1
|
Differences in Near Isohydric and Anisohydric Behavior of Contrasting Poplar Hybrids (I-101 (Populus alba L.) × 84K (Populus alba L. × Populus glandulosa Uyeki)) under Drought-Rehydration Treatments. FORESTS 2020. [DOI: 10.3390/f11040402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Carbon starvation and hydraulic failure are considered important factors in determining the mechanisms associated with tree mortality. In this study, iso/anisohydric classification was used to assess drought resistance and mortality mechanisms in two contrasting poplar species, as it is generally believed that isohydric species are more susceptible to carbon starvation, while anisohydric species are more susceptible to hydraulic failure. However, these assumptions are rarely tested in poplar genotypes with contrasting growth strategies. Thus, we subjected potted poplar genotypes (I-101 (Populus alba L.) × 84K (Populus alba L. × Populus glandulosa Uyeki)) with fast and slow growth rates to drought–rehydration treatments. The slow-growing genotype maintained higher stomatal conductance and lower predawn leaf water potential than the fast-growing genotype, thus exhibiting a near-anisohydric stomatal behavior throughout the treatment period. The nonstructural carbohydrate (NSC) content indicated that the two genotypes had the same trend of carbon change (e.g., the NSC content in the leaves increased with drought and then decreased). However, when NSC content data were combined with the growth and photosynthetic data, it was observed that the slow-growing genotype mobilized carbon to maintain hydraulic safety, while the NSC content of the fast-growing genotype among tissues was static. The percent loss of hydraulic conductivity in the branches during treatments indicated that the fast-growing genotype could recover more quickly from xylem embolism than the slow-growing genotype. The slow-growing genotype with a slow growth recovery after rehydration showed a significant increase in carbon consumption, combined with a significant increase in the hydraulic safety threshold value, indicating that there may be drought tolerance. In comparison, the fast-growing genotype showed a faster hydraulic recovery ability that had no effect on the NSC content in the leaves and roots. Our findings demonstrate intraspecific isohydric behavior in poplar; however, the trade-off between carbon distribution and stomatal regulation should be considered separately within genotypes of the same species. In addition, NSC plays an important role in water–carbon balance in the drought–rehydration cycle.
Collapse
|
2
|
Hernandez-Santana V, Diaz-Rueda P, Diaz-Espejo A, Raya-Sereno MD, Gutiérrez-Gordillo S, Montero A, Perez-Martin A, Colmenero-Flores JM, Rodriguez-Dominguez CM. Hydraulic Traits Emerge as Relevant Determinants of Growth Patterns in Wild Olive Genotypes Under Water Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:291. [PMID: 30918509 PMCID: PMC6424893 DOI: 10.3389/fpls.2019.00291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/22/2019] [Indexed: 05/11/2023]
Abstract
The hydraulic traits of plants, or the efficiency of water transport throughout the plant hydraulic system, could help to anticipate the impact of climate change and improve crop productivity. However, the mechanisms explaining the role of hydraulic traits on plant photosynthesis and thus, plant growth and yield, are just beginning to emerge. We conducted an experiment to identify differences in growth patterns at leaf, root and whole plant level among four wild olive genotypes and to determine whether hydraulic traits may help to explain such differences through their effect on photosynthesis. We estimated the relative growth rate (RGR), and its components, leaf gas exchange and hydraulic traits both at the leaf and whole-plant level in the olive genotypes over a full year. Photosynthetic capacity parameters were also measured. We observed different responses to water stress in the RGRs of the genotypes studied being best explained by changes in the net CO2 assimilation rate (NAR). Further, net photosynthesis, closely related to NAR, was mainly determined by hydraulic traits, both at leaf and whole-plant levels. This was mediated through the effects of hydraulic traits on stomatal conductance. We observed a decrease in leaf area: sapwood area and leaf area: root area ratios in water-stressed plants, which was more evident in the olive genotype Olea europaea subsp. guanchica (GUA8), whose RGR was less affected by water deficit than the other olive genotypes. In addition, at the leaf level, GUA8 water-stressed plants presented a better photosynthetic capacity due to a higher mesophyll conductance to CO2 and a higher foliar N. We conclude that hydraulic allometry adjustments of whole plant and leaf physiological response were well coordinated, buffering the water stress experienced by GUA8 plants. In turn, this explained their higher relative growth rates compared to the rest of the genotypes under water-stress conditions.
