1
|
Razzaq A, Disoma C, Iqbal S, Nisar A, Hameed M, Qadeer A, Waqar M, Mehmood SA, Gao L, Khan S, Xia Z. Genomic epidemiology and evolutionary dynamics of the Omicron variant of SARS-CoV-2 during the fifth wave of COVID-19 in Pakistan. Front Cell Infect Microbiol 2024; 14:1484637. [PMID: 39502171 PMCID: PMC11534695 DOI: 10.3389/fcimb.2024.1484637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed extraordinary challenges to global health systems and economies. The virus's rapid evolution has resulted in several variants of concern (VOCs), including the highly transmissible Omicron variant, characterized by extensive mutations. In this study, we investigated the genetic diversity, population differentiation, and evolutionary dynamics of the Omicron VOC during the fifth wave of COVID-19 in Pakistan. Methods A total of 954 Omicron genomes sequenced during the fifth wave of COVID-19 in Pakistan were analyzed. A Bayesian framework was employed for phylogenetic reconstructions, molecular dating, and population dynamics analysis. Results Using a population genomics approach, we analyzed Pakistani Omicron samples, revealing low within-population genetic diversity and significant structural variation in the spike (S) protein. Phylogenetic analysis showed that the Omicron variant in Pakistan originated from two distinct lineages, BA.1 and BA.2, which were introduced from South Africa, Thailand, Spain, and Belgium. Omicron-specific mutations, including those in the receptor-binding domain, were identified. The estimated molecular evolutionary rate was 2.562E-3 mutations per site per year (95% HPD interval: 8.8067E-4 to 4.1462E-3). Bayesian skyline plot analysis indicated a significant population expansion at the end of 2021, coinciding with the global Omicron outbreak. Comparative analysis with other VOCs showed Omicron as a highly divergent, monophyletic group, suggesting a unique evolutionary pathway. Conclusions This study provides a comprehensive overview of Omicron's genetic diversity, genomic epidemiology, and evolutionary dynamics in Pakistan, emphasizing the need for global collaboration in monitoring variants and enhancing pandemic preparedness.
Collapse
Affiliation(s)
- Aroona Razzaq
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Cyrollah Disoma
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Sonia Iqbal
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Muddassar Hameed
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Waqar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | | | - Lidong Gao
- Hunan Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
2
|
Ahmed OB, Asghar A, Bamaga M, Abd El-Rahim IH, Mashat B, Khogeer A, Assaggaf H. Patient Characteristics and Clinical Outcomes During the 2020-2021 COVID-19 Wave: An Observational Study at a Tertiary Hospital in Saudi Arabia. Cureus 2024; 16:e71119. [PMID: 39386928 PMCID: PMC11462384 DOI: 10.7759/cureus.71119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
Background and objective The continued prevalence and threat of coronavirus disease 2019 (COVID-19) have been reported, and evidence suggests that several people still get infected with the virus. Gaining a thorough understanding of the patient demographic factors and laboratory findings could contribute to assessing the severity, mortality, and progression of COVID-19. In light of this, the current study aimed to evaluate the demographic characteristics, laboratory findings, and outcomes of confirmed COVID-19 patients at a tertiary hospital in the Kingdom of Saudi Arabia (KSA). Methodology We collected data spanning the period 2020-2021 from the electronic health records of Al-Noor Specialized Hospital, Ma including demographics (age, gender, and nationality), severity (i.e., ICU admission), length of hospital stay, mortality, and laboratory parameters. Results We observed an overall mortality rate of 10.2% (338 of 3,307 patients). The mortality rate was significantly higher in males (n=210; 62.1%) and patients aged more than 70 years (n=91; 26.9%). Patients with blood group O comprised 131 (29%) of the 338 non-survivors, followed by those with A (n=85; 25.1%) and B groups (n=79; 23.4%). The mortality rate among ICU patients was 63.3% (n=214). Furthermore, the following laboratory findings showed abnormal mean values in terms of severity and mortality in COVID-19 patients: hemoglobin (HB) concentration, white blood cell (WBC) count, lymphocyte count (LC), C-reactive protein (CRP), creatinine (CREA), and uric acid (UA) levels. Conclusions Old age, male gender, and certain laboratory findings have a critical role in the severity and mortality risk in COVID-19 patients. There was no significant association between blood type and the severity and mortality of COVID-19. Continuous monitoring based on these findings may be essential to managing COVID-19 patients.
