (AgNP-PEGs; 47.51 nm) and PEGylated gold NPs (AuNP-PEGs; 11.76 nm). At 0, 3, and 6 h and 1, 3, 7, and 14 days after a single pharyngeal aspiration in mice at 25 μg/mouse, half of the lung is digested by proteinase K (PK) to separate particulates and ions, and the other half is subjected to the acid digestion method for comparison. The quantitative and qualitative evaluation of lung clearance kinetics suggests that AgNP-PEGs are quickly dissolved and transformed into insoluble silver sulfide (Ag2S), which shows a fast-clearing early phase (0 -6 h; particle T1/2: 4.8 h) and slow-clearing late phase (1 -14 days; particle T1/2: 13.20 days). In contrast, AuNP-PEGs were scarcely cleared or biotransformed in the lungs for 14 days. The lung clearance kinetics of AgNPs and biotransformation shown in this study can be informed by the PK digestion method and cannot be obtained using the acid digestion method.
Collapse
Affiliation(s)
- Soyeon Jeon
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, the Republic of Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, the Republic of Korea
| | - Kyung Seuk Song
- Korea Conformity Laboratories, 8, Gaetbeol-ro 145 beon-gil, Yeonsu-gu, Incheon 21999, the Republic of Korea
| | - Jiyoung Jeong
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, the Republic of Korea
| | - Sinuk Lee
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, the Republic of Korea
| | - Songyeon Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, the Republic of Korea
| | - Gyuri Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, the Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56216, the Republic of Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, the Republic of Korea; KRIBB School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, the Republic of Korea.
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, the Republic of Korea.
| |
Collapse
|
3
|
Lee P, Kim JK, Jo MS, Kim HP, Ahn K, Park JD, Gulumian M, Oberdörster G, Yu IJ. Biokinetics of subacutely co-inhaled same size gold and silver nanoparticles. Part Fibre Toxicol 2023; 20:9. [PMID: 36997977 PMCID: PMC10064767 DOI: 10.1186/s12989-023-00515-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/24/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Toxicokinetics of nanomaterials, including studies on the absorption, distribution, metabolism, and elimination of nanomaterials, are essential in assessing their potential health effects. The fate of nanomaterials after inhalation exposure to multiple nanomaterials is not clearly understood. METHODS Male Sprague-Dawley rats were exposed to similar sizes of silver nanoparticles (AgNPs, 10.86 nm) and gold nanoparticles (AuNPs, 10.82 nm) for 28 days (6-h/day, 5-days/week for four weeks) either with separate NP inhalation exposures or with combined co-exposure in a nose-only inhalation system. Mass concentrations sampled from the breathing zone were AuNP 19.34 ± 2.55 μg/m3 and AgNP 17.38 ± 1.88 μg/m3 for separate exposure and AuNP 8.20 μg/m3 and AgNP 8.99 μg/m3 for co-exposure. Lung retention and clearance were previously determined on day 1 (6-h) of exposure (E-1) and on post-exposure days 1, 7, and 28 (PEO-1, PEO-7, and PEO-28, respectively). In addition, the fate of nanoparticles, including translocation and elimination from the lung to the major organs, were determined during the post-exposure observation period. RESULTS AuNP was translocated to the extrapulmonary organs, including the liver, kidney, spleen, testis, epididymis, olfactory bulb, hilar and brachial lymph nodes, and brain after subacute inhalation and showed biopersistence regardless of AuNP single exposure or AuNP + AgNP co-exposure, showing similar elimination half-time. In contrast, Ag was translocated to the tissues and rapidly eliminated from the tissues regardless of AuNP co-exposure. Ag was continually accumulated in the olfactory bulb and brain and persistent until PEO-28. CONCLUSION Our co-exposure study of AuNP and AgNP indicated that soluble AgNP and insoluble AuNP translocated differently, showing soluble AgNP could be dissolved into Ag ion to translocate to the extrapulmonary organs and rapidly removed from most organs except the brain and olfactory bulb. Insoluble AuNPs were continually translocated to the extrapulmonary organs, and they were not eliminated rapidly.
Collapse
Affiliation(s)
- Philku Lee
- Institute for Genomics, Biocomputing and Biotechnology, Starkville, MS, USA
| | - Jin Kwon Kim
- HCT CO., LTD, Seoicheon-Ro 578 Beon-Gil, Majang-Myeon, Icheon, 17383, Korea
| | - Mi Seong Jo
- HCT CO., LTD, Seoicheon-Ro 578 Beon-Gil, Majang-Myeon, Icheon, 17383, Korea
| | - Hoi Pin Kim
- HCT CO., LTD, Seoicheon-Ro 578 Beon-Gil, Majang-Myeon, Icheon, 17383, Korea
| | | | | | - Mary Gulumian
- Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA.
| | - Il Je Yu
- HCT CO., LTD, Seoicheon-Ro 578 Beon-Gil, Majang-Myeon, Icheon, 17383, Korea.
| |
Collapse
|
4
|
Alqahtani S, Xia L, Shannahan JH. Enhanced silver nanoparticle-induced pulmonary inflammation in a metabolic syndrome mouse model and resolvin D1 treatment. Part Fibre Toxicol 2022; 19:54. [PMID: 35933425 PMCID: PMC9356467 DOI: 10.1186/s12989-022-00495-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/28/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) exacerbates susceptibility to inhalation exposures such as particulate air pollution, however, the mechanisms responsible remain unelucidated. Previously, we determined a MetS mouse model exhibited exacerbated pulmonary inflammation 24 h following AgNP exposure compared to a healthy mouse model. This enhanced response corresponded with reduction of distinct resolution mediators. We hypothesized silver nanoparticle (AgNP) exposure in MetS results in sustained pulmonary inflammation. Further, we hypothesized treatment with resolvin D1 (RvD1) will reduce exacerbations in AgNP-induced inflammation due to MetS. RESULTS To evaluate these hypotheses, healthy and MetS mouse models were exposed to vehicle (control) or AgNPs and a day later, treated with resolvin D1 (RvD1) or vehicle (control) via oropharyngeal aspiration. Pulmonary lung toxicity was evaluated at 3-, 7-, 14-, and 21-days following AgNP exposure. MetS mice exposed to AgNPs and receiving vehicle treatment, demonstrated exacerbated pulmonary inflammatory responses compared to healthy mice. In the AgNP exposed mice receiving RvD1, pulmonary inflammatory response in MetS was reduced to levels comparable to healthy mice exposed to AgNPs. This included decreases in neutrophil influx and inflammatory cytokines, as well as elevated anti-inflammatory cytokines. CONCLUSIONS Inefficient resolution may contribute to enhancements in MetS susceptibility to AgNP exposure causing an increased pulmonary inflammatory response. Treatments utilizing specific resolution mediators may be beneficial to individuals suffering MetS following inhalation exposures.
Collapse
Affiliation(s)
- Saeed Alqahtani
- grid.169077.e0000 0004 1937 2197School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN USA ,grid.452562.20000 0000 8808 6435Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Li Xia
- grid.169077.e0000 0004 1937 2197School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN USA
| | - Jonathan H. Shannahan
- grid.169077.e0000 0004 1937 2197School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN USA
| |
Collapse
|
5
|
Huynh H, Upadhyay P, Lopez CH, Miyashiro MK, Van Winkle LS, Thomasy SM, Pinkerton KE. Inhalation of Silver Silicate Nanoparticles Leads to Transient and Differential Microglial Activation in the Rodent Olfactory Bulb. Toxicol Pathol 2022; 50:763-775. [PMID: 35768951 PMCID: PMC9529873 DOI: 10.1177/01926233221107607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Engineered silver nanoparticles (AgNPs), including silver silicate nanoparticles (Ag-SiO2 NPs), are used in a wide variety of medical and consumer applications. Inhaled AgNPs have been found to translocate to the olfactory bulb (OB) after inhalation and intranasal instillation. However, the biological effects of Ag-SiO2 NPs and their potential nose-to-brain transport have not been evaluated. The present study assessed whether inhaled Ag-SiO2 NPs can elicit microglial activation in the OB. Adult Sprague-Dawley rats inhaled aerosolized Ag-SiO2 NPs at a concentration of 1 mg/ml for 6 hours. On day 0, 1, 7, and 21 post-exposure, rats were necropsied and OB were harvested. Immunohistochemistry on OB tissues were performed with anti-ionized calcium-binding adapter molecule 1 and heme oxygenase-1 as markers of microglial activation and oxidative stress, respectively. Aerosol characterization indicated Ag-SiO2 NPs were sufficiently aerosolized with moderate agglomeration and high-efficiency deposition in the nasal cavity and olfactory epithelium. Findings suggested that acute inhalation of Ag-SiO2 NPs elicited transient and differential microglial activation in the OB without significant microglial recruitment or oxidative stress. The delayed and differential pattern of microglial activation in the OB implied that inhaled Ag-SiO2 may have translocated to the central nervous system via intra-neuronal pathways.
Collapse
Affiliation(s)
- Huong Huynh
- William R Pritchard Veterinary Medical Teaching Hospital, University of California-Davis, Davis, CA, USA.,Center for Health and the Environment, University of California – Davis, Davis, CA, USA
| | - Priya Upadhyay
- Center for Health and the Environment, University of California – Davis, Davis, CA, USA
| | - Cora H Lopez
- Center for Health and the Environment, University of California – Davis, Davis, CA, USA
| | - Malia K Miyashiro
- Center for Health and the Environment, University of California – Davis, Davis, CA, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California – Davis, Davis, CA, USA.,Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Department of Ophthalmology and Vision Science, School of Medicine, University of California - Davis, Davis, CA, USA
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California – Davis, Davis, CA, USA.,Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| |
Collapse
|
6
|
Lung Models to Evaluate Silver Nanoparticles’ Toxicity and Their Impact on Human Health. NANOMATERIALS 2022; 12:nano12132316. [PMID: 35808152 PMCID: PMC9268743 DOI: 10.3390/nano12132316] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/17/2022]
Abstract
Nanomaterials (NMs) solve specific problems with remarkable results in several industrial and scientific areas. Among NMs, silver nanoparticles (AgNPs) have been extensively employed as drug carriers, medical diagnostics, energy harvesting devices, sensors, lubricants, and bioremediation. Notably, they have shown excellent antimicrobial, anticancer, and antiviral properties in the biomedical field. The literature analysis shows a selective cytotoxic effect on cancer cells compared to healthy cells, making its potential application in cancer treatment evident, increasing the need to study the potential risk of their use to environmental and human health. A large battery of toxicity models, both in vitro and in vivo, have been established to predict the harmful effects of incorporating AgNPs in these numerous areas or those produced due to involuntary exposure. However, these models often report contradictory results due to their lack of standardization, generating controversy and slowing the advances in nanotoxicology research, fundamentally by generalizing the biological response produced by the AgNP formulations. This review summarizes the last ten years’ reports concerning AgNPs’ toxicity in cellular respiratory system models (e.g., mono-culture models, co-cultures, 3D cultures, ex vivo and in vivo). In turn, more complex cellular models represent in a better way the physical and chemical barriers of the body; however, results should be used carefully so as not to be misleading. The main objective of this work is to highlight current models with the highest physiological relevance, identifying the opportunity areas of lung nanotoxicology and contributing to the establishment and strengthening of specific regulations regarding health and the environment.