Collapse
Affiliation(s)
- Virginia Hernandez-Santana
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Pablo Diaz-Rueda
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Antonio Diaz-Espejo
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - María D. Raya-Sereno
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- School of Agricultural Engineering, CEIGRAM, Universidad Politécnica de Madrid, Madrid, Spain
| | - Saray Gutiérrez-Gordillo
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- Centro “Las Torres-Tomejil”, Instituto Andaluz de Investigación y Formación Agraria y Pesquera, Seville, Spain
| | - Antonio Montero
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Alfonso Perez-Martin
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Jose M. Colmenero-Flores
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Celia M. Rodriguez-Dominguez
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
3
|
Petit G, von Arx G, Kiorapostolou N, Lechthaler S, Prendin AL, Anfodillo T, Caldeira MC, Cochard H, Copini P, Crivellaro A, Delzon S, Gebauer R, Gričar J, Grönholm L, Hölttä T, Jyske T, Lavrič M, Lintunen A, Lobo-do-Vale R, Peltoniemi M, Peters RL, Robert EMR, Roig Juan S, Senfeldr M, Steppe K, Urban J, Van Camp J, Sterck F. Tree differences in primary and secondary growth drive convergent scaling in leaf area to sapwood area across Europe. THE NEW PHYTOLOGIST 2018; 218:1383-1392. [PMID: 29655212 DOI: 10.1111/nph.15118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
Trees scale leaf (AL ) and xylem (AX ) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in AL : AX balance in response to climate conditions, but whether trees of different species acclimate in AL : AX in similar ways over their entire (continental) distributions is unknown. We analyzed the species and climate effects on the scaling of AL vs AX in branches of conifers (Pinus sylvestris, Picea abies) and broadleaved (Betula pendula, Populus tremula) sampled across a continental wide transect in Europe. Along the branch axis, AL and AX change in equal proportion (isometric scaling: b ˜ 1) as for trees. Branches of similar length converged in the scaling of AL vs AX with an exponent of b = 0.58 across European climates irrespective of species. Branches of slow-growing trees from Northern and Southern regions preferentially allocated into new leaf rather than xylem area, with older xylem rings contributing to maintaining total xylem conductivity. In conclusion, trees in contrasting climates adjust their functional balance between water transport and leaf transpiration by maintaining biomass allocation to leaves, and adjusting their growth rate and xylem production to maintain xylem conductance.
Collapse
Affiliation(s)
- Giai Petit
- Departamento TeSAF, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Institute for Environmental Sciences, University of Geneva, 24 rue du Général-Dufour, 1211, Geneva, Switzerland
| | - Natasa Kiorapostolou
- Departamento TeSAF, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
- Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3, NL, 6700 AA, Wageningen, the Netherlands
| | - Silvia Lechthaler
- Departamento TeSAF, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Angela Luisa Prendin
- Departamento TeSAF, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Tommaso Anfodillo
- Departamento TeSAF, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Maria C Caldeira
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Hervé Cochard
- Université Clermont-Auvergne, INRA, PIAF, Site de Crouël 5, chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Paul Copini
- Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3, NL, 6700 AA, Wageningen, the Netherlands
- Wageningen Environmental Research (Alterra), Wageningen University & Research Wageningen, Droevendaalsesteeg 3, NL 6700 AA, Wageningen, the Netherlands
| | - Alan Crivellaro
- Departamento TeSAF, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Sylvain Delzon
- INRA, University of Bordeaux, UMR BIOGECO, Avenue des Facultés, Talence, FR 33405, France
| | - Roman Gebauer
- Dept. of Forest, Botany, Dendrology and Geobiocenology, Mendel University in Brno, Zemedelska 3, 61300, Brno, Czech Republic
| | - Jožica Gričar
- Slovenian Forestry Institute, Vecna pot 2, SI - 1000, Ljubljana, Slovenia
| | - Leila Grönholm
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, FI 00014, Helsinki, Finland
| | - Teemu Hölttä
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, FI 00014, Helsinki, Finland
| | - Tuula Jyske
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Vantaa, Finland
| | - Martina Lavrič
- Slovenian Forestry Institute, Vecna pot 2, SI - 1000, Ljubljana, Slovenia
| | - Anna Lintunen
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, FI 00014, Helsinki, Finland
| | - Raquel Lobo-do-Vale
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Mikko Peltoniemi
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Vantaa, Finland
| | - Richard L Peters
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | | | - Sílvia Roig Juan
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Vantaa, Finland
| | - Martin Senfeldr
