1
|
Sun J, Zhao N, Zhang R, Li Y, Yu T, Nong Q, Lin L, Yang X, Luan T, Chen B, Huang Y. Metabolic landscape of human alveolar type II epithelial cells undergoing epithelial-mesenchymal transition induced directly by silica exposure. J Environ Sci (China) 2025; 149:676-687. [PMID: 39181677 DOI: 10.1016/j.jes.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 08/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) plays an irreplaceable role in the development of silicosis. However, molecular mechanisms of EMT induced by silica exposure still remain to be addressed. Herein, metabolic profiles of human alveolar type II epithelial cells (A549 cells) exposed directly to silica were characterized using non-targeted metabolomic approaches. A total of 84 differential metabolites (DMs) were identified in silica-treated A549 cells undergoing EMT, which were mainly enriched in metabolisms of amino acids (e.g., glutamate, alanine, aspartate), purine metabolism, glycolysis, etc. The number of DMs identified in the A549 cells obviously increased with the elevated exposure concentration of silica. Remarkably, glutamine catabolism was significantly promoted in the silica-treated A549 cells, and the levels of related metabolites (e.g., succinate) and enzymes (e.g., α-ketoglutarate (α-KG) dehydrogenase) were substantially up-regulated, with a preference to α-KG pathway. Supplementation of glutamine into the cell culture could substantially enhance the expression levels of both EMT-related markers and Snail (zinc finger transcription factor). Our results suggest that the EMT of human alveolar epithelial cells directly induced by silica can be essential to the development of silicosis.
Collapse
Affiliation(s)
- Jin Sun
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Na Zhao
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Ruijia Zhang
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Yizheng Li
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Tiantian Yu
- Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 540080, China
| | - Qiying Nong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Li Lin
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xubin Yang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| | - Yongshun Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China.
| |
Collapse
|
2
|
Xu Z, Tian Y, Hao L. Exosomal miR‑194 from adipose‑derived stem cells impedes hypertrophic scar formation through targeting TGF‑β1. Mol Med Rep 2024; 30:216. [PMID: 39329201 PMCID: PMC11465438 DOI: 10.3892/mmr.2024.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Hypertrophic scars, which result from aberrant fibrosis and disorganized collagen synthesis by skin fibroblasts, emerge due to disrupted wound healing processes. These scars present significant psychosocial and functional challenges to affected individuals. The current treatment limitations largely arise from an incomplete understanding of the underlying mechanisms of hypertrophic scar development. Recent studies, however, have shed light on the potential of exosomal non‑coding RNAs interventions to mitigate hypertrophic scar proliferation. The present study assessed the impact of exosomes derived from adipose‑derived stem cells (ADSCs‑Exos) on hypertrophic scar formation using a rabbit ear model. It employed hematoxylin and eosin staining, Masson's trichrome staining and immunohistochemical staining techniques to track scar progression. The comprehensive analysis of the present study encompassed the differential expression of non‑coding RNAs, enrichment analyses of functional pathways, protein‑protein interaction studies and micro (mi)RNA‑mRNA interaction investigations. The results revealed a marked alteration in the expression levels of long non‑coding RNAs and miRNAs following ADSCs‑Exos treatment, with little changes observed in circular RNAs. Notably, miRNA (miR)‑194 emerged as a critical regulator within the signaling pathways that govern hypertrophic scar formation. Dual‑luciferase assays indicated a significant reduction in the promoter activity of TGF‑β1 following miR‑194 overexpression. Reverse transcription‑quantitative PCR and immunoblotting assays further validated the decrease in TGF‑β1 expression in the treated samples. In addition, the treatment resulted in diminished levels of inflammatory markers IL‑1β, TNF‑α and IL‑10. In vivo evidence strongly supported the role of miR‑194 in attenuating hypertrophic scar formation through the suppression of TGF‑β1. The present study endorsed the strategic use of ADSCs‑Exos, particularly through miR‑194 modulation, as an effective strategy for reducing scar formation and lowering pro‑inflammatory and fibrotic indicators such as TGF‑β1. Therefore, the present study advocated the targeted application of ADSCs‑Exos, with an emphasis on miR‑194 modulation, as a promising approach to managing proliferative scarring.
Collapse
Affiliation(s)
- Zhishan Xu
- The Plastic and Cosmetic Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Yuan Tian
- The Plastic and Cosmetic Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Lijun Hao
- The Plastic and Cosmetic Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
3
|
Son CJ, Carnino JM, Lee H, Jin Y. Emerging Roles of Circular RNA in Macrophage Activation and Inflammatory Lung Responses. Cells 2024; 13:1407. [PMID: 39272979 PMCID: PMC11394395 DOI: 10.3390/cells13171407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Circular RNA (circRNA) is a type of single-stranded RNA that forms a covalently closed continuous loop, unlike linear RNA. The expression of circRNAs in mammals is often conserved across species and shows tissue and cell specificity. Some circRNA serve as gene regulators. However, the biological function of most circRNAs is unclear. CircRNA does not have 5' or 3' ends. The unique structure of circRNAs provides them with a much longer half-life and more resistance to RNase R than linear RNAs. Inflammatory lung responses occur in the pathogenesis and recovery of many lung diseases. Macrophages form the first line of host defense/innate immune responses and initiate/mediate lung inflammation. For example, in bacterial pneumonia, upon pro-inflammatory activation, they release early response cytokines/chemokines that recruit neutrophils, macrophages, and lymphocytes to sites of infection and clear pathogens. The functional effects and mechanisms by which circRNAs exert physiological or pathological roles in macrophage activation and lung inflammation remain poorly understood. In this article, we will review the current understanding and progress of circRNA biogenesis, regulation, secretion, and degradation. Furthermore, we will review the current reports on the role of circRNAs in macrophage activation and polarization, as well as in the process of inflammatory lung responses.
Collapse
Affiliation(s)
- Chang Jun Son
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Jonathan M. Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| |
Collapse
|
4
|
Jin H, Liu Y, Lei Y, Li G, Huang L, Zhang Z. Hsa_circ_0004214 involved in the epithelial-mesenchymal transition induced by beryllium sulfate through modulating JAK-STAT signaling pathway. Toxicol Res (Camb) 2024; 13:tfae067. [PMID: 38711927 PMCID: PMC11069455 DOI: 10.1093/toxres/tfae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/04/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024] Open
Abstract
Background Chronic beryllium disease is characterized by granulomas and pulmonary fibrosis. Recent studies have shown that microRNAs (miRNAs) and circular RNAs (circRNAs) play critical roles in the pathogenesis and development of many diseases. However, the role of miRNAs and circRNAs in pulmonary fibrosis induced by beryllium sulfate (BeSO4) has not been elucidated. Methods Previous studies demonstrated hsa-miR-663b was down-regulated in the 150 μmol/L BeSO4-treated 16HBE cells, while hsa_circ_ 0004214 was up-regulated. Here we found epithelial-mesenchymal transition (EMT) involved in pulmonary fibrosis induced by BeSO4 (4, 8, and 12 mg/kg·BW) in SD rats. Results Elevated expression of hsa-miR-663b blocked the EMT progression of 16HBE cells induced by 150 μmol/L BeSO4. Notably, the overexpression of hsa-miR-663b decreased the expression of leukemia inhibitory factor (LIF), which was predicted as a target gene of hsa-miR-663b by bioinformatics tools. Furthermore, elevated miR-663b inhibited the activation of the downstream Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway induced by BeSO4 in 16HBE cells. Previous study suggested that hsa_circ_0004214 had binding sites for hsa-miR-663b. The results indicated hsa_circ_0004214 alleviated the BeSO4-induced EMT via JAK-STAT pathway in 16HBE cells. Conclusions Collectively, the overexpression of hsa-miR-663b and knockdown of hsa_circ_0004214 attenuated the EMT induced by BeSO4 through the inhibition of JAK-STAT signaling pathway. The aberrant expressed hsa-miR-663b and hsa_circ_0004214 stimulated by BeSO4 may exert an important function in the toxic mechanism of beryllium exposure to 16HBE cells, providing the potential therapeutic targets in chronic beryllium disease.
Collapse
Affiliation(s)
- Huiyun Jin
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| | - Yanping Liu
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| | - Yuandi Lei
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| | - Guilan Li
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| | - Lian Huang
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| | - Zhaohui Zhang
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| |
Collapse
|
5
|
Wang W, Liu C, He D, Shi G, Song P, Zhang B, Li T, Wei J, Jiang Y, Ma L. CircRNA CDR1as affects functional repair after spinal cord injury and regulates fibrosis through the SMAD pathway. Pharmacol Res 2024; 204:107189. [PMID: 38649124 DOI: 10.1016/j.phrs.2024.107189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Spinal cord injury (SCI) is a complex problem in modern medicine. Fibroblast activation and fibroscarring after SCI impede nerve recovery. Non-coding RNA plays an important role in the progression of many diseases, but the study of its role in the progression of spinal fibrosis is still emerging. Here, we investigated the function of circular RNAs, specifically antisense to the cerebellar degeneration-related protein 1 (CDR1as), in spinal fibrosis and characterized its molecular mechanism and pathophysiology. The presence of CDR1as in the spinal cord was verified by sequencing and RNA expression assays. The effects of inhibition of CDR1as on scar formation, inflammation and nerve regeneration after spinal cord injury were investigated in vivo and in vitro. Further, gene expression of miR-7a-5p and protein expression of transforming Growth Factor Beta Receptor II (TGF-βR2) were measured to evaluate their predicted interactions with CDR1as. The regulatory effects and activation pathways were subsequently verified by miR-7a-5p inhibitor and siCDR1as. These results indicate that CDR1as/miR-7a-5p/TGF-βR2 interactions may exert scars and nerves functions and suggest potential therapeutic targets for treating spinal fibrotic diseases.
Collapse
Affiliation(s)
- Wenzhao Wang
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Post-doctoral Scientific Research Workstation, Shandong Freda Biotech Co., Ltd, Jinan, Shandong, China; Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Guidong Shi
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Song
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jianlu Wei
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yunpeng Jiang
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Liang Ma
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
6
|
Zhu Y, Meng X, Zhu X, Zhang J, Lv H, Wang F, Wang J, Chen C, Chen M, Wang D, Jin W, Tian R, Wang R. Circular RNA MKLN1 promotes epithelial-mesenchymal transition in pulmonary fibrosis by regulating the miR-26a/b-5p/CDK8 axis in human alveolar epithelial cells and mice models. Arch Toxicol 2024; 98:1399-1413. [PMID: 38460002 PMCID: PMC10965569 DOI: 10.1007/s00204-024-03700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/31/2024] [Indexed: 03/11/2024]
Abstract
Pulmonary fibrosis involves destruction of the lung parenchyma and extracellular matrix deposition. Effective treatments for pulmonary fibrosis are lacking and its pathogenesis is still unclear. Studies have found that epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AECs) plays an important role in progression of pulmonary fibrosis. Thus, an in-depth exploration of its mechanism might identify new therapeutic targets. In this study, we revealed that a novel circular RNA, MKLN1 (circMKLN1), was significantly elevated in two pulmonary fibrosis models (intraperitoneally with PQ, 50 mg/kg for 7 days, and intratracheally with BLM, 5 mg/kg for 28 days). Additionally, circMKLN1 was positively correlated with the severity of pulmonary fibrosis. Inhibition of circMKLN1 expression significantly reduced collagen deposition and inhibited EMT in AECs. EMT was aggravated after circMKLN1 overexpression in AECs. MiR-26a-5p/miR-26b-5p (miR-26a/b), the targets of circMKLN1, were confirmed by luciferase reporter assays. CircMKLN1 inhibition elevated miR-26a/b expression. Significantly decreased expression of CDK8 (one of the miR-26a/b targets) was observed after inhibition of circMKLN1. EMT was exacerbated again, and CDK8 expression was significantly increased after circMKLN1 inhibition and cotransfection of miR-26a/b inhibitors in AECs. Our research indicated that circMKLN1 promoted CDK8 expression through sponge adsorption of miR-26a/b, which regulates EMT and pulmonary fibrosis. This study provides a theoretical basis for finding new targets or biomarkers in pulmonary fibrosis.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Xiaoxiao Meng
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Xian Zhu
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Jiaxiang Zhang
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Hui Lv
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Feiyao Wang
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Jinfeng Wang
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Cheng Chen
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Mengting Chen
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Dapeng Wang
- Department of Intensive Care Medicine, Wuxi People's Hospital, Nanjing Medical University, Wuxi, 214021, Jiangsu, China
| | - Wei Jin
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China.