Collapse
Affiliation(s)
- Omar B Ahmed
- Environmental and Health Research, Umm Al-Qura University, Makkah, SAU
| | - Atif Asghar
- Environmental and Health Research, Umm Al-Qura University, Makkah, SAU
| | - Majid Bamaga
- Environmental and Health Research, Umm Al-Qura University, Makkah, SAU
| | | | - Bassam Mashat
- Environmental and Health Research, Umm Al-Qura University, Makkah, SAU
| | - Asim Khogeer
- Institutional Review Board, General Directorate of Health Affairs Makkah Region, Ministry of Health, Makkah, SAU
- Research Office, General Directorate of Health Affairs Makkah Region, Ministry of Health, Makkah, SAU
| | - Hamza Assaggaf
- Laboratory Medicine/Public Health, Umm Al-Qura University, Makkah, SAU
| |
Collapse
|
3
|
Compeer B, Neijzen TR, van Lelyveld SFL, Martina BEE, Russell CA, Goeijenbier M. Uncovering the Contrasts and Connections in PASC: Viral Load and Cytokine Signatures in Acute COVID-19 versus Post-Acute Sequelae of SARS-CoV-2 (PASC). Biomedicines 2024; 12:1941. [PMID: 39335455 PMCID: PMC11428903 DOI: 10.3390/biomedicines12091941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
The recent global COVID-19 pandemic has had a profound and enduring impact, resulting in substantial loss of life. The scientific community has responded unprecedentedly by investigating various aspects of the crisis, particularly focusing on the acute phase of COVID-19. The roles of the viral load, cytokines, and chemokines during the acute phase and in the context of patients who experienced enduring symptoms upon infection, so called Post-Acute Sequelae of COVID-19 or PASC, have been studied extensively. Here, in this review, we offer a virologist's perspective on PASC, highlighting the dynamics of SARS-CoV-2 viral loads, cytokines, and chemokines in different organs of patients across the full clinical spectrum of acute-phase disease. We underline that the probability of severe or critical disease progression correlates with increased viral load levels detected in the upper respiratory tract (URT), lower respiratory tract (LRT), and plasma. Acute-phase viremia is a clear, although not unambiguous, predictor of PASC development. Moreover, both the quantity and diversity of functions of cytokines and chemokines increase with acute-phase disease severity. Specific cytokines remain or become elevated in the PASC phase, although the driving factor of ongoing inflammation found in patients with PASC remains to be investigated. The key findings highlighted in this review contribute to a further understanding of PASC and their differences and overlap with acute disease.
Collapse
Affiliation(s)
- Brandon Compeer
- Artemis Bioservices B.V., 2629 JD Delft, The Netherlands
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
| | - Tobias R Neijzen
- Department of Intensive Care Medicine, Spaarne Gasthuis, 2035 RC Haarlem, The Netherlands
| | | | | | - Colin A Russell
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
| | - Marco Goeijenbier
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
- Department of Intensive Care, Erasmus MC University Medical Centre, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
4
|
Tony-Odigie A, Dalpke AH, Boutin S, Yi B. Airway commensal bacteria in cystic fibrosis inhibit the growth of P. aeruginosa via a released metabolite. Microbiol Res 2024; 283:127680. [PMID: 38520837 DOI: 10.1016/j.micres.2024.127680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
In cystic fibrosis (CF), Pseudomonas aeruginosa infection plays a critical role in disease progression. Although multiple studies suggest that airway commensals might be able to interfere with pathogenic bacteria, the role of the distinct commensals in the polymicrobial lung infections is largely unknown. In this study, we aimed to identify airway commensal bacteria that may inhibit the growth of P. aeruginosa. Through a screening study with more than 80 CF commensal strains across 21 species, more than 30 commensal strains from various species have been identified to be able to inhibit the growth of P. aeruginosa. The underlying mechanisms were investigated via genomic, metabolic and functional analysis, revealing that the inhibitory commensals may affect the growth of P. aeruginosa by releasing a large amount of acetic acid. The data provide information about the distinct roles of airway commensals and provide insights into novel strategies for controlling airway infections.