- Dept. of Forest, Botany, Dendrology and Geobiocenology, Mendel University in Brno, Zemedelska 3, 61300, Brno, Czech Republic
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, BE-9000, Ghent, Belgium
| | - Josef Urban
- Dept. of Forest, Botany, Dendrology and Geobiocenology, Mendel University in Brno, Zemedelska 3, 61300, Brno, Czech Republic
- Siberian Federal University, Svobodnyy Ave 79, 660041, Krasnoyarsk, Russia
| | - Janne Van Camp
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, BE-9000, Ghent, Belgium
| | - Frank Sterck
- Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3, NL, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
4
|
Drought Effects on Photosynthesis and Implications of Photoassimilate Distribution in 11C-Labeled Leaves in the African Tropical Tree Species Maesopsis eminii Engl. FORESTS 2018. [DOI: 10.3390/f9030109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Dai Y, Wang L, Wan X. Relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality caused by drought. AOB PLANTS 2018; 10:plx069. [PMID: 29367873 PMCID: PMC5774510 DOI: 10.1093/aobpla/plx069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 11/30/2017] [Indexed: 05/29/2023]
Abstract
Drought-induced tree mortality has been observed worldwide. Nevertheless, the physiological mechanisms underlying this phenomenon are still being debated. Potted Robinia pseudoacacia and Platycladus orientalis saplings were subjected to drought and their hydraulic failure and carbon starvation responses were studied. They underwent simulated fast drought (FD) and slow drought (SD) until death. The dynamics of their growth, photosynthesis, water relations and carbohydrate concentration were measured. The results showed that during drought, growth and photosynthesis of all saplings were significantly reduced in both species. The predawn water potential in both species was ~ -8 MPa at mortality. The percentage loss of conductivity (PLC) was at a maximum at mortality under both FD and SD. For R. pseudoacacia and P. orientalis, they were >95 and ~45 %, respectively. At complete defoliation, the PLC of R. pseudoacacia was ~90 % but the trees continued to survive for around 46 days. The non-structural carbohydrate (NSC) concentrations in the stems and roots of both FD and SD R. pseudoacacia declined to a very low level near death. In contrast, the NSC concentrations in the needles, stems and roots of P. orientalis at mortality under FD did not significantly differ from those of the control, whereas the NSC concentrations in SD P. orientalis stems and roots at death were significantly lower than those of the control. These results suggest that the duration of the drought affected NSC at mortality in P. orientalis. In addition, the differences in NSC between FD and SD P. orientalis did not alter mortality thresholds associated with hydraulic failure. The drought-induced death of R. pseudoacacia occurred at 95 % PLC for both FD and SD, indicating that hydraulic failure played an important role in mortality. Nevertheless, the consistent decline in NSC in R. pseudoacacia saplings following drought-induced defoliation may have also contributed to its mortality.
Collapse
Affiliation(s)
- Yongxin Dai
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, P.R. China
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, P.R. China
| | - Lin Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, P.R. China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, P.R. China
| |
Collapse
|
6
|
Tomasella M, Häberle KH, Nardini A, Hesse B, Machlet A, Matyssek R. Post-drought hydraulic recovery is accompanied by non-structural carbohydrate depletion in the stem wood of Norway spruce saplings. Sci Rep 2017; 7:14308. [PMID: 29085007 PMCID: PMC5662761 DOI: 10.1038/s41598-017-14645-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/12/2017] [Indexed: 11/30/2022] Open
Abstract
Hydraulic failure and carbon starvation are recognized as main causes of drought-induced forest decline. As water transport and carbon dynamics are strictly interdependent, it is necessary to clarify how dehydration-rehydration cycles are affecting the relations between stem embolism and non-structural carbohydrates (NSC). This is particularly needed for conifers whose embolism repair capability is still controversial. Potted Norway spruce saplings underwent two drought-re-irrigation cycles of same intensity, but performed in two consecutive summers. During the second cycle, stem percent loss of hydraulic conductivity (PLC) and NSC content showed no carry-over effects from the previous drought, indicating complete long-term recovery. The second drought treatment induced moderate PLC (20%) and did not affect total NSCs content, while starch was converted to soluble sugars in the bark. After one week of re-irrigation, PLC recovered to pre-stress values (0%) and NSCs were depleted, only in the wood, by about 30%. Our data suggest that spruce can repair xylem embolism and that, when water is newly available, NSCs stored in xylem parenchyma can be mobilized over short term to sustain respiration and/or for processes involved in xylem transport restoration. This, however, might imply dependency on sapwood NSC reserves for survival, especially if frequent drought spells occur.