| | - Rui Tian
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China.
| | - Ruilan Wang
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China.
| |
Collapse
|
7
|
Zhang J, Li Y, Zhu F, Guo X, Huang Y. Time-/dose- series transcriptome data analysis and traditional Chinese medicine treatment of pneumoconiosis. Int J Biol Macromol 2024; 267:131515. [PMID: 38614165 DOI: 10.1016/j.ijbiomac.2024.131515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Pneumoconiosis' pathogenesis is still unclear and specific drugs for its treatment are lacking. Analysis of series transcriptome data often uses a single comparison method, and there are few reports on using such data to predict the treatment of pneumoconiosis with traditional Chinese medicine (TCM). Here, we proposed a new method for analyzing series transcriptomic data, series difference analysis (SDA), and applied it to pneumoconiosis. By comparison with 5 gene sets including existing pneumoconiosis-related genes and gene set functional enrichment analysis, we demonstrated that the new method was not inferior to two existing traditional analysis methods. Furthermore, based on the TCM-drug target interaction network, we predicted the TCM corresponding to the common pneumoconiosis-related genes obtained by multiple methods, and combined them with the high-frequency TCM for its treatment obtained through literature mining to form a new TCM formula for it. After feeding it to pneumoconiosis modeling mice for two months, compared with the untreated group, the coat color, mental state and tissue sections of the mice in the treated group were markedly improved, indicating that the new TCM formula has a certain efficacy. Our study provides new insights into method development for series transcriptomic data analysis and treatment of pneumoconiosis.
Collapse
Affiliation(s)
- Jifeng Zhang
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China; School of Biological Engineering & Institute of Digital Ecology and Health, Huainan Normal University, Huainan, China
| | - Yaobin Li
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China.
| | - Fenglin Zhu
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Xiaodi Guo
- School of Biological Engineering & Institute of Digital Ecology and Health, Huainan Normal University, Huainan, China
| | - Yuqing Huang
- School of Biological Engineering & Institute of Digital Ecology and Health, Huainan Normal University, Huainan, China
| |
Collapse
|
8
|
Pan D, Di X, Yan B, Su X. Advances in the Study of Non-Coding RNA in the Signaling Pathway of Pulmonary Fibrosis. Int J Gen Med 2024; 17:1419-1431. [PMID: 38617054 PMCID: PMC11016256 DOI: 10.2147/ijgm.s455707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Pulmonary fibrosis is a group of chronic, progressive, and irreversible interstitial lung diseases, which are common to most end-stage lung diseases and are one of the most difficult diseases of the respiratory system. In recent years, due to the frequent occurrence of air pollution and smog, the incidence of pulmonary fibrosis in China has increased year by year, the morbidity and mortality rates of pulmonary fibrosis have gradually increased and the age of the disease tends to be younger. However, the pathogenesis of pulmonary fibrosis is not yet fully understood and is needed to further explore new drug targets. Studies have shown that non-coding RNAs play an important role in regulating the process of pulmonary fibrosis, non-coding RNAs and their specifically expressed can promote or inhibit the process. Here, we review the role of some in the regulation of pulmonary fibrosis signaling pathways and provide new ideas for the clinical diagnosis and treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Dengyun Pan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bingdi Yan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiaomin Su
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
9
|
Zhou S, Li Y, Sun W, Ma D, Liu Y, Cheng D, Li G, Ni C. circPVT1 promotes silica-induced epithelial-mesenchymal transition by modulating the miR-497-5p/TCF3 axis. J Biomed Res 2024; 38:163-174. [PMID: 38529638 PMCID: PMC11001589 DOI: 10.7555/jbr.37.20220249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 03/27/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a vital pathological feature of silica-induced pulmonary fibrosis. However, whether circRNA is involved in the process remains unclear. The present study aimed to investigate the role of circPVT1 in the silica-induced EMT and the underlying mechanisms. We found that an elevated expression of circPVT1 promoted EMT and enhanced the migratory capacity of silica-treated epithelial cells. The isolation of cytoplasmic and nuclear separation assay showed that circPVT1 was predominantly expressed in the cytoplasm. RNA immunoprecipitation assay and RNA pull-down experiment indicated that cytoplasmic-localized circPVT1 was capable of binding to miR-497-5p. Furthermore, we found that miR-497-5p attenuated the silica-induced EMT process by targeting transcription factor 3 (TCF3), an E-cadherin transcriptional repressor, in the silica-treated epithelial cells. Collectively, these results reveal a novel role of the circPVT1/miR-497-5p/TCF3 axis in the silica-induced EMT process in lung epithelial cells. Once validated, this finding may provide a potential theoretical basis for the development of interventions and treatments for pulmonary fibrosis.
Collapse
Affiliation(s)
- Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yan Li
- Biomedical Publications Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongyu Ma
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yi Liu
- Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guanru Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
10
|
Zhu M, Zhao L, Zhang X, Zhao R. Astragaloside IV restrains pulmonary fibrosis progression via the circ_0008898/miR-211-5p/HMGB1 axis. Chem Biol Drug Des 2024; 103:e14508. [PMID: 38514749 DOI: 10.1111/cbdd.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Pulmonary Fibrosis (PF) is a fatal lung disease with complicated pathogenesis. Astragaloside IV (ASV) has been discovered to alleviate PF progression, and the potential molecular mechanism of ASV in the development of PF need to be further clarified. Bleomycin (BLM) was used to construct PF in vivo model. Expression levels of circ_0008898, miR-211-5p, high mobility group protein B1 (HMGB1), alpha smooth muscle Actin (α-SMA) and Collagen I were examined by Quantitative real time polymerase chain reaction (qRT-PCR) and western blot. Cell survival was analyzed using Cell Counting Kit-8 (CCK-8) and EdU (5-ethynyl-2'-deoxyuridine) assay. The invasion abilities were investigated by transwell assay. The levels of inflammatory factors were tested via using Enzyme-linked immunosorbent assay (ELISA). The relationship between circ_0008898 or HMGB1 and miR-211-5p was identified by dual-luciferase reporter assay. The results showed that ASV attenuated BLM-induced pulmonary fibrosis in vivo. In vitro study, ASV alleviated TGF-β1-induced fibrogenesis in HFL1 cells. Circ_0008898 was increased in TGF-β1-induced HFL1 cells. ASV-induced impacts were abrogated by circ_0008898 overexpression in TGF-β1-induced HFL1 cells. Mechanistically, circ_0008898 competitively bound to miR-211-5p to increase the expression of its target HMGB1. MiR-211-5p deficiency rescued ASV-mediated effects in TGF-β1-induced HFL1 cells. In addition, HMGB1 overexpression partially overturned circ_0008898 interference-induced impacts in HFL1 cells upon TGF-β1 treatment. In conclusion, our work manifested that ASV hindered PF process by mediating the circ_0008898/miR-211-5p/HMGB1 network.
Collapse
Affiliation(s)
- Min Zhu
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou City, China
| | - Limin Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou City, China
| | - Xueying Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou City, China
| | - Ruijuan Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou City, China
| |
Collapse
|
11
|
Sisto M, Lisi S. Epigenetic Regulation of EMP/EMT-Dependent Fibrosis. Int J Mol Sci 2024; 25:2775. [PMID: 38474021 PMCID: PMC10931844 DOI: 10.3390/ijms25052775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Fibrosis represents a process characterized by excessive deposition of extracellular matrix (ECM) proteins. It often represents the evolution of pathological conditions, causes organ failure, and can, in extreme cases, compromise the functionality of organs to the point of causing death. In recent years, considerable efforts have been made to understand the molecular mechanisms underlying fibrotic evolution and to identify possible therapeutic strategies. Great interest has been aroused by the discovery of a molecular association between epithelial to mesenchymal plasticity (EMP), in particular epithelial to mesenchymal transition (EMT), and fibrogenesis, which has led to the identification of complex molecular mechanisms closely interconnected with each other, which could explain EMT-dependent fibrosis. However, the result remains unsatisfactory from a therapeutic point of view. In recent years, advances in epigenetics, based on chromatin remodeling through various histone modifications or through the intervention of non-coding RNAs (ncRNAs), have provided more information on the fibrotic process, and this could represent a promising path forward for the identification of innovative therapeutic strategies for organ fibrosis. In this review, we summarize current research on epigenetic mechanisms involved in organ fibrosis, with a focus on epigenetic regulation of EMP/EMT-dependent fibrosis.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari, Piazza Giulio Cesare 1, I-70124 Bari, Italy;
| | | |
Collapse
|
12
|
Surendran A, Huang C, Liu L. Circular RNAs and their roles in idiopathic pulmonary fibrosis. Respir Res 2024; 25:77. [PMID: 38321530 PMCID: PMC10848557 DOI: 10.1186/s12931-024-02716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited treatment options. Circular RNAs (circRNAs) have emerged as a novel class of non-coding RNAs with diverse functions in cellular processes. This review paper aims to explore the potential involvement of circRNAs in the pathogenesis of IPF and their diagnostic and therapeutic implications. We begin by providing an overview of the epidemiology and risk factors associated with IPF, followed by a discussion of the pathophysiology underlying this complex disease. Subsequently, we delve into the history, types, biogenesis, and functions of circRNAs and then emphasize their regulatory roles in the pathogenesis of IPF. Furthermore, we examine the current methodologies for detecting circRNAs and explore their diagnostic applications in IPF. Finally, we discuss the potential utility of circRNAs in the treatment of IPF. In conclusion, circRNAs hold great promise as novel biomarkers and therapeutic targets in the management of IPF.
Collapse
Affiliation(s)
- Akshaya Surendran
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chaoqun Huang
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lin Liu
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA.
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.
| |
Collapse
|
13
|
Shao Y, Xu J, Liang B, Zhang S, Chen W, Wang Y, Xing D. The role of CDR1as/ciRS-7 in cardio-cerebrovascular diseases. Biomed Pharmacother 2023; 167:115589. [PMID: 37776642 DOI: 10.1016/j.biopha.2023.115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Cerebellar degeneration-related protein 1 antisense RNA (CDR1as), also known as ciRS-7, is a circular natural antisense transcript of CDR1. It is a widely studied and powerful representative of circular RNAs. Based on its widely reported role in cancer, CDR1as is considered one of the most promising biomarkers for diagnosing and treating tumours. However, some recent studies have extensively focused on its regulatory role in cardio-cerebrovascular diseases instead of in tumours. Studies have shown that CDR1as plays a unique role in the occurrence of cardio-cerebrovascular diseases; thus, it may be a potential target for preventing and treating cardio-cerebrovascular diseases. Furthermore, CDR1as has also been found to be related to signal transduction pathways related to inflammatory response, oxidative stress, etc., which may reveal its potential mechanism in cardio-cerebrovascular diseases. However, there is no literature to summarize the role and possible mechanism of CDR1as in cardio-cerebrovascular diseases. Therefore, in the present review, we have comprehensively summarised the latest progress in the biological characteristics, development processes, regulatory mechanisms, and roles of CDR1as in cardio-cerebrovascular diseases, aiming to provide a reference and guidance for future studies.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Shuangshuang Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Wang XC, Song K, Tu B, Sun H, Zhou Y, Xu SS, Lu D, Sha JM, Tao H. New aspects of the epigenetic regulation of EMT related to pulmonary fibrosis. Eur J Pharmacol 2023; 956:175959. [PMID: 37541361 DOI: 10.1016/j.ejphar.2023.175959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Pulmonary fibrosis is a chronic and progressive fibrotic disease that results in impaired gas exchange, ventilation, and eventual death. The pro-fibrotic environment is instigated by various factors, leading to the transformation of epithelial cells into myofibroblasts and/or fibroblasts that trigger fibrosis. Epithelial mesenchymal transition (EMT) is a biological process that plays a critical role in the pathogenesis of pulmonary fibrosis. Epigenetic regulation of tissue-stromal crosstalk involving DNA methylation, histone modifications, non-coding RNA, and chromatin remodeling plays a key role in the control of EMT. The review investigates the epigenetic regulation of EMT and its significance in pulmonary fibrosis.