Collapse
|
7
|
Xia L, Alqahtani S, Ferreira CR, Aryal UK, Biggs K, Shannahan JH. Modulation of Pulmonary Toxicity in Metabolic Syndrome Due to Variations in Iron Oxide Nanoparticle-Biocorona Composition. NANOMATERIALS 2022; 12:nano12122022. [PMID: 35745361 PMCID: PMC9230893 DOI: 10.3390/nano12122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Nanoparticles (NPs) interact with biomolecules by forming a biocorona (BC) on their surface after introduction into the body and alter cell interactions and toxicity. Metabolic syndrome (MetS) is a prevalent condition and enhances susceptibility to inhaled exposures. We hypothesize that distinct NP-biomolecule interactions occur in the lungs due to MetS resulting in the formation of unique NP-BCs contributing to enhanced toxicity. Bronchoalveolar lavage fluid (BALF) was collected from healthy and MetS mouse models and used to evaluate variations in the BC formation on 20 nm iron oxide (Fe3O4) NPs. Fe3O4 NPs without or with BCs were characterized for hydrodynamic size and zeta potential. Unique and differentially associated proteins and lipids with the Fe3O4 NPs were identified through proteomic and lipidomic analyses to evaluate BC alterations based on disease state. A mouse macrophage cell line was utilized to examine alterations in cell interactions and toxicity due to BCs. Exposures to 6.25, 12.5, 25, and 50 μg/mL of Fe3O4 NPs with BCs for 1 h or 24 h did not demonstrate overt cytotoxicity. Macrophages increasingly associated Fe3O4 NPs following addition of the MetS BC compared to the healthy BC. Macrophages exposed to Fe3O4 NPs with a MetS-BC for 1 h or 24 h at a concentration of 25 μg/mL demonstrated enhanced gene expression of inflammatory markers: CCL2, IL-6, and TNF-α compared to Fe3O4 NPs with a healthy BC. Western blot analysis revealed activation of STAT3, NF-κB, and ERK pathways due to the MetS-BC. Specifically, the Jak/Stat pathway was the most upregulated inflammatory pathway following exposure to NPs with a MetS BC. Overall, our study suggests the formation of distinct BCs due to NP exposure in MetS, which may contribute to exacerbated inflammatory effects and susceptibility.
Collapse
Affiliation(s)
- Li Xia
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA; (L.X.); (S.A.); (K.B.)
| | - Saeed Alqahtani
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA; (L.X.); (S.A.); (K.B.)
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Christina R. Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA;
| | - Uma K. Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA;
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Katelyn Biggs
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA; (L.X.); (S.A.); (K.B.)
| | - Jonathan H. Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA; (L.X.); (S.A.); (K.B.)
- Correspondence:
| |
Collapse
|
8
|
Blackadar C, Choi KYG, Embree MF, Hennkens HM, Rodríguez-Rodríguez C, Hancock REW, Saatchi K, Häfeli UO. SPECT/CT Imaging of 111Ag for the Preclinical Evaluation of Silver-Based Antimicrobial Nanomedicines. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26382-26393. [PMID: 35653648 DOI: 10.1021/acsami.2c03609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the growing interest in developing silver-based antimicrobials, there is a need to better understand the behavior of silver within biological systems. To address this, we showed that single-photon emission computed tomography (SPECT) is a suitable method to noninvasively image 111Ag-labeled compounds in mice. Formed by neutron irradiation of palladium foil, 111Ag can be rapidly isolated with a high degree of purity and stably incorporated into antimicrobial silver nanoparticles. The imaging showed that nanoparticles are retained in the lungs for up to 48 h following intratracheal instillation, with limited uptake into the systemic circulation or organs of the reticuloendothelial system. Furthermore, in a mouse model of pulmonary Pseudomonas aeruginosa infection, the nanoparticles reduced the bacterial burden by 11.6-fold without inducing the production of pro-inflammatory mediators. Overall, SPECT imaging with 111Ag is a useful tool for noninvasively visualizing the biodistribution of silver-containing compounds in rodents. This knowledge of how silver nanoparticles distribute in vivo can be used to predict their therapeutic efficacy.
Collapse
Affiliation(s)
- Colin Blackadar
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T1Z3, Canada
| | - Ka-Yee Grace Choi
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Mary F Embree
- University of Missouri Research Reactor Center (MURR), 13513 Research Park Drive, Columbia, Missouri 65211, United States
| | - Heather M Hennkens
- University of Missouri Research Reactor Center (MURR), 13513 Research Park Drive, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T1Z3, Canada
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T1Z1, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T1Z3, Canada
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T1Z3, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| |
Collapse
|
9
|
Masekameni MD, Andraos C, Yu IJ, Gulumian M. Exposure Assessment of Silver and Gold Nanoparticles Generated During the Synthesis Process in a South African Research Laboratory. FRONTIERS IN TOXICOLOGY 2022; 4:892703. [PMID: 35694683 PMCID: PMC9174523 DOI: 10.3389/ftox.2022.892703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
During the synthesis of engineered nanomaterials (ENMs), various occupational exposures occur, leading to health consequences. To date, there is paucity of studies focused on modeling the deposition of nanoparticles emitted from ENMs synthesis processes. This study aimed to characterise and assess exposure to gold (AuNPs) and silver nanoparticles (AgNPs) during a synthesis process in a research laboratory in South Africa. AuNPs and AgNPs synthesis processes were monitored for an hour in a laboratory using a Scanning Mobility Particle Sizer. The monitoring was conducted at a height of 1.2–1.5 m (m) and 1.5 m away from the hood, assuming a 30 cm (cm) breathing circumference zone. Each synthesis process was monitored thrice to generate reliable point estimates, which were used to assess exposure over 8 hours. A time-weighted average concentration was calculated and compared to the derived 8-h occupational exposure limit (OEL) for AgNPs (0.19 μg/m3) and the proposed provisional nano reference value for AuNPs (20,000 particles/cm3). The Multiple-Path Particle Dosimetry model was used to calculate the deposition and retention of both AuNPs and AgNPs. NPs emitted during the synthesis process were dominant in the nuclei (79% for AuNPs and 54% for AgNPs), followed by the Aitken (12% for AuNPs and 29% for AgNPs), with fewer particles in the accumulation mode (9.2% for AuNPs and 17% for AgNPs). AuNPs and AgNPs generated during the synthesis process were determined at 1617.3 ± 102 cm3 (0.046 μg/m3) and 2,687 cm3 ± 620 (0.077 μg/m3), respectively. For the three exposure scenarios, none exceeded the occupational exposure limit for both AuNPs (provisional) and AgNPs (OEL). Workers in the synthesis laboratory are exposed to a concentration below the recommended occupational exposure limit for silver and the proposed provisional nano reference value for gold. Although, the concentrations to which laboratory workers are exposed to are below safe levels, the assessment of the lung deposition patterns indicate a high particle lung retention which raise concerns about long term safety of workers.
Collapse
Affiliation(s)
- Masilu D. Masekameni
- Occupational Health Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Masilu D. Masekameni,
| | - Charlene Andraos
- N Toxicology and Biochemistry Department, National Institute for Occupational Health, National 7 Health Laboratory Services, Braamfontein, Johannesburg, South Africa
| | - Il Je Yu
- HCT, Majang-myeon, Icheon, Korea
| | - Mary Gulumian
- Haematology and Molecular Medicine Department, University of the Witwatersrand, Johannesburg, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
10
|
Li S, Zhang H, Chen K, Jin M, Vu SH, Jung S, He N, Zheng Z, Lee MS. Application of chitosan/alginate nanoparticle in oral drug delivery systems: prospects and challenges. Drug Deliv 2022; 29:1142-1149. [PMID: 35384787 PMCID: PMC9004504 DOI: 10.1080/10717544.2022.2058646] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oral drug delivery systems (ODDSs) have various advantages of simple operation and few side effects. ODDSs are highly desirable for colon-targeted therapy (e.g. ulcerative colitis and colorectal cancer), as they improve therapeutic efficiency and reduce systemic toxicity. Chitosan/alginate nanoparticles (CANPs) show strong electrostatic interaction between the carboxyl group of alginates and the amino group of chitosan which leads to shrinkage and gel formation at low pH, thereby protecting the drugs from the gastrointestinal tract (GIT) and aggressive gastric environment. Meanwhile, CANPs as biocompatible polymer, show intestinal mucosal adhesion, which could extend the retention time of drugs on inflammatory sites. Recently, CANPs have attracted increasing interest as colon-targeted oral drug delivery system for intestinal diseases. The purpose of this review is to summarize the application and treatment of CANPs in intestinal diseases and insulin delivery. And then provide a future perspective of the potential and development direction of CANPs as colon-targeted ODDSs.
Collapse
Affiliation(s)
- Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.,Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| | - Hui Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Kaiwei Chen
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Mengfei Jin
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Son Hai Vu
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea.,Institute of Applied Sciences, Ho Chi Minh City University of Technology HUTECH, Ho Chi Minh City, Viet Nam
| | - Samil Jung
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhou Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao, China
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
11
|
Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. COATINGS 2022. [DOI: 10.3390/coatings12020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pollution is currently a public health problem associated with different cardiovascular and respiratory diseases. These are commonly originated as a result of the pollutant transport to the alveolar cavity after their inhalation. Once pollutants enter the alveolar cavity, they are deposited on the lung surfactant (LS) film, altering their mechanical performance which increases the respiratory work and can induce a premature alveolar collapse. Furthermore, the interactions of pollutants with LS can induce the formation of an LS corona decorating the pollutant surface, favoring their penetration into the bloodstream and distribution along different organs. Therefore, it is necessary to understand the most fundamental aspects of the interaction of particulate pollutants with LS to mitigate their effects, and design therapeutic strategies. However, the use of animal models is often invasive, and requires a careful examination of different bioethics aspects. This makes it necessary to design in vitro models mimicking some physico-chemical aspects with relevance for LS performance, which can be done by exploiting the tools provided by the science and technology of interfaces to shed light on the most fundamental physico-chemical bases governing the interaction between LS and particulate matter. This review provides an updated perspective of the use of fluid films of LS models for shedding light on the potential impact of particulate matter in the performance of LS film. It should be noted that even though the used model systems cannot account for some physiological aspects, it is expected that the information contained in this review can contribute on the understanding of the potential toxicological effects of air pollution.
Collapse
|
12
|
Andriamasinoro SN, Dieme D, Marie-Desvergne C, Serventi AM, Debia M, Haddad S, Bouchard M. Kinetic time courses of inhaled silver nanoparticles in rats. Arch Toxicol 2021; 96:487-498. [PMID: 34787690 DOI: 10.1007/s00204-021-03191-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Silver nanoparticles (Ag NPs) are priority substances closely monitored by health and safety agencies. Despite their extensive use, some aspects of their toxicokinetics remain to be documented, in particular following inhalation, the predominant route of exposure in the workplace. A same experimental protocol and exposure conditions were reproduced two times (experiments E1 and E2) to document the kinetic time courses of inhaled Ag NPs. Rats were exposed nose-only to 20 nm Ag NPs during 6 h at a target concentration of 15 mg/m3 (E1: 218,341 ± 85,512 particles/cm3; E2, 154,099 ± 5728 particles/cm3). The generated aerosol showed a uniform size distribution of nanoparticle agglomerates with a geometric mean diameter ± SD of 79.1 ± 1.88 nm in E1 and 92.47 ± 2.19 nm in E2. The time courses of elemental silver in the lungs, blood, tissues and excreta were determined over 14 days following the onset of inhalation. Excretion profiles revealed that feces were the dominant excretion route and represented on average (± SD) 5.1 ± 3.4% (E1) and 3.3 ± 2.5% (E2) of the total inhaled exposure dose. The pulmonary kinetic profile was similar in E1 and E2; the highest percentages of the inhaled dose were observed between the end of the 6-h inhalation up to 6-h following the end of exposure, and reached 1.9 ± 1.2% in E1 and 2.5 ± 1.6% in E2. Ag elements found in the GIT followed the trend observed in lungs, with a peak observed at the end of the 6-h inhalation exposure and representing 6.4 ± 4.9% of inhaled dose, confirming a certain ingestion of Ag NPs from the upper respiratory tract. Analysis of the temporal profile of Ag elements in the liver showed two distinct patterns: (i) progressive increase in values with peak at the end of the 6-h inhalation period followed by a progressive decrease; (ii) second increase in values starting at 72 h post-exposure with maximum levels at 168-h followed by a progressive decrease. The temporal profiles of Ag elements in lymphatic nodes, olfactory bulbs, kidneys and spleen also followed a pattern similar to that of the liver. However, concentrations in blood and extrapulmonary organs were much lower than lung concentrations. Overall, results show that only a small percentage of the inhaled dose reached the lungs-most of the dose likely remained in the upper respiratory tract. The kinetic time courses in the gastrointestinal tract and liver showed that part of the inhaled Ag NPs was ingested; lung, blood and extrapulmonary organ profiles also suggest that a small fraction of inhaled Ag NPs progressively reached the systemic circulation by a direct translocation from the respiratory tract.