Collapse
Affiliation(s)
- Martina Tomasella
- Department of Ecology and Ecosystem Management- Chair for Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, 85354, Freising, Germany.
| | - Karl-Heinz Häberle
- Department of Ecology and Ecosystem Management- Chair for Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, 85354, Freising, Germany
| | - Andrea Nardini
- Department of Life Sciences, Università degli Studi di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Benjamin Hesse
- Department of Ecology and Ecosystem Management- Chair for Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, 85354, Freising, Germany
| | - Anna Machlet
- Department of Ecology and Ecosystem Management- Chair for Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, 85354, Freising, Germany
| | - Rainer Matyssek
- Department of Ecology and Ecosystem Management- Chair for Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, 85354, Freising, Germany
| |
Collapse
|
7
|
Galiano L, Timofeeva G, Saurer M, Siegwolf R, Martínez-Vilalta J, Hommel R, Gessler A. The fate of recently fixed carbon after drought release: towards unravelling C storage regulation in Tilia platyphyllos and Pinus sylvestris. PLANT, CELL & ENVIRONMENT 2017; 40:1711-1724. [PMID: 28432768 DOI: 10.1111/pce.12972] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Carbon reserves are important for maintaining tree function during and after stress. Increasing tree mortality driven by drought globally has renewed the interest in how plants regulate allocation of recently fixed C to reserve formation. Three-year-old seedlings of two species (Tilia platyphyllos and Pinus sylvestris) were exposed to two intensities of experimental drought during ~10 weeks, and 13 C pulse labelling was subsequently applied with rewetting. Tracking the 13 C label across different organs and C compounds (soluble sugars, starch, myo-inositol, lipids and cellulose), together with the monitoring of gas exchange and C mass balances over time, allowed for the identification of variations in C allocation priorities and tree C balances that are associated with drought effects and subsequent drought release. The results demonstrate that soluble sugars accumulated in P. sylvestris under drought conditions independently of growth trends; thus, non-structural carbohydrates (NSC) formation cannot be simply considered a passive overflow process in this species. Once drought ceased, C allocation to storage was still prioritized at the expense of growth, which suggested the presence of 'drought memory effects', possibly to ensure future growth and survival. On the contrary, NSC and growth dynamics in T. platyphyllos were consistent with a passive (overflow) view of NSC formation.
Collapse
Affiliation(s)
- Lucía Galiano
- Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
- Institute of Hydrology, University of Freiburg, Freiburg, D-79098, Germany
| | - Galina Timofeeva
- Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute PSI, Villigen, CH-5232, Switzerland
- Forest Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, CH-8092, Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute PSI, Villigen, CH-5232, Switzerland
| | - Rolf Siegwolf
- Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute PSI, Villigen, CH-5232, Switzerland
| | - Jordi Martínez-Vilalta
- CREAF, Cerdanyola del Vallès, E-08193, Spain
- Autonomous University of Barcelona UAB, Cerdanyola del Vallès, E-08193, Spain
| | - Robert Hommel
- Eberswalde University of Sustainable Development, Schicklerstraße 5, 16225, Eberswalde, Germany
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
| |
Collapse
|
8
|
von Arx G, Arzac A, Fonti P, Frank D, Zweifel R, Rigling A, Galiano L, Gessler A, Olano JM. Responses of sapwood ray parenchyma and non‐structural carbohydrates of
Pinus sylvestris
to drought and long‐term irrigation. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12860] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Georg von Arx
- Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
- SwissForestLab Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
| | - Alberto Arzac
- School of Ecology and Geography Siberian Federal University 79 Svobodny pr 660041 Krasnoyarsk Russia
- Departamento de Biología Vegetal y Ecología Facultad de Ciencia y Tecnología Universidad del País Vasco Barrio Sarriena s/n E–48940 Leioa Spain
| | - Patrick Fonti
- Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
- SwissForestLab Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
| | - David Frank
- Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
- SwissForestLab Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
- Laboratory of Tree‐Ring Research University of Arizona Tucson AZ85721 USA
| | - Roman Zweifel
- Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
- SwissForestLab Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
| | - Andreas Rigling
- Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