Collapse
Affiliation(s)
- Xian-Chen Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Kai Song
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Bin Tu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - He Sun
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Yang Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Sheng-Song Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Dong Lu
- Department of Interventional Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
| | - Ji-Ming Sha
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China.
| |
Collapse
|
15
|
Li J, Xu JZ, Dou B, Huang TF, Chen J, Wang TM, Ouyang HJ. Circ_0001666 upregulation promotes intestinal epithelial cell fibrosis in pediatric Crohn's disease via the SRSF1/BMP7 axis. Kaohsiung J Med Sci 2023; 39:966-977. [PMID: 37530654 DOI: 10.1002/kjm2.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is closely associated with Crohn's disease (CD) related intestinal fibrosis, a condition whose prevalence is increasing annually among children. Recently, the CD marker gene microarray screening revealed an upregulation of circ_0001666 in the colon tissues of CD patients, but its underlying mechanisms remain unclear. In this study, we explored the molecular mechanism of circ_0001666 in regulating EMT-mediated fibrosis in CD in vitro. The levels of circ_0001666 and EMT-associated proteins were assessed in CD clinical samples, and a CD cell model was established using TGF-β1 to induce human intestinal epithelial cells (HIECs). Additionally, the expression levels of genes and proteins related to EMT and fibrosis were analyzed by quantitative real-time PCR and western blot, cell migration, and invasion were assessed via wound healing assay and transwell, respectively, and RNA pull-down and RNA immunoprecipitation assays were performed to verify the relationship between SRSF1 and BMP7 or circ_0001666. Circ_0001666 was overexpressed in the intestinal mucosal tissues of CD patients and was positively correlated with EMT. Silencing circ_0001666 inhibited the migration, invasion, EMT, and fibrosis of HIECs induced by TGF-β1. Mechanistically, circ_0001666 regulated BMP7 expression by interacting with SRSF1. Furthermore, the effects of inhibiting circ_0001666 on HIECs could be partially reversed by overexpressing SRSF1 or silencing BMP7. Collectively, circ_0001666 regulates TGF-β1-induced HIEC migration, invasion, EMT, and fibrosis. Circ_0001666 also promoted EMT-mediated fibrosis by interacting with SRSF1 to accelerate BMP7 mRNA decay. These findings provide new insights into the pathogenesis of CD and suggest that circ_0001666 might be a potential therapeutic target for CD.
Collapse
Affiliation(s)
- Jun Li
- Department of Pediatrics, Changsha Maternal and Child Health Hospital, Changsha, Hunan Province, China
| | - Ji-Zhi Xu
- Department of Pediatrics, Changsha Maternal and Child Health Hospital, Changsha, Hunan Province, China
| | - Bo Dou
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Teng-Fei Huang
- Department of Pediatrics, Changsha Maternal and Child Health Hospital, Changsha, Hunan Province, China
| | - Jie Chen
- Department of Pediatrics, Changsha Maternal and Child Health Hospital, Changsha, Hunan Province, China
| | - Tuan-Mei Wang
- Department of Pediatrics, Changsha Maternal and Child Health Hospital, Changsha, Hunan Province, China
| | - Hong-Juan Ouyang
- Department of Digestive Nutrition, Hunan Children's Hospital, Changsha, Hunan Province, China
| |
Collapse
|
16
|
Fang S, Wang T, Weng L, Han X, Zheng R, Zhang H. Lung cancer-derived exosomal miR-132-3p contributed to interstitial lung disease development. World J Surg Oncol 2023; 21:205. [PMID: 37454094 DOI: 10.1186/s12957-023-03095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
PURPOSE Interstitial lung diseases (ILDs) have high morbidity and mortality and poor prognosis. The significance of microRNAs (miRNAs) was highlighted in ILDs development. Currently, we attempted to confirm the functions of lung cancer-derived exosomal miR-132-3p and reveal the underlying mechanism. METHOD Characteristics of exosomes were verified by transmission electron microscope (TEM), nanoparticle tracking analysis, and Western blot assay. Exosome uptake for the normal human lung fibroblasts (NHLF) was assessed using a PKH67 staining assay. MTT and colony formation assays were applied to examine the proliferation abilities of NHLF. The interaction between miR-132-3p and sprouty1 (SPRY1) was confirmed by a luciferase reporter assay. RESULTS Lung cancer-derived exosomes promoted normal human lung fibroblast activation. Exosome inhibitor GW4869 reversed the effects of Exo on NHLF. Subsequently, miR-132-3p in lung cancer-derived exosomes activated the normal human lung fibroblast and promoted interstitial lung disease development ex vivo. Next, SPRY1 was verified to be the binding protein of miR-132-3p, and sh-SPRY1 abrogated the effects of the miR-132-3p inhibitor on NHLF. CONCLUSION Exosomal miR-132-3p from A549 cells accelerated the development of interstitial lung disease through binding to SPRY1, which might serve as an important target for ILDs.
Collapse
Affiliation(s)
- Sufang Fang
- Respiratory Department, Fuzhou Pulmonary Hospital of Fujian Province, the Teaching Hospital of Fujian Medical University, Fuzhou, 350008, China
| | - Ting Wang
- Respiratory Department, Fuzhou Pulmonary Hospital of Fujian Province, the Teaching Hospital of Fujian Medical University, Fuzhou, 350008, China
| | - Ling Weng
- Respiratory Department, Fuzhou Pulmonary Hospital of Fujian Province, the Teaching Hospital of Fujian Medical University, Fuzhou, 350008, China
| | - Ximei Han
- Respiratory Department, Fuzhou Pulmonary Hospital of Fujian Province, the Teaching Hospital of Fujian Medical University, Fuzhou, 350008, China
| | - Rongshan Zheng
- Respiratory Department, Fuzhou Pulmonary Hospital of Fujian Province, the Teaching Hospital of Fujian Medical University, Fuzhou, 350008, China
| | - Hongying Zhang
- Respiratory Department, Fuzhou Pulmonary Hospital of Fujian Province, the Teaching Hospital of Fujian Medical University, Fuzhou, 350008, China.
| |
Collapse
|
17
|
Zhou D, Chang W, Qi J, Chen G, Li N. Lung protective effects of dietary malate esters derivatives from Bletilla striata against SiO 2 nanoparticles through activation of Nrf2 pathway. CHINESE HERBAL MEDICINES 2023; 15:76-85. [PMID: 36875434 PMCID: PMC9975635 DOI: 10.1016/j.chmed.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/18/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Objective To study the protective activities of the dietary malate esters derivatives of Bletilla striata against SiO2 nanoparticles-induced A549 cell lines and its mechanism action. Methods The components were isolated and elucidated by spectroscopic methods such as 1D NMR and 2D NMR. And MTT assays was used to tested these components on the A549 cell survival rates and ROS or proteins levels were detected by Western blotting. Results A new glucosyloxybenzyl 2-isobutylmalate (a malate ester derivative), along with 31 known compounds were isolated and identified from n-BuOH extract of EtOH extract of B. striata. Among them, compounds 3, 4, 11, 12 and 13 possessed noteworthy proliferative effects for damaged cells, with ED50 of 14.0, 13.1, 3.7, 11.6 and 11.5 µmol/L, respectively, compared to positive control resveratrol (ED50, 14.7 µmol/L). Militarine (8) prominently inhibited the intracellular ROS level, and increased the expression of Nrf2 and its downstream genes (HO-1 and γ-GCSc). Furthermore, Nrf2 activation mediates the interventional effects of compound 8 against SiO2 nanoparticles (nm SiO2)-induced lung injury. Moreover, treatment with compound 8 significantly reduced lung inflammation and oxidative stress in nm SiO2-instilled mice. Molecular docking experiment suggested that 8 bound stably to the HO-1 protein by hydrogen bond interactions. Conclusion The dietary malate esters derivatives of B. striata could significantly increase the viability of nm SiO2-induced A549 cells and decrease the finer particles-induced cell damages. Militarine is especially promising compound for chemoprevention of lung cancer induced by nm SiO2 through activation of Nrf2 pathway.
Collapse
Affiliation(s)
- Di Zhou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenhui Chang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxin Qi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Chen
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
18
|
Zhang Q, Ban J, Chang S, Qu H, Chen J, Liu F. The aggravate role of exosomal circRNA11:120406118|12040782 on macrophage pyroptosis through miR-30b-5p/NLRP3 axis in silica-induced lung fibrosis. Int Immunopharmacol 2023; 114:109476. [PMID: 36450208 DOI: 10.1016/j.intimp.2022.109476] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Silica dust inhalation could lead to silicosis, and there is no specific biomarker for its early diagnosis and no effective treatment due to the lack of research on its pathogenesis. The homeostasis of macrophages was considered to be crucial during the development of silicosis from persistent chronic inflammation to irreversible fibrosis. However, its regulatory mechanism and the communication between macrophages and others are still not clear. Exosomal circRNAs emerge as favorable candidates for cellular communication. Therefore, our study aimed to illustrate the regulatory mechanism of silicosis from the view of exosomal circRNAs. Our study identified a novel exosomal circRNA, circRNA11:120406118|12040782, in the peripheral serum of silicosis patients. Furthermore, the detailed role of circRNA11:120406118|12040782 was investigated both in silicosis mouse model and in silica-stimulated macrophages and fibroblasts. On the one hand, circRNA11:120406118|12040782 was shown to regulate silica-stimulated macrophage pyroptosis through circRNA11:120406118|12040782/miR-30b-5p/NLRP3 network. And this macrophage-derived cirRNA could promote the activation of fibroblasts. On the other hand, overexpressing miR-30b-5p, the crucial component of circRNA11:120406118|12040782/miR-30b-5p/NLRP3 regulatory network, could inhibit pyroptosis and attenuate silica-induced lung inflammation and fibrosis in mice. Our findings suggested that exosomal circRNA11:120406118|12040782 could aggravate NLRP3-mediated macrophages pyroptosis through sponging miR-30b-5p in silicosis development, which provide an experimental basis and shed light on the early diagnosis and treatment of silicosis.