Collapse
Affiliation(s)
- Andrew Tony-Odigie
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Alexander H Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Sébastien Boutin
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany; University of Lübeck, Department of Infectious Diseases and Microbiology, Lübeck, Germany
| | - Buqing Yi
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Yi B, Patrasová E, Šimůnková L, Rost F, Winkler S, Laubner A, Reinhardt S, Dahl A, Dalpke AH. Investigating the cause of a 2021 winter wave of COVID-19 in a border region in eastern Germany: a mixed-methods study, August to November 2021. Epidemiol Infect 2024; 152:e87. [PMID: 38751220 PMCID: PMC11149030 DOI: 10.1017/s0950268824000761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024] Open
Abstract
It is so far unclear how the COVID-19 winter waves started and what should be done to prevent possible future waves. In this study, we deciphered the dynamic course of a winter wave in 2021 in Saxony, a state in Eastern Germany neighbouring the Czech Republic and Poland. The study was carried out through the integration of multiple virus genomic epidemiology approaches to track transmission chains, identify emerging variants and investigate dynamic changes in transmission clusters. For identified local variants of interest, functional evaluations were performed. Multiple long-lasting community transmission clusters have been identified acting as driving force for the winter wave 2021. Analysis of the dynamic courses of two representative clusters indicated a similar transmission pattern. However, the transmission cluster caused by a locally occurring new Delta variant AY.36.1 showed a distinct transmission pattern, and functional analyses revealed a replication advantage of it. This study indicated that long-lasting community transmission clusters starting since early autumn caused by imported or locally occurring variants all contributed to the development of the 2021 winter wave. The information we achieved might help future pandemic prevention.
Collapse
Affiliation(s)
- Buqing Yi
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eva Patrasová
- Department of Epidemiology, Regional Public Health Authority for Ustecky Kraj, Ústí nad Labem, Czech Republic
- Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Lenka Šimůnková
- Department of Epidemiology, Regional Public Health Authority for Ustecky Kraj, Ústí nad Labem, Czech Republic
| | - Fabian Rost
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN-Concept Genome Center, Technische Universität Dresden, Dresden, Germany
| | - Alexa Laubner
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Alexander H. Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Steenblock C, Richter S, Lindemann D, Ehrlich H, Bornstein SR, Bechmann N. Marine Sponge-Derived Secondary Metabolites Modulate SARS-CoV-2 Entry Mechanisms. Horm Metab Res 2024; 56:308-317. [PMID: 37793428 DOI: 10.1055/a-2173-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The emergence of SARS-CoV 2 caused the COVID-19 pandemic, resulting in numerous global infections and deaths. In particular, people with metabolic diseases display an increased risk of severe COVID 19 and a fatal outcome. Treatment options for severe cases are limited, and the appearance of new virus variants complicates the development of novel therapies. To better manage viral infections like COVID 19, new therapeutic approaches are needed. Marine sponges offer a natural and renewable source of unique bioactive agents. These sponges produce secondary metabolites with various effects, including anti-viral, anti-inflammatory, and anti-tumorigenic properties. In the current study, we investigated the effect of five different marine sponge-derived secondary metabolites (four bromotyrosines and one sesquiterpenoid hydroquinone). Two of these, Avarol and Acetyl-dibromoverongiaquinol reduced the expression of ACE2, the main receptor for SARS-CoV 2, and the alternative receptor NRP1. Moreover, these substances derived from sponges demonstrated the ability to diminish the virus titer in SARS-CoV 2-infected cells, especially concerning the Omicron lineage. However, the reduction was not substantial enough to expect a significant impact on infected humans. Consequently, the investigated sponge-derived secondary metabolites are not likely to be effective to treat COVID 19 as a stand-alone therapy.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefanie Richter
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hermann Ehrlich
- Center for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom of Great Britain and Northern Ireland