Collapse
Affiliation(s)
- Sandra Nirina Andriamasinoro
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Denis Dieme
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | | | - Alessandra Maria Serventi
- Institute of Research of Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, QC, J3X 1S1, Canada
| | - Maximilien Debia
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Sami Haddad
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
13
|
Alqahtani S, Xia L, Jannasch A, Ferreira C, Franco J, Shannahan JH. Disruption of pulmonary resolution mediators contribute to exacerbated silver nanoparticle-induced acute inflammation in a metabolic syndrome mouse model. Toxicol Appl Pharmacol 2021; 431:115730. [PMID: 34601004 PMCID: PMC8545917 DOI: 10.1016/j.taap.2021.115730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Pre-existing conditions modulate sensitivity to numerous xenobiotic exposures such as air pollution. Specifically, individuals suffering from metabolic syndrome (MetS) demonstrate enhanced acute inflammatory responses following particulate matter inhalation. The mechanisms associated with these exacerbated inflammatory responses are unknown, impairing interventional strategies and our understanding of susceptible populations. We hypothesize MetS-associated lipid dysregulation influences mediators of inflammatory resolution signaling contributing to increased acute pulmonary toxicity. To evaluate this hypothesis, healthy and MetS mouse models were treated with either 18-hydroxy eicosapentaenoic acid (18-HEPE), 14-hydroxy docosahexaenoic acid (14-HDHA), 17-hydroxy docosahexaenoic acid (17-HDHA), or saline (control) via intraperitoneal injection prior to oropharyngeal aspiration of silver nanoparticles (AgNP). In mice receiving saline treatment, AgNP exposure resulted in an acute pulmonary inflammatory response that was exacerbated in MetS mice. A targeted lipid assessment demonstrated 18-HEPE, 14-HDHA, and 17-HDHA treatments altered lung levels of specialized pro-resolving lipid mediators (SPMs). 14-HDHA and 17-HDHA treatments more efficiently reduced the exacerbated acute inflammatory response in AgNP exposed MetS mice as compared to 18-HEPE. This included decreased neutrophilic influx, diminished induction of inflammatory cytokines/chemokines, and reduced alterations in SPMs. Examination of SPM receptors determined baseline reductions in MetS mice compared to healthy as well as decreases due to AgNP exposure. Overall, these results demonstrate AgNP exposure disrupts inflammatory resolution, specifically 14-HDHA and 17-HDHA derived SPMs, in MetS contributing to exacerbated acute inflammatory responses. Our findings identify a potential mechanism responsible for enhanced susceptibility in MetS that can be targeted for interventional therapeutic approaches.
Collapse
Affiliation(s)
- Saeed Alqahtani
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States; National Center for Pharmaceuticals, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Li Xia
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Amber Jannasch
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN, United States
| | - Christina Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN, United States
| | - Jackeline Franco
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
14
|
Smith JN, Skinner AW. Translating nanoparticle dosimetry from conventional in vitro systems to occupational inhalation exposures. JOURNAL OF AEROSOL SCIENCE 2021; 155:10.1016/j.jaerosci.2021.105771. [PMID: 35979194 PMCID: PMC9380399 DOI: 10.1016/j.jaerosci.2021.105771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
As encouraged by Toxicity Testing in the 21st Century, researchers increasingly apply high-throughput in vitro approaches to identify and characterize nanoparticle hazards, including conventional aqueous cell culture systems to assess respiratory hazards. Translating nanoparticle dose from conventional toxicity testing systems to relevant human exposures remains a major challenge for assessing occupational risk of nanoparticle exposures. Here, we explored existing computational tools and data available to translate nanoparticle dose metrics from cellular test systems to inhalation exposures of silver nanoparticles in humans. We used the Multiple-Path Particle Dosimetry (MPPD) Model to predict nanoparticle deposition of humans exposed to 20 and 110 nm silver nanoparticles at 0.9 μg/m3 over an 8 h period, the proposed National Institute of Occupational Safety and Health (NIOSH) recommended exposure limit (REL). MPPD predicts 8.1 and 3.7 μg of silver deposited in an 8 h period for 20 and 110 nm nanoparticles, respectively, with 20 nm particles displaying nearly 11-fold higher total surface area deposited. Peak deposited nanoparticle concentrations occurred more proximal in the pulmonary tract compared to mass deposition patterns (generation 4 vs. generations 20-21, respectively) due to regional differences in lung lining fluid volumes. Assuming 0.4% nanoparticle dissolution by mass measured in previous studies predicted peak concentrations of silver ions in cells of 1.06 and 0.89 μg/mL for 20 and 110 nm particles, respectively. Both predicted concentrations are below the measured toxic threshold of 1.7 μg/mL of silver ions in cells from in vitro assessments. Assuming 4% dissolution by mass predicted 10-fold higher silver concentrations in tissues, peaking at 10.6 and 8.9 μg/mL, for 20 and 110 nm nanoparticles respectively, exceeding the observed in vitro toxic threshold and highlighting the importance and sensitivity of dissolution rates. Overall, this approach offers a framework for extrapolating nanotoxicity results from in vitro cell culture systems to human exposures. Aligning appropriate dose metrics from in vitro and in vivo hazard characterizations and human pulmonary doses from occupational exposures are critical components for successful nanoparticle risk assessment and worker protection providing guidance for designing future in vitro studies aimed at relevant human exposures.
Collapse
Affiliation(s)
- Jordan Ned Smith
- Biological Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland, WA, 99354, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew W. Skinner
- Biological Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland, WA, 99354, USA
| |
Collapse
|
15
|
Smith D, Neu-Baker NM, Eastlake AC, Zurbenko IG, Brenner SA. Evaluation of classification methods for identifying multiwalled carbon nanotubes collected on mixed cellulose ester filter media. J Microsc 2021; 283:102-116. [PMID: 33825198 DOI: 10.1111/jmi.13012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 12/23/2022]
Abstract
Enhanced darkfield microscopy (EDFM) and hyperspectral imaging (HSI) are being evaluated as a potential rapid screening modality to reduce the time-to-knowledge for direct visualisation and analysis of filter media used to sample nanoparticulate from work environments, as compared to the current analytical gold standard of transmission electron microscopy (TEM). Here, we compare accuracy, specificity, and sensitivity of several hyperspectral classification models and data preprocessing techniques to determine how to most effectively identify multiwalled carbon nanotubes (MWCNTs) in hyperspectral images. Several classification schemes were identified that are capable of classifying pixels as MWCNT(+) or MWCNT(-) in hyperspectral images with specificity and sensitivity over 99% on the test dataset. Functional principal component analysis (FPCA) was identified as an appropriate data preprocessing technique, testing optimally when coupled with a quadratic discriminant analysis (QDA) model with forward stepwise variable selection and with a support vector machines (SVM) model. The success of these methods suggests that EDFM-HSI may be reliably employed to assess filter media exposed to MWCNTs. Future work will evaluate the ability of EDFM-HSI to quantify MWCNTs collected on filter media using this classification algorithm framework using the best-performing model identified here - quadratic discriminant analysis with forward stepwise selection on functional principal component data - on an expanded sample set.
Collapse
Affiliation(s)
- Devin Smith
- Department of Epidemiology & Biostatistics, School of Public Health, State University of New York (SUNY) at Albany, Rensselaer, New York.,Present address: Department of Mathematics, School of Science, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| | - Nicole M Neu-Baker
- College of Nanoscale Science & Engineering, State University of New York (SUNY) Polytechnic Institute, Albany, New York
| | - Adrienne C Eastlake
- National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio, USA
| | - Igor G Zurbenko
- Department of Epidemiology & Biostatistics, School of Public Health, State University of New York (SUNY) at Albany, Rensselaer, New York
| | - Sara A Brenner
- College of Nanoscale Science & Engineering, State University of New York (SUNY) Polytechnic Institute, Albany, New York.,Present address: United States Food and Drug Administration (FDA), Office of In Vitro Diagnostics and Radiological Health, Office of Product Evaluation and Quality, 10903 New Hampshire Avenue, Silver Spring, MA, 20993, USA
| |
Collapse
|
16
|
Frippiat T, Paindaveine C, Duprez JN, Delguste C, Mainil J, Art T. Evaluation of the Bactericidal Effect of Nebulized Silver Nanoparticles on Common Respiratory Bacteria in Horses- In Vitro Studies. J Equine Vet Sci 2021; 103:103635. [PMID: 34281634 DOI: 10.1016/j.jevs.2021.103635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
Antimicrobial resistance is increasing in both human and veterinary medicine. Bacteria can be part of the etiology of respiratory disorders in horses. Bactericidal activity of silver has been largely described and silver is currently used in veterinary therapeutic applications such as wound dressings. The aim of this study was to assess the in vitro bactericidal effects of nebulized silver nanoparticles (AgNP) on 2 common equine respiratory bacteria, Streptococcus equi subsp. zooepidemicus and Actinobacillus equuli subsp. equuli. Firstly, antimicrobial susceptibility of AgNP was determined over time by turbidity assessment in liquid broth. Secondly, bacterial growth inhibition was tested after instillation or after nebulization of low (100 ppm) and high (500, 1,000 and 2,000 ppm) concentrations of AgNP on agar plate. Both bacteria were susceptible to AgNP, even at dilution 1:4 for A. equuli and 1:8 for S. zooepidemicus after 8 hours of incubation, and 1:256 for both bacteria after 24 hours of incubation. The bacterial growth was partially inhibited at low concentration and completely inhibited at high concentrations of instilled AgNP. The bacterial growth was completely inhibited after nebulization of low concentrations of AgNP for A. equuli and high concentrations of AgNP for S. zooepidemicus. We concluded nebulized AgNP could be a candidate for innovative therapeutic way against bacterial respiratory disorders in horses. Nevertheless, further investigations are required to assess the in vivo potential and toxicity of nebulized AgNP.
Collapse
Affiliation(s)
- Thibault Frippiat
- Equine Sports Medicine Centre, Faculty of Veterinary Medicine, University of Liege, Belgium; Equine Sports Medicine, Laren, The Netherlands.
| | - Charlotte Paindaveine
- Equine Sports Medicine Centre, Faculty of Veterinary Medicine, University of Liege, Belgium
| | - Jean-Noel Duprez
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liege, Belgium
| | - Catherine Delguste
- General Services, Faculty of Veterinary Medicine, University of Liege, Belgium
| | - Jacques Mainil
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liege, Belgium
| | - Tatiana Art
- Equine Sports Medicine Centre, Faculty of Veterinary Medicine, University of Liege, Belgium
| |
Collapse
|
17
|
Pulmonary Exposure to Copper Oxide Nanoparticles Leads to Neurotoxicity via Oxidative Damage and Mitochondrial Dysfunction. Neurotox Res 2021; 39:1160-1170. [PMID: 33826131 DOI: 10.1007/s12640-021-00358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Copper oxide nanoparticles (CuONPs) are widely used in pharmaceutical, food, and textile industries. They have been shown to cause lung, liver, and kidney damage. However, whether an intratracheal instillation of CuONPs would affect the brain and its underlying mechanisms remain poorly studied. In this study, healthy C57BL/6J male mice were equally subdivided into control group, low-dose (30 μg/animal), medium-dose (50 μg/animal), and high-dose (100 μg/animal) CuONPs-treated groups. Mice were subjected to acute exposure of CuONPs via intratracheal instillation. Brain histopathology, inflammatory factors, oxidative stress markers, and mitochondrial function-related protein expression were determined. Our results demonstrated that CuONPs caused a dose-dependent brain damage in mice. Histopathological changes in the brain, elevation of inflammatory factors (Tnf, Il-6), and significant alterations in oxidative stress markers were also observed after treatment with CuONPs. Intriguingly, we did not observe infiltration of macrophage cell. Moreover, Tim23, TFAM, and MFN2 protein expression levels showed the decreasing trend after treatment with CuONPs. Taken together, these results indicate that pulmonary exposure to CuONPs induces pathological damage, inflammation, oxidative stress, and mitochondrial dysfunction in the cerebral cortex, suggesting that neurotoxicity caused by pulmonary exposure of CuONPs needs more attention from the public and relevant departments.