Collapse
Affiliation(s)
- Qi Zhang
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China
| | - Jiaqi Ban
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China
| | - Shuai Chang
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China
| | - Huiyan Qu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China.
| | - Fangwei Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China.
| |
Collapse
|
19
|
Identification of circRNA expression profiles and the potential role of hsa_circ_0006916 in silicosis and pulmonary fibrosis. Toxicology 2023; 483:153384. [PMID: 36403901 DOI: 10.1016/j.tox.2022.153384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Circular RNAs (circRNAs) are emerging as novel regulators in the biological development of various diseases, but their expression profiles, functions and mechanisms in silicosis and pulmonary fibrosis remain largely unexplored. In this study, we constructed a mouse model of pulmonary fibrosis by intratracheal injection of silica particles and then performed transcriptome RNA sequencing of lung tissues. The results showed that 78 circRNAs, 39 miRNAs and 262 mRNAs were differentially expressed. Among them, five circRNAs, three miRNAs and four mRNAs were further selected, and their abnormal expression was verified in mouse fibrotic lung tissues by RT-qPCR assay. The circRNA-associated ceRNA network including 206 ceRNA triplets was constructed based on abnormally expressed circRNAs, miRNAs and mRNAs, and miR-199b-5p, miR-296-5p and miR-708-5p were identified as hub miRNAs connected to circRNAs and mRNAs. Subsequently, GO and KEGG pathway enrichment analyses were performed to detect the potential roles of differentially expressed mRNAs in pulmonary fibrosis, which were mainly involved in immune response, Th17 cell differentiation, NF-κB signaling pathway and PI3K-Akt signaling pathway. Furthermore, we identified that hsa_circ_0006916 was up-regulated in pulmonary fibrosis. To characterize the potential role of hsa_circ_0006916, we transfected siRNA targeting hsa_circ_0006916 into alveolar macrophages and found that knockdown of hsa_circ_0006916 significantly increased the expression levels of M1 molecules IL-1β and TNF-α and reduced the expression level of M2 molecule TGF-β1, indicating that hsa_circ_0006916 may play an important role in the activation of M1-M2 polarization effect in macrophages. Our results provided important evidence on the possible contribution of these abnormal circRNAs to the development of silicosis and pulmonary fibrosis.
Collapse
|
20
|
Ruan Y, Li Z, Xie Y, Sun W, Guo J. Detecting plasma hsa_circ_0061276 in patients with gastric cancer by reverse transcription-digital polymerase chain reaction. Front Oncol 2022; 12:1042248. [PMID: 36620570 PMCID: PMC9816570 DOI: 10.3389/fonc.2022.1042248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background The role of circular RNAs (circRNAs) in the occurrence of gastric cancer is still unclear. Therefore, the diagnostic value and mechanisms underlying hsa_circ_0061276 in the occurrence of gastric cancer were explored. Methods Reverse transcription-droplet digital polymerase chain reaction was used to detect the copy number of hsa_circ_0061276 in plasma from healthy individuals, as well as from patients with gastric precancerous lesions or early-stage or advanced gastric cancer. Plasmids overexpressing or knocking down hsa_circ_0061276 expression were transfected into gastric cancer cells. The effects on the growth, migration, and cell cycle distribution of gastric cancer cells were then analyzed. Finally, miRanda and RNAhybrid were used to explore the binding sites between hsa_circ_0061276 and microRNAs (miRNAs). A double luciferase reporter gene assay was used to confirm the miRNA sponge effect. Results The results show that plasma hsa_circ_0061276 copy number showed a trend of a gradual decrease when comparing healthy controls to the early cancer group and advanced gastric cancer group. Overexpression of hsa_circ_0061276 inhibited the growth and migration of gastric cancer cells. Through bioinformatic analyses combined with cellular experiments, it was found that hsa_circ_0061276 inhibited the growth of gastric cancer by binding to hsa-miR-7705. Conclusion Hsa_circ_0061276 may be a new biomarker for gastric cancer. The tumor suppressor role of hsa_circ_0061276 on gastric cancer likely occurs through a sponge effect on miRNAs such as hsa-miR-7705.
Collapse
Affiliation(s)
- Yao Ruan
- Department of Gastrointestinal Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Zhe Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Weiliang Sun
- Department of Gastrointestinal Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China,Institute of Gastrointestinal Tumor of Ningbo University, Ningbo, China
| | - Junming Guo
- Department of Gastrointestinal Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China,Institute of Gastrointestinal Tumor of Ningbo University, Ningbo, China,*Correspondence: Junming Guo,
| |
Collapse
|
21
|
Yin H, Xie Y, Gu P, Li W, Zhang Y, Yao Y, Chen W, Ma J. The emerging role of epigenetic regulation in the progression of silicosis. Clin Epigenetics 2022; 14:169. [PMID: 36494831 PMCID: PMC9737765 DOI: 10.1186/s13148-022-01391-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Silicosis is one of the most severe occupational diseases worldwide and is characterized by silicon nodules and diffuse pulmonary fibrosis. However, specific treatments for silicosis are still lacking at present. Therefore, elucidating the pathogenesis of silicosis plays a significant guiding role for its treatment and prevention. The occurrence and development of silicosis are accompanied by many regulatory mechanisms, including epigenetic regulation. The main epigenetic regulatory mechanisms of silicosis include DNA methylation, non-coding RNA (ncRNA), and histone modifications. In recent years, the expression and regulation of genes related to silicosis have been explored at epigenetic level to reveal its pathogenesis further, and the identification of aberrant epigenetic markers provides new biomarkers for prediction and diagnosis of silicosis. Here, we summarize the studies on the role of epigenetic changes in the pathogenesis of silicosis to give some clues for finding specific therapeutic targets for silicosis.
Collapse
Affiliation(s)
- Haoyu Yin
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Yujia Xie
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Pei Gu
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Wei Li
- grid.417303.20000 0000 9927 0537Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Yingdie Zhang
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Yuxin Yao
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Weihong Chen
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Jixuan Ma
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| |
Collapse
|
22
|
Ma L, Chu H, Wang M, Zhang Z. Biological functions and potential implications of circular RNAs. J Biomed Res 2022; 37:89-99. [PMID: 36814375 PMCID: PMC10018409 DOI: 10.7555/jbr.36.20220095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Circular RNAs (circRNAs) are characterized by a covalent closed-loop structure with an absence of both 5' cap structure and 3' polyadenylated tail. Numerous studies have found that circRNAs play an important role in various diseases and have a variety of biological regulatory mechanisms, including acting as microRNA sponges, interacting with proteins, modulating the expression of related genes and translating into peptides or proteins. CircRNAs have also been used as biomarkers for a number of diseases, which could improve clinical practice. This review summarizes the most recent advances in biogenesis and knowledge of the biological functions of circRNAs as well as the related bioinformatics databases. We specifically describe developments in understanding of circRNA functions in the field of environmental exposure-induced diseases. Finally, we focus on potential clinical implications of circRNAs to facilitate their clinical transformation into disease treatment.
Collapse
Affiliation(s)
- Lan Ma
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haiyan Chu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
23
|
Li G, Xu Q, Cheng D, Sun W, Liu Y, Ma D, Wang Y, Zhou S, Ni C. Caveolin-1 and Its Functional Peptide CSP7 Affect Silica-Induced Pulmonary Fibrosis by Regulating Fibroblast Glutaminolysis. Toxicol Sci 2022; 190:41-53. [PMID: 36053221 DOI: 10.1093/toxsci/kfac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Exposure to silica is a cause of pulmonary fibrosis disease termed silicosis, which leads to respiratory failure and ultimately death. However, what drives fibrosis is not fully elucidated and therapeutic options remain limited. Our previous RNA-sequencing analysis showed that the expression of caveolin-1 (CAV1) was downregulated in silica-inhaled mouse lung tissues. Here, we not only verified that CAV1 was decreased in silica-induced fibrotic mouse lung tissues in both messenger RNA and protein levels, but also found that CSP7, a functional peptide of CAV1, could attenuate pulmonary fibrosis in vivo. Further in vitro experiments revealed that CAV1 reduced the expression of Yes-associated protein 1(YAP1) and affected its nuclear translocation in fibroblasts. In addition, Glutaminase 1 (GLS1), a key regulator of glutaminolysis, was identified to be a downstream effector of YAP1. CAV1 could suppress the activity of YAP1 to decrease the transcription of GLS1, thereby inhibiting fibroblast activation. Taken together, our results demonstrated that CAV1 and its functional peptide CSP7 may be potential molecules or drugs for the prevention and intervention of silicosis.
Collapse
Affiliation(s)
- Guanru Li
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qi Xu
- Department of Occupational Medical and Environmental Health, School of Public Health and Management, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Demin Cheng
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenqing Sun
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yi Liu
- Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Dongyu Ma
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Siyun Zhou
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunhui Ni
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
24
|
Xu HB, Li MH, Tang XF, Lu J. The relationship between poor glycaemic control at different time points of gestational diabetes mellitus and pregnancy outcomes. J OBSTET GYNAECOL 2022; 42:2979-2986. [PMID: 36149633 DOI: 10.1080/01443615.2022.2124852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We aimed to identify the complications of gestational diabetes mellitus (GDM) associated with poor control of fasting plasma glucose (FPG) and postload plasma glucose (PPG) on the 75-g oral glucose tolerance test (OGTT). This retrospective study included 997 singleton pregnancy GDM patients who were assigned to poor or good glycaemic control groups. Multivariate analysis indicated that poor FPG control and poor PPG control were both independent predictors of hypertensive disorder complicating pregnancy (HDCP) (odd ratio (OR) of 2.551 (95% CI [1.146-5.682], p = .022) and OR of 2.084 (95% [1.115-3.894], p = .021) compared with good glycaemic control groups, respectively). Poor PPG control promoted the rate of caesarean delivery (1.534 (95% CI [1.063-2.214]), p = .022), whereas good PPG control increased the risk of premature rupture of membranes (PROM) (0.373 (95% CI [0.228-0.611]), p < .001). Conclusively, poor control FPG and PPG dissimilarly affect pregnancy complications in GDM; these findings may help clinicians in the effective implementation of measures to prevent pregnancy complications in GDM.IMPACT STATEMENTWhat is already known on this subject? Previous studies displayed that GDM patients with 2-h PPG elevated at 24-28 week of gestation had a 2.254-fold increased risk of postpartum dysglycaemia. Abnormal plasma glucose in GDM mother increased the probability of childhood obesity in the offspring. With the implementation of China's second-child policy, the incidence of GDM is rising.What do the results of this study add? Our results indicated that the older patients with GDM, the greater the risk of abnormal plasma glucose control. In addition, maternal age and prenatal BMI were notably correlated with poor plasma glucose control of FPG and PPG, respectively. We also found that both poor FPG and PPG control notably increased the incidence of HDCP in pregnant women. The incidence of PROM was higher in the good PPG control group compared with the poor PPG control group.What are the implications of these findings for clinical practice and/or further research? This study displayed that the effects of poor FPG and PPG control on pregnancy complications and newborn outcomes were heterogeneous, which might be related to the specificity of plasma glucose metabolism at different time points. Good glycaemic control, especially PPG control, was of great significance for improving pregnancy complications and perinatal conditions.
