1
|
Lima ACA, Braga ER, Panneitz AK, Petri FAM, Castro JHT, Dias RG, de Oliveira LG. Detection of anti- Mycoplasma hyopneumoniae antibodies in backyard pigs in the state of Paraná, Brazil. J Vet Diagn Invest 2024; 36:907-909. [PMID: 39175302 DOI: 10.1177/10406387241265986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Mycoplasma hyopneumoniae is the causative bacterium of porcine enzootic pneumonia and one of the primary etiologic agents of the porcine respiratory disease complex. Most Brazilian commercial pig farms are positive for this pathogen. However, the prevalence of the pathogen in backyard pig farms has not been described, to our knowledge. Therefore, we aimed to determine the prevalence of M. hyopneumoniae in backyard pig farms in the state of Paraná, Brazil. In January-March 2020, we collected 585 serum samples from pigs in 187 non-vaccinated herds. We tested the sera with an indirect ELISA for anti-M. hyopneumoniae antibodies and found that 182 of 585 (31.1%) samples were positive, and were found in 109 of 187 (58.3%) herds assessed.
Collapse
Affiliation(s)
- Ana C A Lima
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Eduarda R Braga
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Ana K Panneitz
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Fernando A M Petri
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - João H T Castro
- Paraná Agribusiness Defense Agency (ADAPAR), Curitiba, Paraná, Brazil
| | | | - Luís G de Oliveira
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| |
Collapse
|
2
|
Gutiérrez SE, Arce LP, Bence AR, Matias Brancher J, Rivero M, Moran C, Vizoso-Pinto MG, Estein SM. Unraveling swine hepatitis E in the central region of Argentina through ELISA development and epidemiological insights. Comp Immunol Microbiol Infect Dis 2023; 103:102082. [PMID: 37918283 DOI: 10.1016/j.cimid.2023.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Hepatitis E virus (HEV) is a public health concern globally, causing acute viral hepatitis in humans. Genotype-3 HEV (HEV-3), the most frequently genotype detected in South America, is zoonotic and the main reservoirs are the domestic pig and wild boar. Circulation of HEV-3 in Argentina has been confirmed in humans as well as in pig herds, wild boar and environmental waters. However, data are scarce mainly due to the inaccessibility of serological assays in this country. In order to provide insights in the epidemiology of HEV in swine in Argentina, we developed an indirect ELISA based on the native recombinant protein ORF2 and conducted a serological survey to determine the prevalence of seropositive swine in small-scale pig farms in the central region of Argentina. The method was evaluated in a panel of 157 serum samples, resulting in relative sensitivity of 98.6 % (95 % CI 95 %-100 %) and relative specificity of 97.7 % (95 % CI 94 %-100 %) compared to a commercial test. An almost perfect agreement was obtained between the two tests (Kappa index of 0.961). A survey on 294 samples from 49 small-scale farms resulted in a seropositivity rate of 54 %. Seropositive animals were found in 34 out of 49 (69.4 %) farms. Most of the farms (70.6 %) had over 50 % of seropositive animals. The wide spreading of HEV in the swine population of Tandil, Argentina, underscore the need to better understand the epidemiology of HEV in the region, enabling the implementation of targeted interventions to mitigate the impact of this virus on public health.
Collapse
Affiliation(s)
- Silvina Elena Gutiérrez
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Núcleo SAMP. Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), Pinto 399, Tandil 7000, Buenos Aires, Argentina.
| | - Lorena Paola Arce
- Laboratorio de Biología de las Infecciones. INSIBIO (CONICET-Universidad Nacional de Tucumán), San Miguel de Tucumán 4000, Argentina
| | - Angel Ricardo Bence
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Núcleo SAMP. Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), Pinto 399, Tandil 7000, Buenos Aires, Argentina
| | - Julia Matias Brancher
- Laboratorio de Biología de las Infecciones. INSIBIO (CONICET-Universidad Nacional de Tucumán), San Miguel de Tucumán 4000, Argentina
| | - Mariana Rivero
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Núcleo SAMP. Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), Pinto 399, Tandil 7000, Buenos Aires, Argentina
| | - Celeste Moran
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Núcleo SAMP. Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), Pinto 399, Tandil 7000, Buenos Aires, Argentina
| | - María Guadalupe Vizoso-Pinto
- Laboratorio de Biología de las Infecciones. INSIBIO (CONICET-Universidad Nacional de Tucumán), San Miguel de Tucumán 4000, Argentina; Laboratorio Central de Ciencias Básicas, Or. Genética, Facultad de Medicina, Universidad Nacional de Tucumán, San Miguel de Tucumán 4000, Argentina.