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Tang CY, Li T, Haynes TA, McElroy JA, Ritter D, Hammer RD, Sampson C, Webby R, Hang J, Wan XF. Rural populations facilitated early SARS-CoV-2 evolution and transmission in Missouri, USA. NPJ VIRUSES 2023; 1:7. [PMID: 38186942 PMCID: PMC10769004 DOI: 10.1038/s44298-023-00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/20/2023] [Indexed: 01/09/2024]
Abstract
In the United States, rural populations comprise 60 million individuals and suffered from high COVID-19 disease burdens. Despite this, surveillance efforts are biased toward urban centers. Consequently, how rurally circulating SARS-CoV-2 viruses contribute toward emerging variants remains poorly understood. In this study, we aim to investigate the role of rural communities in the evolution and transmission of SARS-CoV-2 during the early pandemic. We collected 544 urban and 435 rural COVID-19-positive respiratory specimens from an overall vaccine-naïve population in Southwest Missouri between July and December 2020. Genomic analyses revealed 53 SARS-CoV-2 Pango lineages in our study samples, with 14 of these lineages identified only in rural samples. Phylodynamic analyses showed that frequent bi-directional diffusions occurred between rural and urban communities in Southwest Missouri, and that four out of seven Missouri rural-origin lineages spread globally. Further analyses revealed that the nucleocapsid protein (N):R203K/G204R paired substitutions, which were detected disproportionately across multiple Pango lineages, were more associated with urban than rural sequences. Positive selection was detected at N:204 among rural samples but was not evident in urban samples, suggesting that viruses may encounter distinct selection pressures in rural versus urban communities. This study demonstrates that rural communities may be a crucial source of SARS-CoV-2 evolution and transmission, highlighting the need to expand surveillance and resources to rural populations for COVID-19 mitigation.
Collapse
Affiliation(s)
- Cynthia Y. Tang
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA
- Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
- These authors contributed equally: Cynthia Y. Tang, Tao Li
| | - Tao Li
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- These authors contributed equally: Cynthia Y. Tang, Tao Li
| | - Tricia A. Haynes
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA
- Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jane A. McElroy
- Family and Community Medicine, University of Missouriś, Columbia, MO, USA
| | - Detlef Ritter
- Anatomic Pathology & Clinical Pathology, University of Missouri, Columbia, MO, USA
| | - Richard D. Hammer
- Anatomic Pathology & Clinical Pathology, University of Missouri, Columbia, MO, USA
| | | | - Richard Webby
- Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA
- Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
8
|
Martončíková M, Doležal P, Fabianová K, Karhánek M, Gálik J, Raček A, Popovičová A, Račeková E. Remote psychophysical testing of smell in patients with persistent olfactory dysfunction after COVID-19. Sci Rep 2023; 13:14090. [PMID: 37640847 PMCID: PMC10462624 DOI: 10.1038/s41598-023-41395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Olfactory dysfunction associated with coronavirus 2 (SARS-CoV-2) infection is in most cases transient, recovering spontaneously within a few days. However, in some patients it persists for a long time, affects their everyday life and endangers their health. Hence, we focused on patients with persistent loss of smell. The aim of this study was to evaluate olfactory dysfunction using a standardized test. Due to the pandemic, olfactory testing was performed online. Smell tests (Odorized Markers Test, OMT) were sent home to the patients. Together with the smell self-testing, participants reported and assessed several parameters (age, sex, subjective assessment of smell and taste, nasal patency, etc.) in an online questionnaire. Based on the questionnaire outcomes, the results were sent to the patients along with a list of participating otolaryngologists who provided them with professional care. From March to June 2021, 1025 patients requested smell testing, of these, 824 met the inclusion criteria of this study. The duration of the olfactory dysfunction at the time of testing ranged from 1 month to 1 year. Using the OMT, impaired smell ability-anosmia or hyposmia-was confirmed in 82.6% of participants. A total of 17.4% of participants were determined to be normosmic however, more than 50% of them complained of parosmia and/or phantosmia. Our study demonstrates the relevance of psychophysical smell testing and its suitability for remote use during the pandemic. This study also revealed several correlations between prolonged olfactory dysfunction and the monitored parameters.