Collapse
Affiliation(s)
- Hong-Bin Xu
- Department of Obstetrics and Gynecology, Changzhou Second People's Hospital affiliated to Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Min-Hui Li
- Department of Obstetrics and Gynecology, Changzhou Second People's Hospital affiliated to Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Xiao-Fang Tang
- Department of Obstetrics and Gynecology, Changzhou Second People's Hospital affiliated to Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Jing Lu
- Department of Obstetrics and Gynecology, Changzhou Second People's Hospital affiliated to Nanjing Medical University, Changzhou, Jiangsu Province, China
| |
Collapse
|
25
|
Circular RNA circPGD contributes to gastric cancer progression via the sponging miR-16-5p/ABL2 axis and encodes a novel PGD-219aa protein. Cell Death Dis 2022; 8:384. [PMID: 36104322 PMCID: PMC9472197 DOI: 10.1038/s41420-022-01177-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
CircRNAs have critical effects on tumor development and progression. However, circPGD effect on gastric cancer (GC) is still elusive. Nuclear and cytoplasmic RNA fractionation, and RNA-FISH assay examined the localization of circPGD in MGC-803 cells. qRT-PCR was conducted to detect the expression and prognostic significance of circPGD, miR-16-5p, and ABL2 within GC tissues. Meanwhile, qRT-PCR, luciferase reporter assays, rescue, and western blotting assays confirmed the interactions between circPGD, miR-16-5p, and ABL2. Transwell, wound healing, and colony-formation assays, as well as CCK-8 and cell apoptosis assays, analyzed the functions of circPGD, miR-16-5p, ABL2, as well as PGD-219aa within GC cells. Western blotting and cell immunofluorescence experiments detected the differences in the expression of the related proteins. Finally, xenograft and metastatic mouse models were used to investigate circPGD function in vivo. Mass spectrometry was used to detect the existence of PGD-219aa in MGC-803 cells. CircPGD was localized in the cytoplasm and nucleus of MGC-803 cells. Compared with the control, circPGD and ABL2 expression increased within GC tissues and cells, and the miR-16-5p level was decreased. Functionally, circPGD promoted cell proliferation, migration and suppressed apoptosis in vitro. Mechanistically, circPGD sponged miR-16-5p for relieving miR-16-5p suppression on the corresponding target ABL2 via the SMAD2/3 and YAP signaling pathways. In addition, circPGD encodes a novel PGD-219aa protein that can enhance the growth and migration of GC cells, while inhibiting GC cells apoptosis via the SMAD2/3 and YAP signaling pathways. Furthermore, circPGD overexpression enhanced tumor aggressiveness, while circPGD knockdown inhibited tumor growth. Overall, circPGD has a novel oncogenic effect on GC cells, indicating the potential of circPGD as the tumorigenic factor and a promising diagnostic marker for GC.
Collapse
|
26
|
Non-coding RNA in idiopathic interstitial pneumonia and Covid-19 pulmonary fibrosis. Mol Biol Rep 2022; 49:11535-11546. [PMID: 36097114 PMCID: PMC9467421 DOI: 10.1007/s11033-022-07820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 12/02/2022]
Abstract
Pulmonary fibrosis is the key feature of majority of idiopathic interstitial pneumonias (IIPs) as well as many patients with post-COVID-19. The pathogenesis of pulmonary fibrosis is a complex molecular process that involves myriad of cells, proteins, genes, and regulatory elements. The non-coding RNA mainly miRNA, circRNA, and lncRNA are among the key regulators of many protein coding genes and pathways that are involved in pulmonary fibrosis. Identification and molecular mechanisms, by which these non-coding RNA molecules work, are crucial to understand the molecular basis of the disease. Additionally, elucidation of molecular mechanism could also help in deciphering a potential diagnostic/prognostic marker as well as therapeutic targets for IIPs and post-COVID-19 pulmonary fibrosis. In this review, we have provided the latest findings and discussed the role of these regulatory elements in the pathogenesis of pulmonary fibrosis associated with Idiopathic Interstitial Pneumonia and Covid-19.
Collapse
|
27
|
Role of Circular RNAs in Pulmonary Fibrosis. Int J Mol Sci 2022; 23:ijms231810493. [PMID: 36142402 PMCID: PMC9504269 DOI: 10.3390/ijms231810493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 12/19/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive form of interstitial lung disease, characterized by the histopathological pattern of usual interstitial pneumonia. Apart from aberrant alterations of protein-coding genes, dysregulation of non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs (circRNAs), is crucial to the initiation and progression of pulmonary fibrosis. CircRNAs are single-stranded RNAs that form covalently closed loops without 5′ caps and 3′ tails. Different from canonical splicing of mRNA, they are produced from the back-splicing of precursor mRNAs and have unique biological functions, as well as potential biomedical implications. They function as important gene regulators through multiple actions, including sponging microRNAs and proteins, regulating transcription, and splicing, as well as protein-coding and translation in a cap-independent manner. This review comprehensively summarizes the alteration and functional role of circRNAs in pulmonary fibrosis, with a focus on the involvement of the circRNA in the context of cell-specific pathophysiology. In addition, we discuss the diagnostic and therapeutic potential of targeting circRNA and their regulatory pathway mediators, which may facilitate the translation of recent advances from bench to bedside in the future.
Collapse
|
28
|
Cheng Z, Zhang Y, Zhao R, Zhou Y, Dong Y, Qiu A, Xu H, Liu Y, Zhang W, Chang Q, Chu M. A novel circRNA-SNP may increase susceptibility to silicosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113855. [PMID: 35835075 DOI: 10.1016/j.ecoenv.2022.113855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, we aimed to reveal the association between circRNA-related single nucleotide polymorphisms (SNPs) with the susceptibility of silicosis. To achieve this goal, a silicosis-related GWAS was constructed to select the candidate SNPs, and circBase database was utilized to select the promising SNPs which may locate on circRNAs. In addition, the eQTL analysis between the SNPs and located genes was performed to select the candidate SNPs. Finally, the association between candidate SNPs with the susceptibility of silicosis was validated. As a result, we firstly selected 10,922 SNPs with P < 1 × 10-3 through the silicosis-related GWAS. Among which, 1,752 SNPs were identified that may locate on 2,660 circRNAs. After the MAF evaluation and the sequences checking, we obtained 94 SNPs and related 105 circRNAs. EQTL analysis indicated that 7 circRNA-SNPs might regulate the expression of located genes. Subsequently, a strong association was found between variant A of rs17115143 and silicosis risk in the validation stage (OR= 1.68, P = 0.032). Combination of the GWAS data and Taqman genotyping data also revealed a strong association between rs17115143 and silicosis risk in both dominant and additive models (dom: OR= 1.96, P = 3.98 × 10-4; add: OR= 1.40, P = 3.06 × 10-4). In conclusion, the variant A allele of circRNA-SNP rs17115143 could be a risk factor in the progression of silicosis. And related 6 circRNAs may function as novel biomarkers for the diagnostic of silicosis. Further researches to explore the biological mechanisms of rs17115143 related 6 circRNAs in the regulation of silicosis are warranted.
Collapse
Affiliation(s)
- Zhounan Cheng
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China; Department of Scientific Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yingyi Zhang
- Department of Occupational Disease, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China
| | - Rui Zhao
- Department of Respiratory, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China
| | - Yan Zhou
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Anni Qiu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Wendi Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Qing Chang
- Department of Occupational Disease, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
29
|
Yuan J, Wang T, Wang L, Li P, Shen H, Mo Y, Zhang Q, Ni C. Transcriptome-wide association study identifies PSMB9 as a susceptibility gene for coal workers' pneumoconiosis. ENVIRONMENTAL TOXICOLOGY 2022; 37:2103-2114. [PMID: 35506645 DOI: 10.1002/tox.23554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Coal workers' pneumoconiosis (CWP) is a type of typical occupational lung disease caused by prolonged inhalation of coal mine dust. The individuals' different genetic background may underlie their different susceptibility to develop pneumoconiosis, even under the same exposure level. This study aimed to identify susceptibility genes associated with CWP. Based on our previous genome-wide association study (GWAS, 202 CWP cases vs. 198 controls) and gene expression data obtained by analyzing human lungs and whole blood from the Genotype-Tissue Expression (GTEx) Portal, a transcriptome-wide association study (TWAS) was applied to identify CWP risk-related genes. Luciferase report gene assay, qRT-PCR, Western blot, immunofluorescence assay, and TUNEL assay were conducted to explore the potential role of the candidate gene in CWP. Proteasome 20S subunit beta 9 (PSMB9) was identified as a strong risk-related gene of CWP in both lungs and whole blood (Lungs: PTWAS = 4.22 × 10-4 ; Whole blood: PTWAS = 2.11 × 10-4 ). Single nucleotide polymorphisms (SNPs) rs2071480 and rs1351383, which locate in the promoter region and the first intron of the PSMB9 gene, were in high linkage disequilibrium (LD, r2 = 0.98) with the best GWAS SNP rs4713600 (G>T, OR = 0.55, 95% CI: 0.42-0.74, P = 6.86 × 10-5 ). Both rs2071480 and rs1351383 significantly enhanced the transcriptional activity of PSMB9. Functional experiments revealed that silica exposure remarkably reduced the PSMB9 expression and caused cell apoptosis, while overexpression of PSMB9 markedly abolished silica-induced cell apoptosis. We here identified PSMB9 as a novel susceptibility gene for CWP and provided important insights into the further exploration of the CWP pathogenesis.
Collapse
Affiliation(s)
- Jiali Yuan
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Pathology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lijuan Wang
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ping Li
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Chunhui Ni
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Prolonged proteasome inhibition antagonizes TGFβ1-dependent signalling by promoting the lysosomal-targeting of TGFβ receptors. Cell Signal 2022; 98:110414. [PMID: 35901932 DOI: 10.1016/j.cellsig.2022.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 01/18/2023]
Abstract
Impairing autophagy disrupts transforming growth factor beta 1 (TGFβ1) signalling and epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC). Since autophagy and proteasome-mediated degradation are interdependent, we investigated how prolonged downregulation of proteasomal catalytic activity affected TGFβ1-dependent signalling and EMT. Proteasome-dependent degradation was inhibited in A549 and H1299 NSCLC cells using MG132 and lactacystin, which are reversible and irreversible proteasome inhibitors, respectively. We observed that inhibiting proteasomal activity for 24 h decreased TGFβ-dependent nuclear accumulation of Smad2/3. Time course studies were then carried out to characterize the time frame of this observation. Short-term (< 8 h) proteasome inhibition resulted in increased receptor regulated Smad (R-Smad) phosphorylation and steady-state TGFβ receptor type II (TGFβRII) levels. However, prolonged (8-24 h) proteasome inhibition decreased TGFβ1-dependent R-Smad phosphorylation and steady-state TGFβRI and TGFβRII levels. Furthermore, proteasome inhibition blunted TGFβ-dependent E- to N-Cadherin shift, stress fiber formation, and increased cellular apoptosis via the TAK-1-TRAF6-p38 MAPK pathway. Interestingly, proteasome inhibition also increased autophagic flux, steady-state microtubule-associated protein light chain 3B-II and active uncoordinated 51-like autophagy activating kinase 1 levels, and co-localization of lysosomes with autophagy cargo proteins and autophagy-related proteins. Finally, we observed that proteasome inhibition increased TGFβRII endocytosis and trafficking to lysosomes and we conclude that prolonged proteasome inhibition disrupts TGFβ signalling outcomes through altered TGFβ receptor trafficking.
Collapse
|
31
|
Yang M, Chang X, Gao Q, Gong X, Zheng J, Liu H, Li K, Zhan H, Wang X, Li S, Sun X, Feng S, Sun Y. LncRNA MEG3 ameliorates NiO nanoparticles-induced pulmonary inflammatory damage via suppressing the p38 mitogen activated protein kinases pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1058-1070. [PMID: 35006638 DOI: 10.1002/tox.23464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The lung inflammatory damage could result from the nickel oxide nanoparticles (NiO NPs), in which the underlying mechanism is still unclear. This article explored the roles of long noncoding RNA maternally expressed gene 3 (lncRNA MEG3) and p38 mitogen activated protein kinases (p38 MAPK) pathway in pulmonary inflammatory injury induced by NiO NPs. Wistar rats were treated with NiO NPs suspensions (0.015, 0.06, and 0.24 mg/kg) by intratracheal instillation twice-weekly for 9 weeks. Meanwhile, A549 cells were treated with NiO NPs suspensions (25, 50, and 100 μg/ml) for 24 h. It can be concluded that the NiO NPs did trigger pulmonary inflammatory damage, which was confirmed by the histopathological examination, abnormal changes of inflammatory cells and inflammatory cytokines (IL-1β, IL-6, TGF-β1, TNF-α, IFN-γ, IL-10, CXCL-1 and CXCL-2) in bronchoalveolar lavage fluid (BALF), pulmonary tissue and cell culture supernatant. Furthermore, NiO NPs activated the p38 MAPK pathway and downregulated MEG3 in vivo and in vitro. However, p38 MAPK pathway inhibitor (10 μM SB203580) reversed the alterations in the expression levels of inflammatory cytokines induced by NiO NPs. Meanwhile, over-expressed MEG3 significantly suppressed NiO NPs-induced p38 MAPK pathway activation and inflammatory cytokines changes. Overall, the above results proved that over-expression of lncRNA MEG3 reduced NiO NPs-induced inflammatory damage by preventing the activation of p38 MAPK pathway.