| | - Silvia Marcela Estein
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Núcleo SAMP. Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), Pinto 399, Tandil 7000, Buenos Aires, Argentina
| |
Collapse
|
3
|
Viera-Segura O, Calderón-Flores A, Batún-Alfaro JA, Fierro NA. Tracing the History of Hepatitis E Virus Infection in Mexico: From the Enigmatic Genotype 2 to the Current Disease Situation. Viruses 2023; 15:1911. [PMID: 37766316 PMCID: PMC10536485 DOI: 10.3390/v15091911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis E virus (HEV) is the major cause of acute viral hepatitis worldwide. This virus is responsible for waterborne outbreaks in low-income countries and zoonosis transmission in industrialized regions. Initially, considered self-limiting, HEV may also lead to chronic disease, and evidence supports that infection can be considered a systemic disease. In the late 1980s, Mexico became a hot spot in the study of HEV due to one of the first virus outbreaks in Latin America related to enterically transmitted viral non-A, non-B hepatitis. Viral stool particles recovered from Mexican viral hepatitis outbreaks represented the first identification of HEV genotype (Gt) 2 (Gt2) in the world. No new findings of HEV-Gt2 have been reported in the country, whereas this genotype has been found in countries on the African continent. Recent investigations in Mexico have identified other strains (HEV-Gt1 and -Gt3) and a high frequency of anti-HEV antibodies in animal and human populations. Herein, the potential reasons for the disappearance of HEV-Gt2 in Mexico and the advances in the study of HEV in the country are discussed along with challenges in studying this neglected pathogen. These pieces of information are expected to contribute to disease control in the entire Latin American region.
Collapse
Affiliation(s)
- Oliver Viera-Segura
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Arturo Calderón-Flores
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Julio A. Batún-Alfaro
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Nora A. Fierro
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
4
|
de Oliveira JM, dos Santos DRL, Pinto MA. Hepatitis E Virus Research in Brazil: Looking Back and Forwards. Viruses 2023; 15:548. [PMID: 36851763 PMCID: PMC9965705 DOI: 10.3390/v15020548] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Hepatitis E virus (HEV) has emerged as a public health concern in Brazil. From the first identification and characterization of porcine and human HEV-3 strains in the 2000s, new HEV subtypes have been identified from animal, human, and environmental isolates. As new potential animal reservoirs have emerged, there is a need to compile evidence on the zoonotic dissemination of the virus in animal hosts and the environment. The increasing amount of seroprevalence data on sampled and randomly selected populations must be systematically retrieved, interpreted, and considered under the One Health concept. This review focused on HEV seroprevalence data in distinct animal reservoirs and human populations reported in the last two decades. Furthermore, the expertise with experimental infection models using non-human primates may provide new insights into HEV pathogenesis, prevention, and environmental surveillance.
Collapse
Affiliation(s)
- Jaqueline Mendes de Oliveira
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | | | - Marcelo Alves Pinto
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
5
|
Detection of Hepatitis E Virus Genotype 3 in Feces of Capybaras (Hydrochoeris hydrochaeris) in Brazil. Viruses 2023; 15:v15020335. [PMID: 36851548 PMCID: PMC9959927 DOI: 10.3390/v15020335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen associated with relevant public health issues. The aim of this study was to investigate HEV presence in free-living capybaras inhabiting urban parks in São Paulo state, Brazil. Molecular characterization of HEV positive samples was undertaken to elucidate the genetic diversity of the virus in these animals. A total of 337 fecal samples were screened for HEV using RT-qPCR and further confirmed by conventional nested RT-PCR. HEV genotype and subtype were determined using Sanger and next-generation sequencing. HEV was detected in one specimen (0.3%) and assigned as HEV-3f. The IAL-HEV_921 HEV-3f strain showed a close relationship to European swine, wild boar and human strains (90.7-93.2% nt), suggesting an interspecies transmission. Molecular epidemiology of HEV is poorly investigated in Brazil; subtype 3f has been reported in swine. This is the first report of HEV detected in capybara stool samples worldwide.