Collapse
|
18
|
Rosário F, Duarte IF, Pinto RJB, Santos C, Hoet PHM, Oliveira H. Biodistribution and pulmonary metabolic effects of silver nanoparticles in mice following acute intratracheal instillations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2301-2314. [PMID: 32885333 DOI: 10.1007/s11356-020-10563-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
The respiratory tract is the route of entry for accidentally inhaled AgNPs, which can reach the lungs and redistribute to other main organs through systemic circulation. In the present work, we aimed to evaluate silver biodistribution and biological effects after 1 or 2 intratracheal instillations (IT) of two differently sized PVP-coated AgNPs (5 and 50 nm-3 mg/kg) and ionic silver (AgNO3-1 mg/kg bw) in mice. Furthermore, nuclear magnetic resonance (NMR) metabolomics was applied to unveil pulmonary metabolic variations. Animals exposed to 5 nm AgNP (AgNP5) showed higher levels of ionic silver in organs, especially in the lung, spleen, kidney and liver, while animals exposed to 50 nm AgNP (AgNP50) showed higher levels of silver in the blood. Animals exposed to AgNP50 excreted higher amounts of silver than those exposed to AgNP5, which is consistent with higher tissue accumulation of silver in animals exposed to the latter. Lung metabolic profiling revealed several Ag-induced alterations in metabolites involved in different pathways, such as glycolysis and tricarboxylic acid (TCA) cycle, amino acid and phospholipid metabolism, and antioxidant defense. Notably, most of the metabolic changes observed after 1 IT were absent in animals subjected to 2 IT of AgNO3, or reversed for AgNPs, suggesting adaptation mechanisms to cope with the initial insult and recover homeostasis. Graphical abstract.
Collapse
Affiliation(s)
- Fernanda Rosário
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-093, Aveiro, Portugal.
| | - Ricardo J B Pinto
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-093, Aveiro, Portugal
| | - Conceição Santos
- Department of Biology, LAQV/REQUIMTE, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Peter H M Hoet
- Occupational and Environmental Toxicology, KU Leuven, ON1 Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
19
|
Zou W, Li X, Li C, Sun Y, Zhang X, Jin C, Jiang K, Zhou Q, Hu X. Influence of Size and Phase on the Biodegradation, Excretion, and Phytotoxicity Persistence of Single-Layer Molybdenum Disulfide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12295-12306. [PMID: 32852947 DOI: 10.1021/acs.est.0c02642] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The increasing applications of single-layer molybdenum disulfide (SLMoS2) pose great potential risks associated with environmental exposure. This study found that metallic-phase SLMoS2 with nanoscale (N-1T-SLMoS2, ∼400 nm) and microscale (M-1T-SLMoS2, ∼3.6 μm) diameters at 10-25 mg/L induced significant algal growth inhibition (maximum 72.7 and 74.6%, respectively), plasmolysis, and oxidative damage, but these alterations were recoverable. Nevertheless, membrane permeability, chloroplast damage, and chlorophyll biosynthesis reduction were persistent. By contrast, the growth inhibition (maximum 55.3%) and adverse effects of nano-sized semiconductive-phase SLMoS2 (N-2H-SLMoS2, ∼400 nm) were weak and easily alleviated after 96 h of recovery. N-1T-SLMoS2 (0.011 μg/h) and N-2H-SLMoS2 (0.008 μg/h) were quickly biodegraded to soluble Mo compared with M-1T-SLMoS2 (0.004 μg/h) and excreted by algae. Incomplete biodegradation of SLMoS2 (26.8-43.9%) did not significantly mitigate its toxicity. Proteomics and metabolomics indicated that the downregulation of proteins (50.7-99.2%) related to antioxidants and photosynthesis and inhibition of carbon fixation and carbohydrate metabolism contributed to the persistent phytotoxicity. These findings highlight the roles and mechanisms of the size and phase in the persistent phytotoxicity of SLMoS2, which has potential implications for risk assessment and environmental applications of nanomaterials.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xinyu Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Chonghao Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Yuanyuan Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
20
|
Wang F, Liu J, Zeng H. Interactions of particulate matter and pulmonary surfactant: Implications for human health. Adv Colloid Interface Sci 2020; 284:102244. [PMID: 32871405 PMCID: PMC7435289 DOI: 10.1016/j.cis.2020.102244] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022]
Abstract
Particulate matter (PM), which is the primary contributor to air pollution, has become a pervasive global health threat. When PM enters into a respiratory tract, the first body tissues to be directly exposed are the cells of respiratory tissues and pulmonary surfactant. Pulmonary surfactant is a pivotal component to modulate surface tension of alveoli during respiration. Many studies have proved that PM would interact with pulmonary surfactant to affect the alveolar activity, and meanwhile, pulmonary surfactant would be adsorbed to the surface of PM to change the toxic effect of PM. This review focuses on recent studies of the interactions between micro/nanoparticles (synthesized and environmental particles) and pulmonary surfactant (natural surfactant and its models), as well as the health effects caused by PM through a few significant aspects, such as surface properties of PM, including size, surface charge, hydrophobicity, shape, chemical nature, etc. Moreover, in vitro and in vivo studies have shown that PM leads to oxidative stress, inflammatory response, fibrosis, and cancerization in living bodies. By providing a comprehensive picture of PM-surfactant interaction, this review will benefit both researchers for further studies and policy-makers for setting up more appropriate regulations to reduce the adverse effects of PM on public health.
Collapse
Affiliation(s)
- Feifei Wang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
21
|
Vu A, McCray PB. New Directions in Pulmonary Gene Therapy. Hum Gene Ther 2020; 31:921-939. [PMID: 32814451 PMCID: PMC7495918 DOI: 10.1089/hum.2020.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
The lung has long been a target for gene therapy, yet efficient delivery and phenotypic disease correction has remained challenging. Although there have been significant advancements in gene therapies of other organs, including the development of several ex vivo therapies, in vivo therapeutics of the lung have been slower to transition to the clinic. Within the past few years, the field has witnessed an explosion in the development of new gene addition and gene editing strategies for the treatment of monogenic disorders. In this review, we will summarize current developments in gene therapy for cystic fibrosis, alpha-1 antitrypsin deficiency, and surfactant protein deficiencies. We will explore the different gene addition and gene editing strategies under investigation and review the challenges of delivery to the lung.
Collapse
Affiliation(s)
- Amber Vu
- Stead Family Department of Pediatrics, Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
22
|
Malaviya P, Shukal D, Vasavada AR. Nanotechnology-based Drug Delivery, Metabolism and Toxicity. Curr Drug Metab 2020; 20:1167-1190. [PMID: 31902350 DOI: 10.2174/1389200221666200103091753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/02/2019] [Accepted: 11/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanoparticles (NPs) are being used extensively owing to their increased surface area, targeted delivery and enhanced retention. NPs have the potential to be used in many disease conditions. Despite widespread use, their toxicity and clinical safety still remain a major concern. OBJECTIVE The purpose of this study was to explore the metabolism and toxicological effects of nanotherapeutics. METHODS Comprehensive, time-bound literature search was done covering the period from 2010 till date. The primary focus was on the metabolism of NP including their adsorption, degradation, clearance, and bio-persistence. This review also focuses on updated investigations on NPs with respect to their toxic effects on various in vitro and in vivo experimental models. RESULTS Nanotechnology is a thriving field of biomedical research and an efficient drug delivery system. Further their applications are under investigation for diagnosis of disease and as medical devices. CONCLUSION The toxicity of NPs is a major concern in the application of NPs as therapeutics. Studies addressing metabolism, side-effects and safety of NPs are desirable to gain maximum benefits of nanotherapeutics.
Collapse
Affiliation(s)
- Pooja Malaviya
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad 380052, India.,Ph.D. Scholars, Manipal Academy of Higher Education, Manipal, India
| | - Dhaval Shukal
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad 380052, India.,Ph.D. Scholars, Manipal Academy of Higher Education, Manipal, India
| | - Abhay R Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad 380052, India
| |
Collapse
|
23
|
Hadrup N, Sharma AK, Loeschner K, Jacobsen NR. Pulmonary toxicity of silver vapours, nanoparticles and fine dusts: A review. Regul Toxicol Pharmacol 2020; 115:104690. [PMID: 32474071 DOI: 10.1016/j.yrtph.2020.104690] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Abstract
Silver is used in a wide range of products, and during their production and use, humans may be exposed through inhalation. Therefore, it is critical to know the concentration levels at which adverse effects may occur. In rodents, inhalation of silver nanoparticles has resulted in increased silver in the lungs, lymph nodes, liver, kidney, spleen, ovaries, and testes. Reported excretion pathways of pulmonary silver are urinary and faecal excretion. Acute effects in humans of the inhalation of silver include lung failure that involved increased heart rate and decreased arterial blood oxygen pressure. Argyria-a blue-grey discoloration of skin due to deposited silver-was observed after pulmonary exposure in 3 individuals; however, the presence of silver in the discolorations was not tested. Argyria after inhalation seems to be less likely than after oral or dermal exposure. Repeated inhalation findings in rodents have shown effects on lung function, pulmonary inflammation, bile duct hyperplasia, and genotoxicity. In our evaluation, the range of NOAEC values was 0.11-0.75 mg/m3. Silver in the ionic form is likely more toxic than in the nanoparticle form but that difference could reflect their different biokinetics. However, silver nanoparticles and ions have a similar pattern of toxicity, probably reflecting that the effect of silver nanoparticles is primarily mediated by released ions. Concerning genotoxicity studies, we evaluated silver to be positive based on studies in mammalian cells in vitro and in vivo when considering various exposure routes. Carcinogenicity data are absent; therefore, no conclusion can be provided on this endpoint.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, DK, 2100, Copenhagen, Denmark.
| | - Anoop K Sharma
- Division for Risk Assessment and Nutrition, Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Denmark
| | - Katrin Loeschner
- Division for Food Technology, Research Group for Nano-Bio Science, National Food Institute, Technical University of Denmark, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, DK, 2100, Copenhagen, Denmark.
| |
Collapse
|
24
|
Alqahtani S, Kobos LM, Xia L, Ferreira C, Franco J, Du X, Shannahan JH. Exacerbation of Nanoparticle-Induced Acute Pulmonary Inflammation in a Mouse Model of Metabolic Syndrome. Front Immunol 2020; 11:818. [PMID: 32457752 PMCID: PMC7221136 DOI: 10.3389/fimmu.2020.00818] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology has the capacity to revolutionize numerous fields and processes, however, exposure-induced health effects are of concern. The majority of nanoparticle (NP) safety evaluations have been performed utilizing healthy models and have demonstrated the potential for pulmonary toxicity. A growing proportion of individuals suffer diseases that may enhance their susceptibility to exposures. Specifically, metabolic syndrome (MetS) is increasingly prevalent and is a risk factor for the development of chronic diseases including type-2 diabetes, cardiovascular disease, and cancer. MetS is a combination of conditions which includes dyslipidemia, obesity, hypertension, and insulin resistance. Due to the role of lipids in inflammatory signaling, we hypothesize that MetS-associated dyslipidemia may modulate NP-induced immune responses. To examine this hypothesis, mice were fed either a control diet or a high-fat western diet (HFWD) for 14-weeks. A subset of mice were treated with atorvastatin for the final 7-weeks to modulate lipids. Mice were exposed to silver NPs (AgNPs) via oropharyngeal aspiration and acute toxicity endpoints were evaluated 24-h post-exposure. Mice on the HFWD demonstrated MetS-associated alterations such as increased body weight and cholesterol compared to control-diet mice. Cytometry analysis of bronchoalveolar lavage fluid (BALF) demonstrated exacerbation of AgNP-induced neutrophilic influx in MetS mice compared to healthy. Additionally, enhanced proinflammatory mRNA expression and protein levels of monocyte chemoattractant protein-1, macrophage inflammatory protein-2, and interleukin-6 were observed in MetS mice compared to healthy following exposure. AgNP exposure reduced mRNA expression of enzymes involved in lipid metabolism, such as arachidonate 5-lipoxygenase and arachidonate 15-lipoxygenase in both mouse models. Exposure to AgNPs decreased inducible nitric oxide synthase gene expression in MetS mice. An exploratory lipidomic profiling approach was utilized to screen lipid mediators involved in pulmonary inflammation. This assessment indicates the potential for reduced levels of lipids mediators of inflammatory resolution (LMIR) in the MetS model compared to healthy mice following AgNP exposure. Statin treatment inhibited enhanced inflammatory responses as well as alterations in LMIR observed in the MetS model due to AgNP exposure. Taken together our data suggests that MetS exacerbates the acute toxicity induced by AgNPs exposure possibly via a disruption of LMIR leading to enhanced pulmonary inflammation.