Collapse
Affiliation(s)
- Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuefeng Gong
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jinfa Zheng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Xingchang Sun
- Institute of Occupational Diseases, Gansu Baoshihua Hospital, Lanzhou, China
| | - Sanwei Feng
- Institute of Occupational Diseases, Gansu Baoshihua Hospital, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
32
|
Cheng Z, Zhang Y, Wu S, Zhao R, Yu Y, Zhou Y, Zhou Z, Dong Y, Qiu A, Xu H, Liu Y, Zhang W, Tian T, Wu Q, Gu H, Chu M. Peripheral blood circular RNA hsa_circ_0058493 as a potential novel biomarker for silicosis and idiopathic pulmonary fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113451. [PMID: 35378401 DOI: 10.1016/j.ecoenv.2022.113451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Existing studies reported that some circular RNAs (circRNAs) play vital roles in the development of pulmonary fibrosis. However, few studies explored the biomarker potential of circRNAs for pulmonary fibrosis based on population data. Therefore, we aimed to identify peripheral blood circRNAs as potential biomarkers for diagnosing silicosis and idiopathic pulmonary fibrosis (IPF). In brief, an RNA-seq screening based on 4 silicosis cases and 4 controls was initially performed. Differentially expressed circRNAs were combined with the human serum circRNA dataset to identify overlapping serum-detectable circRNAs, followed by validation using the GEO dataset (3 IPF cases and 3 controls) and subsequent qRT-PCR, including 84 additional individuals. Following the above steps, 243 differentially expressed circRNAs were identified during the screening stage, with fold changes ≥ 1.5 and P < 0.05. Of note, the human serum circRNA dataset encompassed 28 of 243 circRNAs. GEO (GSE102660) validation revealed two highly expressed circRNAs (P < 0.05) in the IPF case group. Furthermore, at the enlarged sample validation stage, hsa_circ_0058493 was highly expressed in both silicosis and IPF cases (silicosis: P = 1.16 × 10-6; IPF: P = 7.46 × 10-5). Additionally, hsa_circ_0058493 expression was significantly increased in MRC-5 cells upon TGF-β1 treatment, while hsa_circ_0058493 knockdown inhibited the expression of fibrotic molecules by affecting the epithelial-mesenchymal transition process. These shreds of evidence indicated that hsa_circ_0058493 might serve as a novel biomarker for diagnosing silicosis and IPF.
Collapse
Affiliation(s)
- Zhounan Cheng
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yingyi Zhang
- Department of Occupational Disease, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China
| | - Shuangshuang Wu
- Department of Geriatrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Zhao
- Department of Occupational Disease, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China
| | - Yuhui Yu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yan Zhou
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Zhen Zhou
- Department of Mathematics and Applied Mathematics, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Anni Qiu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Wendi Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Qiuyun Wu
- School of Public Health, Xuzhou Medical University, Xuzhou, China.
| | - Hongyan Gu
- Department of Respiratory, the Sixth People's Hospital of Nantong, Nantong, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
33
|
Li XY, Wei JL, Xie YX, Zhao J, Ma LY, Zhang N, Yang HF. Serum Levels of Mitochondrial Fission- and Fusion-Related Genes of Coal Workers' Pneumoconiosis and Risk Factor Analysis Based on a Generalized Linear Model. Appl Bionics Biomech 2022; 2022:8629583. [PMID: 35401788 PMCID: PMC8993577 DOI: 10.1155/2022/8629583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Objective We aimed to explore the risk factors for coal workers' pneumoconiosis and to further explore the significance of mitochondrial fission and fusion factors in CWP and verify the feasibility of mitochondrial fission and fusion factors as diagnostic and therapeutic targets. Methods The data of 168 cases were collected, and they were divided into a healthy control group (40 cases), dust exposure control group (61 cases), and CWP group (67 cases) and entered into SPSS 24.0. The statistical data were analyzed by the chi-square test or Fisher's exact probability method. The variables with statistically significant differences of the univariate analysis results were included in the generalized linear model. Test level was α = 0.05. Blood samples were collected to detect the ROS content, MDA content, and SOD activity. The mRNA expression levels of OPA1, Drp1, MFN2, Fis1, Col I, Col III, and α-SMA were determined by q-PCR. The protein expression levels of OPA1, Drp1, MFN2, Fis1, Col I, Col III, and α-SMA were detected by western blot. Results Generalized linear regression analysis showed that lower school education, no respiratory protective measures, the working age beyond 15 years, and the type of work like coal mine drillers were the risk factors for CWP. With the aggravation of CWP, the degree of fibrosis and inflammation increased oxidative damage, increased mitochondrion division, and decreased fusion, which were more sensitive in the second and third stages of CWP. Conclusion The results in this found that mitochondria are injured by fission and fusion in the CWP patients. Detection of the mitochondria fission and fusion factors provides the application value to evaluate the injury degree and progress of CWP and the clues for finding the real and effective screening and diagnosis biomarkers.
Collapse
Affiliation(s)
- Xiao-Yu Li
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Jing-Lin Wei
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Yong-Xin Xie
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Ji Zhao
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Li-Ya Ma
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Na Zhang
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Hui-Fang Yang
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
34
|
Yang S, Liu F, Wang D. Long noncoding RNA Kcnq1ot1 prompts lipopolysaccharide-induced acute lung injury by microRNA-7a-5p/Rtn3 axis. Eur J Med Res 2022; 27:46. [PMID: 35317842 PMCID: PMC8939215 DOI: 10.1186/s40001-022-00653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/07/2022] [Indexed: 12/05/2022] Open
Abstract
Background Long noncoding RNA (lncRNA)-regulated mechanism in acute lung injury (ALI) has attracted special interests in study researches. We planned to disclose whether KCNQ1 overlapping transcript 1 (Kcnq1ot1) is involved in ALI and its mechanism. Methods The lipopolysaccharide (LPS)-induced ALI model was established in mice. Kcnq1ot1, microRNA (miR)-7a-5p and Reticulon 3 (Rtn3) levels were measured in lung tissues of mice. The vector that changed Kcnq1ot1, miR-7a-5p and Rtn3 expression was injected into LPS-treated mice, and pathological damage, fibrosis, apoptosis and inflammatory response were subsequently examined in lung tissues. The relation between Kcnq1ot1 and miR-7a-5p, and that between miR-7a-5p and Rtn3 were identified. Results Kcnq1ot1 and Rtn3 expression increased while miR-7a-5p expression decreased in LPS-treated mice. Reduced Kcnq1ot1 or elevated miR-7a-5p alleviated pathological damage, fibrosis, apoptosis and inflammatory response in ALI mice, while overexpressed Rtn3 worsened ALI in mice. Downregulation of Rtn3 reversed the exacerbation of miR-7a-5p downregulation in ALI mice. Kcnq1ot1 competitively bound to miR-7a-5p and miR-7a-5p negatively mediated Rtn3 expression. Conclusion Our experiments evidence that silencing Kcnq1ot1 upregulates miR-7a-5p to suppress Rtn3 expression, thereby diminishing LPS-induced ALI. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00653-8.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Geriatrics, Daqing Qilfield General Hospital, Daqing, 163000, Heilongjiang, China
| | - Fang Liu
- Department of Geriatrics, Daqing Qilfield General Hospital, Daqing, 163000, Heilongjiang, China
| | - Di Wang
- Department of Prosthodontics, Daqing Qilfield General Hospital, Zhongkang Street No. 9, Sartu District, Daqing, 163000, Heilongjiang, China.
| |
Collapse
|
35
|
Yang G, Tian Y, Li C, Xia J, Qi Y, Yao W, Hao C. LncRNA UCA1 regulates silicosis-related lung epithelial cell-to-mesenchymal transition through competitive adsorption of miR-204-5p. Toxicol Appl Pharmacol 2022; 441:115977. [DOI: 10.1016/j.taap.2022.115977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
|
36
|
Wang Y, Yang Z, Gu J, Zhang Y, Wang X, Teng Z, Wang D, Gao L, Li W, Yeh S, Han Z. Estrogen receptor beta increases clear cell renal cell carcinoma stem cell phenotype via altering the circPHACTR4/miR-34b-5p/c-Myc signaling. FASEB J 2022; 36:e22163. [PMID: 35061326 DOI: 10.1096/fj.202101645r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 11/11/2022]
Abstract
Early clinical studies indicated that estrogen receptor beta (ERβ) might play key roles to impact the progression of clear cell renal cell carcinoma (ccRCC). The detailed molecular mechanisms, however, remain unclear. Here, we found ERβ could increase the cancer stem cell (CSC) population via altering the circPHACTR4/miR-34b-5p/c-Myc signaling. Mechanism dissection revealed that ERβ could suppress circular RNA PHACTR4 (circPHACTR4) expression via direct binding to the estrogen response elements (EREs) on the 5' promoter region of its host gene, phosphatase and actin regulator 4 (PHACTR4) to decrease miR-34b-5p expression. The decreased miRNA-34b-5p could then increase c-Myc mRNA translation via targeting its 3' untranslated region (3' UTR). The in vivo mouse model with subcutaneous xenografts of ccRCC cells also validated the in vitro data. Importantly, analysis results from ccRCC TCGA database and our clinical data further confirmed the above in vitro/in vivo data. Together, these results suggest that ERβ may increase CSC population in ccRCC via altering ERβ/circPHACTR4/miR-34b-5p/c-Myc signaling and that targeting this newly identified signal pathway may help physicians to better suppress ccRCC progression.