Collapse
|
6
|
Characterization of a Near Full-Length Hepatitis E Virus Genome of Subtype 3c Generated from Naturally Infected South African Backyard Pigs. Pathogens 2022; 11:pathogens11091030. [PMID: 36145462 PMCID: PMC9506134 DOI: 10.3390/pathogens11091030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Eight genotypes of the hepatitis E virus (Orthohepevirus A; HEV) designated HEV-1 to HEV-8 have been reported from various mammalian hosts. Notably, domestic pigs and wild boars are the natural reservoirs of HEV-3 and HEV-4 genotypes with zoonotic propensity. Since HEV infection in domestic pigs is usually subclinical, it may remain undetected, facilitating zoonotic spillover of HEV to the exposed human populations. A previous study from our group in 2021, using deep sequencing of a pooled saliva sample, generated various swine enteric virus genomes, including a near full-length swine HEV genome (7040 nt; 97.7% genome coverage) from five-month-old grower pigs at a backyard pig farm in the uMgungundlovu District, KwaZulu-Natal, South Africa. In the present study, we describe the further characterization, including genotyping and subtyping of the swine HEV isolate using phylogenetics and ‘HEVnet Typing Tool’. Our analyses confirmed that the South African swine HEV genome characterized in this study belonged to HEV genotype 3 subtype 3c (HEV-3c). While HEV-3c infections in domestic pigs have been previously reported from Brazil, Germany, Italy, and the Netherlands, they only generated partial genome sequences of open reading frame 1 (ORF1) and/or ORF2. To our knowledge, this is the first near full-length swine HEV-3c genome generated from naturally infected domestic pigs (Sus scrofa domesticus) in South Africa. However, due to the gap in the information on the HEV-3c genome sequences in various geographical locations worldwide, including South Africa, the epidemiology of the South African swine HEV genome characterized in this study remains inconclusive. Molecular and genomic surveillance of HEV in domestic pig populations in South Africa would be useful to determine their prevalence, circulating subtypes, and zoonosis risk.
Collapse
|
7
|
The first evidence of zoonotic hepatitis E virus (HEV) exposure in domestic cats in Türkiye. Comp Immunol Microbiol Infect Dis 2022; 86:101820. [DOI: 10.1016/j.cimid.2022.101820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
|
8
|
Hepatitis E virus genotype 3 in bovine livers slaughtered in the state of Rio Grande do Sul, Brazil. Braz J Microbiol 2022; 53:1115-1120. [PMID: 35355235 PMCID: PMC9433617 DOI: 10.1007/s42770-022-00741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022] Open
Abstract
Foodborne viruses are becoming a global concern as they overwhelm the health system and have the potential to spread globally. Among them, some genotypes of hepatitis E virus (HEV), which is one of the main causes of acute hepatitis in humans, have a zoonotic potential and can be found in foods of animal origin. Infected farm animals are a possible source of the virus, either by direct contact with animal excreta or meat. In the present study, 240 bovine liver samples from slaughter carried out in Rio Grande do Sul (RS), Brazil, were analyzed and tested for the presence of HEV. After performing PCR, 5.4% of positive samples were observed. One of the samples could be identified by molecular phylogenetic analysis as belonging to genotype 3, for which pigs are natural reservoirs, but has not been reported in bovine meat and products so far.
Collapse
|
9
|
Guo Y, Ryan U, Feng Y, Xiao L. Association of Common Zoonotic Pathogens With Concentrated Animal Feeding Operations. Front Microbiol 2022; 12:810142. [PMID: 35082774 PMCID: PMC8784678 DOI: 10.3389/fmicb.2021.810142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Animal farming has intensified significantly in recent decades, with the emergence of concentrated animal feeding operations (CAFOs) in industrialized nations. The congregation of susceptible animals in CAFOs can lead to heavy environmental contamination with pathogens, promoting the emergence of hyper-transmissible, and virulent pathogens. As a result, CAFOs have been associated with emergence of highly pathogenic avian influenza viruses, hepatitis E virus, Escherichia coli O157:H7, Streptococcus suis, livestock-associated methicillin-resistant Staphylococcus aureus, and Cryptosporidium parvum in farm animals. This has led to increased transmission of zoonotic pathogens in humans and changes in disease patterns in general communities. They are exemplified by the common occurrence of outbreaks of illnesses through direct and indirect contact with farm animals, and wide occurrence of similar serotypes or subtypes in both humans and farm animals in industrialized nations. Therefore, control measures should be developed to slow down the dispersal of zoonotic pathogens associated with CAFOs and prevent the emergence of new pathogens of epidemic and pandemic potential.