Collapse
Affiliation(s)
- Marcela Martončíková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01, Košice, Slovakia
| | - Pavel Doležal
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital-St. Michal's Hospital, Slovak Medical University, Bratislava, Slovakia
| | - Kamila Fabianová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01, Košice, Slovakia
| | - Miloslav Karhánek
- Laboratory of Bioinformatics, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05, Bratislava, Slovakia
| | - Ján Gálik
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01, Košice, Slovakia
| | - Adam Raček
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01, Košice, Slovakia
| | - Alexandra Popovičová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01, Košice, Slovakia
| | - Enikő Račeková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01, Košice, Slovakia.
| |
Collapse
|
9
|
Nabaes Jodar MS, Torres C, Mojsiejczuk L, Acuña D, Valinotto LE, Goya S, Natale M, Lusso S, Alexay S, Amadio A, Irazoqui M, Fernandez F, Acevedo ME, Alvarez Lopez C, Angelletti A, Aulicino P, Bolatti E, Brusés B, Cacciahue M, Cavatorta A, Cerri A, Cordero A, Debat H, Dus Santos MJ, Eberhardt MF, Ercole R, Espul C, Farber M, Fay F, Fernandez A, Ferrini F, Formichelli L, Ceballos S, Gallego F, Giri A, Gismondi M, Acevedo RM, Gramundi I, Ibañez ME, Konig G, Leiva V, Lorenzini Campos M, Lucero H, Marquez N, Mazzeo M, Mistchenko AS, Montoto L, Muñoz M, Nadalich V, Nardi C, Ortiz B, Pianciola L, Pintos C, Puebla A, Rastellini C, Rojas AE, Sfalcin J, Suarez A, Theaux C, Thomas G, Tittarelli E, Toro R, Villanova V, Wenk G, Ziehm C, Zimmermann MC, Zunino S, Pais P, Viegas M. The Lambda Variant in Argentina: Analyzing the Evolution and Spread of SARS-CoV-2 Lineage C.37. Viruses 2023; 15:1382. [PMID: 37376681 DOI: 10.3390/v15061382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The second wave of COVID-19 occurred in South America in early 2021 and was mainly driven by Gamma and Lambda variants. In this study, we aimed to describe the emergence and local genomic diversity of the SARS-CoV-2 Lambda variant in Argentina, from its initial entry into the country until its detection ceased. Molecular surveillance was conducted on 9356 samples from Argentina between October 2020 and April 2022, and sequencing, phylogenetic, and phylogeographic analyses were performed. Our findings revealed that the Lambda variant was first detected in Argentina in January 2021 and steadily increased in frequency until it peaked in April 2021, with continued detection throughout the year. Phylodynamic analyses showed that at least 18 introductions of the Lambda variant into the country occurred, with nine of them having evidence of onward local transmission. The spatial--temporal reconstruction showed that Argentine clades were associated with Lambda sequences from Latin America and suggested an initial diversification in the Metropolitan Area of Buenos Aires before spreading to other regions in Argentina. Genetic analyses of genome sequences allowed us to describe the mutational patterns of the Argentine Lambda sequences and detect the emergence of rare mutations in an immunocompromised patient. Our study highlights the importance of genomic surveillance in identifying the introduction and geographical distribution of the SARS-CoV-2 Lambda variant, as well as in monitoring the emergence of mutations that could be involved in the evolutionary leaps that characterize variants of concern.