Collapse
Affiliation(s)
- Saeed Alqahtani
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States.,National Center for Pharmaceuticals, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Lisa M Kobos
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Li Xia
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Christina Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN, United States
| | - Jackeline Franco
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Xuqin Du
- Department of Occupational Medicine and Toxicology, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
25
|
Li Y, Cummins E. Hazard characterization of silver nanoparticles for human exposure routes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:704-725. [PMID: 32167009 DOI: 10.1080/10934529.2020.1735852] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 05/23/2023]
Abstract
Silver nanoparticles (AgNPs) have been widely used for a multitude of applications without full comprehensive knowledge regarding their safety. In particular, lack of data on hazard characterization may lead to uncertainties regarding potential human health risk. To provide the foundation for human health risk assessment of AgNPs, this study evaluates existing hazard characterization data, including reported pharmacokinetics, symptoms, and their corresponding dose-response relationships. Human equivalent relationships are also provided by extrapolation from animal dose-response relationships. From the data analyzed, it appears that AgNPs may persist for long periods (from days to years) in the human body. It was found that AgNP toxicity on traditional major targets of exogenous substances were generally underestimated. Some omissions of toxicity on sensitive systems in the AgNP toxicity assessment require attention, such as reprotoxicity and neurotoxicity. The necessity of the establishment of toxicity tests specifically for nanomaterials is highlighted. The scientific basis of a toxicity testing strategy is advised by this study, which paves the way for the monitoring and regulation of the ENP utilization in various industries.
Collapse
Affiliation(s)
- Yingzhu Li
- School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD), National University of Ireland, Dublin, Ireland
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD), National University of Ireland, Dublin, Ireland
| |
Collapse
|
26
|
Jo MS, Kim JK, Kim Y, Kim HP, Kim HS, Ahn K, Lee JH, Faustman EM, Gulumian M, Kelman B, Yu IJ. Mode of silver clearance following 28-day inhalation exposure to silver nanoparticles determined from lung burden assessment including post-exposure observation periods. Arch Toxicol 2020; 94:773-784. [PMID: 32157349 DOI: 10.1007/s00204-020-02660-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/03/2020] [Indexed: 11/26/2022]
Abstract
Recently revised OECD inhalation toxicity testing guidelines require measurements of lung burden immediately after and for periods following exposure for nanomaterials. Lung burden is a function of pulmonary deposition and retention of nanoparticles. Using lung burden studies as per OECD guidelines, it may be possible to assess clearance mechanisms of nanoparticles. In this study, male rats were exposed to silver nanoparticle (AgNP) aerosols (18.1-19.6 nm) generated from a spark generator. Exposure groups consisted of (1) control (fresh air), (2) low (31.2 ± 8.5 µg/m3), (3) moderate (81.8 ± 11.4 µg/m3), and (4) high concentrations (115.6 ± 30.5 µg/m3). Rats were exposed for 6-h/day, 5-days/week for 4 weeks (28-days) based on the revised OECD test guideline 412. Bronchoalveolar lavage (BAL) fluids were collected on post-exposure observation (PEO)-1 and PEO-7 days and analyzed for inflammatory cells and inflammatory biomarkers. The lung burdens of Ag from AgNPs were measured on PEO-1, PEO-7, and PEO-28 days to obtain quantitative mass concentrations per lung. Differential counting of blood cells and inflammatory biomarkers in BAL fluid and histopathological evaluation of lung tissue indicated that exposure to the high concentrations of AgNP aerosol induced inflammation at PEO-1, slowly resolved at PEO-7 and completely resolved at PEO-28 days. Lung burden measurement suggested that Ag from AgNPs was cleared through two different modes; fast and slow clearance. The fast clearance component was concentration-dependent with half-times ranging from two to four days and clearance rates of 0.35-0.17/day-1 from low to high concentrations. The slow clearance had half-times of 100, 57, and 76 days and clearance rates of 0.009, 0.012, and 0.007/day-1 for the high, moderate and low concentration exposure. The exact mechanism of clearance is not known currently. The fast clearance component which was concentration-dependent could be dependent on the dissolution of AgNPs and the slow clearance would be due to slow clearance of the low dissolution AgNPs secondary particles originating from silver ions reacting with biogenic anions. These secondary AgNPs might be cleared by mechanisms other than dissolution such as mucociliary escalation, translocation to the lymphatic system or other organs.
Collapse
Affiliation(s)
- Mi Seong Jo
- HCTm CO., LTD, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon, 17383, Korea
| | - Jin Kwon Kim
- Department of Mechanical Engineering, Hanyang University, Ansan, Korea
| | - Younghun Kim
- HCTm CO., LTD, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon, 17383, Korea
| | - Hoi Pin Kim
- HCTm CO., LTD, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon, 17383, Korea
| | - Hee Sang Kim
- HCTm CO., LTD, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon, 17383, Korea
- Department of Mechanical Engineering, Hanyang University, Ansan, Korea
| | - Kangho Ahn
- Department of Mechanical Engineering, Hanyang University, Ansan, Korea
| | - Ji Hyun Lee
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, USA
| | - Mary Gulumian
- National Institute for Occupational Health, Johannesburg, South Africa
- Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Il Je Yu
- HCTm CO., LTD, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon, 17383, Korea.
| |
Collapse
|
27
|
Sutunkova MP, Solovyeva SN, Chernyshov IN, Klinova SV, Gurvich VB, Shur VY, Shishkina EV, Zubarev IV, Privalova LI, Katsnelson BA. Manifestation of Systemic Toxicity in Rats after a Short-Time Inhalation of Lead Oxide Nanoparticles. Int J Mol Sci 2020; 21:ijms21030690. [PMID: 31973040 PMCID: PMC7038071 DOI: 10.3390/ijms21030690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022] Open
Abstract
Outbred female rats were exposed to inhalation of lead oxide nanoparticle aerosol produced right then and there at a concentration of 1.30 ± 0.10 mg/m3 during 5 days for 4 h a day in a nose-only setup. A control group of rats were sham-exposed in parallel under similar conditions. Even this short-time exposure of a relatively low level was associated with nanoparticles retention demonstrable by transmission electron microscopy in the lungs and the olfactory brain. Some impairments were found in the organism’s status in the exposed group, some of which might be considered lead-specific toxicological outcomes (in particular, increase in reticulocytes proportion, in δ-aminolevulinic acid (δ-ALA) urine excretion, and the arterial hypertension’s development).
Collapse
Affiliation(s)
- Marina P. Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Svetlana N. Solovyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Ivan N. Chernyshov
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Svetlana V. Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Vladimir B. Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Vladimir Ya. Shur
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Ekaterina V. Shishkina
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Ilya V. Zubarev
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Larisa I. Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Boris A. Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
- Correspondence: ; Tel.: +7-343-253-04-21; Fax: +7-343-371-77-40
| |
Collapse
|
28
|
Kim B, Park JH, Sailor MJ. Rekindling RNAi Therapy: Materials Design Requirements for In Vivo siRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903637. [PMID: 31566258 PMCID: PMC6891135 DOI: 10.1002/adma.201903637] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/12/2019] [Indexed: 05/07/2023]
Abstract
With the recent FDA approval of the first siRNA-derived therapeutic, RNA interference (RNAi)-mediated gene therapy is undergoing a transition from research to the clinical space. The primary obstacle to realization of RNAi therapy has been the delivery of oligonucleotide payloads. Therefore, the main aims is to identify and describe key design features needed for nanoscale vehicles to achieve effective delivery of siRNA-mediated gene silencing agents in vivo. The problem is broken into three elements: 1) protection of siRNA from degradation and clearance; 2) selective homing to target cell types; and 3) cytoplasmic release of the siRNA payload by escaping or bypassing endocytic uptake. The in vitro and in vivo gene silencing efficiency values that have been reported in publications over the past decade are quantitatively summarized by material type (lipid, polymer, metal, mesoporous silica, and porous silicon), and the overall trends in research publication and in clinical translation are discussed to reflect on the direction of the RNAi therapeutics field.
Collapse
Affiliation(s)
- Byungji Kim
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Michael J Sailor
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
29
|
Abstract
OBJECTIVE Exposure to airborne particulate matter (PM) is estimated to cause millions of premature deaths annually. This work conveys known routes of exposure to PM and resultant health effects. METHODS A review of available literature. RESULTS Estimates for daily PM exposure are provided. Known mechanisms by which insoluble particles are transported and removed from the body are discussed. Biological effects of PM, including immune response, cytotoxicity, and mutagenicity, are reported. Epidemiological studies that outline the systemic health effects of PM are presented. CONCLUSION While the integrated, per capita, exposure of PM for a large fraction of the first-world may be less than 1 mg per day, links between several syndromes, including attention deficit hyperactivity disorder (ADHD), autism, loss of cognitive function, anxiety, asthma, chronic obstructive pulmonary disease (COPD), hypertension, stroke, and PM exposure have been suggested. This article reviews and summarizes such links reported in the literature.
Collapse
|
30
|
Krajnak K, Waugh S, Stefaniak A, Schwegler-Berry D, Roach K, Barger M, Roberts J. Exposure to graphene nanoparticles induces changes in measures of vascular/renal function in a load and form-dependent manner in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:711-726. [PMID: 31370764 DOI: 10.1080/15287394.2019.1645772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphenes isolated from crystalline graphite are used in several industries. Employees working in the production of graphenes may be at risk of developing respiratory problems attributed to inhalation or contact with particulate matter (PM). However, graphene nanoparticles might also enter the circulation and accumulate in other organs. The aim of this study was to examine how different forms of graphene affect peripheral vascular functions, generation of reactive oxygen species (ROS) and changes in gene expression that may be indicative of cardiovascular and/or renal dysfunction. In the first investigation, different doses of graphene nanoplatelets were administered to mice via oropharyngeal aspiration. These effects were compared to those of dispersion medium (DM) and carbon black (CB). Gene expression alterations were observed in the heart for CB and graphene; however, only CB produced changes in peripheral vascular function. In the second study, oxidized forms of graphene were administered. Both oxidized forms increased the sensitivity of peripheral blood vessels to adrenoreceptor-mediated vasoconstriction and induced changes in ROS levels in the heart. Based upon the results of these investigations, exposure to graphene nanoparticles produced physiological and alterations in ROS and gene expression that may lead to cardiovascular dysfunction. Evidence indicates that the effects of these particles may be dependent upon dose and graphene form to which an individual may be exposed to.