- SwissForestLab Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
| | - Lucia Galiano
- Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
- SwissForestLab Zuercherstrasse 111 CH‐8903 Birmensdorf Switzerland
| | - José Miguel Olano
- Departamento de Ciencias Agroforestales EU de Ingenierías Agrarias iuFOR‐Universidad de Valladolid Campus Duques de Soria 42004 Soria Spain
| |
Collapse
|
9
|
Garcia-Forner N, Biel C, Savé R, Martínez-Vilalta J. Isohydric species are not necessarily more carbon limited than anisohydric species during drought. TREE PHYSIOLOGY 2017; 37:441-455. [PMID: 27885172 DOI: 10.1093/treephys/tpw109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Isohydry (i.e., strong regulation of leaf water potential, Ψl) is commonly associated with strict stomatal regulation of transpiration under drought, which in turn is believed to minimize hydraulic risk at the expense of reduced carbon assimilation. Hence, the iso/anisohydric classification has been widely used to assess drought resistance and mortality mechanisms across species, with isohydric species being hypothetically more prone to carbon starvation and anisohydric species more vulnerable to hydraulic failure. These hypotheses and their underlying assumptions, however, have rarely been tested under controlled, experimental conditions. Our objective is to assess the physiological mechanisms underlying drought resistance differences between two co-occurring Mediterranean forest species with contrasting drought responses: Phillyrea latifolia L. (anisohydric and more resistant to drought) and Quercus ilex L. (isohydric and less drought resistant). A total of 100 large saplings (50 per species) were subjected to repeated drought treatments for a period of 3 years, after which Q. ilex showed 18% mortality whereas no mortality was detected in P. latifolia. Relatively isohydric behavior was confirmed for Q. ilex, but higher vulnerability to cavitation in this species implied that estimated embolism levels were similar across species (12-52% in Q. ilex vs ~30% in P. latifolia). We also found similar seasonal patterns of stomatal conductance and assimilation between species. If anything, the anisohydric P. latifolia tended to show lower assimilation rates than Q. ilex under extreme drought. Similar growth rates and carbon reserves dynamics in both species also suggests that P. latifolia was as carbon-constrained as Q. ilex. Increasing carbon reserves under extreme drought stress in both species, concurrent with Q. ilex mortality, suggests that mortality in our study was not triggered by carbon starvation. Our results warn against making direct connections between Ψl regulation, stomatal behavior and the mechanisms of drought-induced mortality in plants.
Collapse
Affiliation(s)
| | - C Biel
- IRTA, Environmental Horticulture, Caldes de Montbui 08140, Spain
| | - R Savé
- IRTA, Environmental Horticulture, Caldes de Montbui 08140, Spain
| | - J Martínez-Vilalta
- CREAF, Cerdanyola del Vallès 08193, Spain
- Univ. Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
10
|
Alam SA, Huang JG, Stadt KJ, Comeau PG, Dawson A, Gea-Izquierdo G, Aakala T, Hölttä T, Vesala T, Mäkelä A, Berninger F. Effects of Competition, Drought Stress and Photosynthetic Productivity on the Radial Growth of White Spruce in Western Canada. FRONTIERS IN PLANT SCIENCE 2017; 8:1915. [PMID: 29163627 PMCID: PMC5681961 DOI: 10.3389/fpls.2017.01915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/23/2017] [Indexed: 05/05/2023]
Abstract
Understanding the complex interactions of competition, climate warming-induced drought stress, and photosynthetic productivity on the radial growth of trees is central to linking climate change impacts on tree growth, stand structure and in general, forest productivity. Using a mixed modeling approach, a stand-level photosynthetic production model, climate, stand competition and tree-ring data from mixedwood stands in western Canada, we investigated the radial growth response of white spruce [Picea glauca (Moench.) Voss] to simulated annual photosynthetic production, simulated drought stress, and tree and stand level competition. The long-term (~80-year) radial growth of white spruce was constrained mostly by competition, as measured by total basal area, with minor effects from drought. There was no relation of competition and drought on tree growth but dominant trees increased their growth more strongly to increases in modeled photosynthetic productivity, indicating asymmetric competition. Our results indicate a co-limitation of drought and climatic factors inhibiting photosynthetic productivity for radial growth of white spruce in western Canada. These results illustrate how a modeling approach can separate the complex factors regulating both multi-decadal average radial growth and interannual radial growth variations of white spruce, and contribute to advance our understanding on sustainable management of mixedwood boreal forests in western Canada.