Collapse
Affiliation(s)
- Mercedes Soledad Nabaes Jodar
- Laboratorio de Virologia, Hospital de Ninos Dr. Ricardo Gutierrez, Gallo 1330, Ciudad Autónoma de Buenos Aires 1425, Argentina
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
| | - Carolina Torres
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Instituto de Investigaciones En Bacteriologia y Virologia Molecular (IbaViM), Junín 956, Ciudad Autómoma de Buenos Aires 1113, Argentina
| | - Laura Mojsiejczuk
- Instituto de Investigaciones En Bacteriologia y Virologia Molecular (IbaViM), Junín 956, Ciudad Autómoma de Buenos Aires 1113, Argentina
| | - Dolores Acuña
- Laboratorio de Virologia, Hospital de Ninos Dr. Ricardo Gutierrez, Gallo 1330, Ciudad Autónoma de Buenos Aires 1425, Argentina
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
| | - Laura Elena Valinotto
- Laboratorio de Virologia, Hospital de Ninos Dr. Ricardo Gutierrez, Gallo 1330, Ciudad Autónoma de Buenos Aires 1425, Argentina
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
| | - Stephanie Goya
- Laboratorio de Virologia, Hospital de Ninos Dr. Ricardo Gutierrez, Gallo 1330, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Monica Natale
- Laboratorio de Virologia, Hospital de Ninos Dr. Ricardo Gutierrez, Gallo 1330, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Silvina Lusso
- Laboratorio de Virologia, Hospital de Ninos Dr. Ricardo Gutierrez, Gallo 1330, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Sofia Alexay
- Laboratorio de Virologia, Hospital de Ninos Dr. Ricardo Gutierrez, Gallo 1330, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Ariel Amadio
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Instituto de Investigación de La Cadena Lactea (IDICAL) INTA-CONICET, Ruta 34 Km 227, Rafaela 2300, Argentina
| | - Matias Irazoqui
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Instituto de Investigación de La Cadena Lactea (IDICAL) INTA-CONICET, Ruta 34 Km 227, Rafaela 2300, Argentina
| | - Franco Fernandez
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnologia Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba 5020, Argentina
| | - Maria Elina Acevedo
- Laboratorio de Virologia, Hospital de Ninos Dr. Ricardo Gutierrez, Gallo 1330, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Cristina Alvarez Lopez
- Laboratorio de Virologia, Hospital de Ninos Dr. Ricardo Gutierrez, Gallo 1330, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Andres Angelletti
- Laboratorio de Salud Pública, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 1 y 47, La Plata 1900, Argentina
| | - Paula Aulicino
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Laboratorio de Biología Celular y Retrovirus, Hospital de Pediatría Prof. Juan P. Garrahan, Avenida Brasil 1175, Ciudad Autónoma de Buenos Aires 1260, Argentina
| | - Elisa Bolatti
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina
| | - Bettina Brusés
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Av. Las Heras 727, Resistencia 3500, Argentina
| | - Marco Cacciahue
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Instituto de Biotecnología, Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), De Los Reseros y N. Repetto s/No, Hurlingham 1686, Argentina
| | - Ana Cavatorta
- Centro de Tecnología En Salud Pública, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, Rosario 2000, Argentina
| | - Agustina Cerri
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina
| | - Andres Cordero
- Laboratorio de Salud Pública, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 1 y 47, La Plata 1900, Argentina
| | - Humberto Debat
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnologia Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba 5020, Argentina
| | - Maria Jose Dus Santos
- Instituto de Virología e Innovaciones Tecnológicas (INTA-CONICET), De Los Reseros y N. Repetto s/No, Hurlingham 1686, Argentina
- Laboratorio de Diagnostico-UNIDAD COVID, Universidad Nacional de Hurlingham, Hurlingham 1686, Argentina
| | - Maria Florencia Eberhardt
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Instituto de Investigación de La Cadena Lactea (IDICAL) INTA-CONICET, Ruta 34 Km 227, Rafaela 2300, Argentina