Collapse
Affiliation(s)
- K Krajnak
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - S Waugh
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Ab Stefaniak
- b Respiratory Health Division, West Virginia University , Morgantown , WV , USA
| | - D Schwegler-Berry
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | | | - M Barger
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Jr Roberts
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| |
Collapse
|
31
|
Schulte PA, Leso V, Niang M, Iavicoli I. Current state of knowledge on the health effects of engineered nanomaterials in workers: a systematic review of human studies and epidemiological investigations. Scand J Work Environ Health 2019; 45:217-238. [PMID: 30653633 PMCID: PMC6494687 DOI: 10.5271/sjweh.3800] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Objectives The widespread application of nano-enabled products and the increasing likelihood for workplace exposures make understanding engineered nanomaterial (ENM) effects in exposed workers a public and occupational health priority. The aim of this study was to report on the current state of knowledge on possible adverse effects induced by ENM in humans to determine the toxicological profile of each type of ENM and potential biomarkers for early detection of such effects in workers. Methods A systematic review of human studies and epidemiological investigations of exposed workers relative to the possible adverse effects for the most widely used ENM was performed through searches of major scientific databases including Web of Science, Scopus, and PubMed. Results Twenty-seven studies were identified. Most of the epidemiological investigations were cross-sectional. The review found limited evidence of adverse effects in workers exposed to the most commonly used ENM. However, some biological alterations are suggestive for possible adverse impacts. The primary targets of some ENM exposures were the respiratory and cardiovascular systems. Changes in biomarker levels compared with controls were also observed; however, limited exposure data and the relatively short period since the first exposure may have influenced the incidence of adverse effects found in epidemiological studies. Conclusions There is a need for longitudinal epidemiologic investigations with clear exposure characterizations for various ENM to discover potential adverse health effects and identify possible indicators of early biological alterations. In this state of uncertainty, precautionary controls for each ENM are warranted while further study of potential health effects continues.
Collapse
Affiliation(s)
- Paul A Schulte
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1150 Tusculum Avenue, MS C-14, Cincinnati, OH 45226, USA.
| | | | | | | |
Collapse
|
32
|
Holan V, Javorkova E, Vrbova K, Vecera Z, Mikuska P, Coufalik P, Kulich P, Skoupy R, Machala M, Zajicova A, Rossner P. A murine model of the effects of inhaled CuO nanoparticles on cells of innate and adaptive immunity - a kinetic study of a continuous three-month exposure. Nanotoxicology 2019; 13:952-963. [PMID: 31012774 DOI: 10.1080/17435390.2019.1602679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The inhalation or application of nanoparticles (NPs) has serious impacts on immunological reactivity. However, the effects of NPs on the immune system are influenced by numerous factors, which cause a high variability in the results. Here, mice were exposed to a three month continuous inhalation of copper oxide (CuO) NPs, and at different time intervals (3, 14, 42 and 93 days), the composition of cell populations of innate and adaptive immunity was evaluated in the spleen by flow cytometry. The ability of spleen cells from exposed and control mice to respond to stimulation with T- or B-cell mitogens by proliferation and by production of cytokines IL-2, IL-6, IL-10, IL-17 and IFN-γ was characterized. The results showed that the inhalation of CuO NPs predominantly affects the cells of innate immunity (changes in the proportion of eosinophils, neutrophils, macrophages and antigen-presenting cells) with a minimal effect on the percentage of T and B lymphocytes. However, the proliferative and secretory activity of T cells was already significantly enhanced after 3 days from the start of inhalation, decreased on day 14 and normalized at the later time intervals. There was no correlation between the impacts of NPs on the cells of innate and adaptive immunity. The results have shown that the inhalation of CuO NPs significantly alters the composition of cell populations of innate immunity and modulates the proliferation and production of cytokines by cells of the adaptive immune system. However, the immunomodulatory effects of inhaled NPs strongly depend on the time of inhalation.
Collapse
Affiliation(s)
- Vladimir Holan
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences , Prague , Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University , Prague , Czech Republic
| | - Eliska Javorkova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences , Prague , Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University , Prague , Czech Republic
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences , Prague , Czech Republic
| | - Zbynek Vecera
- Department of Environmental Analytical Chemistry, Institute of Analytic Chemistry of the Czech Academy of Sciences , Brno , Czech Republic
| | - Pavel Mikuska
- Department of Environmental Analytical Chemistry, Institute of Analytic Chemistry of the Czech Academy of Sciences , Brno , Czech Republic
| | - Pavel Coufalik
- Department of Environmental Analytical Chemistry, Institute of Analytic Chemistry of the Czech Academy of Sciences , Brno , Czech Republic
| | - Pavel Kulich
- Department of Chemistry and Toxicology, Veterinary Research Institute , Brno , Czech Republic
| | - Radim Skoupy
- Department of Electron Microscopy, Institute of Scientific Instruments of the Czech Academy of Sciences , Brno , Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute , Brno , Czech Republic
| | - Alena Zajicova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences , Prague , Czech Republic
| | - Pavel Rossner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences , Prague , Czech Republic
| |
Collapse
|
33
|
The clinical pharmacokinetics impact of medical nanometals on drug delivery system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:47-61. [DOI: 10.1016/j.nano.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
|
34
|
Consequent stages of developing a multi-compartmental mechanistic model for chronically inhaled nanoparticles pulmonary retention. Toxicol Rep 2019; 6:279-287. [PMID: 30984565 PMCID: PMC6446054 DOI: 10.1016/j.toxrep.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 11/22/2022] Open
Abstract
A mechanistic model of inhaled particle pulmonary retention is adjusted to describe that of nanoparticles (NP). Its stucture and parameters were verified based on experiments with NPs of Fe2O3, SiO2 and NiO. Unlike modeling mineral dusts retention, for nano-aerosols it proved necessary to describe NP solubilization . Under chronic inhalation exposure, a damage to clearance mechanisms makes adjust the model.
The paper retraces the development of a mechanistic multicompartmental system model describing particle retention in lungs under chronic inhalation exposures. This model was first developed and experimentally tested for various conditions of exposure to polydisperse dusts of SiO2 or TiO2. Later on it was successfully used as a basis for analyzing patterns in the retention of nanoparticles having different chemical compositions (Fe2O3, SiO2, NiO). This is the first publication presenting the outcomes of modeling lung retention of nickel oxide nano-aerosols under chronic inhalation exposure. The most significant adaptation of the above-mentioned model to the conditions of exposure to metal-oxide nanoparticles is associated with the need to describe mathematically not only the physiological mechanisms of their elimination but also their solubilization “in vivo” bearing in mind that the relative contribution of the latter may be different for nanoparticles of different nature and predominant in some cases. Using nickel oxide as an example, it is suggested as well that damage to the physiological pulmonary clearance mechanisms by particularly toxic nanoparticles may result in lung toxicokinetics becoming nonlinear.
Collapse
|
35
|
Neu-Baker NM, Eastlake AC, Brenner SA. Sample preparation method for visualization of nanoparticulate captured on mixed cellulose ester filter media by enhanced darkfield microscopy and hyperspectral imaging. Microsc Res Tech 2019; 82:878-883. [PMID: 30768825 DOI: 10.1002/jemt.23231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 12/10/2018] [Accepted: 01/20/2019] [Indexed: 12/20/2022]
Abstract
A significant hurdle in conducting effective health and safety hazard analysis and risk assessment for the nanotechnology workforce is the lack of a rapid method for the direct visualization and analysis of filter media used to sample nanomaterials from work environments that represent potential worker exposure. Current best-known methods include transmission electron microscopy (TEM) coupled with energy dispersive x-ray spectroscopy (EDS) for elemental identification. TEM-EDS is considerably time-, cost-, and resource-intensive, which may prevent timely health and safety recommendations and corrective actions. A rapid screening method is currently being explored using enhanced darkfield microscopy with hyperspectral imaging (EDFM-HSI). For this approach to be effective, rapid, and easy, sample preparation that is amenable to the analytical technique is needed. Here, we compare the sample preparation steps for mixed cellulose ester (MCE) filter media specified in NIOSH Method 7400-Asbestos and Other Fibers by Phase Contrast Microscopy (PCM)-against a new method, which involves saturation of the filter media with acetone. NIOSH Method 7400 was chosen as a starting point since it is an established technique for preparing transparent MCE filters for optical microscopy. Limitations in this method led to the development and comparison of a new method. The new method was faster, easier, and rendered filters more transparent, resulting in improved visualization and analysis of nanomaterials via EDFM-HSI. This new method is suitable for a rapid screening protocol due to its speed, ease of use, and the improvement in image acquisition and analysis.
Collapse
Affiliation(s)
- Nicole M Neu-Baker
- College of Nanoscale Science, Nanobioscience Constellation, State University of New York (SUNY) Polytechnic Institute, College of Nanoscale Science, New York
| | - Adrienne C Eastlake
- Education and Information Division (EID), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - Sara A Brenner
- College of Nanoscale Science, Nanobioscience Constellation, State University of New York (SUNY) Polytechnic Institute, College of Nanoscale Science, New York
| |
Collapse
|
36
|
Li WT, Liou BY, Yang WC, Chen MH, Chang HW, Chiou HY, Pang VF, Jeng CR. Use of Autometallography to Localize and Semi-Quantify Silver in Cetacean Tissues. J Vis Exp 2018. [PMID: 30346408 DOI: 10.3791/58232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been extensively used in commercial products, including textiles, cosmetics, and health care items, due to their strong antimicrobial effects. They also may be released into the environment and accumulate in the ocean. Therefore, AgNPs are the major source of Ag contamination, and public awareness of the environmental toxicity of Ag is increasing. Previous studies have demonstrated the bioaccumulation (in producers) and magnification (in consumers/predators) of Ag. Cetaceans, as the apex predators of ocean, may have been negatively affected by the Ag/Ag compounds. Although the concentrations of Ag/Ag compounds in cetacean tissues can be measured by inductively coupled plasma mass spectroscopy (ICP-MS), the use of ICP-MS is limited by its high capital cost and the requirement for tissue storage/preparation. Therefore, an autometallography (AMG) method with an image quantitative analysis by using formalin-fixed, paraffin-embedded (FFPE) tissue may be an adjuvant method to localize Ag distribution at the suborgan level and estimate the Ag concentration in cetacean tissues. The AMG positive signals are mainly brown to black granules of various sizes in the cytoplasm of proximal renal tubular epithelium, hepatocytes, and Kupffer cells. Occasionally, some amorphous golden yellow to brown AMG positive signals are noted in the lumen and basement membrane of some proximal renal tubules. The assay for estimating the Ag concentration is named the Cetacean Histological Ag Assay (CHAA), which is a regression model established by the data from image quantitative analysis of the AMG method and ICP-MS. The use of AMG with CHAA to localize and semi-quantify heavy metals provides a convenient methodology for spatio-temporal and cross-species studies.
Collapse
Affiliation(s)
- Wen-Ta Li
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University
| | - Bang-Yeh Liou
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University
| | - Wei-Cheng Yang
- School of Veterinary Medicine, National Taiwan University
| | - Meng-Hsien Chen
- Department of Oceanography and Asia-Pacific Ocean Research Center, National Sun Yat-sen University
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University; School of Veterinary Medicine, National Taiwan University
| | - Hue-Ying Chiou
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University
| | - Victor Fei Pang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University; School of Veterinary Medicine, National Taiwan University
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University; School of Veterinary Medicine, National Taiwan University;
| |
Collapse
|
37
|
Rosário F, Hoet P, Nogueira AJA, Santos C, Oliveira H. Differential pulmonary in vitro toxicity of two small-sized polyvinylpyrrolidone-coated silver nanoparticles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:675-690. [PMID: 29939837 DOI: 10.1080/15287394.2018.1468837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Silver nanoparticles (AgNP), with their important properties, are being used in a range of sectors from industry to medicine, leading to increased human exposure. Hence, their toxicity potential needs to be comprehensively evaluated. It was postulated that within small-sized (≤20 nm) polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNP), minor size differences may significantly induce different toxicity profiles and involve varying cellular pathways. Therefore, the aim of this study was to examine the influence of differing size AgNP with 10 nm (AgNP10) and 20 nm (AgNP20) (up to 100 µg/ml), as well as to ionic silver as AgNO3 for 24 and 48 h, using the human lung cell line A549. The effects on cell viability, proliferation, apoptosis, DNA damage and cell cycle dynamics were assessed. Results for both time periods showed that for low concentrations (<5 µg/ml), AgNP20 were more cytotoxic than AgNP10, however, at higher doses, AgNP10 exhibited higher toxicity. For concentrations >50 µg/ml, AgNP10 induced severe DNA damage (comet class 3-4), cell cycle arrest at G2 phase and late-stage apoptosis, while AgNP20 induced cell cycle arrest at S phase and an increase in the percentage sub-G1, which did not recover after 48 h, and late-stage apoptosis/necrosis. In longer-term exposures, the greater impairment in colony formation due to AgNP exposure than to silver ion supports that nanotoxicity is not exclusively due to the released ion. Data suggest that toxicity mediated by small AgNP (≤20 nm) in lung cells is not only dependent on the level of particle internalization, but also on AgNP size and concentration, which may involve varying pathways as targets.