Collapse
Affiliation(s)
- Syed A. Alam
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Physics, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jian-Guo Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Jian-Guo Huang
| | - Kenneth J. Stadt
- Forest Management Branch, Alberta Agriculture and Forestry, Edmonton, AB, Canada
| | - Philip G. Comeau
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Andria Dawson
- Department of General Education, Mount Royal University, Calgary, AB, Canada
| | | | - Tuomas Aakala
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Teemu Hölttä
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Timo Vesala
- Department of Physics, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Annikki Mäkelä
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Frank Berninger
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Petit G, Savi T, Consolini M, Anfodillo T, Nardini A. Interplay of growth rate and xylem plasticity for optimal coordination of carbon and hydraulic economies in Fraxinus ornus trees. TREE PHYSIOLOGY 2016; 36:1310-1319. [PMID: 27587483 DOI: 10.1093/treephys/tpw069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/17/2016] [Accepted: 07/02/2016] [Indexed: 05/22/2023]
Abstract
Efficient leaf water supply is fundamental for assimilation processes and tree growth. Renovating the architecture of the xylem transport system requires an increasing carbon investment while growing taller, and any deficiency of carbon availability may result in increasing hydraulic constraints to water flow. Therefore, plants need to coordinate carbon assimilation and biomass allocation to guarantee an efficient and safe long-distance transport system. We tested the hypothesis that reduced branch elongation rates together with carbon-saving adjustments of xylem anatomy hydraulically compensate for the reduction in biomass allocation to xylem. We measured leaf biomass, hydraulic and anatomical properties of wood segments along the main axis of branches in 10 slow growing (SG) and 10 fast growing (FG) Fraxinus ornus L. trees. Branches of SG trees had five times slower branch elongation rate (7 vs 35 cm year-1), and produced a higher leaf biomass (P < 0.0001) and thinner xylem rings with fewer but larger vessels (P < 0.0001). On the contrary, we found no differences between SG and FG trees in terms of leaf-specific conductivity (P > 0.05) and xylem safety (Ψ50 ≈ -3.2 MPa). Slower elongation rate coupled with thinner annual rings and larger vessels allows the reduction of carbon costs associated with growth, while maintaining similar leaf-specific conductivity and xylem safety.
Collapse
Affiliation(s)
- Giai Petit
- Dipartimento Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell'Università 16, I-35020 Legnaro (PD), Italy
| | - Tadeja Savi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Martina Consolini
- Dipartimento Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell'Università 16, I-35020 Legnaro (PD), Italy
| | - Tommaso Anfodillo
- Dipartimento Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell'Università 16, I-35020 Legnaro (PD), Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| |
Collapse
|
12
|
Maseda PH, Fernández RJ. Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances. TREE PHYSIOLOGY 2016; 36:243-51. [PMID: 26786540 DOI: 10.1093/treephys/tpv137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 12/01/2015] [Indexed: 05/22/2023]
Abstract
Water stress modifies plant above- vs belowground biomass allocation, i.e., morphological plasticity. It is known that all species and genotypes reduce their growth rate in response to stress, but in the case of water stress it is unclear whether the magnitude of such reduction is linked to the genotype's growth potential, and whether the reduction can be largely attributed to morphological adjustments such as plant allocation and leaf and root anatomy. We subjected seedlings of six seed sources, three from each of Eucalyptus camaldulensis (potentially fast growing) and E. globulus (inherently slow growing), to three experimental water regimes. Biomass, leaf area and root length were measured in a 6-month glasshouse experiment. We then performed functional growth analysis of relative growth rate (RGR), and aboveground (leaf area ratio (LAR), specific leaf area (SLA) and leaf mass ratio (LMR)) and belowground (root length ratio (RLR), specific root length (SRL) and root mass ratio (RMR)) morphological components. Total biomass, root biomass and leaf area were reduced for all Eucalyptus provenances according to drought intensity. All populations exhibited drought plasticity, while those of greater growth potential (RGRmax) had a larger reduction in growth (discounting the effect of size). A positive correlation was observed between drought sensitivity and RGRmax. Aboveground, drought reduced LAR and LMR; under severe drought a negative correlation was found between LMR and RGRmax. Belowground, drought reduced SRL but increased RMR, resulting in no change in RLR. Under severe drought, a negative correlation was found between RLR, SRL and RGRmax. Our evidence strongly supports the classic ecophysiological trade-off between growth potential and drought tolerance for woody seedlings. It also suggests that slow growers would have a low capacity to adjust their morphology. For shoots, this constraint on plasticity was best observed in partition (i.e., LMR) whereas for roots it was clearest in morphology/anatomy (i.e., SRL). Thus, a low RGRmax would limit plastic response to drought not only at the whole plant level but also at the organ and even the tissue level.