| | - Regina Ercole
- Laboratorio de Virología, HIEAyC San Juan de Dios, Calles 27 y 70, La Plata 1900, Argentina
| | - Carlos Espul
- Dirección de Epidemiologia y Red de Laboratorios Del Ministerio de Salud de La Provincia de Mendoza, Mendoza 5500, Argentina
| | - Marisa Farber
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Instituto de Biotecnología, Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), De Los Reseros y N. Repetto s/No, Hurlingham 1686, Argentina
| | - Fabián Fay
- CIBIC Laboratorio, Pte. Roca 746, Rosario 2000, Argentina
| | - Ailen Fernandez
- Laboratorio Central Ciudad de Neuquén, Ministerio de Salud, Gregorio Martínez 65, Neuquén 8300, Argentina
| | - Florencia Ferrini
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Laboratorio de Medicina Genómica, Facultad de Medicina, Universidad Nacional Del Nordeste, Córdoba 1430, Argentina
| | - Laura Formichelli
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Av. Las Heras 727, Resistencia 3500, Argentina
| | - Santiago Ceballos
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Cadic-Conicet, Universidad Nacional de Tierra del Fuego, Houssay 200, Ushuaia 9410, Argentina
| | - Fernando Gallego
- Hospital Regional Ushuaia, Av. 12 de Octubre y Maipú, Ushuaia 9410, Argentina
| | - Adriana Giri
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina
| | - Maria Gismondi
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Instituto de Biotecnología, Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), De Los Reseros y N. Repetto s/No, Hurlingham 1686, Argentina
| | - Raul Maximiliano Acevedo
- Instituto de Botánica Del Nordeste-UNNE, Sargento Juan Bautista Cabral 2131, Corrientes 3400, Argentina
| | - Ivan Gramundi
- Hospital Regional Ushuaia, Av. 12 de Octubre y Maipú, Ushuaia 9410, Argentina
| | - María Eugenia Ibañez
- Biología Molecular-Laboratorio Central, Hospital Alemán, Av. Pueyrredón 1640, Cuidad Autónoma de Buenos Aires 1118, Argentina
| | - Guido Konig
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Instituto de Biotecnología, Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), De Los Reseros y N. Repetto s/No, Hurlingham 1686, Argentina
| | - Viviana Leiva
- Laboratorio de Salud Pública, Talcahuano 2194, Godoy Cruz 5501, Argentina
| | - Melina Lorenzini Campos
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Av. Las Heras 727, Resistencia 3500, Argentina
| | - Horacio Lucero
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Av. Las Heras 727, Resistencia 3500, Argentina
| | - Nathalie Marquez
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnologia Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba 5020, Argentina
| | - Melina Mazzeo
- Laboratorio Central Ciudad de Neuquén, Ministerio de Salud, Gregorio Martínez 65, Neuquén 8300, Argentina
| | - Alicia Susana Mistchenko
- Laboratorio de Virologia, Hospital de Ninos Dr. Ricardo Gutierrez, Gallo 1330, Ciudad Autónoma de Buenos Aires 1425, Argentina
- Comisión Investigaciones Científicas de La Provincia de Buenos Aires, Camino General Belgrano y 526, La Plata 1900, Argentina
| | - Luciana Montoto
- Laboratorio de Biología Molecular Hospital Pedro de Elizalde, Avenida Manuel A Montes de Oca 1402, Cuidad Autónoma de Buenos Aires 1270, Argentina
| | - Marianne Muñoz
- Instituto de Biotecnología, Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), De Los Reseros y N. Repetto s/No, Hurlingham 1686, Argentina
| | - Victoria Nadalich
- Laboratorio de Salud Pública, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 1 y 47, La Plata 1900, Argentina
| | - Cristina Nardi
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA) de La Universidad Nacional de Tierra Del Fuego (UNTDF), Houssay 200, Ushuaia 9410, Argentina
| | - Belén Ortiz
- Laboratorio de Salud Pública, Talcahuano 2194, Godoy Cruz 5501, Argentina
| | - Luis Pianciola
- Laboratorio Central Ciudad de Neuquén, Ministerio de Salud, Gregorio Martínez 65, Neuquén 8300, Argentina
| | - Carolina Pintos
- Laboratorio Central Ciudad de Neuquén, Ministerio de Salud, Gregorio Martínez 65, Neuquén 8300, Argentina
| | - Andrea Puebla