Collapse
Affiliation(s)
- Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Una Ryan
- Vector- and Water-Borne Pathogen Research Group, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
10
|
Cortez A, Metorima C, Miyagi S, Sousa A, Peyser A, Castro A, Baldisseri Jr F, Souza Filho A, Brandão P, Heinemann M. High genetic diversity of hepatitis E virus in swine in São Paulo State, Brazil. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - C.S. Metorima
- Universidade Santo Amaro, Brazil; Universidade Santo Amaro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Moraes DFDSD, Mesquita JR, Dutra V, Nascimento MSJ. Systematic Review of Hepatitis E Virus in Brazil: A One-Health Approach of the Human-Animal-Environment Triad. Animals (Basel) 2021; 11:ani11082290. [PMID: 34438747 PMCID: PMC8388429 DOI: 10.3390/ani11082290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hepatitis E virus (HEV) is an important causative agent of acute and chronic hepatitis worldwide. Originally identified in epidemics associated with flooding in Asia, it nowadays shows very distinct genetic and epidemiological patterns. While HEV genotypes (HEV-) 1 and 2 are associated with the original outbreaks (waterborne diseases), HEV-3 and HEV-4 present a zoonotic pattern (associated with consumption of meat from infected animals), HEV-5 and 6 have been found only in wild boar in Japan, and HEV-7 and 8 have been detected in camels and dromedary seldom affecting humans. Brazil, with a precarious sanitary structure and being an important world meat producer, was the focus of this study in order to identify patterns of occurrence of HEV. After reviewing scientific studies, it was identified that the only genotype found in Brazil is HEV-3 and the area where there were more reports was the South region of the country. This is the region that produces more pork. These results indicate that HEV-3 is widespread in the country and sanitary surveillance is essential in the national production of pigs, as well as the implementation of monitoring protocols in hospitals. Abstract Brazil is the fifth largest country in the world with diverse socioeconomic and sanitary conditions, also being the fourth largest pig producer in the world. The aim of the present systematic review was to collect and summarize all HEV published data from Brazil (from 1995 to October 2020) performed in humans, animals, and the environment, in a One Health perspective. A total of 2173 papers were retrieved from five search databases (LILACs, Mendeley, PubMed, Scopus, and Web of Science) resulting in 71 eligible papers after application of exclusion/inclusion criteria. Data shows that HEV genotype 3 (HEV-3) was the only retrieved genotype in humans, animals, and environment in Brazil. The South region showed the highest human seroprevalence and also the highest pig density and industry, suggesting a zoonotic link. HEV-1 and 2 were not detected in Brazil, despite the low sanitary conditions of some regions. From the present review we infer that HEV epidemiology in Brazil is similar to that of industrialized countries (only HEV-3, swine reservoirs, no waterborne transmission, no association with low sanitary conditions). Hence, we alert for the implementation of HEV surveillance systems in swine and for the consideration of HEV in the diagnostic routine of acute and chronic hepatitis in humans.
Collapse
Affiliation(s)
- Danny Franciele da Silva Dias Moraes
- Faculty of Veterinary Medicine, Federal University of Mato Grosso, Cuiabá 78060-900, Brazil; (D.F.d.S.D.M.); (V.D.)
- Secretaria de Estado do Meio Ambiente de Mato Grosso (SEMA), Cuiabá 78050-970, Brazil
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João R. Mesquita
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Correspondence:
| | - Valéria Dutra
- Faculty of Veterinary Medicine, Federal University of Mato Grosso, Cuiabá 78060-900, Brazil; (D.F.d.S.D.M.); (V.D.)
| | | |
Collapse
|
12
|
Ellwanger JH, Chies JAB. Zoonotic spillover: Understanding basic aspects for better prevention. Genet Mol Biol 2021; 44:e20200355. [PMID: 34096963 PMCID: PMC8182890 DOI: 10.1590/1678-4685-gmb-2020-0355] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/05/2021] [Indexed: 01/07/2023] Open
Abstract
The transmission of pathogens from wild animals to humans is called “zoonotic spillover”. Most human infectious diseases (60-75%) are derived from pathogens that originally circulated in non-human animal species. This demonstrates that spillover has a fundamental role in the emergence of new human infectious diseases. Understanding the factors that facilitate the transmission of pathogens from wild animals to humans is essential to establish strategies focused on the reduction of the frequency of spillover events. In this context, this article describes the basic aspects of zoonotic spillover and the main factors involved in spillover events, considering the role of the inter-species interactions, phylogenetic distance between host species, environmental drivers, and specific characteristics of the pathogens, animals, and humans. As an example, the factors involved in the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic are discussed, indicating what can be learned from this public health emergency, and what can be applied to the Brazilian scenario. Finally, this article discusses actions to prevent or reduce the frequency of zoonotic spillover events.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
| | - José Artur Bogo Chies
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
| |
Collapse
|