Collapse
Affiliation(s)
- Fernanda Rosário
- a Department of Biology & CESAM , University of Aveiro , Aveiro , Portugal
| | - Peter Hoet
- b Occupational and environmental Toxicology , KU Leuven , Leuven , Belgium
| | | | - Conceição Santos
- c Department of Biology, Faculty of Sciences , University of Porto , Porto, Portugal
| | - Helena Oliveira
- a Department of Biology & CESAM , University of Aveiro , Aveiro , Portugal
- d CICECO - Aveiro Institute of Materials , University of Aveiro , Aveiro , Portugal
| |
Collapse
|
38
|
Guo C, Buckley A, Marczylo T, Seiffert J, Römer I, Warren J, Hodgson A, Chung KF, Gant TW, Smith R, Leonard MO. The small airway epithelium as a target for the adverse pulmonary effects of silver nanoparticle inhalation. Nanotoxicology 2018; 12:539-553. [PMID: 29750584 DOI: 10.1080/17435390.2018.1465140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Experimental modeling to identify specific inhalation hazards for nanomaterials has in the main focused on in vivo approaches. However, these models suffer from uncertainties surrounding species-specific differences and cellular targets for biologic response. In terms of pulmonary exposure, approaches which combine 'inhalation-like' nanoparticulate aerosol deposition with relevant human cell and tissue air-liquid interface cultures are considered an important complement to in vivo work. In this study, we utilized such a model system to build on previous results from in vivo exposures, which highlighted the small airway epithelium as a target for silver nanoparticle (AgNP) deposition. RNA-SEQ was used to characterize alterations in mRNA and miRNA within the lung. Organotypic-reconstituted 3D human primary small airway epithelial cell cultures (SmallAir) were exposed to the same spark-generated AgNP and at the same dose used in vivo, in an aerosol-exposure air-liquid interface (AE-ALI) system. Adverse effects were characterized using lactate, LDH release and alterations in mRNA and miRNA. Modest toxicological effects were paralleled by significant regulation in gene expression, reflective mainly of specific inflammatory events. Importantly, there was a level of concordance between gene expression changes observed in vitro and in vivo. We also observed a significant correlation between AgNP and mass equivalent silver ion (Ag+) induced transcriptional changes in SmallAir cultures. In addition to key mechanistic information relevant for our understanding of the potential health risks associated with AgNP inhalation exposure, this work further highlights the small airway epithelium as an important target for adverse effects.
Collapse
Affiliation(s)
- Chang Guo
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Oxfordshire , UK.,b The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England (PHE) in collaboration with Imperial College London , London , UK
| | - Alison Buckley
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Oxfordshire , UK.,b The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England (PHE) in collaboration with Imperial College London , London , UK
| | - Tim Marczylo
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Oxfordshire , UK.,b The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England (PHE) in collaboration with Imperial College London , London , UK
| | - Joanna Seiffert
- c Airways Disease, National Heart & Lung Institute, Imperial College , London , UK
| | - Isabella Römer
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Oxfordshire , UK.,b The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England (PHE) in collaboration with Imperial College London , London , UK
| | - James Warren
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Oxfordshire , UK
| | - Alan Hodgson
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Oxfordshire , UK
| | - Kian Fan Chung
- c Airways Disease, National Heart & Lung Institute, Imperial College , London , UK
| | - Timothy W Gant
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Oxfordshire , UK.,b The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England (PHE) in collaboration with Imperial College London , London , UK
| | - Rachel Smith
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Oxfordshire , UK.,b The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England (PHE) in collaboration with Imperial College London , London , UK
| | - Martin O Leonard
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Oxfordshire , UK.,b The National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England (PHE) in collaboration with Imperial College London , London , UK
| |
Collapse
|
39
|
Panzarini E, Mariano S, Carata E, Mura F, Rossi M, Dini L. Intracellular Transport of Silver and Gold Nanoparticles and Biological Responses: An Update. Int J Mol Sci 2018; 19:E1305. [PMID: 29702561 PMCID: PMC5983807 DOI: 10.3390/ijms19051305] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Medicine, food, and cosmetics represent the new promising applications for silver (Ag) and gold (Au) nanoparticles (NPs). AgNPs are most commonly used in food and cosmetics; conversely, the main applications of gold NPs (AuNPs) are in the medical field. Thus, in view of the risk of accidentally or non-intended uptake of NPs deriving from the use of cosmetics, drugs, and food, the study of NPs⁻cell interactions represents a key question that puzzles researchers in both the nanomedicine and nanotoxicology fields. The response of cells starts when the NPs bind to the cell surface or when they are internalized. The amount and modality of their uptake depend on many and diverse parameters, such as NPs and cell types. Here, we discuss the state of the art of the knowledge and the uncertainties regarding the biological consequences of AgNPs and AuNPs, focusing on NPs cell uptake, location, and translocation. Finally, a section will be dedicated to the most currently available methods for qualitative and quantitative analysis of intracellular transport of metal NPs.
Collapse
Affiliation(s)
- Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy.
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy.
| | - Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy.
| | - Francesco Mura
- Department of Basic and Applied Science to Engineering, Sapienza University of Rome, 00161 Rome, Italy.
- Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, 00161 Rome, Italy.
| | - Marco Rossi
- Department of Basic and Applied Science to Engineering, Sapienza University of Rome, 00161 Rome, Italy.
- Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, 00161 Rome, Italy.
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy.
- CNR-Nanotec, Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
40
|
Li WT, Chang HW, Chen MH, Chiou HY, Liou BY, Pang VF, Yang WC, Jeng CR. Investigation of silver (Ag) deposition in tissues from stranded cetaceans by autometallography (AMG). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:534-545. [PMID: 29329095 DOI: 10.1016/j.envpol.2018.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Silver, such as silver nanoparticles (AgNPs), has been widely used in commercial products and may be released into the environment. The interaction between Ag deposition and biological systems is raising serious concerns because of one health consideration. Cetaceans, as the top predators of the oceans, may be exposed to Ag/Ag compounds and suffer negative health impacts from the deposition of these compounds in their bodies. In the present study, we utilized autometallography (AMG) to localize the Ag in the liver and kidney tissues of cetaceans and developed a model called the cetacean histological Ag assay (CHAA) to estimate the Ag concentrations in the liver and kidney tissues of cetaceans. Our results revealed that Ag was mainly located in hepatocytes, Kupffer cells and the epithelial cells of some proximal renal tubules. The tissue pattern of Ag/Ag compounds deposition in cetaceans was different from those in previous studies conducted on laboratory rats. This difference may suggest that cetaceans have a different metabolic profile of Ag, so a presumptive metabolic pathway of Ag in cetaceans is advanced. Furthermore, our results suggest that the Ag contamination in cetaceans living in the North-western Pacific Ocean is more severe than that in cetaceans living in other marine regions of the world. The level of Ag deposition in cetaceans living in the former area may have caused negative impacts on their health condition. Further investigations are warranted to study the systemic Ag distribution, the cause of death/stranding, and the infectious diseases in stranded cetaceans with different Ag concentrations for comprehensively evaluating the negative health effects caused by Ag in cetaceans.
Collapse
Affiliation(s)
- Wen-Ta Li
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan, ROC
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan, ROC
| | - Meng-Hsien Chen
- Department of Oceanography and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| | - Hue-Ying Chiou
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Bang-Yeh Liou
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan, ROC
| | - Victor Fei Pang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan, ROC
| | - Wei-Cheng Yang
- College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan, ROC.
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
41
|
Vidanapathirana AK, Thompson LC, Herco M, Odom J, Sumner SJ, Fennell TR, Brown JM, Wingard CJ. Acute intravenous exposure to silver nanoparticles during pregnancy induces particle size and vehicle dependent changes in vascular tissue contractility in Sprague Dawley rats. Reprod Toxicol 2018; 75:10-22. [PMID: 29154916 PMCID: PMC6241519 DOI: 10.1016/j.reprotox.2017.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/26/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
Abstract
The use of silver nanoparticles (AgNP) raises safety concerns during susceptible life stages such as pregnancy. We hypothesized that acute intravenous exposure to AgNP during late stages of pregnancy will increase vascular tissue contractility, potentially contributing to alterations in fetal growth. Sprague Dawley rats were exposed to a single dose of PVP or Citrate stabilized 20 or 110nm AgNP (700μg/kg). Differential vascular responses and EC50 values were observed in myographic studies in uterine, mesenteric arteries and thoracic aortic segments, 24h post-exposure. Reciprocal responses were observed in aortic and uterine vessels following PVP stabilized AgNP with an increased force of contraction in uterine artery and increased relaxation responses in aorta. Citrate stabilized AgNP exposure increased contractile force in both uterine and aortic vessels. Intravenous AgNP exposure during pregnancy displayed particle size and vehicle dependent moderate changes in vascular tissue contractility, potentially influencing fetal blood supply.
Collapse
Affiliation(s)
- A K Vidanapathirana
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - L C Thompson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - M Herco
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - J Odom
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - S J Sumner
- Discovery Sciences, RTI International, Research Triangle Park, NC, 27709, USA; Department of Nutrition School of Public Health University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - T R Fennell
- Discovery Sciences, RTI International, Research Triangle Park, NC, 27709, USA
| | - J M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, CO, 80045, USA
| | - C J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Department of Physical Therapy, Bellarmine University, Louisville, KY, 40205, USA.
| |
Collapse
|
42
|
Pro-Inflammatory versus Immunomodulatory Effects of Silver Nanoparticles in the Lung: The Critical Role of Dose, Size and Surface Modification. NANOMATERIALS 2017; 7:nano7100300. [PMID: 28961222 PMCID: PMC5666465 DOI: 10.3390/nano7100300] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023]
Abstract
The growing use of silver nanoparticles (Ag-NPs) in consumer products raises concerns about their toxicological potential. The purpose of the study was to investigate the size- and coating-dependent pulmonary toxicity of Ag-NPs in vitro and in vivo, using an ovalbumin (OVA)-mouse allergy model. Supernatants from (5.6-45 µg/mL) Ag50-PVP, Ag200-PVP or Ag50-citrate-treated NR8383 alveolar macrophages were tested for lactate dehydrogenase and glucuronidase activity, tumor necrosis factor (TNF)-α release and reactive oxygen species (ROS) production. For the in vivo study, NPs were intratracheally instilled in non-sensitized (NS) and OVA-sensitized (S) mice (1-50 µg/mouse) prior to OVA-challenge and bronchoalveolar lavage fluid (BALF) inflammatory infiltrate was evaluated five days after challenge. In vitro results showed a dose-dependent cytotoxicity of Ag-NPs, which was highest for Ag50-polyvinilpyrrolidone (PVP), followed by Ag50-citrate, and lowest for Ag200-PVP. In vivo 10-50 µg Ag50-PVP triggered a dose-dependent pulmonary inflammatory milieu in NS and S mice, which was significantly higher in S mice and was dampened upon instillation of Ag200-PVP. Surprisingly, instillation of 1 µg Ag50-PVP significantly reduced OVA-induced inflammatory infiltrate in S mice and had no adverse effect in NS mice. Ag50-citrate showed similar beneficial effects at low concentrations and attenuated pro-inflammatory effects at high concentrations. The lung microbiome was altered by NPs instillation dependent on coating and/or mouse batch, showing the most pronounced effects upon instillation of 50 µg Ag50-citrate, which caused an increased abundance of operational taxonomic units assigned to Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. However, no correlation with the biphasic effect of low and high Ag-NPs dose was found. Altogether, both in vitro and in vivo data on the pulmonary effects of Ag-NPs suggest the critical role of the size, dose and surface functionalization of Ag-NPs, especially in susceptible allergic individuals. From the perspective of occupational health, care should be taken by the production of Ag-NPs-containing consumer products.