Collapse
Affiliation(s)
- Pablo H Maseda
- IFEVA-CONICET and Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSQ, Argentina
| | | |
Collapse
|
13
|
Rita A, Cherubini P, Leonardi S, Todaro L, Borghetti M. Functional adjustments of xylem anatomy to climatic variability: insights from long-term Ilex aquifolium tree-ring series. TREE PHYSIOLOGY 2015; 35:817-28. [PMID: 26142450 DOI: 10.1093/treephys/tpv055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/19/2015] [Indexed: 05/09/2023]
Abstract
The present study assessed the effects of climatic conditions on radial growth and functional anatomical traits, including ring width, vessel size, vessel frequency and derived variables, i.e., potential hydraulic conductivity and xylem vulnerability to cavitation in Ilex aquifolium L. trees using long-term tree-ring time series obtained at two climatically contrasting sites, one mesic site in Switzerland (CH) and one drought-prone site in Italy (ITA). Relationships were explored by examining different xylem traits, and point pattern analysis was applied to investigate vessel clustering. We also used generalized additive models and bootstrap correlation functions to describe temperature and precipitation effects. Results indicated modified radial growth and xylem anatomy in trees over the last century; in particular, vessel frequency increased markedly at both sites in recent years, and all xylem traits examined, with the exception of xylem cavitation vulnerability, were higher at the CH mesic compared with the ITA drought site. A significant vessel clustering was observed at the ITA site, which could contribute to an enhanced tolerance to drought-induced embolism. Flat and negative relationships between vessel size and ring width were observed, suggesting carbon was not allocated to radial growth under conditions which favored stem water conduction. Finally, in most cases results indicated that climatic conditions influenced functional anatomical traits more substantially than tree radial growth, suggesting a crucial role of functional xylem anatomy in plant acclimation to future climatic conditions.
Collapse
Affiliation(s)
- Angelo Rita
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Paolo Cherubini
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Stefano Leonardi
- Dipartimento di Bioscienze, Università di Parma, viale Usberti 11, 43100 Parma, Italy
| | - Luigi Todaro
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marco Borghetti
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
14
|
Meir P, Mencuccini M, Dewar RC. Drought-related tree mortality: addressing the gaps in understanding and prediction. THE NEW PHYTOLOGIST 2015; 207:28-33. [PMID: 25816852 DOI: 10.1111/nph.13382] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/30/2015] [Indexed: 05/11/2023]
Abstract
Increased tree mortality during and after drought has become a research focus in recent years. This focus has been driven by: the realisation that drought-related tree mortality is more widespread than previously thought; the predicted increase in the frequency of climate extremes this century; and the recognition that current vegetation models do not predict drought-related tree mortality and forest dieback well despite the large potential effects of these processes on species composition and biogeochemical cycling. To date, the emphasis has been on understanding the causal mechanisms of drought-related tree mortality, and on mechanistic models of plant function and vegetation dynamics, but a consensus on those mechanisms has yet to emerge. In order to generate new hypotheses and to help advance the modelling of vegetation dynamics in the face of incomplete mechanistic understanding, we suggest that general patterns should be distilled from the diverse and as-yet inconclusive results of existing studies, and more use should be made of optimisation and probabilistic modelling approaches that have been successfully applied elsewhere in plant ecology. The outcome should inform new empirical studies of tree mortality, help improve its prediction and reduce model complexity.
Collapse
Affiliation(s)
- Patrick Meir
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
- School of Geosciences, The University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Maurizio Mencuccini
- School of Geosciences, The University of Edinburgh, Edinburgh, EH9 3FF, UK
- ICREA at CREAF, Barcelona, 08010, Spain
| | - Roderick C Dewar
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| |
Collapse
|