Collapse
Affiliation(s)
- Yaxuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, China
| | - Junfei Gu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhihai Teng
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dandan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Gao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Li
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuyuan Yeh
- Department of Urology, University of Rochester Medical Center, Rochester, New York, USA
| | - Zhenwei Han
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
37
|
Aghajani Mir M, Dinmohammadi H, Moudi E, Motamed N, Daraei A. Clinical values of expression signature of circCDR1AS and circHIAT1 in prostate cancer: Two circRNAs with regulatory function in androgen receptor (AR) and PI3K/AKT signaling pathways. J Clin Lab Anal 2022; 36:e24220. [PMID: 35007362 PMCID: PMC8841177 DOI: 10.1002/jcla.24220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background Prostate cancer (PCa) is a genetically heterogeneous disease with highly molecular aberrations. It has been revealed that a newly discovered class of non‐coding RNAs called circular RNAs (circRNAs) play key roles in dictating tumor behaviors and phenotypes of the prostate tumors. In the current study, our aim was to determine the expression profiles of circHIAT1 and circCDR1AS in PCa compared with benign prostatic hyperplasia (BPH) tissues, as well as their clinicopathological relevance. Methods The 50 prostate tissues including 25 PCa tissues and 25 BPH samples were collected for analyzing the expression levels of target circRNAs by quantitative real‐time PCR (qRT‐PCR). Results The results revealed that expression of circCDR1AS was significantly elevated in PCa compared with the BPH (p < 0.05). We also observed that PCa patients over the age of 60 had a higher expression of the circCDR1AS than patients under the age of 60 (p = 0.017). Moreover, a lower expression level of circHIAT1 was found in the PCa than BPH tissues (p < 0.05), and finally, the findings indicated that the area under the curve (AUC) of circCDR1AS was 0.848, with 92% sensitivity and 76% specificity, as well as an AUC of 0.828, with the 80% sensitivity and 76% specificity for circHIAT1. Conclusion These observations suggest that the abnormal expression of circCDR1AS and circHIAT1 can be regarded as two different types of molecular pathology with potential biomarker values for PCa, although further studies are needed.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Dinmohammadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Emadoddin Moudi
- Department of Urology, Babol University of Medical Sciences, Babol, Iran
| | - Nima Motamed
- The Faculty Member of the Department of Social Medical, Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
38
|
Kim JW, Jeong MH, Kim GE, Han YB, Park YJ, Chung KH, Kim HR. Comparison of 3D airway models for the assessment of fibrogenic chemicals. Toxicol Lett 2021; 356:100-109. [PMID: 34902520 DOI: 10.1016/j.toxlet.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Lung epithelial cells and fibroblasts play key roles in pulmonary fibrosis and are involved in fibrotic signaling and production of the extracellular matrix (ECM), respectively. Recently, 3D airway models consisting of both cell types have been developed to evaluate the fibrotic responses while facilitating cell-cell crosstalk. This study aimed to evaluate the fibrotic responses in these models using different fibrogenic agents, which are known as key events in adverse outcome pathways of pulmonary fibrosis. We quantified cell injury and several sequential steps in fibrogenesis, including inflammation, the epithelial-mesenchymal transition (EMT), fibroblast activation, and ECM accumulation, using two different 3D airway models, the EpiAirway™-full thickness (Epi/FT) and MucilAir™-human fibroblast (Mucil/HF) models. In the Epi/FT model, fibrogenic agents induced the expression of inflammation and EMT-associated markers, while in the Mucil/HF model, they induced fibroblast activation and ECM accumulation. Using this information, we conducted gene ontology term network analysis. In the Epi/FT model, the terms associated with cell migration and response to stimulus made up a large part of the network. In the Mucil/HF model, the terms associated with ECM organization and cell differentiation and proliferation constituted a great part of the network. Collectively, our data suggest that polyhexamethyleneguanidine phosphate and bleomycin induce different responses in the two 3D airway models. While Epi/FT was associated with inflammatory/EMT-associated responses, Mucil/HF was associated with fibroblast-associated responses. This study will provide an important basis for selecting proper 3D airway models and fibrogenic agents to further research or screen chemicals causing inhalation toxicity.
Collapse
Affiliation(s)
- Jun Woo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Mi Ho Jeong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ga Eun Kim
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan, Gyeongsangbuk-do, 38430, Republic of Korea
| | - Yu Bin Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan, Gyeongsangbuk-do, 38430, Republic of Korea.
| |
Collapse
|
39
|
Kong X, Chen R, Zhang L, Wu M, Wu J, Wei Y, Dai W, Jiang Y. ESR2 regulates PINK1-mediated mitophagy via transcriptional repression of microRNA-423 expression to promote asthma development. Pharmacol Res 2021; 174:105956. [PMID: 34700017 DOI: 10.1016/j.phrs.2021.105956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Asthma represents an inflammatory airway disease related to the induction of airway eosinophilia, mucus overproduction, and bronchial hyperresponsiveness. This study explored the effects of microRNA-423 (miR-423) on mitophagy and inflammation in asthmatic mice challenged with house dust mites (HDMs) and rhinovirus (RV). By searching for differentially expressed miRNAs in the GSE25230 microarray, miR-423 was identified as our target. Moreover, miR-423 was expressed at low levels in the lung tissues from patients with asthma, and agomiR-423 significantly inhibited RV-induced inflammatory injury and activation of inflammasome signaling in mouse lung tissues. Additionally, miR-423 downregulated the expression of IL-1β/NLRP3/Caspase-1 inflammasome signaling by targeting phosphatase and tensin homolog-induced putative kinase 1 (PINK1). Furthermore, luciferase reporter experiments and ChIP-qPCR assays revealed that estrogen receptor 2 (ESR2) transcriptionally repressed miR-423 expression by coordinating with H3K9me2 modification of the miR-423 promoter histone. Overall, ESR2 synergized with the H3K9me2 modification of the miR-423 promoter histone to transcriptionally repress miR-423 expression and increase PINK1 expression in lung tissues, resulting in asthma exacerbation.
Collapse
Affiliation(s)
- Xiaomei Kong
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China.
| | - Ru Chen
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China
| | - Lina Zhang
- Intensive Care Unit, Liaocheng People's Hospital, Liaocheng 252000, Shandong, PR China
| | - Meiqiong Wu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Juan Wu
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China
| | - Yangyang Wei
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China
| | - Wenjuan Dai
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China
| | - Yi Jiang
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China
| |
Collapse
|
40
|
Liu QP, Ge P, Wang QN, Zhang SY, Yang YQ, Lv MQ, Lu Y, Li MX, Zhou DX. Circular RNA-CDR1as is involved in lung injury induced by long-term formaldehyde inhalation. Inhal Toxicol 2021; 33:325-333. [PMID: 34752207 DOI: 10.1080/08958378.2021.1999350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Formaldehyde (FA) is known to induce lung injury, but the underlying molecular mechanism remains largely unclear. CDR1as is an important member of the circular RNAs (circRNAs) family and functions as miRNA sponges with gene-regulatory potential. Our earlier circRNA microarray data showed CDR1as was highly expressed in lung tissue exposed to FA. However, the mechanism of circRNA-CDR1as mediates the FA-exposed lung injury is still unclear. This study aimed to explore the role of CDR1as in lung injury. MATERIALS AND METHODS In this study, FA was inhaled at doses of 0.5, 2.46, and 5 mg/m3, respectively. After exposure 8 weeks, lung histopathological examination, lung injury score, and IL-1β in bronchoalveolar lavage fluid (BALF) were determined. The expressions of CDR1as, rno-miR-7b and Atg7 were detected and the potential interaction of circRNA/miRNA/mRNA was predicted by bioinformatics analysis, including drawing circRNA/miRNA/mRNA interaction network, GO and KEGG analysis. RESULTS Our results indicated FA inhalation upregulated the expression of CDR1as in lung tissues in a dose-dependent manner while the expression of rno-miR-7b decreased and Atg7 increased. Moreover, the alteration of CDR1as was positively correlated with lung injury. DISCUSSION AND CONCLUSIONS CircRNA/miRNA/mRNA prediction further explained the possible effect mechanisms of CDR1as. These data implicated that CDR1as might be a critical regulator involved in lung injury induced by FA.
Collapse
Affiliation(s)
- Qiu-Ping Liu
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Respiratory Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Pan Ge
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Qian-Nan Wang
- Qide College, Xi'an Jiaotong University, Xi'an, China
| | - Shu-Yu Zhang
- Zonglian College, Xi'an Jiaotong University, Xi'an, China
| | - Yan-Qi Yang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Mo-Qi Lv
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Ye Lu
- Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Man-Xiang Li
- Respiratory Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dang-Xia Zhou
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
41
|
MotieGhader H, Safavi E, Rezapour A, Amoodizaj FF, Iranifam RA. Drug repurposing for coronavirus (SARS-CoV-2) based on gene co-expression network analysis. Sci Rep 2021; 11:21872. [PMID: 34750486 PMCID: PMC8576023 DOI: 10.1038/s41598-021-01410-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) is a highly contagious viral respiratory illness. This illness is spurred on by a coronavirus known as SARS-associated coronavirus (SARS-CoV). SARS was first detected in Asia in late February 2003. The genome of this virus is very similar to the SARS-CoV-2. Therefore, the study of SARS-CoV disease and the identification of effective drugs to treat this disease can be new clues for the treatment of SARS-Cov-2. This study aimed to discover novel potential drugs for SARS-CoV disease in order to treating SARS-Cov-2 disease based on a novel systems biology approach. To this end, gene co-expression network analysis was applied. First, the gene co-expression network was reconstructed for 1441 genes, and then two gene modules were discovered as significant modules. Next, a list of miRNAs and transcription factors that target gene co-expression modules' genes were gathered from the valid databases, and two sub-networks formed of transcription factors and miRNAs were established. Afterward, the list of the drugs targeting obtained sub-networks' genes was retrieved from the DGIDb database, and two drug-gene and drug-TF interaction networks were reconstructed. Finally, after conducting different network analyses, we proposed five drugs, including FLUOROURACIL, CISPLATIN, SIROLIMUS, CYCLOPHOSPHAMIDE, and METHYLDOPA, as candidate drugs for SARS-CoV-2 coronavirus treatment. Moreover, ten miRNAs including miR-193b, miR-192, miR-215, miR-34a, miR-16, miR-16, miR-92a, miR-30a, miR-7, and miR-26b were found to be significant miRNAs in treating SARS-CoV-2 coronavirus.
Collapse
Affiliation(s)
- Habib MotieGhader
- Department of Basic Sciences, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Esmaeil Safavi
- Department of Basic Sciences, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Rezapour
- Department of Animal Science, Faculty of Agriculture, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Fatemeh Firouzi Amoodizaj
- Department of Basic Sciences, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Roya Asl Iranifam
- Department of Basic Sciences, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
42
|
Xue T, Qiu X, Liu H, Gan C, Tan Z, Xie Y, Wang Y, Ye T. Epigenetic regulation in fibrosis progress. Pharmacol Res 2021; 173:105910. [PMID: 34562602 DOI: 10.1016/j.phrs.2021.105910] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/23/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Fibrosis, a common process of chronic inflammatory diseases, is defined as a repair response disorder when organs undergo continuous damage, ultimately leading to scar formation and functional failure. Around the world, fibrotic diseases cause high mortality, unfortunately, with limited treatment means in clinical practice. With the development and application of deep sequencing technology, comprehensively exploring the epigenetic mechanism in fibrosis has been allowed. Extensive remodeling of epigenetics controlling various cells phenotype and molecular mechanisms involved in fibrogenesis was subsequently verified. In this review, we summarize the regulatory mechanisms of DNA methylation, histone modification, noncoding RNAs (ncRNAs) and N6-methyladenosine (m6A) modification in organ fibrosis, focusing on heart, liver, lung and kidney. Additionally, we emphasize the diversity of epigenetics in the cellular and molecular mechanisms related to fibrosis. Finally, the potential and prospect of targeted therapy for fibrosis based on epigenetic is discussed.
Collapse
Affiliation(s)
- Taixiong Xue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Qiu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zui Tan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuting Xie
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuxi Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
43
|
miR-138 inhibits epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by regulating ZEB2. Toxicology 2021; 461:152925. [PMID: 34481903 DOI: 10.1016/j.tox.2021.152925] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022]
Abstract
Silica dust is a common pollutant in the occupational environment, such as coal mines. Inhalation of silica dust can cause progressive pulmonary fibrosis and then silicosis. Silicosis is still one of the most harmful occupational diseases in the world, so the study of its pathogenesis is necessary for the treatment of silicosis. In this study, we constructed a mouse model of pulmonary fibrosis via intratracheal instillation of silica particles and identified the decreased expression of miR-138 in fibrotic lung tissues of mice. Moreover, the overexpression of miR-138 retarded the process of epithelial-mesenchymal transition (EMT) in a mouse model of silica particles exposure and epithelial cells stimulated by silica particles. Further studies showed that ZEB2 was one of the potential targets of miR-138, and the up-regulation of miR-138 reduced ZEB2 levels in mouse lung tissues and in epithelial cells. We next found that the expression levels of ɑ-SMA and Vimentin were significantly increased and E-cadherin levels were decreased after transfection with miR-138 inhibitor in epithelial cells. However, these effects were abated by the knockdown of ZEB2. Consistently, the increased migration ability of epithelial cells by miR-138 inhibitor transfection was also reversed by the knockdown of ZEB2. Collectively, we revealed that miR-138 significantly targeted ZEB2, thus inhibited the EMT process and mitigated the development of pulmonary fibrosis. miR-138 may be a potential target for the treatment of pulmonary fibrosis.