Collapse
|
43
|
Ivask A, Mitchell AJ, Malysheva A, Voelcker NH, Lombi E. Methodologies and approaches for the analysis of cell-nanoparticle interactions. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1486. [DOI: 10.1002/wnan.1486] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Angela Ivask
- Laboratory of Environmental Toxicology; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| | - Andrew J. Mitchell
- Materials Characterisation and Fabrication Platform; University of Melbourne; Melbourne Australia
| | - Anzhela Malysheva
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Australia
| | - Enzo Lombi
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| |
Collapse
|
44
|
Scoville DK, Botta D, Galdanes K, Schmuck SC, White CC, Stapleton PL, Bammler TK, MacDonald JW, Altemeier WA, Hernandez M, Kleeberger SR, Chen LC, Gordon T, Kavanagh TJ. Genetic determinants of susceptibility to silver nanoparticle-induced acute lung inflammation in mice. FASEB J 2017; 31:4600-4611. [PMID: 28716969 DOI: 10.1096/fj.201700187r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Silver nanoparticles (AgNPs) are employed in a variety of consumer products; however, in vivo rodent studies indicate that AgNPs can cause lung inflammation and toxicity in a strain- and particle type-dependent manner, but mechanisms of susceptibility remain unclear. The aim of this study was to assess the variation in AgNP-induced lung inflammation and toxicity across multiple inbred mouse strains and to use genome-wide association (GWA) mapping to identify potential candidate susceptibility genes. Mice received doses of 0.25 mg/kg of either 20-nm citrate-coated AgNPs or citrate buffer using oropharyngeal aspiration. Neutrophils in bronchoalveolar lavage fluid (BALF) served as markers of inflammation. We found significant strain- and treatment-dependent variation in neutrophils in BALF. GWA mapping identified 10 significant single-nucleotide polymorphisms (false discovery rate, 15%) in 4 quantitative trait loci on mouse chromosomes 1, 4, 15, and 18, and Nedd4l (neural precursor cell expressed developmentally downregulated gene 4-like; chromosome 18), Ano6 (anocatmin 6; chromosome 15), and Rnf220 (Ring finger protein 220; chromosome 4) were considered candidate genes. Quantitative RT-PCR revealed significant inverse associations between mRNA levels of these genes and neutrophil influx. Nedd4l, Ano6, and Rnf220 are candidate susceptibility genes for AgNP-induced lung inflammation that warrant additional exploration in future studies.-Scoville, D. K., Botta, D., Galdanes, K., Schmuck, S. C., White, C. C., Stapleton, P. L., Bammler, T. K., MacDonald, J. W., Altemeier, W. A., Hernandez, M., Kleeberger, S. R., Chen, L.-C., Gordon, T., Kavanagh, T. J. Genetic determinants of susceptibility to silver nanoparticle-induced acute lung inflammation in mice.
Collapse
Affiliation(s)
- David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Dianne Botta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Karen Galdanes
- Department of Environmental Medicine, New York University, Tuxedo, New York, USA
| | - Stefanie C Schmuck
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Collin C White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Patricia L Stapleton
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | | | - Michelle Hernandez
- Department of Environmental Medicine, New York University, Tuxedo, New York, USA
| | - Steven R Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University, Tuxedo, New York, USA
| | - Terry Gordon
- Department of Environmental Medicine, New York University, Tuxedo, New York, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
45
|
Engin AB, Nikitovic D, Neagu M, Henrich-Noack P, Docea AO, Shtilman MI, Golokhvast K, Tsatsakis AM. Mechanistic understanding of nanoparticles' interactions with extracellular matrix: the cell and immune system. Part Fibre Toxicol 2017; 14:22. [PMID: 28646905 PMCID: PMC5483305 DOI: 10.1186/s12989-017-0199-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/08/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular matrix (ECM) is an extraordinarily complex and unique meshwork composed of structural proteins and glycosaminoglycans. The ECM provides essential physical scaffolding for the cellular constituents, as well as contributes to crucial biochemical signaling. Importantly, ECM is an indispensable part of all biological barriers and substantially modulates the interchange of the nanotechnology products through these barriers. The interactions of the ECM with nanoparticles (NPs) depend on the morphological characteristics of intercellular matrix and on the physical characteristics of the NPs and may be either deleterious or beneficial. Importantly, an altered expression of ECM molecules ultimately affects all biological processes including inflammation. This review critically discusses the specific behavior of NPs that are within the ECM domain, and passing through the biological barriers. Furthermore, regenerative and toxicological aspects of nanomaterials are debated in terms of the immune cells-NPs interactions.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Hipodrom, 06330 Ankara, Turkey
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Monica Neagu
- “Victor Babes” National Institute of Pathology, Immunology Department, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Petra Henrich-Noack
- Institute of Medical Psychology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Petru Rares, 200349 Craiova, Romania
| | - Mikhail I. Shtilman
- Master School Biomaterials, D.I. Mendeleyev University of Chemical Technology, Moscow, Russia
| | - Kirill Golokhvast
- Scientific Educational Center Nanotechnology, Engineering School, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Aristidis M. Tsatsakis
- Scientific Educational Center Nanotechnology, Engineering School, Far Eastern Federal University, Vladivostok, Russian Federation
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete Greece
| |
Collapse
|
46
|
Cheah HY, Kiew LV, Lee HB, Japundžić-Žigon N, Vicent MJ, Hoe SZ, Chung LY. Preclinical safety assessments of nano-sized constructs on cardiovascular system toxicity: A case for telemetry. J Appl Toxicol 2017; 37:1268-1285. [DOI: 10.1002/jat.3437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Hoay Yan Cheah
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Hong Boon Lee
- Department of Pharmacy, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Nina Japundžić-Žigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine; University of Belgrade; Republic of Serbia
| | - Marίa J. Vicent
- Polymer Therapeutics Lab; Centro de Investigación Príncipe Felipe; Av. Eduardo Primo Yúfera 3 E-46012 Valencia Spain
| | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|
47
|
Dillon JCK, Bezerra L, del Pilar Sosa Peña M, Neu-Baker NM, Brenner SA. Hyperspectral data influenced by sample matrix: the importance of building relevant reference spectral libraries to map materials of interest. Microsc Res Tech 2017; 80:462-470. [DOI: 10.1002/jemt.22816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/18/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Affiliation(s)
- James C. K. Dillon
- College of Nanoscale Science, Nanobioscience Constellation; State University of New York (SUNY) Polytechnic Institute; Albany New York 12203
| | - Leonardo Bezerra
- College of Nanoscale Science, Nanobioscience Constellation; State University of New York (SUNY) Polytechnic Institute; Albany New York 12203
| | - María del Pilar Sosa Peña
- College of Nanoscale Science, Nanobioscience Constellation; State University of New York (SUNY) Polytechnic Institute; Albany New York 12203
| | - Nicole M. Neu-Baker
- College of Nanoscale Science, Nanobioscience Constellation; State University of New York (SUNY) Polytechnic Institute; Albany New York 12203
| | - Sara A. Brenner
- College of Nanoscale Science, Nanobioscience Constellation; State University of New York (SUNY) Polytechnic Institute; Albany New York 12203
| |
Collapse
|
48
|
|
49
|
Patchin ES, Anderson DS, Silva RM, Uyeminami DL, Scott GM, Guo T, Van Winkle LS, Pinkerton KE. Size-Dependent Deposition, Translocation, and Microglial Activation of Inhaled Silver Nanoparticles in the Rodent Nose and Brain. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1870-1875. [PMID: 27152509 PMCID: PMC5132640 DOI: 10.1289/ehp234] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/15/2015] [Accepted: 04/26/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Silver nanoparticles (AgNP) are present in personal, commercial, and industrial products, which are often aerosolized. Current understanding of the deposition, translocation, and health-related impacts of AgNP inhalation is limited. OBJECTIVES We determined a) the deposition and retention of inhaled Ag in the nasal cavity from nose-only exposure; b) the timing for Ag translocation to and retention/clearance in the olfactory bulb (OB); and c) whether the presence of Ag in the OB affects microglial activity. METHODS Male Sprague-Dawley rats were exposed nose-only to citrate-buffered 20- or 110-nm AgNP (C20 or C110, respectively) or citrate buffer alone for 6 hr. The nasal cavity and OB were examined for the presence of Ag and for biological responses up to 56 days post-exposure (8 weeks). RESULTS The highest nasal Ag deposition was observed on Day 0 for both AgNP sizes. Inhalation of aerosolized C20 resulted in rapid translocation of Ag to the OB and in microglial activation at Days 0, 1, and 7. In contrast, inhalation of C110 resulted in a gradual but progressive transport of Ag to and retention in the OB, with a trend for microglial activation to variably be above control. CONCLUSIONS The results of this study show that after rats experienced a 6-hr inhalation exposure to 20- and 110-nm AgNP at a single point in time, Ag deposition in the nose, the rate of translocation to the brain, and subsequent microglial activation in the OB differed depending on AgNP size and time since exposure. Citation: Patchin ES, Anderson DS, Silva RM, Uyeminami DL, Scott GM, Guo T, Van Winkle LS, Pinkerton KE. 2016. Size-dependent deposition, translocation, and microglial activation of inhaled silver nanoparticles in the rodent nose and brain. Environ Health Perspect 124:1870-1875; http://dx.doi.org/10.1289/EHP234.
Collapse
Affiliation(s)
| | | | | | | | | | - Ting Guo
- Department of Chemistry, University of California, Davis, Davis, California, USA
| | - Laura S. Van Winkle
- Center for Health and the Environment, and
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Kent E. Pinkerton
- Center for Health and the Environment, and
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
- Department of Pediatrics, School of Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
50
|
Ban DK, Paul S. Nano Zinc Oxide Inhibits Fibrillar Growth and Suppresses Cellular Toxicity of Lysozyme Amyloid. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31587-31601. [PMID: 27801574 DOI: 10.1021/acsami.6b11549] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Deposition of amyloid fibers has been a common pathological event in many neurodegenerations, such as Alzheimer's disease, Parkinson's disease, and Prion disease. Although various therapeutic interventions have been reported, nanoparticles have recently been considered as possible inhibitors of amyloid fibrillation. Here, we reported the effect of three different forms of zinc oxide nanoparticles (ZnONP): uncapped (ZnONPuncap), starch-capped (ZnONPST), and self-assembled (ZnONPassmb) (average sizes of 10, 30, and 163 nm, respectively), having a core size of 10-15 nm, in the amyloid growth of hen egg white lysozyme (HEWL). We monitored the amyloid growth by electron microscopy as well as Thioflavin-T (ThT) measurement. We observed that ZnONP demonstrated a dose-dependent inhibition of fibrillar amyloid growth of HEWL, with the greatest effect being exhibited by ZnONPST. Such inhibition was also associated with a decrease in cross β-sheet amount, surface hydrophobicity as well as increase of stability of proteins. Furthermore, we observed that ZnONPST prolonged the nucleation phase and shortened the elongation phase of HEWL amyloid growth. Although pure amyloid caused profound cellular toxicity in both mouse carcinoma N2a and normal cells such as human keratinocytes HaCaT cells, amyloid formed in the presence of ZnONP showed much reduced cellular toxicity. We also observed that the inhibition of amyloid growth was effective when ZnONP was administered during the lag phase. When our amyloid inhibition results were compared with a well-known inhibitor curcumin, we observed that ZnONPST demonstrated a better inhibitory effect than curcumin. Overall, here, we reported the inhibitory activity of three different forms of ZnONP to amyloid fibrillation of HEWL and amyloid-mediated cytotoxicity to different extents, while starch-capped ZnONP showed the highest fibrillation inhibitory effect.
Collapse
Affiliation(s)
- Deependra Kumar Ban
- Department of Biotechnology and Medical Engineering, National Institute of Technology , Rourkela-769008, Odisha, India
| | - Subhankar Paul
- Department of Biotechnology and Medical Engineering, National Institute of Technology , Rourkela-769008, Odisha, India
| |
Collapse
|