- Instituto de Biotecnología, Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), De Los Reseros y N. Repetto s/No, Hurlingham 1686, Argentina
| | - Carolina Rastellini
- Laboratorio Central Ciudad de Neuquén, Ministerio de Salud, Gregorio Martínez 65, Neuquén 8300, Argentina
| | - Alejandro Ezequiel Rojas
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA) de La Universidad Nacional de Tierra Del Fuego (UNTDF), Houssay 200, Ushuaia 9410, Argentina
| | - Javier Sfalcin
- CIBIC Laboratorio, Pte. Roca 746, Rosario 2000, Argentina
| | - Ariel Suarez
- Departamento de Biología y Genética Molecular, IACA Laboratorios, San Martín 68, Bahía Blanca 8000, Argentina
| | - Clara Theaux
- Laboratorio de Biología Molecular Del Hospital General de Agudos, Carlos G. Durand, Diaz Vélez 5044, Cuidad Autónoma de Buenos Aires 1405, Argentina
| | - Guillermo Thomas
- Laboratorio de Virologia, Hospital de Ninos Dr. Ricardo Gutierrez, Gallo 1330, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Estefania Tittarelli
- Departamento de Biología y Genética Molecular, IACA Laboratorios, San Martín 68, Bahía Blanca 8000, Argentina
| | - Rosana Toro
- Laboratorio de Salud Pública, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 1 y 47, La Plata 1900, Argentina
| | - Vanina Villanova
- Laboratorio Mixto de Biotecnología Acuática, Av. Eduardo Carrasco y Cordiviola, Rosario 2000, Argentina
| | - Gretel Wenk
- Laboratorio de Biología Molecular Hospital Pedro de Elizalde, Avenida Manuel A Montes de Oca 1402, Cuidad Autónoma de Buenos Aires 1270, Argentina
| | - Cecilia Ziehm
- Laboratorio Central Ciudad de Neuquén, Ministerio de Salud, Gregorio Martínez 65, Neuquén 8300, Argentina
| | - Maria Carla Zimmermann
- Laboratorio de Medicina Genómica, Facultad de Medicina, Universidad Nacional Del Nordeste, Córdoba 1430, Argentina
| | - Sebastian Zunino
- Laboratorio de Virología Molecular, Hospital Blas L. Dubarry, Calle 12 825, Mercedes 6600, Argentina
| | - Proyecto Pais
- Consorcio Argentino de Genómica de SARS-CoV-2, Proyecto Argentino Interinstitucional de Genómica de SARS-CoV-2, Gallo 1330, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Mariana Viegas
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires 2915, Argentina
- Laboratorio de Salud Pública, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 1 y 47, La Plata 1900, Argentina
| |
Collapse
|
10
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Singh R, Nagpal S, Pinna NK, Mande SS. Tracking mutational semantics of SARS-CoV-2 genomes. Sci Rep 2022; 12:15704. [PMID: 36127400 PMCID: PMC9487856 DOI: 10.1038/s41598-022-20000-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Natural language processing (NLP) algorithms process linguistic data in order to discover the associated word semantics and develop models that can describe or even predict the latent meanings of the data. The applications of NLP become multi-fold while dealing with dynamic or temporally evolving datasets (e.g., historical literature). Biological datasets of genome-sequences are interesting since they are sequential as well as dynamic. Here we describe how SARS-CoV-2 genomes and mutations thereof can be processed using fundamental algorithms in NLP to reveal the characteristics and evolution of the virus. We demonstrate applicability of NLP in not only probing the temporal mutational signatures through dynamic topic modelling, but also in tracing the mutation-associations through tracing of semantic drift in genomic mutation records. Our approach also yields promising results in unfolding the mutational relevance to patient health status, thereby identifying putative signatures linked to known/highly speculated mutations of concern.
Collapse
Affiliation(s)
- Rohan Singh
- TCS Research, Tata Consultancy Services Ltd, Pune, 411013, India
| | - Sunil Nagpal
- TCS Research, Tata Consultancy Services Ltd, Pune, 411013, India.
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Nishal K Pinna
- TCS Research, Tata Consultancy Services Ltd, Pune, 411013, India
| | - Sharmila S Mande
- TCS Research, Tata Consultancy Services Ltd, Pune, 411013, India.
| |
Collapse
|