Collapse
|
44
|
Yang Y, Lei W, Jiang S, Ding B, Wang C, Chen Y, Shi W, Wu Z, Tian Y. CircRNAs: Decrypting the novel targets of fibrosis and aging. Ageing Res Rev 2021; 70:101390. [PMID: 34118443 DOI: 10.1016/j.arr.2021.101390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is a typical aging-related pathological process involving almost all organs. It is usually initiated by organic injury and leads to the gradual decline of organ function or even loss. Circular RNAs (circRNAs) are being hailed as a newly rediscovered class of covalently closed transcripts without a 5' cap or 3' tail which draw increasing attention. In particular, circRNAs have been identified to be involved in the multifaceted processes of fibrosis in various organs, including the heart, liver, lung, and kidney. As more and more circRNAs are functionally characterized, they have become novel therapies for fibrosis. In this review, we systematically summarized current studies regarding the roles of circRNAs in fibrosis and shed light on the basis of circRNAs as a potential treatment for fibrosis.
Collapse
|
45
|
Khorsandi K, Esfahani H, Abrahamse H. Characteristics of circRNA and its approach as diagnostic tool in melanoma. Expert Rev Mol Diagn 2021; 21:1079-1094. [PMID: 34380368 DOI: 10.1080/14737159.2021.1967749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
One of the most common types of cancer in the world is skin cancer, which has been divided into two groups: non-melanoma and melanoma skin cancer. Different external and internal agents are considered as risk factors for melanoma skin cancer pathogenesis but the exact mechanisms are not yet confirmed. Genetic and epigenetic changes, UV exposure, arsenic compounds, and chemical substances are contributory factors to the development of melanoma. A correlation has emerged between new therapies and the discovery of a basic molecular pattern for skin cancer patients. Circular RNAs (circRNAs) are described as a unique group of extensively expressed endogenous regulatory RNAs with closed-loop structure bonds connecting the 5' and 3' ends, which are commonly expressed in mammalian cells. In this review, we describe the biogenesis of circular RNAs and its function in cancerous conditions focusing on the crosstalk between different circRNAs and melanoma. Increasing evidence suggests that circRNAs appears to be relative to the origin and development of skin-related diseases like malignant melanoma. Different circular RNAs like hsa_circ_0025039, hsa_circRNA006612, circRNA005537, and circANRIL, by targeting different cellular and molecular targets (e.g., CDK4, DAB2IP, ZEB1, miR-889, and let-7 c-3p), can participate in melanoma cancer progression.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Nrf SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
46
|
Xu Q, Cheng D, Li G, Liu Y, Li P, Sun W, Ma D, Ni C. CircHIPK3 regulates pulmonary fibrosis by facilitating glycolysis in miR-30a-3p/FOXK2-dependent manner. Int J Biol Sci 2021; 17:2294-2307. [PMID: 34239356 PMCID: PMC8241722 DOI: 10.7150/ijbs.57915] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/22/2021] [Indexed: 01/19/2023] Open
Abstract
Pulmonary fibrosis develops when myofibroblasts and extracellular matrix excessively accumulate in the injured lung, but what drives fibrosis is not fully understood. Glycolysis has been linked to cell growth and proliferation, and several studies have shown enhanced glycolysis promotes pulmonary fibrosis. However, detailed studies describing this switch remain limited. Here, we identified that TGF-β1 effectively increased the expression of circHIPK3 in lung fibroblasts, and circHIPK3 inhibition attenuated the activation, proliferation, and glycolysis of fibroblasts in vitro. Dual-luciferase reporter gene assays, RNA immunoprecipitation (RIP), and RNA pull-down assays showed that circHIPK3 could function as a sponge of miR-30a-3p and inhibit its expression. Furthermore, FOXK2, a driver transcription factor of glycolysis, was identified to be a direct target of miR-30a-3p. Mechanistically, circHIPK3 could enhance the expression of FOXK2 via sponging miR-30a-3p, thereby facilitating fibroblast glycolysis and activation. Besides, miR-30a-3p overexpression or FOXK2 knockdown blocked fibroblast activation induced by TGF-β1 and abrogated the profibrotic effects of circHIPK3. Moreover, circHIPK3 and miR-30a-3p were also dysregulated in fibrotic murine lung tissues induced by silica. Adeno-associated virus (AAV)-mediated circHIPK3 silence or miR-30a-3p overexpression alleviated silica-induced pulmonary fibrosis in vivo. In conclusion, our results identified circHIPK3/miR-30a-3p/FOXK2 regulatory pathway as an important glycolysis cascade in pulmonary fibrosis.
Collapse
Affiliation(s)
- Qi Xu
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Demin Cheng
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guanru Li
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yi Liu
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ping Li
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenqing Sun
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongyu Ma
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunhui Ni
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
47
|
Circular RNA Plek promotes fibrogenic activation by regulating the miR-135b-5p/TGF-βR1 axis after spinal cord injury. Aging (Albany NY) 2021; 13:13211-13224. [PMID: 33982670 PMCID: PMC8148484 DOI: 10.18632/aging.203002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/05/2021] [Indexed: 02/05/2023]
Abstract
Objectives: The spinal cord rarely repairs itself when damaged; however, methods for encouraging nerves to regrow are on the horizon. Although circular RNAs (circRNAs) contribute to various biological processes, including neuronal processes, their functions in the subacute phase of spinal cord injury (SCI) have not been elucidated. In this study, we identified a novel circRNA, named CircPlek, with increased expression in spinal tissues after SCI. Materials and Methods: We predicted a regulatory relationship between CircPlek and miR-135b-5p, which showed the most obvious decrease in post-SCI expression. We established the CircPlek/miR-135b-5p/transforming growth factor-beta receptor type I (TGF-βR1) axis using a bioinformatics approach and further evaluated the potential function of the interaction network in vitro. Results: We confirmed that in TGF-β1-induced fibroblasts, the overexpression of miR-135b-5p or/and inhibition of CircPlek inhibited fibrosis activation via the Smad pathway. Inhibitors of miR-135b-5p had antagonistic effects on CircPlek. Conclusions: the CircPlek/miR-135b-5p/TGF-βR1 axis may exert important functions in SCI and is a potential therapeutic target.
Collapse
|
48
|
Jiang R, Han L, Gao Q, Chao J. ZC3H4 mediates silica-induced EndoMT via ER stress and autophagy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103605. [PMID: 33545378 DOI: 10.1016/j.etap.2021.103605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Inflammatory reactions induced by alveolar macrophages and excessive fibroblast activation lead to pulmonary fibrosis in silicosis. The endothelial-mesenchymal transition (EndoMT) is a key source of myofibroblasts. ZC3H4 is a member of the CCCH zinc finger protein family that participates in macrophage activation and epithelial mesenchymal transition (EMT). However, whether ZC3H4 is involved in EndoMT in silicosis has not yet been elucidated. Therefore, we conducted further studies into the role of ZC3H4 in silica-induced EndoMT in pulmonary vessels. METHODS Western blotting and immunofluorescence staining were used to detect the regulatory influences of SiO2 on pulmonary fibrosis and EndoMT. ZC3H4 was specifically downregulated using CRISPR/Cas9 to explore whether ZC3H4 regulated EndoMT during silicosis. C57BL/6 J mice were administered with SiO2 via the trachea to establish a silicosis animal model. RESULTS 1) SiO2 exposure increased ZC3H4 expression in pulmonary vessels. 2) ZC3H4 was involved in EndoMT induced by silica. 3) ZC3H4 mediated EndoMT via endoplasmic reticulum stress (ER stress) and autophagy. CONCLUSIONS ZC3H4 greatly affects the progression of SiO2-induced EndoMT via ER stress and autophagy, which provides the possibility that ZC3H4 may become a novel target in pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Rong Jiang
- Department of Clinical Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Lei Han
- Department of Occupation Disease Prevention and Cure, Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, China
| | - Qianqian Gao
- Department of Occupation Disease Prevention and Cure, Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, China
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
49
|
Liu Y, Nie H, Ding Y, Hou Y, Mao K, Cui Y. MiRNA, a New Treatment Strategy for Pulmonary Fibrosis. Curr Drug Targets 2021; 22:793-802. [PMID: 32988351 DOI: 10.2174/1874609813666200928141822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
Pulmonary fibrosis (PF) is the most common chronic, progressive interstitial lung disease, mainly occurring in the elderly, with a median survival of 2-4 years after diagnosis. Its high mortality rate attributes to the delay in diagnosis due to its generic symptoms, and more importantly, to the lack of effective treatments. MicroRNAs (miRNAs) are a class of small non-coding RNAs that are involved in many essential cellular processes, including extracellular matrix remodeling, alveolar epithelial cell apoptosis, epithelial-mesenchymal transition, etc. We summarized the dysregulated miRNAs in TGF-β signaling pathway-mediated PF in recent years with dual effects, such as anti-fibrotic let-7 family and pro-fibrotic miR-21 members. Therefore, this review will set out the latest application of miRNAs to provide a new direction for PF treatment.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Kejun Mao
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
50
|
Zeng H, Gao H, Zhang M, Wang J, Gu Y, Wang Y, Zhang H, Liu P, Zhang X, Zhao L. Atractylon Treatment Attenuates Pulmonary Fibrosis via Regulation of the mmu_circ_0000981/miR-211-5p/TGFBR2 Axis in an Ovalbumin-Induced Asthma Mouse Model. Inflammation 2021; 44:1856-1864. [PMID: 33855682 DOI: 10.1007/s10753-021-01463-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/09/2020] [Accepted: 04/03/2021] [Indexed: 12/01/2022]
Abstract
Asthma-induced pulmonary fibrosis (PF) is an important public health concern that has few treatment options given its poorly understood etiology; however, the epithelial to mesenchymal transition (EMT) of pulmonary epithelial cells has been implicated to play an important role in inducing PF. Although previous studies have found atractylon (Atr) to have anti-inflammatory effects, whether Atr has anti-PF abilities remains unknown. The purpose of the current study was to validate the protective efficiency of Atr in both an animal model of ovalbumin (OVA)-induced asthma and an EMT model induced by transforming growth factor-β1 (TGF-β1) using TC-1 cells. The results of this study revealed that Atr treatment suppressed OVA-induced PF via fibrosis-related protein expression. Atr treatment suppressed OVA-induced circRNA-0000981 and TGFBR2 expression but promoted miR-211-5p expression. In vivo studies revealed that Atr suppressed TGF-β1-induced EMT and fibrosis-related protein expression via suppressing circRNA-0000981 and TGFBR2 expression. The results also suggested that the downregulation of circRNA-0000981 expression suppressed TGFBR2 by sponging miR-211-5p, which was validated by a luciferase reporter assay. Collectively, the findings of the present study suggest that Atr treatment attenuates PF by regulating the mmu_circ_0000981/miR-211-5p/TGFBR2 axis in an OVA-induced asthma mouse model.
Collapse
Affiliation(s)
- Haizhu Zeng
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China.
| | - Hongchang Gao
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Meilan Zhang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Jinrui Wang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Yuxia Gu
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Yumeng Wang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Huali Zhang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Panpan Liu
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Xia Zhang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Lei Zhao
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China.
| |
Collapse
|